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1. General remarks. Diaconis and Freedman have demonstrated some ad-
vantages and pitfalls of Bayesian inference. In summary, their results include the
inconsistency of location estimates based on a Dirichlet prior; the equivalence of
weak consistency and weak merging of posteriors; and an analysis of the sensitiv-
ity of the posterior to changes in the prior. In this discussion, we provide
additional insight and point toward new developments. It is argued that the
Dirichlet is a poor choice of prior because the Dirichlet mixture has a likelihood
which is exponentially smaller than every product likelihood. We give conditions

'Work supported in part by NSF Grant ECS 82-11568 at Stanford University.

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to
The Annals of Statistics.

2

STOR

®

www.jstor.org



CONSISTENCY OF BAYES ESTIMATES 27

on the choice of the prior such that the mixture likelihood is close to virtually
any product likelihood. Implications for Bayes consistency are discussed.

Consider the general problem of Bayes estimation on the line. We denote the
distributions on the line by F, the product distributions on R” by F”, and the
prior on distributions by p. The mixture of product distributions is G =
JF™u(dF). (According to a Bayesian with prior p, this G is the distribution of
the data.) Following the “what-if” principle of Diaconis and Freedman, we
assume that X, X,,... are independently drawn from a distribution F, with a
probability density function f,(x). The joint density f.(X,, X,,...,X,) =
[T, f«(X;) (evaluated at the data) is called the product likelihood. Let
8(X,, X,, ..., X,) be the density of the absolutely continuous component of G
Ideally, we want the mixture likelihood g(X,, X,,..., X,) to be close to the
product likelihood f.(X,, X,,..., X,,) with high F} probability, for virtually
any such distribution F,.

2. The location problem. Diaconis and Freedman consider the Bayes
estimation of a location parameter § from data X; = 0 + ¢; where the ¢; are
independently drawn from a distribution F. If the prior p on distributions F is
taken to be independent of @, then the posterior distribution of 6 given
X,, X,,..., X,, depends on the prior p only through the mixture distribution
G™ = [F"u(dF). For instance, if G is absolutely continuous on a set A which
is invariant under translations of each coordinate by 6, then the mean of the
posterior is given by 8 = [0p(8)g(X, - 0,..., X, — 0)d0/[p(0)g(X, - 0,
..., X, —0)df for X,,..., X, in A, where p(0) is the prior density of locations.

Is the mean of the posterior consistent? As a degenerate example, suppose the
prior p is point mass at a distribution F with density f. If this prior guess is
exactly right, F = F,, then the posterior mean is consistent for almost every 6
(and consistent for every 6 if the density f, is smooth; see Schwartz, 1965).
Whereas if the prior guess is wrong, F # F,, then Diaconis and Freedman (1986)
show that the posterior mean may be inconsistent. (Surprisingly, F # F, does
not necessarily imply inconsistent posterior means. Diaconis and Freedman state
that the location estimate is consistent for essentially any F, if F has a
log-concave density.) A naive reaction to this degenerate case is, “ Why consider
point mass at a single distribution F, when there are priors like the Dirichlet for
which all distributions are in the (weak-star) support set?”

If p is a Dirichlet prior with absolutely continuous base measure a (having
standardized density f = «’/||a|), then the Korwar-Hollander result (which
Diaconis and Freedman (1986) uses) establishes that the distribution G is
absolutely continuous on the set of sequences with distinct X, and the likelihood
8(X,, X,,..., X,,) is proportional to [T, f(X;). (The set with distinct X; has
probability 1 with respect to any continuous distribution FZ, but exponentially
small probability with respect to G(™).) Consequently, for the location problem,
the Dirichlet prior yields exactly the same estimator as the degenerate prior
which places point mass at a single F'! Because of this degeneracy, the Dirichlet
prior is useless machinery for the location problem. We would prefer to use a
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prior which (via the mixture) can simultaneously mimic a larger class of iid
distributions.

3. Matching likelihoods. We need a useful definition of closeness of likeli-
hoods. Since joint densities tend to grow (or shrink) exponentially (Barron,
1985a), the following definition is suggested as a natural property. A sequence of
likelihoods g(X,, X,,..., X,) is said to match likelihoods f«(X,, X,,..., X,) if
for any ¢ > 0,

e "g(X,, X,,..., X,) < f(Xy, X,,..., X,) <e"g8(X,, X,,..., X,),

for all n sufficiently large, with F¥ probability 1. (Equivalently, 1/n times the
log-likelihood ratio tends to zero.) Matching may be thought of as a strong
merging property of mixtures. The first inequality in the definition holds without
conditions (by application of Markov’s inequality and the Borel-Cantelli lemma).
The second inequality holds only for well designed mixtures.

What conditions on the prior p are sufficient for matching? Let ||[F, — F||
denote the total variation distance and let D(F || F) = E log dF ,/dF denote the
relative entropy (Kullback-Leibler divergence). Either of the following condi-
tions is sufficient for the mixture likelihoods g(X,, X,,..., X,,) to match the
product likelihoods f «(X;, X,,..., X,)):

(a) The prior assigns strictly positive mass to the relative entropy sets:
p{F: D(F,||F) <&} >0, foralle>0,
or

(b) The prior assigns non-negligible mass to the variation distance neighborhoods
in the sense that there exists ¢, with ¥¢, < oo such that

p{F: n|F, — F|| <¢g,} > e ",

Moreover, (a) and (b) each imply a local matching property. Let
g(X,, X,,..., X,|N) be the density of the absolutely continuous component of
the conditional distribution G(:|N) = [yF"(-)u(dF)/u(N). The prior is said
to locally match point mass at F, (weakly/strongly) if for all (weak-star/varia-
tion distance) neighborhoods N the likelihoods g(X,, X,,..., X,|N) match
f (X, X5, ..., X,,). Note that local matching implies matching. The proofs that
(a) and (b) each imply strong local matching are implicit in Schwartz (1965).

4. Bayes consistency. What are the implications of matching for con-
sistency? Local matching implies weak consistency of the posterior, but it also
implies more. Let’s define weak, strong, and intermediate forms of consistency.
Let ||Fy — F||, = L4 c.|Fs«(A) — F(A)| be the variation distance on a partition
7 of the line. The total variation distance is || F, — F|| = sup,||Fy — F||,. Sets of
the form N, = {F: |[F, — F||, <¢} and N = {F: |F, — F| < ¢} are, respec-
tively, weak-star and total variation neighborhoods of F,. A sequence of posteri-
ors p, = u(-|X,, X,,..., X,) is strongly consistent for F, if the posterior mass of
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variation distance neighborhoods tends to one, p,(N) — 1, F¥-almost surely, for
any ¢ > 0, and weakly consistent if p, (N,) = 1 as. for any finite partition =
consisting of sets with boundary measure zero. Now for the intermediate defini-
tion: A sequence of posteriors p, is said to be consistent for F, in w,-variation if
BN, ) — 1 as., where 7, is a countable partition of the line into intervals of
width w,. We require that the widths w, tend to zero.

Why should we care about intermediate consistency? It is shown in Barron
(1985b, 1986) that for any prior p, local matching implies weak consistency
and consistency in w,-variation if lim nw, > 0 (e.g., = 1/n). Conversely, if
lim nw, = 0 then there exists a prior p wh1ch locally matches F, (and even
satisfies property (a)), but the posterior is inconsistent in w,-variation,
lim p (N, ) = 0. Thus w,-consistency with w, proportional to 1/n is the strong-
est poss1ble consistency obtainable from the sole assumption of local matching. A
consequence of this result is that Bayes estimates of the distribution need only be
smoothed over intervals of width 1/n to obtain strongly consistent density
estimates, whereas for ordinary histograms and kernel density estimates the
smoothing must extend over widths w, satisfying nw, — o. The proof of
n~ l-consistency is based on finding a sequence of tests of the hypotheses F = F,
versus the composite hypothesis F ¢ N, such that the probablhty of error is
uniformily exponentially small over all F & N_ . Such a test is relevant because
Schwartz (1965) shows that local matching plus the existence of uniformly
consistent tests implies consistency. The test statistic is essentially a weighted
count of the number of empty cells, ¥, (eI 4 ey — D

A natural class of priors on densities is obtained by convolving the distribu-
tions drawn from the Dirichlet with a kernel of random width. These priors have
been examined by Lo (1984). Here are some open questions. Are these priors
strongly consistent? Do they match a large class of distributions F,?

Another source of strongly consistent priors are those priors which assign mass
to a countable set of distributions. For instance, the prior might assign mass to
every histogram on dyadic intervals with rational heights. Or the prior might
assign mass to every computable distribution. In either case the prior satisfies the
relative entropy condition and hence it is strongly local matching for any F, with
bounded density on compact support. If a prior is root summable, ¥ ;u%(F) < oo
for some 0 < a < 1, and strongly local matching at F,, then the posterior is
strongly consistent for F,. [See Barron (1985b, 1986)].

5. On mixtures and consistency. A useful device for incorporating a
variety of possible prior beliefs is to take a countable mixture of priors. For-
tunately, the local matching property and hence the consistency is preserved by
countable mixtures. If at least one of the priors locally matches F, then so does
the mixture of the priors.

In an earlier paper, Freedman and Diaconis (1983) showed that mixtures
involving Dirichlet priors may be inconsistent. In particular, for probability mass
functions on the positive integers, they considered the mixture of a Dirichlet
prior (with uniform “stick-breaking”) and a point mass at a probability mass
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function ¢(i) proportional to 1/i(logi)?. The true probability mass function is
taken to be 8* which differs from ¢ for small i and is equal to ¢ for all large i.
The posterior has the unfortunate property of concentrating at ¢ rather than in
neighborhoods of 6*. From this inconsistency, we conclude that the Dirichlet
prior does not locally match 6*. Moreover, the Dirichlet prior assigns zero
mass to the relative entropy neighborhood {6:¥,0*(i)log 6*(i)/0(i) < €} for
sufficiently small.

Freedman and Diaconis have pointed out that ¢ and 8* have infinite entropy
H(6*) = ¥,6*(i)log1/6*(i). One might think that the inconsistency is a result of
the infinite entropy; however, even if certain finite entropy mass functions are
used in the construction, inconsistency will still result. It is enough that 6* and ¢
have tails proportional to 1/i* where 1 < a < 4. (The verification of incon-
sistency closely parallels Sections 2 and 3 of Freedman and Diaconis, 1983). In
Freedman (1963), finite entropy appears as part of a condition for consistency.
We now know that the finite entropy assumption is extraneous. It is the relative
entropy that matters for Bayes consistency.

In summary we have discussed some inadequacies of the Dirichlet prior as
revealed by the analysis of Diaconis and Freedman and we have pointed toward
stronger consistency and merging results obtainable for other priors.
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The very lucid paper of Diaconis and Freedman is full of stimulating ideas and
discussion. The ideas fall roughly into three categories: (i) inconsistency of Bayes
rule, (ii) frequentist-Bayesian interrelationships including the “what if” method,
and (iii) new Bayesian devices and techniques. My comments will be grouped by
these categories, and will be restricted (because of space considerations) solely to
a Bayesian view of the situation.



