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20 P. DIACONIS AND D. FREEDMAN 

Define Q9 = SF(b. Let ,a be uniform on 8. Define a posterior, maliciously, as 

,in(iX1* Xn.Fxxl)= if xl 

827T-1/n if xl = 
SO (0, ,i,n) is not consistent. But PE,8 Q* a.e. Q,, for all 0, even 0 = 0, and so 
merges with Pr a.e. P,, for any v. 

The following is required to complete the proof of Theorem A.1. If S is a Borel 
set, we write ir(S) for the set of probabilities on S, endowed with the weak-star 
topology. The set T(S) is Borel too. Let SO be a Borel subset of S. Let 
go = (AIA E 7i(S) and #{SO} = 1). Then .90 is a Borel subset of n(S). Let M 
map go onto 7T(SO) as follows: if a E go, then Ma is the restriction of a to the 
Borel subsets of SO. Thus, M maps probabilities on S to probabilities on SO. We 
write M = M(S, SO) to show the dependence on the spaces S and SO. 

LEMMA A.3. M is a homeomorphism of .90 onto ir(SO). 

PROOF. Use Corollary A.1. a 

Using Lemma A.3, we can view . as a dense Borel subset of the compact 
metric space (5?, p); metrize ( by p. Then r(X) can be viewed as a Borel subset 
of the compact metric set r(fl). For ,1 a probability on 8, let 

U(M)= fQ" #(dO). 

So U(,) is a probability on f??. 

PROPOSITION A.1. U is a homeomorphism of T(O) into T(2c?). 

PROOF. Let 8 = 7T(7f ). Let U map ST(e) into ?T(f ) as follows: 

U(M)= J0 u(dO). 

Then U is continuous, and 1-1 by de Finetti's theorem (Diaconis and Freedman, 
1980, Appendix). Since ST(@) is compact, U-1 is continuous. Next, suppose X is a 
Borel subset of Y, 8 is a Borel subset of v(T), and Q6 = 0. In this setting, 
U(M) = f00' ?(dO). Now apply Lemma A.3 twice, with M1 = M(6, 8) and 
M2 = M( ??, I ??). Then U = M2oUo M11 is a homeomorphism on v(6). To 
see that the composition makes sense, let ,u E -() and v = Mj.; then v E ?T(e) 
and v(8) = 1, so U(v)(?1') = 1 because 0(X) = 1 for 0 E 8. 

The general case is almost immediate: 0 -- Q6 being continuous and 1-1 on 8, 
the image 8 under this mapping of 8 is a Borel subset of 7T(X): see Kuratowski 
(1958). Apply the previous argument with 8 in place of 8. Let Mo map r(E) 
onto 7r(O) by the recipe (Mo0M)(A) = 4(0: Q6 E A} for Borel A c 8. This MO is 
a homeomorphism because 0 -* Q0 is. Now U = M2 o U o M17l o MO is a homeo- 
morphism too. 0 
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APPENDIX B 

The derivative of the posterior with respect to the prior. Proceeding 
heuristically for a moment, the derivative of the ratio T(,u) = N(Mi)/D(,.) is 

= [D(A)I& - N(G)D,j/DG()2. 

Now N(U) is linear: N(Mt + 8) = N(Ui) + N(8). So N = N(.). Likewise, D(Mi) is a 
linear functional, so D = D(.). For example, in our sense, the derivative of the 
linear function 4: x 3x is just 4, because +(x + h) = +(x) + +O(h). 

The upshot is = R, where 

R(.)= N(-) N(_ , DN( ). ,P D(Ai) DA 
This is part (a) of Theorem 4. For a rigorous proof, we must show that for any 8 
with signed mass 0, 

T(,i + 8) = T(u) + R,L(8) + o(11811). 

The difference T(M + 8) - T( i) - R,L(8) is easily seen to equal 

( N(8) - N(M) D( D) D(8) 

The norm of this is smaller than 

(B.1) D(8) IIN(8)II + IIN(yt)II D(y)) 
D(tt) D(.u + 8) D(M) 

Let C = supe f (xIO) < x by assumption. Then ID(8)I < C 8l and IN(8)II < 
C1I8 8. Further, D(M + 8) tends to D(y) as 8 tends to 0. It follows that the bound 
(B.1) is smaller than C(,)11 8112 for 11811 small. This completes the proof of part (a). 

To prove part (b) of Theorem 4, fix x and write f for 0 -* f (xIO). Let 
f = f/D(tt) so ffd t = 1. Then 

dAL(8) = fd8 - (ffd8)fdM. 

Choose a to dominate both I8S and a, e.g., a = 181 + a. Then d8 = Ado and 
d= f do and 

d7,4(8) = -(fd8)A fda. 

We must show 

(B.2) 11"T4 I < 11811 * sup f. 

Indeed, 

rfda= ffdS and ftfdo= fdt=1. 
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Thus, T7 (8) has signed mass 0, namely, P(8)[EO] = Jfdo - ffdo = 0. It follows 
that 

(B.3) IIt(8)II = 2f[ -(fdi)A]+fdca fd -A(ffci8)Alfda. 

Assume without loss of generality that ff ci 2 0. For a ? 0 and real d, clearly 
(d - a)+< d+. So 

IIt(8)II < 2f t?fda < 2(8 doa)(sup f). 

But 

cdi= f o cia = 111811 

because Jf da = J dc = 0. This completes the proof of (B.2), and hence part (b) of 
Theorem 4. 

To prove part (c) of Theorem 4, we must show that for every E > 0 there is 
signed measure 8 with signed mass 0 and total mass 1, satisfying 

I IT t(s) II 2 (1 - E0) SUpo f. 

Choose 00 with /if{00} = 0 and f(@0) > (1 - E)sup0f. Let 8 = '(8o - a), where 
80 is point mass at 00. Let a = ,u + 8. Then the rightmost expression in (B.3) can 
be evaluated, and is f(OO), so 

IIt(8)II = f(oo) 2 (1 - E)SUP0 I. El 

REMARKS. (1) Ordinarily, supo f = sup f, so the theorem determines IITII. If 
e.g., u{ 00} > 0 and f(@0) > sup{f(0): 0 00) , then sup f > sup0 f. In this case, 
IIT is hard to compute. However, it can be shown that IIPII = supII7L(8)II where 
8 = - ?8e2 and 01 # 02 vary over O. 

(2) If 8 is required to be absolutely continuous with respect to a, a similar 
argument shows that IIP,(8)II < ,A-ess. sup f, the inequality being sharp if e.g., a is 
continuous. 

(3) We have chosen to differentiate in the set of signed measures. Our strong 
derivative is called the " Frechet derivative." Another standard way of perturbing 
,u is to consider the mixture (1 - E),L + EV for some probability v as E tends to 
zero: the "Gateaux derivative." The mixture can be written as a + E(V - ,) and 
the notions of derivative coincide-for bounded likelihood functions. 

(4) Similar computations can be carried out for Bayes rules. If 0 is a real 
parameter, the mapping M 

JOf (xIO) Itc(dO) 
I- 

ff (xIO) I-(dO) 
has derivative 

MH - 
N 

N=N1( ) N1( D() 
A,()=D(t.t) D( 1)2 
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where N1(8) = JOf (xl) 8(d9) and D(8) = Jf(x19)4(d9) as before. The norm of 
M, is computed as follows. Let c = N1(p,)/D(,t). This is the Bayes rule based on 
it. Let g(9) = (9 - c)f(xI9). Define range g = supg - inf g. Then 

IIMf,I = 'rangeg. 

(5) Theorem 4 assumes a dominated family. In the undominated case, the 
derivative need not exist in our strong sense. The difficulties can already be seen 
in the following simple example: take X and 8 to be the real line mod 10. Let 
Qetxl = 2 if x = 9 + 1; suppose the prior IL for 9 has continuous density f on 8. 
the posterior for 9 given x is supported at x + 1 with mass { f(x -1) - i 

(B.4) T(~){9} = f(x -1) +f(x?+1) i9x1 

(B.4) T()0 f(x +1)if =x+1 
f(x -1) +f(x +) if9=+ 

The map T is norm continuous at no x. To see this, consider a sequence of 
continuous prior densities fn converging to f in variation distance but pointwise 
at no point. More specifically, let sn = 1 + 2 + * + 1/n. Let g. on the line 
vanish to the left of sn - (2/n); increase linearly to the value 1 at sn; decrease 
linearly to zero at sn + (2/n); and vanish to the right of that value. Wrap gn 
around the line mod 10; let fn be the sum of f and the wrapped gn, normalized 
to be a density. Clearly fn f-* in L1, but fn(x) f (x) for no x. 

The argument is only sketched. Fix a real number 9 with 0 < 9 < 10; for any 
integer k, the real number k + 9 wraps to the same point 9 in 8). For infinitely 
many n, for some k = kn, we have s_ < k + 0 < sn+1. Then gn(k + 9) > 2 
because sn +1 - Sn < 1/n. For such n, we have 

1n 
fn(9) > [f(9) + 21n+2 

because Jgn = 2/n. Since gn has only one bump, this can be either at x + 1 or 
x - 1, but not both. Thus, for any x, for infinitely many n, we have both the 
following relations 

n 
fn(X + 1) > f/(X + 1) + 2 2 

n 
fn(x 1)=f(x1) n + 2 

So fn does not converge pointwise, and from (B.4) the map T is not continuous. 
In this example, the posterior is Gateaux differentiable: A derivative can be 

calculated by considering (1 - e)f + eg as e tends to zero. The Gateaux deriva- 
tive exists quite generally, as we will show elsewhere. 

(6) In the situation of Theorem 4, the same result holds if the weak-star 
topology is used instead of the norm topology, provided f is bounded continuous 
in 9. 

(7) A related computation is contained in Huber's (1973) discussion of Bayes- 
ian robustness. 
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DISCUSSION 

ANDREW R. BARRON' 

University of Illinois, Urbana 

1. General remarks. Diaconis and Freedman have demonstrated some ad- 
vantages and pitfalls of Bayesian inference. In summary, their results include the 
inconsistency of location estimates based on a Dirichlet prior; the equivalence of 
weak consistency and weak merging of posteriors; and an analysis of the sensitiv- 
ity of the posterior to changes in the prior. In this discussion, we provide 
additional insight and point toward new developments. It is argued that the 
Dirichlet is a poor choice of prior because the Dirichlet mixture has a likelihood 
which is exponentially smaller than every product likelihood. We give conditions 
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