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The basic problem of nonparametric probability density estimation is easily
stated. Given identically distributed random variables X|,..., X, drawn from a
density f, the aim is to construct an estimate of f without making parametric
assumptions about the form of f. A typical approach to density estimation is the
kernel method, where the estimate f is given, in the univariate case, by

ey =t L K- X)/m);

here K is a kernel function (usually a symmetric probability density function)
and A is a smoothing parameter or bandwidth, the value of which determines
how much the data are smoothed to produce the density estimate.

The first published paper specifically on density estimation was Rosenblatt
(1956); however, density estimates were suggested several years earlier by Fix and
Hodges (1951) in a technical report. It is regrettable that this report was never
published, since it contains a great deal of interesting discussion and insight,
much of which is still pertinent today. In these days of computer graphics and
“exploratory data analysis,” it is often supposed that the primary purpose for
which density estimation was ordained was as a method for producing pretty
(perhaps too pretty) pictures from data. However, a glance at Fix and Hodges
(1951) shows that this is not at all the case. Their interest in density estimation
stemmed from the discrimination or classification problem of allocating an
observation Z to one of two populations A and B. If the distributions underlying
the populations A and B are not known but have to be estimated from data, and
if the statistician is unwilling to make parametric assumptions of the kind tacitly
present in Fisher’s linear discriminant method, then a natural approach is to
construct estimates of the densities f, and fg, and then to base a discriminant
rule on the ratio of these two density estimates.

Since these early papers, there has been a large amount of research into
density estimation and related subjects. The main emphasis of much of this work
has been to investigate the theoretical properties, and particularly the asymp-
totic properties, of various methods of density estimation. In certain quarters,
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density estimation has something of a bad name: When, at a conference a few
years ago, I presented a paper entitled “Density estimation: are theoretical
results useful in practice?,” a colleague proposed the answer “Yes, for writing
papers.” Similar remarks are often made about almost the whole of mathematical
statistics and so it is unfair to level this indictment at density estimation in
particular.

The two books under review are very different in their aims, and I shall deal
first with the book by Prakasa Rao. The aim of this book is “to bring together
the large amount of literature in the area scattered over various journals.” The
author covers an enormous amount of ground in great detail; his bibliography
alone contains about 750 items, and the book is an impressive work of scholarship
and a valuable reference text. The author’s approach is to provide a discussion of
various topics giving details drawn from what he considers the more important
papers on the subject. Each chapter contains detailed bibliographical notes giving
the provenance of the various theorems discussed. These are followed by “Prob-
lems,” which consist essentially of statements, without proof, of further theo-
rems, with appropriate references to the literature. It would be a very intrepid
student indeed who regarded these problems as exercises and they are clearly not
intended to be used as such. Overall this general approach is a good way of
putting across the large amount of theoretical material that the author has aimed
to describe.

The first half of the book consists of a detailed survey of the theory of
univariate and multivariate density estimation. The available methods are de-
scribed and their published properties surveyed in detail. In the second half of
the book, the author goes on to deal with related topics such as the estimation of
density derivatives and modes, sequential and recursive estimation of densities,
estimation under order restrictions, and the nonparametric estimation of a
distribution function. There is a brief theoretical discussion of nonparametric
discrimination and of the estimation of mixtures. There is little discussion of
practical matters however; two graphs of density estimates are reproduced and
no other practical examples are included. In summary, Prakasa Rao’s book is
clearly intended to be a comprehensive account, rather than a critical view, of the
theoretical aspects of the subject, and as such is an important contribution to the
mathematical statistics literature.

The book by Devroye and Gyorfi is again theoretical in its emphasis. However,
there the similarity between the books ends. Devroye and Gyorfi present a very
personal view of the subject based on the general theme that the natural space in
which to consider probability densities is the space L, of integrable functions.
Until now, when considering the limiting behaviour of density estimates, most
authors have considered error measures based on the integrated square error
J(f — f)? of the estimators. This emphasis has probably been as much due to
mathematical tractability as to any honest belief that integrated square error is
of any greater real interest than any other measure of error. (Compare the place
of least-squares theory and the normal distribution in statistics generally.)
Devroye and Gyorfi argue from a different point of view; to them, the most
interesting and natural measure of error is the L, error [| f—=f|. They have
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another aim, and that is to produce theorems whose statements are uncluttered
by unnecessary conditions. Inevitably these aims lead to a complicated and
difficult development. As the authors say, rather tongue-in-cheek, in their pre-
face: “Although we hope that this book is entertaining in places, most of it, in
fact, is rather dull except perhaps to the odd technical fanatic. Thus, we do not
recommend it for class notes or for reading during TV commercials.”

The book contains large amounts of original and hitherto unpublished material,
and at times feels like a collection of linked papers rather than a text as such.
One irritating aspect of this (more the fault of the publishers than the authors) is
the lack of a single bibliography; instead there are 12 separate chapter bibliogra-
phies, together with an inaccurate author index, with the unfortunate result that
the book’s value as a reference text is impaired.

Some indication of the remarkable generality of the results available in L, is
given by the theorem that gives consistency of the kernel estimate. Let J,( f ) be
defined by

J(f)=[1f =1l

where f is constructed by the kernel method from an independent sample of size
n drawn from f. Suppose that the kernel K is a nonnegative Borel function
integrating to 1. Then, if A — 0 and nk — oo, J,(f) will converge to zero in a
stronger sense than almost surely for all densities f; otherwise /() will not
converge to zero in probability for a single f. The amazing property of this
theorem is the total lack of conditions on the unknown density f. However, the
authors are unfortunately not able to give an exact asymptotic form for the
expected value E(<J),); they take the majority of a chapter to prove that, for
given f and K, the limiting value of n?/5E(J,) can be bounded above and below
by quantities differing by a factor of about 1-34. This is a little disappointing
when compared with the exact asymptotic results easily available under suitable
conditions for the perhaps more unnatural mean integrated square error, and
indicates the magnitude of the task that Devroye and Gyorfi have set for
themselves.

The majority of the book is concerned with consistency, rates of convergence
and similar questions for the kernel estimator and other density estimation
methods. Though there are no practical examples of any kind in the book and the
general mathematical level is far too high for the vast majority of applied
statisticians, there is an interesting chapter on the use of density estimation in
simulation, the basic message of which is as follows. Suppose it is of interest to
simulate from a density f. If f itself is not known, but a sample from f is
available, then a natural approach is to construct an estimate f from the given
data and then to simulate from this estimate. The authors point out that, in
order for moderately large simulated samples from f to be, for all practical
purposes, indistinguishable from samples generated from f, an astronomically
large data set must be used to construct the estimate f. Perhaps, on reflection,
this conclusion is not as surprising as all that, but nevertheless it is enlightening
for it to be quantified in the way that the authors have done. In addition to the
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theoretical results, the chapter on simulation contains some useful practical hints
for the construction of fast algorithms for simulating from f.

To sum up, the book by Devroye and Gyorfi is, for the most part, a technical
tour-de-force that will be of great interest to a rather small number of specialists.
If I may make the distinction, its appeal is really to mathematicians rather than
to statisticians, but within its own terms it is a remarkable achievement.

It is inevitable that a relatively well-developed subject cannot be adequately
covered in two books, and what is missing from both of the books under current
review is any strong feeling that density estimation is a practical, or even a
potentially practical, technique. As I have already hinted, this epitomizes the
situation in which mathematical statistics, generally, finds itself at present. The
regrettable, but perhaps inevitable, decision to establish the journal Statistical
Science is a symptom of this difficulty. To put it baldly, anyone whose only
knowledge of statistics came from reading the Annals of Statistics would need
some convincing that statistics is a practical subject and would find it hard to
imagine that “mathematical statistics” originated as a study to reinforce and
improve the practical capabilities of statistics. A particularly disappointing
feature of the technical nature of much of the literature on density estimation is
that it may even have had a negative effect, by scaring off potential users of the
methods and by making it difficult for courses on the subject to be constructed.

In order to balance the view that might be obtained from reading only the two
books under review and nothing else, it may be worth briefly discussing a few
practical contexts in which density estimates arise. I have tried to provide a fuller
description of these and other aspects of the subject, together with further
bibliographic references, in Silverman (1986).

An important use of density estimates is for the presentation and exploration
of data. An example where a density estimate displays structure not easily visible
using other methods is given in Figures 1 and 2. The data consist of pairs of
readings of plasma lipid concentrations taken on 320 diseased patients in a heart
disease study [see Scott et al. (1978)]. I am very grateful to David Scott for
making the data available to me. The clear bimodality visible in the density
estimate is hard to see in the scatter plot, even after consideration of the
density estimate. Even if the clustering were clearer from the scatter plot, the
density estimate would still have the advantage of providing estimates of
the positions of the two modes. Scott et al. (1978) used a density estimate similar
to Figure 2 to divide the population into two groups, by drawing a line perpendic-
ular to the join of the two modes and intersecting this join at the point of
smallest estimated density. An interesting clinical difference was found between
the two groups.

Since the original proposal by Fix and Hodges (1951) discussed above, non-
parametric discriminant analysis using density estimates has been investigated
in a practical context by several authors, and it is the subject of aymonograph by
Hand (1982). The computer package ALLOCS80 [see Hermans et al. (1982)] is
based on these ideas and is in quite wide practical use. The package has the
capability of dealing with mixed and discrete data of various kinds and also
provides a method of variable selection, a useful feature for high-dimensional
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Fi1G. 1. Scatter plot of plasma lipid data.
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data. Developments in knowledge-based computer “expert systems” and the
growth of discriminant problems involving the very large data sets collected by
remote sensing and similar devices, will no doubt increase the demand for
nonparametric methods of discriminant analysis in the future.

Cluster analysis using density estimates has already been alluded to in the
example discussed above. Cluster analysis (also called classification by some
authors) is a somewhat more contentious procedure than discriminant analysis,
because it is often difficult or even impossible to formulate precisely the aim of
the procedure. Nevertheless, cluster analysis is a popular statistical technique. As
in the medical example of Figures 1 and 2, clusters in a data set can be considered
as corresponding to modes in a density estimate constructed from the data.
Various different ways of putting this idea into practice have been suggested [see,
for example, Koontz, Narendra, and Fukunaga (1976), Fukunaga and Hostetler
(1975), and Kittler (1976)]. These three papers are mostly concerned with the
applications of cluster analysis in pattern recognition, an important and growing
field.

An activity closely related to cluster analysis is bump-hunting. The distinction
between bump-hunting and cluster analysis (if it exists at all), appears to be that
in cluster analysis the aim is to separate the given data into groups, while in
bump-hunting the data are only important because of the information they
provide about the assumed underlying model; the object is to discern, for their
own sake, modes or bumps (corresponding to extrema of the derivative) in a
probability density function. The existence of multiple bumps has been discussed
by Cox (1966) as a “descriptive feature likely to indicate mixing of components.”
Good and Gaskins (1980) discuss a problem arising in high-energy physics where
bumps in the underlying density of the observed data give evidence concerning
elementary particles.

The use of density estimates in simulation has already been mentioned above
in the discussion of the book by Devroye and Gyérfi. A very closely related
technique is the smoothed bootstrap as defined by Efron (1982). Here the object
of interest is a functional p(f) of an unknown density f; typically p( f) is the
sampling standard deviation of some parameter estimate H(Xl, , X,,), where
Xi,..., X, is a sample drawn from f. The essence of the smoothed bootstrap is to
replace p( f) by p(f), where f is a kernel density estimate based on the given
data, and then to construct a Monte Carlo estimate of p( f ). An example where
the smoothed bootstrap does well is presented by Efron (1981). In this example,
where the parameter 6 is Fisher’s variance-stabilized transformed correlation
coefficient based on a bivariate sample of size 14, the smoothed bootstrap gives
much better estimates of the standard error than the more popular standard
bootstrap.

There are several contexts in which it is possible to use density estimates in
order to obtain estimates of functionals of the density. An example is projection
pursuit (Friedman and Tukey, 1974), a method for producing interesting low-
dimensional projections of a high-dimensional data set, which has at its core the
idea of evaluating the interest of a particular projected data set by an index
depending, at least in part, on a density estimate constructed from the data. The
basic idea, elaborated by Huber (1985) and Jones (1983), is that a density f with



TWO BOOKS ON DENSITY ESTIMATION 1637

a high value of, say [f?2 is likely to contain features of interest, and hence a
projected data set that yields a high value of [ f2 will likewise correspond to an
interesting view of the original data.

Another example of the use of density estimates to give an estimate of a
quantity that depends on the density is discussed by Diggle and Gratton (1984).
Their concern is with models where the relationship between the parameters and
the data is such that it is possible to simulate data for any given values of the
parameters, but impossible to obtain tractable expressions for the likelihood
function of the parameters. They suggest an approach where, given a set of
observed data, density estimates are used to construct an estimated likelihood
and hence to carry out inference for the unknown parameters. Models of the kind
discussed arise in a wide variety of biostatistical contexts.

Thinking about density estimation in a practical way, naturally, raises all sorts
of questions. A rather random short selection of interesting topics for future
thought and research follows. Of course, some of these problems are partly solved
already and others are, no doubt, insoluble.

1. What measure of error is appropriate when estimating a density for explora-
tory purposes? It may be something incorporating the error in the estimation
of the derivatives of the density.

2. In some applications, though not necessarily for exploratory purposes, auto-
matic methods for choosing the smoothing parameter are needed. Stone (1984)
has shown that a method called least-squares cross validation (LSCV) is
asymptotically optimal in terms of mean integrated square error. However,
there are other methods that are asymptotically equivalent to LSCV but give
different results in finite samples. Can LSCV be “tuned” to give finite sample
optimality?

3. For any particular application, such as nonparametric discrimination, find
methods that give the best choice of smoothing parameter for a particular
data set.

4. Perform a careful comparative study of the relative merits of various methods
of nonparametric discrimination, making use of real problems rather than
simulated data.

5. What is the best way of presenting a three- or four-dimensional density
estimate?

6. Develop hybrid methods that combine nonparametric smoothing in some
variable directions with parametric fitting in others. When will these methods
give good results?

7. Under what finite-sample circumstances is the smoothed bootstrap preferable
to the standard bootstrap?

8. Adaptive methods, which adjust the amount of smoothing in the tails of the
sample, have already been found to give better results in certain cir-
cumstances. What is the best way of implementing the idea of adaptivity,
particularly in the low-dimensional multivariate case? How much improve-
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ment can really be made, in applications, if adaptive methods are used? Can
penalized likelihood approaches give a practical adaptive method within a firm
philosophical framework?

9. Persuade the general statistical community that density estimation is by no
means the answer to all the problems of statistics but is a technique that
statisticians should know at least a little about.

The last of these topics is of course the hardest to implement, but it is the
development most likely to lead to genuine practical and methodological ad-
vances!
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