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CONSISTENCY AND ASYMPTOTIC NORMALITY OF THE
MINIMUM LOGIT CHI-SQUARED ESTIMATOR WHEN THE
NUMBER OF DESIGN POINTS IS LARGE

By LiNDA JUNE Davis!

Stanford University

When the number of design points goes to infinity, we show that the
minimum logit chi-squared estimator of the parameter in a linear logistic
regression model for binomial response data is asymptotically normal. We
also give conditions under which it is consistent.

1. Introduction. Maximum likelihood and minimum logit chi-squared es-
timators have both been suggested for use in estimating the parameter in a linear
logistic regression model for binomial response data. These two estimators are
regular best asymptotically normal when the number of design points is fixed
and the number of observations at each design point goes to infinity. Haberman
(1977) proved that the maximum likelihood estimator is also consistent and
asymptotically normal when the number of design points goes to infinity under
some mild restrictions on the distribution of observations over design points
which, in particular, do not require the average number of observations per design
point to go to infinity. In this paper, we show that the minimum logit chi-squared
estimator is also asymptotically normal in this situation. Unlike the maximum
likelihood estimator, however, it is not always consistent.

The paper is organized as follows: In Section 2, we describe the data, assumed
model, and asymptotic assumptions. In Section 3, we prove asymptotic normality
and develop conditions for consistency of the minimum logit chi-squared esti-
mator. In Section 4, we state our conclusions.

2. Data and model. ForeachtE N = {1, 2, - - -}, consider J, independent
observations {(x;, n;;)} where x;, is a K X 1 vector of known real constants, the
first component of which is one, and n;, is binomially distributed with parameters
N;: € N and p;; € (0, 1). The {p;.} are related via the linear logistic regression
model

logit(p;:) = log{p;s/(1 — p;)} = x/Bo

for some K X 1 vector 8, of unknown parameters.
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948 L. J. DAVIS

Define
X = (X1, Xoey * 07y X))’
Ni =3, N,
D,la;;] = J; X J, diagonal matrix with diagonal elements {a;.}
det(A) = determinant of a matrix A
A;n = Imth element of a matrix A.

X, is assumed throughout to be of rank K.
The asymptotic assumptions which we will use in Section 3 are:

(1) lim,_ed, =

(ii) lim,.sup;(N7,)/Ns =0
(iii) supe, x| (Xi)jx| = M for some constant M > 0
(iv) lim inf, ,.det(X/ D,[N,./N.:]1X;) > 0.

Assumption (i) states that the number of design points goes to infinity and
assumption (ii) places mild restrictions on the distribution of observations over
design points. Assumption (iii) restricts the design points to a bounded subset of
X, Finally, (iv) restricts both the distribution of observations over design points
and the design points themselves by prohibiting selection of too many observa-
tions at design points from a region of ¥ which is “almost” of lower dimension
than K. Assumption (iv) is required to preserve the estimability of 8, as t — .

3. Minimum logit chi-squared estimator. The minimum logit chiA-
squared estimator, as originally proposed by Berkson (1944), is any vector B3,
minimizing

¥, {ne(Nje = nje)/Ni[login/ (N, — mye)} — /812
Subsequent modifications of this estimator have been suggested via modified
weights and modified observed logits—the modifications usually being aimed at

bias reduction (Gart and Zweifel, 1967). The majority of the modifications to the
weights are special cases of the following form:

wt(N}t)(njt + 8z)(1ij - n; + Ct)/(lvjt + 2¢),

where ¢, € [0, 1] and w,(-) is a positive real-valued function defined on N. The
majority of the modifications to the observed logits are special cases of

log{(njt + 5:)/(1\,]: - n + 5:)},

where §, € [—Y, Y%]. Thus, in ordAer to include these modified versions in our
results, we consider the estimator g, (e, 6;, ;) defined as any vector minimizing

Ej {wt(lvjt)(njt + Cz)(lvjz - n, + et)/(lvjt + 2€z)}
. [log{(njt + 6:)/(Nje — n; + o)} — xj’zﬁ]Z-

Most of the modifications presented in the literature consider 6, ¢, and w(-) to
be fixed, i.e., not dependent on ¢t. We have permitted é, to depend on ¢, however,
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because of recent work of Davis (1985) which showed that the best é for reducing
the bias of the minimum logit chi-squared estimator depends on the number of
design points, J;. Since allowing ¢ and w;(-) to depend on t does not complicate
the proofs of asymptotic normality and consistency of S;(e;, d;, »:), we have also,
for completeness, included their possible dependence on ¢.

Throughout this section, we also assume that

(@) &=01f6,<0

(b) N;:=3

(c) for some positive constant R, p;: + 6,/N;;= Rand 1 — p;; + 6,/N;; = R
(d) for some positive constant S, sups,o(e:/8:) < S

(e) for some constants wz and wy, 0 < wy < w,(N) < wy< o forall N € N.

All of these assumptions are designed to make the above weighted sum of squares
meaningful both for finite ¢ and as ¢ approaches infinity. For example, (a) and
(d) guarantee that zero weight is given to design points where the corresponding
observed logit is undefined. (b) is needed so that when §, < 0, more than one
value of the observed logit is given positive weight. (¢) guarantees that the
observed logit in the limit as Nj, approaches infinity is well defined. Finally,
(e) guarantees that the weight given the jth observed logit is of order N;,. All of
the specific triples of ¢, 8;, and w, that have been suggested in the literature
satisfy these assumptions.
When n;, = 0 or N;;and é, < 0,

(1) 108{(njt + 5:)/(Mt - nj; + 8:)}

is not defined. We adopt the convention suggested by Anscombe (1956) and Cox
(1970, page 42) of dropping any such observation which is equivalent to defining
(1) to be zero if nj; = 0 or Nj, and 6, < 0.

To simplify the notation, we define

4ie=1log{p;e/(1 —pjr)} = x/:Bo
L= (A, loe, ** 5 lup)’
Zie(8e) = log{ (nje + 8:)/(Nje = nje + 6,)}
Li(3)) = (Z1e(8), 22 (80), + + +, 25, (80))
Wjt(er, wi) = we (Nje) (e + &) (Nje — nje + &)/ (Nje + 2¢,)
W ez, @) = D[l (er, 1)
B, (&4, 8;, we) = Xo [ X! E{W,(er, )} X1 X! E{W,(e¢, w:) L:(5,)}
Vi(er, 0, ) = X{ D[E[W (e:, 00 1¢(6:) — Bje e, 00, 00) 211X,

where Bj;(e;, d;, w;) is the jth component of B, (e, &;, w;). Explicit reference to the
dependence of these quantities on ¢, 6;, and w, will from now on be dropped. In
terms of these definitions, if X/ W, X, is invertible,

B, = (X! W.X,) X! W,L,.
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The fundamental results that we will need to prove asymptotic normality and
consistency of ﬂ, are contained in the next three lemmas. Since Bt involves sums
of independent but not identically distributed random variables, Lemma 1 is a
central limit theorem for rowwise independent random variables.

LEMMA 1. If{Y;;, 1 <j<dJ,— o, t = 1} are infinitesimal rowwise independent
random variables with zero means and variances o}, satisfying ¥,; 65 = 1,t = 1,
then Y,; Y;; has a limiting standard normal distribution if and only if for all v > 0,

2 . Zj EY?J(I thl = v) = o(1),
where I(| Y;:| =2 v) =11if | Y;:| = v and = 0 otherwise. Furthermore, (2) implies
{Yj;, 1 =j<dJ,— o, t =1} are infinitesimal.

ProOF. Chow and Teicher (1978) page 434.

Lemma 2 gives some elementary properties of matrices.

LEMMA 2. If A is a d X d invertible matrix, then
(3) SUPm | (A7 )im | < | det(A) | 7 (supym | Am |)* 7" (d — 1)1 V/2,

If A is a d X d nonnegative definite matrix and AY? is any matrix such that
(AY?)(AY?) = A, then

(4) dV2(supym | Aim )% = supym | (AY?)m ] .

If A; and A, are d X d nonnegative definite matrices such that for some
constant c,

(5) ¢ Y (A)mYYm = X (A)inY1Ym
for ally € RY, then
(6) c?det(A;) < det(4,).

Proor. (3) is proved by applying Hadamard’s inequality (Rao, 1973, page
56) to the expression for A" in terms of the classical adjoint of A. Using Graybill
(1983) Theorem 5.6.3,

d Supim| Aim| = tr(A) = supym{(AY2),}?

which implies (4). Since (5) implies cay;'< ay where {a;} are the ordered eigen-
values of A;, i = 1, 2, (6) follows from the fact that the determinant of a matrix
is the product of its eigenvalues.

Lemma 3 contains some properties of the binomial distribution which will be
needed.

LEMMA 3. If (1) n is binomially distributed with parameters N and p €
[1 — pa, pu] for some constant pyr < 1, (2) e € [0, 1] and 6 € [, Y] withe =0
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if6<0ande/d <Sif6>0, (3) w(-) is a positive real-valued function defined on
N with |w(N)| < wy <, and (4) 1 — pyy + 6/N = R > 0, then there exists a
constant Cy, not depending on N, p, ¢, 8, or w(-), such that

| W[/ = 7 — {(N + 25)(n — Np)}/{(Np + 8)(N — Np + 4)}
(1) — (N/2){(2p — 1)(N + 25)(n — Np)*}/{(Np + 6)*(N — Np + 6)*}]
< C,N%|n— Np|?
where
Ww=wlN)n+e)(N—n+e)/(N+ 2)
7 = log{(n + 8)/(N — n + 8)}
7 = log{(Np + 6)/(N — Np + 4)}.

If, in addition, w(N) = w;, > 0 and N = 3, there exists a constant C,, not depending
on N, p, ¢, 6, or w(-), such that

(8) E@%/?) — {EW%*/)}*/E(?) = CyN.

PrOOF. For 2n < N — Npy or 2n > N + Npy, (7) follows by bounding
each summand in the left-hand side of (7). For N — Npy < 2n < N + Npu,
log{(n + 8)/(N — n + 6)} is expanded as a function of n about Np using Taylor’s
formula with the Lagrange form of remainder based on the third derivative. The
absolute value of the remainder multiplied by ||, which equals the left-
hand side of (7), is then shown to be bounded by CiN~2|n — Np|?® for some
constant C¥.

To prove (8), we use (7) to compute E(i2/?) and E (?/) ignoring O(N'?)
terms. E(?) is computed directly and then used to compute {E (:?)}™" ignoring
O(N™*) terms. These three approximations are substituted into the left-hand
side of (8) to give

E@W?*7%) — (E(@*2)*/E(?)
= {w?(N)Np(1 — p)/(N + 2¢)*}[(N + 26)/{(Np + 6)(N — Np + §)}F

- {N*p(1 — p) + e(N + ¢)}* + O(N'?).
Thus, (8) is true for N sufficiently large, say N = N,. Since

E@?7%) — (E@*)}/E@?) = E[w*7 — EW*7)/E@*)},

E@W*7?) — {E@*/))’/EW*) = 0
if and only if e = 0 and N < 3. Thus, since N = 3 by assumption, the minimum
value of

N7 E@*7%) — {E@*2)*/E @*)]

over N < No, p € [1 — pum, pul, ¢ € [0, 1], and & € [—%, Y] is positive which
completes the proof.
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Armed with these three lemmas, we now prove the asymptotic normality
of fB,.. The first theorem implies that B, is unique and equal to
(X! W, X,)' X! W,L, for t sufficiently large. In the proof of this theorem as well
as the ones to follow, we drop the subscript ¢ for simplicity.

THEOREM 4. Under assumptions (iii) and (iv),

9) X/E(W,)X, = O(N+,)
(10) , (X/E(W)X.)™" = O(N3).

If, in addition, (i) holds, then the probability that X! W,X, is invertible approaches
last— »and

(11) {Xt,E(Wt)Xt}(Xt, WtXt)_l -I= Op(l)

where I is the K-dimensional identity matrix.

PRrOOF. (iii) implies (9) which in conjunction with (iv) and Lemma 2 implies
(10). To prove the rest of the theorem, note that (i) and (iii) imply

(12) X'WX — X'E(W)X = 0,(N,).

Since X’E(W)X is invertible, (12) implies that the probability that X’ WX is
invertible approaches 1 as t — . Since the inverse of a matrix is a continuous
function of its elements, (12) also implies (X’'WX)™ — {X'E (WX 7=
0,(N7') which in conjunction with (9) implies (11).

The next theorem in conjunction with Theorem 4 gives the order of magnitude
of the asymptotic variance.

THEOREM 5. Under assumptions (iii) and (iv),

(13) Vi = O(N4)
(14) 2= O(NY?)
(15) VY2 = O(N3Y2).

PrOOF. Now,
(16) V=E{X'W(L - B)(L — B)’ WX}
and defining A = W(L - L), ,
17 X'W(L-B)=X'{A—-E@)} - [X'{W—-EW)XI{X'E(W)X}"'X’E(A).
Using Lemma 3,
E(w}(Z = 4)*) = O(N))
(18) E(w;(5; — )} = 0(1)
E{w}(5; — 4)} = O(N)
E{w; — E(w;)}* = O(N;)
where the O(-) here is uniformly in j. The proof of (13) is completed by
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substituting (17) into (16), expanding, and then using (18) and Theorem 4 to
determine the order of each term in the expansion. (13) and Lemma 2 imply
(14).

Finally, to prove (15), we have by Lemma 2,

(19)  supym | (V7Y% | < {det(V)} V2 (supym | (V2)y | )ETH(K — 1)1E=1D/2)
But, since for any y € RX,
2 (Xy)E{w}(; — B
> Y (Xy2E[?7 — E@22)/E@?)] (minimize over B;)
= ¥ XyFEW;7}) — (E@}4))/E@})]
= Y (Xy)?C,;N; (Lemma 3),
det(V) = C£det(X’D[N,1X) by Lemma 2. Thus, (iv) implies
(20) {det(V)}™! = O(NZX).
Substituting (20) and (14) into (19) gives (15).

The next theorem proves the asymptotic normality of a random variable closely
related to 3;.

THEOREM 6. Under assumptions (i)—-(iv),
af Vt_l/zxt, Wt(ﬁt - Bt) —D N(O, 1)
for any sequence {o,} with o, € R¥ and || ;|| = 1 for all t.
PRrOOF. Since
a'VI2X'W(L - B) =Y,
where
Y; = (XV™2a);;(/; — B))

and E(Y;) = 0 with ¥ E(Y?) = 1, it suffices to prove (2) in Lemma 1.
Throughout this proof, all O(-) notation is uniform in j. First, note that

lwi(Z; — B))| = |w;(4; — £)| + | (4 — B))|.
But, Lemma 3 implies | w; (/7,~ — /)| = O(N;) and since
W(L - B) = WX{X'E(W)X}"'X'E{W(X8 — L)},

(10) and (18) imply | &;(4; — B;)| = O(N;). Thus, | @;(/; — B;)| = O(N;) which
together with Theorem 5 and (iii) implies | Y;| = O(N3"2N;). Therefore, for
some constant C,

Y EY}(|Y;| >v) =CY (N})NHI(N}/Ny) > (v*/C))
CJ {sup(N?)/N I ({sup(N})/N.} > (v%/C))
o(1) by (ii)

IA

which completes the proof.
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And finally, we prove the asymptotic normality of ;.

THEOREM 7. Under assumptions (i)-(iv), if
ue = {X!E(W) X} X! E(W.L,)
then
! ViV X! E(W) X} (B — m) —p N(O, 1)

for any sequence {a.} with a; € R* and || a,|| = 1 for all t.

Proor. By Theorem 6,
a’V2X'W(L - B) —p N(0, 1).
Note that
X'W(L - B) = {X'EW)X}(B - p) + {X'WX - X’ EW)X}(B — u).
But, using (11), (14), and (15),
a’ VVHX'WX — X'E(W)X}(B - )
= a' VI — {(X'E(W)X}(X' WX)IVV2{V-12X" W (L — B)}
= O(N7")0,(1)0O(N¥*)0,(1) = 0,(1)
which completes the proof.

The last theorem deals with the asymptotic normality of the joint distribution
of the components of 8;. This implies the following asymptotic distribution for
linear combinations of components of 3,.

COROLLARY 8. Under assumptions (i)-(iv), if

2 = (X! E(W)X)WVAX/E(W) X},
(@B — a’m)/(a’Z ) —p N(O, 1)
for any a € RX.

PROOF. Let a, = [V2{X'E(W)X}'a]/{e’ 2} in Theorem 7.

Finally, we investigate the consistency of 8. As a direct consequence of
Corollary 8, we have:

COROLLARY 9. Under assumptions (i)—(iv), B, — e = 0p(1).
ProOOF. Theorems 4 and 5 and (i) imply = = o(1).

The next corollary gives conditions for the consistency of 3, which in view of
Corollary 9 are just conditions for u, to converge on g,.
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COROLLARY 10. Suppose assumptions (i)-(iv) are satisfied. If J,/N.; = o(1),
then 3: is consistent for all 8. If lim 6, = 0 or N;, = N, for some constants N, then
ﬁt is not consistent for some g, if sup;(N;;) < Ny < o for all t.

PROpF. By Corollary 9, £ is consistent if and only if u — By = o(1). Since
X'E(W)X = O(N,) and {X'E(W)X}™' = O(N7!) by Theorem 4, u — o = 0(1)
if and only if

(21) NI X'E{W(L - XB,)} = o(1).
Now, the kth component of the left-hand side of (21) equals
N+ Z} jkE{wj(/ leﬂo)}'

Furthermore, one can show that if either lim é, = 0 or N;; = N, and sup;(N;,) <
N, then there exists a 8* and a positive constant c; such that if 8, = 8%,

(22) clN,- = E{w,(/; - Xj ﬁ )}

for ¢ sufficiently large.
Now, suppose J/N, = o(1). Then, (18) implies that there exists a constant c,
such that for each k and 8,

IN3' 35 XinE (i (5 — x/Bo)}| < caM(J/N4) = o(1).

Next, suppose that either lim 6, = 0 or N;; = N, and sup;(N;;) < N,. Then,
if Bo = B%*, (22) implies

c = NII Z X]lE{lI)J(i] - x;ﬁ*)}

which completes the proof.

'

To better understand this consistency result, consider the special case that

N;; = N, for some constants N,. In this case, J, — % with N,/J; = 0(1) and the
terms of X, uniformly bounded with lim inf, ,.det{(X/ X,)/J;} > 0 are sufficient
to guarantee that (i)-(iv) are satisfied. Note that when K = 2, det{(X/ X,)/J:}
equals the sample variance of the second component of x;;. Under these assump-
tions, which in particular imply J;/N.. = N7, Corollary 10 implies that if N, —
o, then 6: is consistent, but if N, -5 «, i.e., if N, is bounded, then B, is not
consistent. Simply stated, Corollary 10 implies that if, as more data is collected,
one takes observations at more and more levels instead of taking more observa-
tions at a fixed set of levels, then §; is not a consistent estimator of Bo.

4. Concluding remarks. In this paper, we have shown that under as-
sumptions (1)-(iv), B; is asymptotically normal but is not always consistent. When
B: is not consistent, we have not found any practically reasonable way to correct
the estimator for this inconsistency. All the methods that we have considered
involve the use of a consistent estimator of 8y, the only one presently known
being the maximum likelihood estimator. Having to compute the maximum
likelihood estimator to correct the inconsistency of Bt robs (3, of one of its main
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advantages over the maximum likelihood estimator—that being computational
simplicity. Also, although we have not compared the resulting mean squared
errors of these corrected estimators to that of the maximum likelihood estimator,
work by Amemiya (1980) and Ghosh and Subramanyam (1974) suggests that
upon correction for inconsistency, the minimum logit chi-squared estimator will
have a larger mean squared error than the maximum likelihood estimator.
Therefore, in our opinion, the proof of inconsistency of 3, in some situations calls
for abandonment of this estimator in these situations instead of trying to patch
it up.

As pointed out by a referee, it is instructive to constrast the inconsistency of
f: with that arising from estimating a fixed number of structural parameters in
the presence of incidental parameters, the number of which goes to infinity
asymptotically (Neyman and Scott, 1948). In our case, the inconsistency arises
fundamentally from the bias of i;;/j; as an estimator of E (i;;);:, since as shown
in Corollary 9, 3. is a consistent estimator of u. which would equal B, if
EW;:/;:) = E(;:)/;. When there is, asymptotically, an infinite number of
incidental parameters, however, inconsistency arises because asymptotically the
amount of information in the sample about each incidental parameter is not
increasing while the estimation procedure requires consistent estimators of the
incidental parameters to consistently estimate the structural parameters. Thus,
inconsistency in this case can usually be eliminated by adopting an estimation
technique which involves only estimation of the structural parameters like
working with a conditional likelihood. As pointed out above, no such quick fix is
known for the inconsistency of 8; . Finally, in cases where B, is inconsistent, the
maximum likelihood estimator is consistent as shown by Haberman (1977). In
the case of incidental parameters, however, both maximum likelihood and least
squares type estimators are not consistent. For example, Breslow (1981) showed
that both the maximum likelihood and the minimum logit chi-squared estimators
of the common odds ratio in several 2 X 2 tables are inconsistent when the
number of tables and thus the number of incidental parameters goes to infinity.

We have also investigated the consistency of the minimum Pearson’s chi-
squared estimator. Under (i)-(iv), we have found that J,/N.. = 0(1) is necessary
for consistency.

The results of this paper have two important implications on the estimation
of the parameter in a linear logistic regression model. First of all, they suggest
that the minimum logit chi-squared estimator and the minimum Pearson’s chi-
squared estimator should not be used when the number of design points is large
but the average number of observations per design point is not. Second, both of
these estimators are weighted least squares estimators—the minimum logit chi-
squared estimator being a weighted least squares estimator on transformed data
and the minimum Pearson’s chi-squared estimator being a weighted least squares
estimator on the untransformed data. Thus, this paper suggests that when the
number of design points is large, a weighted least squares type estimator is
consistent only if the average number of observations per design point is large.
This behavior is in direct contradiction to that of the maximum likelihood
estimator which as shown by Haberman (1977) is consistent provided only that
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the total number of observations is large. Thus, the method of maximum
likelihood is in one sense preferable to that of weighted least squares in this
particular estimation problem.
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