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USING EMPIRICAL PARTIALLY BAYES INFERENCE FOR
INCREASED EFFICIENCY!

By BRUCE G. LINDSAY

The Pennsylvania State University

Empirical partially Bayes methods are considered as a means of improv-

ing efficiency in a class of problems in which the number of nuisance

~ parameters increases to infinity. In the method used, the parameter of interest

is estimated in an asymptotically unbiased way while James-Stein shrinkage

is applied to the nuisance parameter estimates. When the shrinkage estimators

are carefully chosen, this yields estimators generally more efficient than

maximum likelihood. In the models considered, the conditional structure

imposed allows construction of a simple estimator which is broadly consistent
and efficient.

1. Introduction. The problem, in its simplest form, is to estimate 6, *
scalar parameter, in the presence of a vector of nuisance parameters ¢;, ¢, - - -,
¢p, where we presume there is relatively little information about the individual
¢;, but there is substantial information about 6. In particular, suppose there are
p strata in the data, and that the vector X; of observations from the ith stratum
has a density f;(x;; 6, ¢;), where f; is a known density. Neyman and Scott (1948),
in a classic paper on the limitations of likelihood methods, showed that the usual
asymptotic results concerning the consistency and asymptotic efficiency of the
maximum likelihood estimator of 6, could fail utterly when the number of
nuisance parameters p — «. This paper will show that the loss in efficiency is
closely related to the James-Stein effect. Further background will be presented
in Section 2. We first offer a simple example as a reference point for the
discussion.

ExXAMPLE A. Let X; and Y; be independent exponential random variables
with means 1/6¢; and 1/¢;, respectively, so that the parameter of interest, 0, is
the ratio of hazards, which is constant through the strata. We can derive the
maximum likelihood estimator as follows. The score function in 6 for the ith
stratum is

U: = Ui(0, ¢:) = Dylog fi(Xi, Yi; 6, ¢:) = (1 — 0¢X)/6.

Given data (x, y), - - -, (x5, ¥») One can maximize the ith stratum likelihood over
¢; for fixed 6 to obtain

$:(0) = 2/(0x; + y,).
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This yields the maximum likelihood estimator for 6 as the solution to

(1.1) Y1 (yi — 0x:)/0(0x; + y;) = 0.

If one proceeds through a conventional asymptotic analysis, using the appropriate
element of the inverse of the Fisher’s information matrix, one arrives at 202 as
the asymptotic variance of this estimator as p — . (The inverse of this
asymptotic variance term is sometimes called the marginal Fisher’s information
about 6 in the presence of the nuisance parameters.)

Although (as soon will be apparent) this estimator is consistent and asymp-
totically normal as p — o, this is not the correct asymptotic variance. One can
observe from the estimating equation that the estimator depends solely on the
ratios t; = y;/x:. In fact, this estimating equation is also the maximum likelihood
equation for the marginal distribution of the statistics ¢, t;, ---, t,. These
statistics are i.i.d. with a distribution not depending on the ¢;. Indeed, these are
the invariant statistics of the natural family of scale transformations which leave
0 invariant. The usual asymptotic theory does hold here because of the i.i.d.
structure and it follows from a Fisher’s information calculation that the solution
to (1.1) has asymptotic variance 32 rather than 262

With this example in mind we can discuss the central question of this paper:
is the above maximum likelihood estimator of # fully efficient as p — »? The
answer given will be no, but it will depend on a rather intricate construction
involving several important ideas. First, we will demonstrate that the conditional
score function can be used to generate a large class of consistent estimators
(Lindsay, 1982). Next, it will be argued that one natural approach to estimating
the unknown nuisance parameters in the conditional score is a smooth empirical
Bayes one. The empirical Bayes method will be chosen in such a way that the
resulting estimator dominates the above m.l.e.; the device used here will be to
maximize an empirical version of the asymptotic information.

The methods used here have extensions to other models than Example A. In
particular, an exponential family structure will be identified in the next section
for which the arguments hold. A second important example, the weighted means
problem, will be considered in the last section.

This paper can be contrasted with Kumon and Amari (1984), who treat the
above example (their Example 5) and conclude that the m.lLe. is fully efficient.
The distinction between the two approaches is that Kumon and Amari restrict
attention to a class of estimators they call uniformly informative (their C;). This
approach ignores the information available from an empirical Bayes treatment.
Some intuition for this will be given in Section 3, which relates this problem to
the James-Stein problem. Indeed, both are problems where invariance consider-
ations lead to inefficient solutions. One key difference is that in the problem
posed here, there are obvious repercussions for confidence statements, not just
the mean square error of point estimates. '

2. Background. There have been two important methodologies developed
for inference in the presence of many nuisance parameters. One, initiated by
Kiefer and Wolfowitz (1956), is to model the sequence ¢;, ¢z, - - -, ¢, as an i.i.d.
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sequence of random variables from an unknown distribution @, and to use
maximum likelihood estimation for the pair (6, @). Although they showed that
this approach led much more generally to consistent estimates of 8, this method
apparently was not applied until recently, when computational techniques (e.g.,
Laird, 1978) and characterizations of the solution (Lindsay, 1983a,c) made this
feasible (e.g., Heckman and Singer, 1982).

Another track is to use a marginal or conditional likelihood function which
depends solely on 4. This method is possible only for likelihoods which have a
factorizable structure. A key paper in this vein is by Kalbfleisch and Sprott
(1970), with further development of the conditional approach by Andersen (1973).
Cox (1975a) extended this methodology to the partial likelihood.

This paper will in fact blend these two approaches, using conditioning to
generate a class of consistent estimating equations, then using empirical Bayes
to increase efficiency. We will use parametric empirical Bayes methods to model
the unknown @ rather than nonparametric empirical Bayes methods (as in Kiefer
and Wolfowitz) because in this manner simple estimators can be developed which
will recoup much of the loss due to the unknown ¢, - -, ¢,. We first present
some of the relevant background on estimating equations.

Suppose that from data x we form an estimator by solving for 6 in an estimating
equation

H,(x;0) = 0.

If H,, is itself a sum of independent components, as in (1.1), then one can often
argue that a necessary condition for the consistency of the estimator is zero-
unbiasedness:

(2.1) E4[H,(X; 60)] = 0.

By mimicking the derivation of the asymptotic distribution of the maximum
likelihood estimator, one arrives at asymptotic normality and a formula for the
asymptotic variance, the inverse of which will be called the information in H:

(2.2) in = (E[Hy(X; 0)1)*/E[Hp(X; 0)].

It is clear that zero-unbiasedness of H need not imply consistency, nor except
for regularity need iy be the inverse of an asymptotic variance. However, a simple
and elegant path is to use (2.1) as a requirement for estimators and judge them
by (2.2). See Godambe (1976, 1980) for these developments. In this paper, (2.1)
and (2.2) will be the focal point, but the asymptotic results will be considered the
primary motivation and so will receive attention in Section 4. Indeed, the
information given for the estimators to be derived will be in effect an asymptotic
approximation to (2.2).

Turning now to the conditional score function, it will be presumed throughout
the following discussion that for each density f;(x:; 0, ¢;) there exists a complete
and sufficient statistic S;(8) for ¢; when 6 is fixed. From this statistic one can
create a conditional score function W; for 8 from the score function U;(8, ¢;) =
Dslog f;(X;; 6, ¢;) by the operation

W0, ¢:)) = Ui(8, ¢:) — E,[U;(6, i) | Si(0)].
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Lindsay (1982) introduced this representation to derive estimating equations and
later (1983b) presented these scores from a geometrical viewpoint to calculate
efficiencies.

The interpretation of the conditional score W; depends on whether S; is truly
a function of 4. If it is not, then the conditional score function is the derivative
with respect to  of the conditional density of the data given S;. Since by
sufficiency that density is free of ¢,, the function W;is also. Thus we can estimate
6 from the equation

> Wi(0) =0,

obtaining the conditional maximum likelihood estimator. This estimator is quite
generally consistent. The asymptotic variance for this estimator is the inverse of
the conditional information

ic = (1/p) T EAW}}.

See Andersen (1973) for a development of the asymptotics and examples.

If S; does depend on 6, then one can interpret the conditional score at 6, as
follows: it is the derivative with respect to 6, evaluated at 6, of the log conditional
density of the data given S(6,). Although the conditional density p(x | s(8); ) is
free of ¢, when 0 is fixed at 6, in the conditioning statistic, we get p(x|s(6);
0, ¢;) where ¢; need disappear only when 6 = 6. It follows that the conditional
score may depend on ¢;, but, as shown in Lindsay (1982), the dependence is
weakened.

In particular, the example introduced in Section 1 is in a class of models in
which the conditional score has a simple structure. Suppose that the density of
x has the following exponential family form:

(2.3) f(x; 0, ¢) = h(x)exp(¢s(6) — b(0, ¢)).

Notice that S(@) is the complete and sufficient statistic for the nuisance param-
eter. In this case, the conditional score has the form:

W, ¢) = ¢[S"(0) — E(S’'(6) | S(0))] =aet DA
In the setting of the paired exponential example, this conditional score is
(2.4) W, ¢) = ¢(Y — 6X)/26.

From this we see that the ith conditional score, W; = ¢;A;, is the product of an
unknown weight times a function with zero expectation. In particular, note that
if one estimates the weights ¢; by maximum likelihood in (2.4) and sums over i,
one arrives at the maximum likelihood equation (1.1).

However, the consistency of an estimator formed as the solution to ¥ ¢;A; =
0, with data-dependent weights ¢;, does not depend on using the maximum
likelihood weights é;. For the weights, one could use any sequence of constants,
or more generally, use for #; any function 6;(d, S:(9)) and still retain the
fundamental zero-unbiased property E[8;A;] = 0, as we have E[A;]| S;] = 0.

We are now in a position to provide an overview of the remainder of the paper.
The central emphasis will be on models of the form (2.3). At this point we have
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identified a class of estimating equations of the form
(25) 2 6,’A,’ =0

with data-dependent weights 6;. In the next section, it will be shown that
efficiency considerations lead one to consider using weights “shrunken” under
an empirical Bayes formulation. In Section 4, attention is given to the correct
asymptotic distribution of an estimator with “estimated” weights 6;. It is then
shown in Section 5 that by maximizing the information in an estimating equation
we can achieve an estimator with high global efficiency. Section 6 presents a
special class of “linear” empirical Bayes solutions for which the information can
be explicitly calculated. Finally, in Section 7, varying sample sizes and the
weighted-means problem are considered.

3. Efficiency considerations. The question of efficiency as p, the number
of nuisance parameters, goes to « presents several delicate issues in terms of
modelling and interpretation. We first follow Godambe (1976) in using the simple
but instructive approach of leaving p fixed and using the information iy in (2.2)
as a means of comparing estimating functions.

If the conditioning statistic S; is free of 6, then Godambe (1976) showed that
the conditional estimating function Y, W;(#) was the best possible in the sense
that, for any other unbiased estimating function H, we have i, = iy. That is, it is
uniformly maximal-information over the parameter space.

With considerably more effort (Lindsay, 1980, 1983b), it is often possible to
show that the conditional maximum likelihood estimator is best asymptotically
normal under restrictions on the regularity of the class of estimators and
assumptions on the limiting behavior of the sequence ¢;, ¢z, - - -, ¢p, - - -. Since
the conditional estimators are also generally first-order efficient as the informa-
tion per stratum increases with p held fixed (Liang, 1984), the problem seems
well solved to first order.

On the other hand when S; depends on 6, the constraint of zero-unbiasedness
no longer suffices to give a single uniformly maximal-information estimating
equation (Lindsay, 1982). In particular, for the exponential family model (2.3)
the optimal estimating equation depends on the true (but unknown) sequence of
nuisance parameters and is the conditional score

W =Y il

This is, of course, not typically optimal at nearby sequences. However, its full
informativeness suggests that it be used as a building block, say by estimating
the weights ¢,.

The following heuristic motivation may offer some illumination on why
treating the ¢; as a sequence of ii.d. random variables, an empirical Bayes
formulation, provides an increase in efficiency. Let us suppose that the density
f; does not depend on i (other than through ¢;), as in (2.3). It then seems logical
that we should estimate the ¢; in U, with a function é(8, S;(#)) depending on i
only through the sufficient statistic for ¢;. Indeed, the m.l.e. weights ¢; are such
functions. Any function 6 otherwise depending on i seems to presuppose special
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knowledge about that stratum. More formally, this gives an estimation method
invariant under permutation of the subscripts.

Thus let us consider the optimal information in estimating equations of the
form

W*(@0) = Y 8(6, Si(0))A; = 0.

Let Q* be the empirical probability measure for the true unknown sequence
¢1, - -+, ¢p. Noting that EW* = 0, we may compute the information as

3.1) o _ EXDaW) _ (J Eao[De3(S(0)4] d@*(@))’

E(W*) (J Eoo[3(S(9))A]? dQ*(9)

Here we are using the fact that 6;A; depends on i only through the data. The
key insight is now this: if instead of modelling the observations as being
from the density f(x; 0, ¢1) X --- X f(xp; 0, ¢p) we had used the i.i.d. density
[ f(x1; 0, ¢) dQ*(¢) X --- X [ f(xp; 0, ¢) dQ*(¢), we would have arrived at
the same information. The class of W* functions has a maximal information
element, as the methods of Lindsay (1982) carry over to the mixed density,
[ f(x; 0, ) dQ*(¢); the optimal estimating function in the larger class of all zero-
unbiased functions for a density is the conditional score, which can be calculated
as

W, Q%) = X Eg:[¢ | Si]A:.
It follows that the optimal weighting function for W* is

(3.2) 0*(0, s:;) = Eg-[¢ | si]-
Since @* is unknown, we still do not have a completely solved problem. Howéver,
if the sequence ¢, - - -, ¢, were well-behaved, using an empirical estimate of @*

in 6* might well improve on estimation over using the m.l.e. weights.

There is a very important analogy here. In James-Stein estimation, if one is
estimating means y;, - - -, 4, from independent normal observations ¥, - - -, %,
if one is using squared error loss, and if one wishes to estimate yu; uisng 6(x;),
then the risk is

% EJOGX) —w)?l=p f E,(3(X) — p)? d@*(n),

where @* is the empirical c.d.f. of u;, - - -, up. This class of estimates includes the
optimal invariant estimator 6o(x) = x. This risk minimization problem has the
well-known Bayes solution

(3.3) 0(x) = Egqe(p| X = x),

which invites comparison with (3.2). Once again the optimal solution depends on
the unknown Q*. However, it is known that we can profitably estimate (3.3) and
reduce risk over do(x) = x. This James-Stein solution has several surprises. One
is that p = 3 is adequate for this improvement; the other is that one can obtain
this improvement over §, by simply modelling @* as a normal distribution and
estimating it; one comes out ahead even if @* is not remotely normal. It will be
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seen that in our case also that there is value in shrinking, even if the parametric
choice for @* is quite wrong.

We now adopt as an operating assumption that ¢, ¢z, ---, ¢, are an i.i.d.
sequence from an unknown distribution @, and hence X, ---, X, are i.i.d.
observations from the mixed density [ f(x; 6, ¢) d@(¢). This assumption makes
asymptotic calculations straightforward, and we have argued that invariance
considerations in the model where ¢,, - - -, ¢, is a nonrandom sequence make
this a plausible approach there also; just interpret @ as Q}, the empirical c.d.f.
of the sequence. Under an asymptotic formulation where @ converges to a
distribution @, the asymptotic distribution of an estimator of the form (2.5) will
generally be the same as under the i.i.d. formulation above (subject to some
technicalities needed to obtain appropriate convergence of the information (3.1),
central limit theorems, etc.).

This leaves remaining the question of how well one can do in estimating 6 in
this setting. As noted above, the best estimating function in terms of information
is based on the conditional score W;(0, @) = Eq[¢ | Si]A:.

If @ were known, one could use W(0, @) directly for estimation and achieve
the asymptotic variance lower bound i;*. To illustrate, suppose that in the paired
exponential example the unknown @ is gamma («, A). Then the asymptotic
variance attained by the conditional score estimator is

it = (E[W 7 = (a + 3)/(a + 2)20%

We note that as @ — 0 this approaches the upper bound of 302 the asymptotic
variance of the m.l.e. On the other hand, for « — o we approach the inverse of
the marginal Fisher’s information, 20%2. We conclude there is some hope of
improving upon the m.lLe., but the variability in ¢ prevents attainment of the
Cramér-Rao lower bound. In fact, for this problem one can explicitly write the
information in the presence of mixing as

(1/26%)[1 — Y6 E{Varqe(¢ | S)S%],

which explicitly shows the loss due to variation in ¢.

4. Smooth empirical Bayes. Having adopted the point of view that
W= (1/p) X Eq(e|s:)A:

will be a basis for inference, we next turn to the estimation of the weights é(s) =
Eg(¢|s). One possibility, used in the James-Stein setting by Laird (1982) and
Leonard (1984), is to estimate @ nonparametrically. Indeed, this appears to be
the only approach with hope for attaining the lower bound of Section 3 for every
possible . On the other hand, this form of estimation has an undeveloped
asymptotic theory, so it is difficult to say if E4(¢|s) would converge to the
correct weighting function 6(s) sufficiently fast to attain the lower bound. Here
we adopt a rather more elementary point of view. Surely if in James-Stein
estimation the arbitrary use of the normal distribution to estimate @* yields
positive results for every distribution @* on u, one can by choice of a reasonable
parametric family {Q,} of distributions on ¢ attain improvement in our setting
for every Q.
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Hence let W;(0, v) = E, [¢ | Si(8)]A; for any particular choice {@,}. We consider
estimating equations of the form

(4.1) W, 7(6)) = (1/p) £ Wi(6, ¥(9)) = 0,

where v(0) is an estimator of v in {@,}, later to be chosen so as to optimize the
information in (4.1).

We note that Cox (1975b) used estimated “partially Bayes” weights in a class
of normal theory models. This paper differs in extending the distributional class
of models via the conditional score and in giving expanded consideration to the
appropriate choice of @, and . Note also that an important early analysis of the
problem of weighting over heterogeneous strata can be found in Yates and
Cochran (1938, Section 6).

There are several important considerations in our choice of {@,} and our
estimation of v:

Consistency: We desire to retain consistency for all reasonable sequences ¢,
¢2, ¢3, - - -, not just those generated from Q,.

Local full efficiency: We desire full efficiency in the estimation of § when the
nuisance parameter sequence is from @,. It should be noted that this is full
efficiency in the sense of attaining the information upper bound for the nonpara-
metric @ problem, not for the fully parametric (6, v) problem. Estimators which
are consistent for the (0, v) problem may well be inconsistent in the (4, Q)
problem.

Global high efficiency: We desire high efficiency for arbitrary ¢ sequences
and, in particular, if there exists a consistent m.l.e. for the problem, we wish to
dominate it.

The remainder of this section will be devoted to sketching how to use relevant
properties of the conditional score to attain consistency and local full efficiency.
In doing so, it will be possible to retain sufficient flexibility so as to develop a
method for attaining high efficiency globally. This will be developed in the
following section. Regularity issues will be deemphasized so as to focus attention
on more important aspects of the problem.

Consider first an estimating equation of the form

2 Wi, v) =0,

where W, are i.i.d. summands under the mixture model. To mimic a standard
proof of the existence of a consistent sequence of roots to the likelihood equation,
(as in Lehmann, 1983, page 413) where W; plays the role of the usual score
function, one only needs

(a) Eq[Wi(60)] = 0,
(4.2) (b) E4[Wi(6o — a)] > 0,
(c) Eq[Wi(6o + a)] <O,

for all a in some neighborhood of zero. These properties follow easily here. For
(a) we simply first compute the expectation given S;(#). For (b) and (c) we note
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that differentiation of (a) with respect to 8 yields (under regularity, all evaluations
at 00)

Eoo[Do(Wi)] = Eq[—W;Dslog f],

which by preconditioning on S; in the expectation yields —E{E,[¢|S;]
-Eql[¢ | S;]A?}.Thus when the ¢-parameters are nonnegative, as they are in the
considered examples, (b) and (c) follow from an interchange of limit and integral.

Next, in the method considered in (4.1), there is the additional nuisance that
v is to be estimated, so the weights 6; = E;[¢|s;] will depend on the whole
sequence s, - - -, S, through 4 and so {W; (6o, v (6))} are not i.i.d. (The expectation
properties above still hold.) This complication can be repaired using smoothness
of the functions in v and root-p convergence of v, properties which will be needed
again shortly.

The next consideration to be developed is that of estimating v in such a way
that full efficiency is attained when the nuisance parameters are generated from
Q,, but at the same time retaining sufficient flexibility to tackle global efficiency.
The key idea here is due to Neyman (1959) in his work on ¢ («) tests of hypotheses.
It has the following rough description: an asymptotically normal test function
H(0,, v) has the same asymptotic distribution as H(6,, v) (that is, there is no
loss in estimating the true parameters) provided that v is any root-p consistent
estimator and H is “orthogonal” to the tangent space of the nuisance parameter.
With some slight extensions, this idea can be used here to find the asymptotic
distributions of the estimators under consideration when v () converges at root-
p to v*, a parameter to be defined by the procedure determining y. Looking
ahead, v* will be v when @, is the correct distribution on ¢. Otherwise it will be
an asymptotically optimal function of the unknown Q.

LEMMA 4.1. Suppose that under (6y, Q)
Vp(F(60) = v*) = 0, (1).
Then under regularity conditions given in situ
VpIW (60, 4(80)) = W (8o, ¥*)] — 0.
PrROOF. Under the assumption that E. (¢ | s) is twice differentiable in +y, one
can write a Taylor series expansion
PYA(W (8o, 7(60)) — W (8o, v*)) = p**(¥(60) — v*)Dy W(bo, v*) + Remainder.

Under standard bounding conditions the Remainder term will converge to zero
in probability. The convergence condition on ¥ implies that it suffices to show
that D, W(6, ¥*) —, 0. This follows from the law of large numbers since

D,W; = D,[E,.-(¢|S:(0))]A:(6),

which can be shown to have expectation zero (if it exists) by first computing the
expectation given S;(6).
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The following theorem gives the asymptotic distribution of a consistent
sequence of roots to our estimating equation. Of importance is the fact that if
the ¢-sequence is truly from @Q,, then any root-p consistent estimator of v will
give an equation which achieves the information upper bound in the nonpara-
metric @ problem.

THEOREM 4.2. Given the conditions of Lemma 4.1 and some further regularity
conditions indicated in the proof, a consistent solution 6 to W(0, v(8)) = 0
satisfies

Vp(l — 6,) —, N(0, V),
where
(4.3) V = E[W2(0, v*)/E}D,W (6, v*)].

In particular, if the true mixing distribution is Q,, and v* = v, then V = i1,

ProOF. Consider the following first-order expansion:
0 = vpW(, 7)) = A + BC + DE + Remainder,

where

D = Vp(H(8) — 7(80))
E = D, W (6o, 7 (6o)).

The terms can be dealt with as follows: First, from Lemma 4.1 and the central
limit theorem A — N(0, E W29, v*)). Second,

C = DyW (0o, v*) + D, Do W (o, v*)[7(60) — v*] =, E[DyW (6o, v*)] + 0.

Third, D = vp(f — 6o)7'(6o) and E = D, W (6, v*) + (3 (60) — v*)D,2W (6o, v*),
so that BC + DE equals

Vp(0 = 6)[E(Ds W) + 0,(1)].
Hence it follows that under suitable regularity conditions
Vp(@ - 8,) > N(0, V).
5. Maximum information estimators. The twin goals of global consist-

ency and parametric model efficiency have come at a relatively low cost due to
the unique orthogonality properties of the conditional score function. What
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remains is to exploit the weak requirements on v to gain high efficiency globally.
This last part of the approach will be illustrated through the paired exponential
example.

EXAMPLE. Suppose that one has chosen as a parametric model for ¢ the
gamma («, \) distribution. The estimating equation for 6 is then

a+2 \y — 0x;
5.1 E (0 = ,
(5.1) S E[$](0)] - Z(H&(a)) =
where & and X are functions of $1(8), - - -, sp(8). Suppose in lieu of using (q, \)

one used fixed constants («, A\). The corresponding asymptotic variance formula
for the resulting 0-estimator is the inverse of the information:

2 a + 2 Y,’ - OX,
E [D"{A +S0) 20

E( a+2 Y, — 0X,-)2
A+ S(@) 20
Here E is computed under the true mixing distribution . As it comes from an
unbiased estimating equation, this information is necessarily bounded above by
the true conditional information, where Eq(¢ | s) replaces (a + 2)/(\ + s). In this
i.i.d. setting, the information ratio does not depend on «, nor does the estimate
of 6 (see (5.1)) and one can define A * = A*(, Q) as the value of A which maximizes
this ratio. The information upper bound shows that if @ is gamma («, \), then
A* equals A. Thus by the theorems of Section 4, if we can find an estimator
X = A(s) such that «/1; A=\ = 0,(1), we will attain the maximum information
possible for the given form of the estimating equation, regardless of whether the
data is gamma.

The obvious approach to estimate the A\* which maximizes the information is
to maximize an empirical version of the information. In this regard, we note that
the information can be written

(5.2) Ig(0, a, N) =

(E{E[Dy(E,[¢ | S1A(6)) | S1})*
E{E5(¢|S)E(A%(0)]9)}

and hence has an empirical version

(X: (1/p)E[D, Wi s:]))*(1/p)

Y (1/p)Eile | s:]E(A%]s;)
Thus for fixed 6, one could choose () to maximize I; this estimator has the
necessary property of depending on the data only through s,, - - -, s,, and, under

some constraints on Ig(f, \), will be \/_ consistent. For the palred exponential
example, the empirical information is

B si/(A + 8)] — 3 s2/(\ + 8;)%]?
(X s?/(\ + s)5)(12)p 67 ‘

IQ(07 7) =

I(s, 8, \) =

I=
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The maximization over A has no explicit solution, but it could be achieved with
a Newtonian algorithm. Rather than pursue this line further, we offer in the next
section a class of models where the maximum information problem has an explicit
solution. However, we do note that we have achieved one of our objectives: finding
an estimator which dominates the m.l.e. We know this without calculation
because the case A = 0 corresponds to the estimating equation for the m.l.e., and
we have maximized information over A. In the next section, we will find a
dominating estimator whose information can be explicitly calculated.

REMARKS. (1) In this problem the information is concave as a function of
w(\) = E[S/(S + M)], strictly so if the measure corresponding to E is not
degenerate, and so a unique solution is obtained in this problem, both for
theoretical E and the empirical E.

(2) Although the approach is asymptotically correct, it is somewhat naive for
finite samples. For example, if one uses this approach in the James-Stein setting,
one uses the shrinking factor (1 — p/Y x?) in lieu of (1 — (p — 2)/Y x?). The
former shrinking factor offers improvement over 6(x) = x only when p = 5 (e.g.,
Lehmann, 1983, page 302).

(3) It should be noted that the estimated variance for f based on the maximized
information is consistent, but it is likely to be overly optimistic in small samples.

(4) The consistency of the estimated variance for 6 means that one can
construct asymptotic confidence limits for 6 based on the limiting normal distri-
bution provided that the convergence to normality of the standardized statistic
is uniform on intervals of §. It seems reasonable that the corresponding test
procedure would have advantageous small sample similarity properties because
the use of conditioning on the statistics S; to form the estimated information
yields a test procedure approximately correct in the conditional distribution of
the data given S;. This needs further investigation.

6. Linear empirical Bayes. Suppose that the model has the form
(6.1) f(x; 0, #) = h(x)exp(¢s(9) — a(0) — b(¢)),

a special case of (2.1); the paired exponential example has this structure. Let
dPs(¢) be a family (over 8) of infinitely divisible distributions, with moment
generating function exp(8g(t)). Next, define a new family of distributions with
parameter 3 by reweighting these infinitely divisible distributions with weight

exp(b(¢)):

dPg(¢) = exp b(¢) dPa(d>)/[f exp b(¢) dPﬂ(¢)].

Provided this family exists, one can generate a parametric mixture density family
which retains the exponential family structure of f:

f f(x; 0, ¢) dPs-(¢) = h(x)e@~a® / f e®® dPs(¢).
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Lindsay (1984) discussed the creation and uses of such exponential families. By
the closure of the infinitely divisible distributions under location changes and
convolutions, one can generate a general mixed exponential family

f f(x; 6, &) dPg(¢) = c(B)h(x)e O+ 2o,

Here the gj(t) are log moment generating functions for infinitely divisible
distributions. This is important in our context because for mixtures of the density
in (6.1) we have

Dslog[f f(x; 0, ¢) dQ(«b)/h(x)] =E(4]s).

For the above choice of @ = Pg-, this gives
E(¢|s) = Bo+ X Big/ (s(8)).

Letting h(s) = (1, gi(s), - --, gk(s)), we write the above linear posterior mean
relationship as

E(¢|s) = 8Th(s).
If one uses this family of distributions, then the information function is

E’[B"h(S)E(D,A | S) + BTE{D,h(S)(D,S)(A) | S}]
E[B™h(S)}*E(A%| S)]

= (B"v)*/B"=8,
where
3 = E[h(S)h;i(S)E(A?] S)]

and v; = E[h;(S)E(DyA | S) + (D.h:(S))E(ADy(S) | S)]. Since 2 is clearly non-
negative definite, and typically positive definite, the information is maximized
for

=2
with value I, = vT27'v. The maximum information estimators of 8 are
therefore

B =35,
where 2 and v are the corresponding ‘moment matrices generated from the
empirical distribution of s, - - -, sp.

EXAMPLE. In the paired exponential example with posterior mean function
Bo + B1h(s), we have

5o 1 [ E[S?] E[Szh(S)]]

= 1202 | E[S?h(S)] E[S?h(S)]
and
vT = (1/46>)(E(S), E(Sh(S) + S?h’(S)/3)).
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One special form for h(s) which has several advantages in this problem is
h(s) = 2/s. The function g(s) = 8 In[A\/(A + s)] is the log moment generating
function of the infinitely divisible gamma distribution and so 8/s is a limiting
function of the posterior mean functions 8/(\ + s) generated by the gamma. One
advantage to this form is that, since we are maximizing information over the
weighting functions 8o + 28./s, we are sure to dominate the m.l.e., which has
Bo = 0. Another advantage to this form is that theoretical calculations of = and
v for the gamma can be made explicitly.

Using this form the estimator of 3 is

BT = (5, [62 — »$%M)(1/62),

where § and ¢? are the sample mean and variance of s;, - - -, s,. For fixed mean
3, we note that if the sample variance is sufficiently small we use equal weights,
and as the variance becomes infinite we approach the m.l.e.

The asymptotic variance of 8, the corresponding maximum information esti-
mator of 0, is

AV = 30%{1 + UE*S)/Var S}7,

which is superior to the asymptotic variance of the m.l.e. (30%) unless Var S = .
In particular, suppose that @ is actually gamma (a, A). We have previously seen
that the optimal variance is 20%(a + 3)/(a + 2). The above estimator attains
20%min{%, (a + 1)/a}, so the greatest loss in efficiency is for « small.

7. Varying sample sizes; weighted means problem. In the course of
the preceding analysis, there have been several places where the assumption that
density f; depends on i only through ¢; has been important. The first case was in
the heuristics of Section 3, where it enabled us to argue that the information
function in the fixed sequence approach, with estimated weights, depended only
on the empirical c.d.f. @* of the sequence, and in fact gave the information
associated with treating @* as an unknown prior on the ¢-sequence. Here the
symmetry was used in the assumption that & (-), the estimated weighting function,
should depend on i only through s;; otherwise the information in a weighted
conditional score would have depended on the ¢-sequence ordering, not just @*.
More generally, if f; does depend on i, say through sample size n;, there are other
arguments (e.g., Lindsay, 1980, Section:2.2) which suggest that an optimal
procedure in the class of mixed densities will have good properties when viewed
along fixed sequences ¢, ---, ¢,. For example, the mean square error of an
estimator under the mixed model is simply an average (using the i.i.d. distribution
of ¢1, - - -, ¢p) of its mean square error along ¢-sequences.

Another casualty to the dependence of f; on i is the simple i.i.d. analysis used
in the asymptotics. In particular, assumptions have to be made to ensure the
asymptotic convergence of such quantities as the information.

To illustrate these difficulties, consider a problem where in the ith stratum
one observes a sample of n; variables with sufficient statistics y; which have
density f(y;; 0, ¢:, n;). An estimating equation of the form Y, H(n;, y;) = 0 will
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have average information

1 {E[Y H'(ni, Y)I}* _ {J EsonlH'(N, Y)] dG*(N, ¢)}*
p E[Y H(m;, Y))? J Eoyn[H*N, Y)] dG*(N, ¢) ’

where G is the empirical c.d.f. of the pairs (n;, ¢;). That is, the limiting
information now depends on the asymptotic relationship between the pair
(n;, ¢;), where one is observed and the other is not.

If we suppose there is asymptotic independence between n; and ¢;, in the sense
that as p — © one has G*(n, ¢) — P(n)Q(¢) for some distributions P and @,
then the limiting information could be written as

{E[H'(N, Y)I}*/E[H*(N, Y)],

where the expectation on {IV, Y) is taken under joint density

p(n) ff(yln; 0, ¢) dQ(s),

using p(n) for the probability mass function of P(n). In this density, it may be
possible to extract a conditional score function, now by conditioning on N and
S(8). For example, if we observe n; paired exponentials in the ith stratum, then
this density is, withy = ¥ y;and x = Y x;,

p(n) f 0"p"e "¢ e~ dQ(s).

Now N and S(6) = 6X + Y are jointly sufficient for ¢ (and @) with 6 fixed.
The conditional score function is

W = E[¢|S(0), n](Y — 6X:)/26).

Estimating the posterior mean in W leads to the technique described in the
examples which follow. Provided there is no reason to presume a relationship
between ¢; and n;, this seems to be a natural approach.

In addition to losing simplicity in the varying sample size case, we note that
the linear empirical Bayes method of Section 6 fails (to be Bayes) because the
prior which gave a particular linear posterior mean 87h depended implicitly on
sample size; only under special circumstances would it give a linear posterior
mean for any other sample size. On the other hand, if one views the empirical
Bayes methods as being a scheme for choosing weights, one might still use the
maximum information approach to find the best weighting function 87 - h(s).
Careful selection of h(s) will ensure superiority to the maximum likelihood
estimator. What is lost is a family of distributions {@,} for which full efficiency
is guaranteed.

EXAMPLE A (continued). Suppose the ith stratum has n; pairs of exponen-
tials with common ¢; giving density

flx, y; 0, ¢) = (0p)™e "¢ ™.
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The posterior mean function associated with the gamma («, \) prior is
E[¢|s, n] = (a + 2n;)/(\ + s)).

Thus the information function (5.2) would now be maximized over both « and A.
For fixed A, the posterior mean is linear in «, and so the information can be
maximized explicitly. For « = 0, A = 0, we recover the maximum likelihood
equation. Another approach would be to use the linear weight 8, + 3,/5; and
maximize information over this class (which also includes the m.l.e.).

EXAMPLE B (weighted means). An important example which has received
much treatment is the weighted means problem. (See, in particular, Bartlett,
1936; Neyman and Scott, 1948; and Cox, 1975b.) In its simplest version for each
strata, one observes n; independent normals (x;i, - - -, Xin,), all X-variables having
the same mean 6, but with a variance o7 which depends on the stratum. Neyman
and Scott (1948) showed that the m.l.e. was inefficient, provided the n; were not
constant in i, and in particular if one considered the optimal estimating equation
of the form

> wi(ny/si(0))ni(x; — 6) = 0,

where s;(0) = Y ;(x;j — 0)% then w; = (n; — 2)/n; dominated w; = 1. which is the
maximum likelihood weighting system. (The paired exponential with varying n;
does not have this reweighting feature; see Lindsay, 1982.) The optimal system
excludes all strata with just two observations, and with good reason, as the
contribution to the asymptotic variance of these terms is infinite. This flaw in
the weights of the m.l.e. is of a different nature than the empirical Bayes problem.
It relates to an appropriate weighting of strata with different intrinsic information
content. See Lindsay (1982).

This problem is easily put into our framework. The conditional score in 6 is
just the ordinary score function n;(X; — 0)/¢? and the complete and sufficient
statistic for ¢; = 072 is S;(f) as defined above. If one uses a gamma prior on ¢,
one obtains the estimating equation given by Cox (1975b):

(7.1) Y ((a + ni/2)/(\ + s:))ni(x; — 0) = 0.

The information in this case of varying sample sizes is

n; 2S; ’
(2,. E[(a + ni/2){>\ +8, (\+ Si)Z}:I)
% E[ \+8S)? ]

We consider how the maximum information estimator, which would maximize
(7.2), with E’s deleted, to obtain weights, compares with the Neyman-Scott
solution. The answer is trivial for n; =; 2, as Neyman and Scott’s solution is
vacuous, and the above equation (7.1) yields an estimator with finite asymptotic

(7.2) I=
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variance for every A > 0. Indeed, if the n; are constant, the Neyman-Scott solution
is the m.l.e., and one can maximize the information in (7.2) (« now drops out) to
obtain a superior estimator, as A = 0 recovers the m.le., and the information has
positive slope at A = 0 for any prior @, provided P[S;(8) = 0] = 0. (See also
Remark (1) below.)

There appears to be a contradiction here for nonconstant n;. For small values
of o and A, the empirical Bayes solution to (7.1) will be close to the maximum
likelihood estimator (o« = 0, A\ = 0) and be the best possible estimator for the
gamma (@, \) prior. On the other hand, the Neyman-Scott solution is strictly
superior to the m.l.e. for every sequence ¢, - - -, ¢,, and corresponds to o = —1,
A =0 in (7.1). There is an interesting discontinuity in («, \) arising from the
difference in behavior between X = 0 and A > 0. In the latter case, the weights
are bounded above, while the possibility of very large weights in the former case
apparently mandates a readjustment in the weights which depends on sample
size and forces the solution away from the m.l.e. solution.

This still leaves open the question as to whether the gamma maximum
information estimator dominates the Neyman-Scott estimator for every prior Q.
From the above remarks, it is clear that this will be true if the values of « over
which information is maximized are extended to [—1, =), as then the class
includes the Neyman-Scott solution. It is not apparent if this is a necessary step.

REMARKS. (1) It should be noted that if s; = 0 for one particular i, then the
correspondmg ith summand in the denominator of the estimated information I
is zero while the summand in the numerator is Y2 (n; + 2a)n;/\, which goes to
as A — 0. Thus the empirical information is infinite in this case, and the solution
gives infinite weight to the ith stratum, yielding x; as the estimator. This
corresponds to the case o; = 0, where the mean is observed without error in the
ith stratum.

(2) One linear pseudo-empirical-Bayes method would be to use weights 8, +
B1(n; — 2)/s;(9). This would ensure dominance of the Neyman-Scott solution,
but be somewhat naive in weighting all strata with n; = 2 equally.
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