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BOUNDS ON MIXTURES OF DISTRIBUTIONS ARISING IN ORDER
RESTRICTED INFERENCE"

By TiMm ROBERTSON AND F. T. WRIGHT

University of Iowa and University of Missouri-Rolla

In testing hypotheses involving order restrictions on a collection of
parameters, distributions arise which are mixtures of standard distributions.
Since tractable expressions for the mixing proportions generally do not exist
even for parameter collections of moderate size, the implementation of these
tests may be difficult. Stochastic upper and lower bounds are obtained for
such test statistics in a variety of these kinds of problems. These bounds are
also shown to be tight. The tightness results point out some situations in
which the bounds could be used to obtain approximate methods. These results
can also be applied to obtain the least favorable configuration when testing
the equality of two multinomial populations versus a stochastic ordering
alternative.

1. Introduction. Mixtures of standard distributions play an intrinsic role in the
distribution theory of tests for order restricted hypotheses; cf. Barlow et al. (1972),
particularly Chapter 3. For example, Bartholomew (1959) studied a likelihood ratio
statistic, T, for testing the homogeneity null hypothesis, Hy, for a collection of £ normal
means when the alternative is restricted by the trend H;:pui < p2 < - .- < u. Under H,,

1) P(To1 = ¢) = Y b1 P(4 k)P (x31 2 ©),

where x? denotes a standard Chi squared variable with » degrees of freedom (x§ = 0) and
P (4 k) denotes the probability, under Hy, that there are exactly ¢ distinct values (levels)
when the sample means are smoothed to obtain the maximum likelihood estimates
satisfying H;.

The P(¢4 k)’s depend on the sample sizes, ni, ns, ---, ng, and on the population
variances, o?, 63, - - -, 67, through the weights w; = n:/6?,i =1, 2, « - -, k. Their values are
discussed in detail in Barlow et al. (1972), who give explicit formulas for the P (4 k)’s for
k = 4 and a recursion formula for arbitrary k; cf. their (3.23). However, computation via
the recursion formula may be virtually impossible since P(j, j) must first be computed,
and for j = 5 no closed form expression exists for P(J, j); one can use the table in
Abrahamson (1964) to obtain P (5, 5). For the case of equal weights, the P (4 k)’s can be
found recursively and are given in the Appendix A.5 for £ < 12.

It has been suggested that the P (4 k)’s are fairly robust to the weights (Siskind, 1976;
Grove, 1980) and that the values for equal weights give reasonable approximations except
in unusual cases. Siskind (1976) felt that the pattern of weights was important and that
one of the unusual cases was a U-shaped configuration of weights, that is, a set of weights
in which the weights indexed by values near one and % are relatively large. This supposition
seems to be substantiated by the sharpness analysis of the bounds for (1) which are
presented below in Section 2.

Siskind (1976) obtained approximate critical values for a test based upon T, with
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unequal weights. However, his results only apply for 2 = 8. Chase (1974) studied the
P(4 k)’s in the case in which w; is much larger than the other w;.

In Theorem 1, we give upper and lower stochastic bounds for the Chi-bar-squared
distributions of (1), and in Remarks 2 and 3 these bounds are shown to be tight by
considering sequences of weights which are either U-shaped or have an inverted U-shape.
These bounds are, for even moderate £, far enough apart that one would not want to use
the upper bound to provide conservative tests for an arbitrary set of weights. However, the
results given here do point out some cases in which an experimenter would not want to use
the equal-weights P (¢ k) as an approximation and they also provide approximations for
these cases. The bounds also determine least favorable configurations in hypothesis testing
problems involving a stochastic ordering between two multinomial populations. These
applications are mentioned briefly at the end of Section 2.

2. Tail probability bounds. The vector . = (He1, fiz2, - -+, tee) is defined to be the
isotonic regression of the vector X = (X;, X, - - -, Xi) of sample means with weights w1,
ws, - -+, wr. The computation algorithms referred to in this section are described in detail
in Barlow et al. (1972). A basic idea in this section is that since P(x? = ¢) < P(x%1=c)
for =0, 1,2, --. and for all ¢, one obtains an upper (lower) bound for (1) by making the
distribution of the number of level sets in i, as large (small) as possible.

THEOREM 1. Assume that py =pe = +++ =pp. If a1 = as =< --- < au, then for k = 2,
3, -

® (a1 + a2)/2 < 351 P(4 B)a,=< ¥k, (’; - 11> 9-*g,

If a; = a; = - .- = a;, then the inequalities in (2) are reversed.

Proor. The second conclusion follows easily from the first. For the first conclusion,
observe that if /-, b, < Y, b} forj =1, 2, - .., k, with equality for j = &, then, using
Abel’s method of summation, we see that Y%, a,b,=¥%, a,b% Thus, it suffices to show
that P(1, k) = % and

(3) P (]Z,__ 11> 27M <Y P(4k);, j=1,2,.-,k—1

For the first inequality, observe that
P(1, k) = P[mini<,<: Av({1, -+ -, a}) = Av({1, ---, k})]
= P(AV({I, tt k - 1}) = AV({]-, Y k})] = 1/2

where Av(B) =Y jcp wj)Zj/Z,eB wiforg #BC {1, ---, k}.

In order to establish (3) we use induction on k and the “pool adjacent violators”
algorithm (PAVA). For the case £ = 2, it is easy to see that P(1, 2) = P(2,2) = %
independent of the values of w; and ws. Assume (3) holds for % and let Ly (X, X, - - -, X;
w1, ws, - - -, wy) denote the number of level sets in the isotonic regression of X, Xz, - - -, X
with weights w1, w;, ---, wx. Now, by the PAVA, the isotonic regression, gz+1, may be
formed by first constructing ji, and then combining fix with X,.: in the appropriate way.
Thus, using the obvious notational abuses, either Ly+1 = Ly + 1 or L1 < L, and the
former case is characterized by g < Xp+1. Thus, Lew1 < Ly +I %>z, and for j =1, 2,

.., k’

P(Lyri=j+1)=P(Ly=j and Xpi >pw) + P(Ly=j + 1).

Using the nota_tion in Barlow et al. (1972) and the proof of their (3.23), we can express
P(L, = j and Xi+1 > dre) as a sum of the form

Y P{AV(B;) < AV(B;) < - - < AV(B,) < Xp1} [[i-1 P(1, Cs,; w(B.)).
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Applying their inequality (3.20) to the first factor in each term yields the following upper
bound:

Y. P{AV(B)) < X4 }P(j, j; Wg,, Whg,, ++ -, W) [I=1 P(1, Cg; w(B:)).

The first factor in each term is % and using (3.23) again yields P(Lx = j and Xps1 > fixe)
=< P(j, k)/2. Thus, applying the induction hypothesis, we obtain

P(Lp1zj+1) = {P(j, k) +2P(Le=j + 1)}/2
={P(Lrzj)+P(Lezj+1}/2=s27" Ti\ (;f 1)’

which is the desired result.

The lower bound in (2) was obtained by Perlman (1969) for a related problem.

The bounds given in (2) cannot, in general, be improved. Specifically, there exist
sequences Wy = (Wn1, Wnz, +++, Wnr) and w), = (Why1, Wha, - - -, Wh) With

) lim, . P (4 k; W) = (k - 1) g-k+1
/—1

and

(5) limu WP (4 k; wh) = 27 1 m19

for /=1, 2, ..., k. We first consider the shifted binomial distribution in (4). If we let

w(e) = (EH’ eH_l) R RS eH) for k odd,
(EH_I, eH_2) cre, & 1, 1, E 00y, «EH_I) for k even,

where H = [%£/2], then (4) can be obtained by letting ¢ — 0. The proof, however, is
complicated and we offer a less involved proof by induction.

REMARK 2. Let p; = pp = .. = ;. For each 2 = 2 and for each ¢ > 0 there exist
positive weights w:, wz, - - -, w; such that

P({; k: Wy, Wa, - -, wk) - (k B 1>(1/2)k_1

1 <e (=12 -k

ProoF. The result is obvious for £ = 2. Assume that £ = 3 and that ¢ > 0. By the
induction hypothesis, there exist weights w:, w,, - - -, wr—; such that

P(J;k—l)—(k—2> 1/2%2%| <g ¢=1,2, -+, k— 1

—1

Let w’ = (w:, ws, -+, wr-1) and let w = (w1, we, - - -, wx) where w; is to be specified. For
computing the P(4 k) we may assume that X; = Z;/ Vw; with Zy, Z,, -+, Zr independent
standard normal variables defined on some probability space. With w’ already chosen, we
consider fixed w in the probability space. If Z;(w) > 0, then for w;, sufficiently small X, >
Be-1.-1 and so by the PAVA, L, = L;—; + 1 for such w and wy. (L was defined in the proof
of Theorem 1.) If Z, (w) < 0, then for w sufficiently small X}, < jiz—1 -1 and so in obtaining
#e by using the PAVA, X, and jix—14-1 need to be pooled. However, if {j, ---, & — 1}
denotes the last level set in fix—1, then Av({j, « -+, k}) = Av({j, ---, £ — 1}) as wr — 0. So
for such w and wy, sufficiently small L, = L;_;. Hence, with probability one, L, — Lz_; +
I[z,,>0] as wy — 0. Thus,

limy, .0P(4 k; w) = {P({/— 1,k — L; w’) + P(4 k—1; w')}/2.

Using our induction hypothesis, the desired result is obtained.

REMARK 3. Letpi=po=--. =p,. lfwy — (q,0,0, -- -, b) with a and b positive, then
P(/; k; wﬁ,) e 2_11[/h1’2] for /= 1, 2, LN k.
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PrROOF. As in the proof of Remark 2, we assume that X;= Z;/ ~/w_;u fori=1,2, ...,k
with Z; fixed. Clearly, the random vector(x/w_’,u«Zl, J;};Zz, e NWhE Ziy Whiy oo, Whi)
converges weakly to (\/;Zl, 0,0 ...,0, x/ZZk, a,0,.--,0,b) andso Av({1, 2, ---, k}) —
miny<;<z—1 Av({1,2, - - -, i}) converges weakly to b {(Zk/ﬁ) —(Z:/va)}/(a + b). Hence,

P, k; wy) = P[Av({1, 2, - -+, k}) = mini<;<x—1 Av({1, 2, - -+, i})] > %.

Next consider P (4 k) for /= 3. Write P (¢, k) using (3.23) in Barlow et al. (1972) and bound
the general term by

P{Av(B)) < Av(B:) < - -- < Av(B))}
< P{Av(B1) < Av(B;UBsU --- U B.;) < Av(B))}.

(This inequality follows from the Cauchy Mean Value Property of averages.) Now this
bound can be written as P(01Z1 < 027 < 03Z3) = P{(Gl/oz)Z1 <Zy < (03/02)Z3} where
01/02 — 0 and 03/02 — 0. It follows that lim,_ ... P (4 k; w;) = 0 for /= 3.

If one uses Ty to test Ho vs. H; with the a level equal weights critical value, the true
significance level may differ from « considerably. For instance, with 2 = 9 and a = .05 the
true significance level may be as large as .1941 (determined by the upper bound) and as
small as .0059 (determined by the lower bound). If the weight set has a pronounced U
shape (inverted U shape) it is clear that the approximation obtained by using the lower
(upper) bound given here would be better than the equal weights approximation. Siskind’s
comment that his approximation is not adequate for U-shaped weights is also interesting
in this light. (In his comparison, weights with an inverted U shape were not considered.)

For unknown variances, but of the form a;0® with the a; known, the likelihood ratio test
is given in Barlow et al. (1972). The results given here provide upper and lower bounds
with the same weight-configuration producing the bounds.

Robertson and Wegman (1978) considered testing H; against all alternatives. The least
favorable, null hypothesis distribution for the likelihood ratio statistic is given by
Y&, P(4 k)P(xi-, = c), provided the variances are known. The second conclusion in
Theorem 1 provides upper and lower bounds for this distribution. These bounds are
sharper than those for 7%, and as % increases the rate of increase of the difference between
the upper bound and the equal weights probability decreases dramatically. The same
authors obtained an E? test for the case of unknown variances and similar remarks can be
made about the test.

Robertson (1978) discusses tests of trend in a multinomial population and Theorem 1
and the sharpness results apply in that setting too.

Suppose we have independent samples from two multinomial populations with param-
etersp=(p1, -+, pr) and ¢ = (qu, - - -, qx). If one wishes to test Hy:p = q vs. H; — Hp with
Hy: Y pj=Yiuq;;i=1, .-,k — 1or H; against all alternatives, then the null hypothesis
is not simple. These problems are discussed in Robertson and Wright (1981) and the
results given here provide least favorable configurations within their null hypotheses.
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