The Annals of Statistics
1982, Vol. 10, No. 1, 121-131

THE EVALUATION OF CERTAIN QUADRATIC FORMS OCCURRING
IN AUTOREGRESSIVE MODEL FITTING

By R. J. BHANSALI
University of Liverpool

Let R be an infinite dimensional stationary covariance matrix, let R(%)
and W(%) denote the top £ X % left hand corners of R and R™ respectively
and let (%) and I'(k) denote the approximations for R(%)™' suggested by
Whittle (1951) and Shaman (1976) respectively. We consider quadratic forms
of the type @(k) = B(k)’ R(k)'a(k), when the vectors 8(k) and a(k)
constitute the first £ elements of the infinite absolutely summable sequences
{B;} and {a,}. If x1(k) = B (k) W(k) a(k) and x2(k) = B(k) Z(k) a(k), then,
as k — «, Q(k) and x:(k) converge to the same limiting value for all such
a(k) and B(k), but x2(k) does not necessarily do so. Further, if a@(k) =
(ar, +++, o1)” and B(k) = (B, -+, B1) then xi(k) = B(k)'T(k) d(k). We
discuss the use of W(%) for evaluating the asymptotic covariance structure of
the autoregressive estimates of the inverse covariance function and the moving
average parameters.

1. Introduction. Consider a second-order stationary process {x;:¢=0, 1, ...} with
zero mean, covariance function R (z) = Ex;x.+, and the spectral density function

1 . )
f(A) = > Yoo R(u)exp(—iul).

We will assume that the covariance function is absolutely summable, i.e.

(1.1) Yo | R(u)] < 0,

and that f(\) is non-vanishing, i.e.

(1.2) f(A) #0, —r<A<m

Then x; has (Brillinger, 1975, page 78) the infinite autoregressive representation
(1.3) Yi-o a(U)Xe-u =&, a(0) =1,

in which ¢, is a sequence of uncorrelated random variables with 0 mean and finite variance,
o2, and the {a(u)} are real coefficients satisfying

(1.4) Yoo | a(u)| < .

Following Parzen (1974), we will call fi(A) = (27) 2{ f(A)} " the inverse spectral density
function, its Fourier coefficients

Ri(u) =j e“Mi(\) dA

the inverse covariance function, and ri(u) = Ri(u)/Ri(0) the inverse correlation function,
of Xt.

Let R =[R(u —v)](u,v=1,2, --.) denote the infinite dimensional covariance matrix
of the semi-infinite vector X’ = (x_1, x_2, ---) and R(¢) =[R(x — v)] (v,v=1, .-+, k) be
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the corresponding k£ X k covariance matrix of the vector x(k)" = (x_y, - -+, x_¢), and let R!
and R(%) " respectively denote the inverses of R and R(k). An exact expression for R(% )7,
valid for each 2 = 1, 2, .- -, is given by Berk (1974). However, in analytical work, a
difficulty in using this exact expression is that it is not written directly in terms of the
coefficients a(u) of the autoregressive representation (1.3). However, let W(k) denote the
submatrix in the top % X % left hand corner of R™. An explicit expression in terms of a(«)
for W(%) and R™! is given in Section 2, by using the results of Wise (1955). The main
objective of this paper is to show that W(%) may be used as an approximation to R(k)™"
for evaluating the limiting value, as k& — o, of a class of quadratic forms of the general type

(1.5) Q(k) = B(k) R(k)™" a(k)

where a(k) = (s, -+, az)’ and B(k) = (B4, - -, Br)’, respectively, constitute the first
elements of infinite dimensional vectors & = (ay, az, --+) and B8 = (B1, B2, ---) and a, 8
belong to the Banach space, ¢', of absolutely summable sequences, i.e. 2|a;| < » and
Z|B| < e )

Examples of applications where quadratic forms of this type arise are given in Section
4,

Let {Rx(0)™'} and {Wx()} (k=1,2, - -.) denote two sequences of infinite dimensional
matrices, obtained by placing the matrices R(k)™' and W(%) in their top £ X % left hand
corners respectively, and 0’s everywhere else. Also let xi(k) = B(k)’W(k)a(k) be the
corresponding quadratic form obtained from @ (%) by replacing R(k)™ by W(k). We have

(1.6) Q(k) = BRi(o)'a,  x1(k) = B Wi(o)a.

As discussed later in Section 2, the question of whether x1(%) and @ (k) converge to the
same limiting value as 2 — o is closely related to the question: What is the mode of
convergence of {Wx(0) ™'} to R™'? This question is examined in Section 3.

Two other approximations to R(%)™" have been suggested previously in the literature:
the first (%), say, by Whittle (1951, 1952) and the second, I'(%), say, by Shaman (1976).
We examine the mode of convergence of the sequence of infinite dimensiornal matrices
{(Zr()}, (E=1,2, .-.) to R, where X () has (k) in its top & X k left hand corner and
0’s everywhere else. Hence, we show that @ (k) and the quadratic form, x2(%), say, obtained
from Q (%) by replacing R(k)™" by (k) do not necessarily converge to the same limiting
value for all a, B € ¢'. Hence R(k)™' may not in general be replaced by Z(k) for the
evaluation of @ (k), as k — .

Let J(k) be a k X k matrix with unity in the transverse diagonal and 0’s everywhere
else, and let a(k) = J(k)a(k) = (ar, - -+, a1)’, andB(k) = J(k)B(k) = (B, -+, B1) be k
X 1 vectors. From the results given later in Section 2, it follows that

(1.7) xi1(k) = B(kY T(k)d(k), k=1,2 ...

Thus the limiting value of @ (k) may also be evaluated by replacing R(k)™" by I'(%),
provided the direction of the vectors a(%) and B(%) is re-oriented.

A related reference is Huzii (1977) who, on the assumption that a(x) = d* 0 <d <
1/2, obtains bounds for the error in approximating the elements of R(%)™! by those of
W(k), as k — oo,

2. Approximations to R(k)~. Let € = (¢_;, ez, - - )’ denote a semi-infinite vector
and U = [U,n] (n,m =1, 2, -.-) denote an infinite dimensional auxiliary matrix with 1’s
in the diagonal immediately below the main diagonal and 0’s everywhere else; i.e., Unn =
1,n=m + 1, and U,., = 0, otherwise. By convention, we set U’ = I, where I = [I,] (n, m
=12 ...), with I, = 1 (n = m) and I, = 0 (n # m), denotes an infinite dimensional
identity matrix. The matrix U may also be employed for obtaining an explicit expression
for R7! in terms of a(z). We have, as in Wise (1955)

[E70 a()U"Ix =e.
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Hence,

2.1) R = E[xx'] = ¢7[¥ 0 a()U”T [T &0 a(/)U'T

and

(2.2) R'= % [T a(j)U’ T 20 a()U”] = % SS’,  say,

where S is an infinite dimensional lower triangular matrix
S = Y50 a(j)U.

The inverse of the matrices appearing in (2.1) exist because (1.4) holds.

Since R(k) is the top £ X % sub-matrix of R, for sufficiently large % an approximation
to R(k)™! is provided by the corresponding matrix appearing in the upper left hand 2 X &
corner of R™. This gives

(2.3) R(k)™ = W(k),
where
(2.4) W(k) = 513 S(k)S(k),  S(k) =Y a(j)L’,

and L is the k-dimensional analogue of U; see, e.g., Anderson (1977).
The approximation to R(%)™! suggested by Whittle (1951, 1952) is of the form

(2.5) R(k) ' = 2(k),

where (k) has Ri(u — v) in its uth row and vth column. For a derivation of this
approximation, see Anderson (1977) and Shaman (1975).

Hannan (1970, page 397) modified the approximation (2.5) by replacing the integral
occurring in the definition of Ri(z) by a finite sum. The corresponding approximation
suggested for R(k)™" is

(2:6) R(k)™' = ¢(k) = P(k)D(k)'P(k)*,

where P(k) is a k£ X k unitary matrix with £/? exp(iu(27v)/k) in its uth row and vth
column, P(%)* is the conjugate transpose of P(k), and D(%) is a diagonal matrix with
27f(27j/k) in the jth place in the main diagonal.

To see the motivation for the approximation suggested by Shaman (1976), which is also
implicit in Anderson (1975), define the random variables

i1 =&, it == Zfl;ll a(u)xt—u + &, t= 2y M} k’

which are obtained from x, by setting x, = 0, if p < 0. Also let £(k) = (x1, x2, -+ -, Xz)’, and
e(k) = (e, &, -+ -, &)’ denote two k& X 1 vectors, and let V(k) = E[£(k)&(k)’] denote the
covariance matrix of £(k). Then,

[£)5 a(DLJ(R) = e(k),  V(k) =035 a(HLTESS a(/IL7T"
and
1 R _ R
2.7) V(k)'=T(k) = e a5 a(j)LY ]
For sufficiently large £, it may be supposed that the effect of setting the x’s that have non-
positive arguments equal to zero is small. This leads to the approximation
(2.8) R(&)! = (k).

On comparing (2.7) with (2.4), it will be noticed that I'(k) is the “upside down” image
of W(k), i.e.,
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(2.9) (k) = J(R)YW (R)J (k).

Because W (k) and I'(%) are related to each other in such an elementary manner, in the
sequel we do not explicitly distinguish between them as approximations for R(%) ™. Next,
for the purpose of examining the efficacy of the approximations W(%) and Z(%) to R(k)™!
for evaluating the limiting value of @ (k) as k& — o, we bring together the definitions of
four different modes of convergence of a sequence of infinite dimensional matrices {(B™:n
=1, 2, ..-} to a fixed infinite dimensional matrix B.

Let ¢! be the Banach space of all vectors a whose elements ay, as, --. are real or
complex numbers and satisfy
(2.10) lall =Xz |aj] <oo.

The quantity || a || is called the norm a.

Let v = B™a and y = Ba. We will only be interested in the matrices defined on ¢,
i.e. in those matrices which transform a ¢! vector into another ¢! vector. Hence we assume
that y™, y € ¢

A matrix, B, on ¢ is said to be bounded if there is a constant C such that | Ba| <
C|l«]|, for all « € £'. Then, the quantity

(2.11) | B = supjqy-1 ]| Ba]|

defines the corresponding norm of the matrix B A consequence of the definition (2.11) is
that (e.g. Kothe, 1969, page 130)

(2.12) [Ba| <|B]fla],
and if A is another matrix on ¢ then
IAB|=<[A[IB], JA+B|=<|A|+|B].

Let b,, denote the element in the uth row and the vth column of B and 4 that
of B™. An explicit expression for | B|| in terms of b,, can also be obtained, provided that
the sum to the right in the following definition (2.13) is finite. We have (e.g. Taylor, 1958,
page 220)

(2.13) IB]l = sup,Zi-1 | buo].
The Banach space, ¢, of all bounded sequences ¢ = ({1, {, - - -), with norm
(2.14) 1§l = supk| Sl

will also be needed. In the present context, the importance of ¢ arises from the fact that
it is the “dual”, or the “conjugate”, space of ¢'. Thus, if ¥ = ¥(a) denotes a linear
functional on ¢ then it can be shown that the space formed by ¥ is isometric to £ (see
Taylor, 1958, page 194; Kothe, 1969, page 132).

The sequence { B} of matrices on ¢’ is said to converge to a fixed matrix B on ¢'(e.g.,
Riesz and Nagy, 1956) as follows.

(i) uniformly (or in the norm): if, as n — o, | B™” — B|| — 0;
(i) strongly: if, for every fixed a € ¢*, | B”a — Ba| — 0, as n — o;
(iii) weakly: if, for every fixed a € ¢' and for every { € ¢, | {'B™a — {'Ba| — 0, as n
— o0; .
(iv) pointwise: if, as n — 0,5 — b,,, for all u and v.

It is easy to verify that (i) = (ii) = (iii)) = (iv). However, the converse implications are
not necessarily correct. But, (ii) and (iii) coincide on ¢, i.e. {B™} converges weakly to B
on ¢ if and only if it converges strongly; see Kothe (1969, page 281) and Taylor (1961,
page 210).

Fora, B€ ¢, let ™ = B’B™a and ¢ = 8’Ba. Then the requirement that ¢ converge
to Y as n — o for all &, B € ¢, may be termed weak(2) convergence of B™ to B. Since
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¢' C ¢* the concept of weak(2) convergence is seen to be weaker than that of weak
convergence. Indeed, by adapting the results of Akhiezer and Glazman (1961, pages 36-37,
44-45) to the present context, we may show that the sequence {B™} converges to B in the
weak(2) sense if and only if (i) the convergence is pointwise; and (ii) there is a constant M
such that | B®a ||« < M forall n and all a € ¢

3. Strong convergence of Wy(x). We will assume that in equation (1.3) not all
a(u)(w =1, 2, ...) are identically equal to zero, because if x; = & then R(k) = ¢%I(k),
where I(%) denotes the k-dimensional identity matrix, and

R(k)™" = 6 2I(k) = W(k) = Z(k) =T'(k).
Partition the matrix S appearing in equation (2.2) as
S(k) 0
(3.1) S= PN
A () E_i(o)

where S(%) is defined by equation (2.4), E_x () =S and A_, () has a(k + © — v) in its vth
column and uthrow (v=1, ---, k; u=1,2, -..). Also partition the vector « € ¢* as

(3.2) o = (a(k), a-r()),

where a_i(®)" = (ar+1, Qr+2, + + +). Given a, define the vectors h = (A4, hs, - --)" and h*(k)
= (hf, -+, hE) by

(3.3) h=Rq,

(3.4) h*(k) = R(k)'a(k)

and partition h in the same way as a. Thus, let

(3.5) h' = (h(k), h_x(»)),

where h(k) = (hy, - -+, hz) and h_; () = (Ap+1, Apse, -+ +)’. We have

36)  h(k) = W(k)a(k) + ;12- S(k)A () a_x (),

(3.7)  ho(w) = 7'1—2- {A_4()S(k) a(k) + A_4(20)A_ (o) a_s(0)} + R a_r(x).

We note that
IR 1= — (St la@)) <.
Hence, on using (2.12), we have
Ihj=IR7|lall <.
A useful inequality due to Baxter (1963) is
(3.8) 'h(%) —h*(k)|| =< const || h_ () .
We also have the following lemma
LEMMA 1. Ifa € ¢' and h = R™' a is partitioned as shown in equation (3.5) then
(3.9 limy .o | h-g(e0) || = 0.

Proor. This follows immediately from the result that ||h| < co.

Theorem 1 given below establishes the strong convergence of {Ri() ™ k=1,2, ...}
to R as k — o,
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THEOREM 1. For every a € ¢, lim_.« | Re () 'a — R”'a|| = 0.
Proor. By direct computation
IRk(0) " = R7'a|| = [|h*(k) — h(&) || + [ h-s() ||.
The result follows by using the inequality (3.8) and Lemma 1.

The following theorem provides a slightly different interpretation of the manner in
which W (%) converges to R(k) ™' as k£ — .

THEOREM 2. Let a € ¢' be partitioned as shown in equation (3.2). Then for every
such a

(3.10) limy ... | W(k)a(k) — R(k)"a(k)| = 0.

Proor. We have, using (3.4),
(3.11) |[Wk)ak) — R(E) 'a(k) || < |W(E)ak) —h(&)| + [|h(k) —h*(&)|.

The second term to the right in the inequality (3.11) tends to 0 as £ — o by inequality
(3.8) and Lemma 1, while the first term is bounded above by

1
2 ISGR) [ A-r ()" ||| &k () |l

and, as & — o, it converges to 0 because || a—x(®) || — 0, while 072, || A_ ()’ || and || S(%) ||
remain bounded.

The strong convergence of [Wy(®):2 = 1,2, ...} to R™ as £ — = is established in
Theorem 3.

THEOREM 3. For every a € ¢*, lims« | Wi(0)a — R™'a|| = 0.
Proor.
[We(w)a — R'a|| < || Wi(o)a — Ri() 'a| + | Re() 'a — R7'a]|.

The second term and the first term to the right of the above inequality converge to zero
by Theorem 1 and Theorem 2, respectively.

COROLLARY 3.1. Let { = ({i, &2, -+ +) € £ be partitioned as

(3.12) ¢ =1[8k) :{-r()’]

where ¢(k) = (&, -+« , &)’ and {1 () = ($pe1, Srez, « - +)’, and let a € £' be as in equation
(3.2). Then for every such a and §

(3.13) limg .o | $(B)'R(E) 'a(k) — $(k)' W (R)a(k)| = 0.

PRrOOF. Let Sy = | ¢’{Rr(0) ™ — R"Ja| and Sex = | {'{Wx(®) — R™}a|. Then
[ $(B) {R(E) ™" — W(k)}a(k)| =< Su + Sz

Now, as 2 — , S, — 0 by Theorem 1 and Sz — 0 by Theorem 3. Hence the result
follows.

Theorem 3 may also be extended to the case when the elements a; of a are not fixed
but depend upon k. Suppose that {ax:k =1, 2, - -} is a sequence of vectors in ¢ !and «
€ ¢! is a fixed vector such that ||ax — a| — 0 as k& — co. It immediately follows from
Theorem 3 that || W ()a; — R'a||— 0 as £ — . Analogously, Corollary 3.1 may also be
extended to this case.
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Consider now the mode of convergence of ;(w) to R~ as £ — . Hannan (1970, page
378) has shown that if the terms of O(%™!) are ignored then the matrix P(k) *R(k)P(k) is
diagonal with 27f(27j/k) in the jth place in the main diagonal. However, as discussed
below, this result does not imply that as # — o the difference between the elements in the
uth row and the vth column of Z(k) and‘R(k)‘1 converges to 0, for all # and v.

A stronger result on the nature of approximation provided by Z(k) for R(k) lask—
o, is stated by Whittle (1952), who has claimed that the approximation (2.5) is to be
understood as implying

x(k)'R(k) 'x(k) _
x(k)Z(k)x(k)

almost certainly, when the elements of x(k) constitute an arbitrary, purely non-determin-
istic stationary process. A similar result, with a minor change of wording, is also claimed
to be true by Wold (1953, Chapter 11), though neither of these two authors gives a proof
in support of this claim. Nevertheless, a partial justification of this claim can be obtained
from the results of Shaman (1975).

If x, is a Gaussian autoregressive process, or a Gaussian moving average process, of
order g where g is finite, and the ratio on the left hand side of (3.14) is denoted by , then
Shaman has shown that as 2 — o, the random variable 2(r — 1) is distributed like a
weighted sum of ¢ independent x3 variates, where the weights multiplying the x3's are all
negative. This result implies that r = 1 + O, (k") and, as k — o, 7 — 1 in probability, for
at least these two important special classes of stationary, purely non-deterministic proc-
esses.

We will now show that the sequence {Z1(®)} does not even converge pointwise to R
as £ — o and hence we show that a result similar to (3.14) is not true if the components
of x(k) are real or complex numbers such that x(k) constitutes the first £ elements of a
vector x € ¢

(3.14) limy e

THEOREM 4. The sequence {Zp(»):k =1, - ..} does not converge pointwise to R'as
k — oo,

Proor. Let e = (1, 0, 0, ---)’ be an infinite dimensional vector. Then it will be
sufficient to show that as & — o, | e’{Zx () — R™'}e |- 0. We have, when all the a (/) are
not equal to 0,

le’{Zk() —R™}e| = Y71 a®(j) >0
for all Z; hence the result follows.

THEOREM 5. Let a € ¢* be partitioned as shown in equation (3.2). Then there exists
an integer Ko, a positive constant M (k) and at least one choice of a such that for all k
> Ko

(3.15) |a(k) {Z(k) — R(k) Ya(k)| = M(k) > 0.

PRrOOF. Let Nis = |a’{Zx() — R™"}a| and N = | &’ {Rx () — R™}a|. Then
|a(k)' {E(k) — R(E)Ja(k)| = Nux — Nox.

Theorem 1 shows that for all a € ¢*, Nax —0 as & — . Hence given € > 0 we may find an.
integer K; such that Nay, < € for all 2 > K;. On the other hand, if a = e then Ny is bounded
away from 0 as 2 — o by Theorem 7. Since e is arbitrary, we may choose € and K; such
that N, > € for all 2 > K;, and then set M (k) = N1, — € and K, = max (K, K2).

However, it should be emphasized that although the matrix sequence {W(»)} con-
verges strongly to R, it does not do so uniformly, i.e. | W () — R™"|| - 0 as & — o. To
illustrate this last point and some of the earlier results, consider the special case of a first
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order autoregressive process

(3.16) X+ QX1 = €, |a] <1.

We have
(1 a 0 0 07
a 1+d® a 0 0
0 a 1+a® --. 0 0

R(k) 7' =

00 1+a® a
L0 O a 1

The matrices W(k), (k) and T'(k) are of the same form as R(k)™%; but W(k) has 1 +
a? in its kth diagonal element, I'(k) has 1 + a® in its 1st diagonal element and Z(k) has 1
+ a?in its 1st and kth diagonal elements. We have

W) — R(E)|| = |IT(k) —R(k) || = |Z(k) —R(R)'|| = a”
Also, using (2.2), we get

R!= % I + U + aU’)

and it is easy to verify that, as £ — oo,
IWi(o) —R7|| = (1 +]a])*+$ 0, .
though
[Wi(o)a — R7a|| = |@are | + N | ala) + ajis) + (1 + a?)aju|

does tend to zero for all & € ¢*.
Also, if e(k) =[1,0, --- 0]’ is a £ X 1 vector thenfor £=1,2, ...

le(k) (Z(k) — R{k) Yek) | =a?>0, |ek){T(k) —R(k)Je(k)|=a’>0

and so the difference between the element in the 1st row and 1st column of X(k) and
R(%) ! does not vanish as 2 — o. The same holds also for I'(2) and R(k)7L

4. Applications. The applications described next relate to the case when T' consec-
utive observations Xi, -- -, Xr of x, are available and kth order autoregressive estimates
C, = @, +++ , Cp = Gy, are obtained by minimizing

(T—Fk)™! Z};—Ol_k(Xk+j+l + CXpsj+ -o0 + CrX14))?

with minimum 62(%). An autoregressive estimate of the spectral density function is given
by

42
(4.1) ) = °2(k) |1+, dre™ | —a=sAsm;
¥
and that of the inverse covariance and correlation functions are given by
A 1 Z (s f277\) . 2nd

4. = — Q= ! - - I’
4.2) Ri(u) 5 L4’ {fk<Q )} exp | iu )

“43) Fir(w) = Rir(u)/Rir(0), u=1,---,k,

where @ = 2k is an integer suitable for applying a Fast Fourier Transform algorithm.
For an exposition of the reasons for taking interest in ri (), see Cleveland (1972), Parzen
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(1974) and Bhansali (1980). In particular, the 7i;(z) may be employed for estimating the
order of a finite moving average process. Thus, suppose that x, is a moving average process
of order q defined by

(4.4) x=Ykov(Ne—y, »(0)=1,

where € is a sequence of independent, identically distributed random variables with 0
mean, variance ¢ and finite fourth cumulant k4 and the »(j) are real parameters such that
the polynomial »,(z) = 1 + »(1)z + .-+ + »(q)z? is bounded away from 0, |z| = 1. If g is
known, the method suggested by Durbin (1959) for estimating the »(j) may be viewed (see
Bhansali, 1980) as providing the estimates #;(1), - - - , #x(¢) by solving the equations

(4"5) Z;LO i;k(j)f'lk(u —j) = O) u= 1) 0y q,

with 7, (0) = 1. But q is invariably unknown. The equations (4.5) may be solved recursively
and an estimate of ¢ may be obtained by using an order determination criterion, such as
Akaike’s information criterion. Although the final estimates of the moving average param-
eters obtained by solving the equations (4.5) do not compare favourably with those
obtained by maximizing the Gaussian likelihood, a “two-step” procedure recommended by
Bhansali (1980) may be employed.

In the following applications & = k(T is a function of T such that as 7'— o, £ — o but
k/T— 0.

ExaMpPLE 1. For evaluating the covariance term in the joint asymptotic distribution of
VT{Rir(u1) — Ri(w)}, -+, VT {Rir(ue) — Ri(uc)}, when uy, --- , ug are fixed non-
negative integers, it is necessary to evaluate (Bhansali, 1980) the limiting value as £ — «
of the quantity

@1 (k) = qu(k) + g2 (k) + ga1(R) + g2 (k) + p(R),
where
qij(k) = 072y (k)’ R(k)7'8,(k)(i,j =1, 2),
limg,. p (k) = 2 Ri(u)Ri(v) + % Ri(u)Ri(v),

u and v are fixed non-negative integers, y:(k)' = (a(u + 1), -+, a(u + k)), d:1(k) = (a (v
+1), -++, a(v +k)), v2(k) = (0, ---,0,1,a(1), -+ a(k —u)) and 8:(k)" = (0, ---,0, 1,
«++,a(k —v))are all £ X 1 vectors.

Consider q11(k). We have, using Corollary 3.1,

limy o q11 (R) = limge 67 2y1(k)’ W(R)1(R)
= limeo[{ X5 Ri(u + )Ri(v + )} — ér ()],
where
o () = T ja{m () + n2()) = ms (N},
M(J) = 072 Xisjur a(s)a(u +j + s)Ri(v +j),
12(J) = 072 Y opjur a(s)a(v + j + s)Ri(u + j),
13(J) = 067 Tihoj1 w1 a(s)au +j + s)a(t)a(v +j + ¢).

Now, the R (z) and the a (1) are absolutely summable. Hence, by appealing to the Lebesgue
Dominated Convergence theorem, we may show that

(4.6) limy e qui(R) = Y721 Ri(u + j)Ri(v + j).

In the same way, we may evaluate the limiting values as 2 — o of gi2(k), g21(k) and
g2(k) to finally obtain



130 R. J. BHANSALI

4.7)  limp.o @1(R) = Y u{Ri(u + j)Ri(v + j) + Ri(u + j)Ri(v — j)} +£i4 Ri(u)Ri(v).

We note that (4.7) is in accordance with a remark of Parzen (1974) concerning the
asymptotic covariance structure of the autoregressive estimate of the inverse covariance

function.
It is easy to verify that the use of (k) as an approximation to R(%) ™' does not produce
the desired result, which, in view of Theorem 5 of Section 3, is not surprising.

ExaMPLE 2. Suppose that x, satisfies (4.4) where ¢ is known. Put

n(y) = % J {rs()} 5 (A) exp(=ijA) dA,

where v,(A\) =1 + »(1)e™™ + ... + »(q)e " and the overbar denotes complex conjugate.

_For evaluating the covariance term, c(u, v) say, in the joint asymptotic distribution of
VT{5:(1) = v(1)}, --+, VT {#r(q) — »(q)}, it is necessary to evaluate the limiting value,
d(m, n), say, as k — o of the quadratic form

4.8) Qa2(k) = 67 (k) R(R) 'pn (),

where m and n are fixed integers such that 1 = m, n < q, pn (k) = (1 —m), -+, u(k —
m))’ and p, (%) is defined analogously; see Bhansali (1980). Indeed

c(u, v) = Y1 i1 R (u, m)d(m, n)Ri™ (v, n),

.where Ri"'(u, v) denotes the term in the uth row and vth column of 2(g)~.
On using Corollary 3.1, we have

d(m, n) = limgw 6 %m (B) W (k). (k) = 6 2Ri(m — n),
c(u, v) = 02 Ri (4, v),

and thus the method suggested by Durbin (1959) provides asymptotically efficient esti-
mates of the moving average parameters, relative to maximum likelihood in the Gaussian
case.

It may again be verified that the use of X(%) in place of R(%) " for evaluating @s(%)
does not produce the desired result. ‘

_ExaMPLE 3. The covariance term g (u, v), say, in the joint asymptotic distribution of
VT {ér — a(u)} and ﬁ{éku — a(v)}, when u and v are held fixed, is given by the limiting
value as k — « of the quantity (Bhansali, 1978)

Qs(k) = o”eu (k) R(k) 'eu(k),

where e,(k) has unity in the uth place and 0 everywhere else, and e,(%) is defined
analogously. Using Corollary 3.1, we have

(4.9)  limp. @s(k) = limy... 0%, (k) W(k)e, (k) = Y 25 a(f)a(j + |v — ul),

which is in accordance with the result of Bhansali (1978).

Parzen (1969, page 403) stated, without proof, that one may regard the estimated
autoregressive coefficients @1, - -+ , diz as a covariance stationary time series with means
a(l), ---, a(k) and spectral density function (27) T | A(\) |% Parzen thus appears to
have in mind replacing g(u, v) by 6 2Ri(u — v), i.e. to evaluate the limiting value as & —
o of @s(k) by replacing R(%2)™* by 2(%k). As shown earlier in Theorem 7, this procedure
may not be justified. From (4.9), it is seen that if u # v then the asymptotic variances of
Qr, and dg, are not the same and hence under the regularity conditions stated by Bhansali
(1978), dr. does not constitute a covariance stationary time series. Parzen’s statement is
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thus in error. Nevertheless, note that if min(u, v) is not too small, then (4.9) and o’Ri(u
— v) are close to each other.
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