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LOCAL ASYMPTOTICS FOR POLYNOMIAL SPLINE REGRESSION

BY JIANHUA Z. HUANG

University of Pennsylvania

In this paper we develop a general theory of local asymptotics for least
squares estimates over polynomial spline spaces in a regression problem.
The polynomial spline spaces we consider include univariate splines, tensor
product splines, and bivariate or multivariate splines on triangulations. We
establish asymptotic normality of the estimate and study the magnitude of the
bias due to spline approximation. The asymptotic normality holds uniformly
over the points where the regression function is to be estimated and uniformly
over a broad class of design densities, error distributions and regression
functions. The bias is controlled by the minimum L∞ norm of the error
when the target regression function is approximated by a function in the
polynomial spline space that is used to define the estimate. The control of bias
relies on the stability in L∞ norm of L2 projections onto polynomial spline
spaces. Asymptotic normality of least squares estimates over polynomial or
trigonometric polynomial spaces is also treated by the general theory. In
addition, a preliminary analysis of additive models is provided.

1. Introduction. The use of polynomial splines provides an effective
approach to modern nonparametric modeling. When fitted by the maximum like-
lihood method, polynomial splines can be applied to a broad range of statistical
problems, including least squares regression, density and conditional density esti-
mation, generalized regression such as logistic and Poisson regression, polychoto-
mous regression and hazard regression. The spline based methods are also very
convenient for fitting structural models such as additive models in multivariate
function estimation. See Stone, Hansen, Kooperberg and Truong (1997) for a re-
cent review of the subject and related references.

The theoretical investigation of the properties of methods based on polynomial
splines has been an active area of research for years. Global rates of convergence
of spline estimates have been thoroughly studied for various statistical contexts;
see Stone (1985, 1986, 1994), Hansen (1994), Kooperberg, Stone and Truong
(1995a, b), Huang (1998a, b), Huang and Stone (1998) and Huang, Kooperberg,
Stone and Truong (2000). A systematic treatment of global asymptotics of spline
estimates is given in Huang (2001). In contrast, the local properties (behavior at a
point) of spline estimates are much less studied. See Stone (1990, 1991) and Zhou,
Shen and Wolfe (1998) for some available results. The focus of this paper is on
local asymptotics. Local asymptotic results are useful for constructing asymptotic
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confidence intervals. They also provide theoretical insights about the properties of
estimates that cannot be explained by global asymptotic results.

Usually, polynomial splines are fitted by minimizing a global criterion such
as the sum of squared errors or the negative of the log-likelihood. The resulting
estimate is a polynomial spline that can be totally characterized by values of
the coefficients in a basis expansion. One advantage of this approach is that the
estimate is “simpler” than the original data set since the number of coefficients,
which equals the dimension of the estimation space, is usually much smaller
than the sample size. Unfortunately, along with this advantage there is difficulty
in analyzing the local properties. The situation is fundamentally different from
another nonparametric approach—local polynomial kernel methods, where a
polynomial is fitted to the data in a local neighborhood around a given point
and hence local properties of resulting estimates can be conveniently obtained
[see, e.g., Fan and Gijbels (1996)]. However, the piecewise polynomial nature of
polynomial splines suggests that expecting a reasonably good local behavior
of polynomial spline methods is not unrealistic.

In this paper we provide a general theory of local asymptotics in the context of
regression. Let X represent a vector of predictor variables and Y a real-valued
response variable, where X and Y have a joint distribution. We assume that
X ranges over a compact subset X of some Euclidean space. In addition, we
assume that the distribution of X is absolutely continuous and that its density
function pX(·), which we refer to as the design density, is bounded away from
zero and infinity on X. Set µ(x) = E(Y |X = x) and σ 2(x) = var(Y |X = x),
and assume that the functions µ = µ(·) and σ 2 = σ 2(·) are bounded on X.
Let (X1, Y1), . . . , (Xn,Yn) be a random sample of size n from the distribution
of (X,Y ). The primary interest is in estimating µ. We consider least squares
estimates over polynomial spline spaces and refer to the corresponding estimation
procedures as polynomial spline regression.

In this paper a polynomial spline is referred to broadly as any possibly smooth,
piecewise polynomial function. To be specific, let � be a partition of X into
disjoint sets. An element of � can be an interval, a two-dimensional triangle
or rectangle, or a high-dimensional simplex or hyperrectangle. By a polynomial
spline on X, we mean a function g on X such that the restriction of g to
each set in � is a polynomial and g may satisfy certain smoothness conditions
across the boundaries. This setup is very general, containing as special cases
univariate splines, tensor product splines, and bivariate or multivariate splines on
triangulations. See Hansen, Kooperberg and Sardy (1998) for the practicality of
multivariate splines for statistical applications.

We now give a brief description of our results. It is convenient to put polynomial
spline regression into a general framework. Let G = Gn, referred to as the
estimation space, be a linear space of bounded functions with finite dimension Nn.
The least squares estimate µ̂ of µ in G is defined as the element g ∈ G that
minimizes

∑
i[g(Xi)−Yi]2. Polynomial spline regression corresponds to G being
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a space of polynomial splines. Other common choices of G include polynomials
and trigonometric polynomials. Usually the true regression function does not
belong to G and members of G are used only as approximations to the truth.
Therefore, it is natural to let the dimension of the estimation space grow with the
sample size in the asymptotic analysis. In the theory developed in this paper,
the dimension of G is allowed to grow with n but not required to do so.

Consider a general linear estimation space G. Set µ̃ = E(µ̂|X1, . . . ,Xn). We
have the decomposition

µ̂(x) − µ(x) = [µ̂(x) − µ̃(x)] + [µ̃(x) − µ(x)],
where µ̂− µ̃ and µ̃−µ are referred to as the variance and bias terms, respectively.
We will see that these two terms require very different analyses.

In Section 2 we show that µ̂ and µ̃ can both be viewed as projections.
Precisely, µ̂ = �nY and µ̃ = �nµ, where �n is the orthogonal projection onto
the estimation space G relative to the empirical inner product defined in Section 2.
This geometric viewpoint is fundamental in our study.

Section 3 establishes the asymptotic normality of the variance term µ̂(x)− µ̃(x)

for general linear estimation spaces. Applications to constructing asymptotic
confidence intervals are also discussed. The results are generally applicable to any
type of estimation space, including polynomials, trigonometric polynomials, and
polynomial splines. In Section 4, we strengthen the result in Section 3 by showing
that asymptotic normality of µ̂(x) − µ̃(x) holds uniformly over x ∈ X and over a
broad class of design densities, error distributions, and regression functions. This
result can be used to construct an asymptotic confidence interval whose coverage
probability converges uniformly to its nominal level. This uniform asymptotic
normality result is new in the nonparametric regression literature.

Section 5 evaluates the size of the bias µ̃(x) − µ(x). In contrast to previous
sections, we focus in this section on polynomial spline regression since special
properties of polynomial splines are crucial in controlling the bias. In Section 5.1,
it is shown that the bias is bounded above by a multiple of infg∈G ‖g − µ‖∞, the
best approximation rate in L∞ norm to the regression function by a func-
tion in the estimation space. This result relies on the stability in L∞ norm
of L2 projections onto polynomial spline spaces, a property that is not shared
by projections onto spaces of polynomials or trigonometric polynomials. We will
see in the Appendix that this property is a consequence of the existence of a locally
supported basis of polynomial spline spaces. Section 5.2 gives a sufficient condi-
tion for the bias term to be negligible compared with the variance term when the
estimation space is a univariate spline space or tensor product spline space and the
regression function satisfies a commonly used smoothness condition. Section 5.3
discusses an existing result on asymptotic bias expression and shows what new
insights we gain from our general results.

Section 6 gives explicit expressions for conditional variances of least squares
estimates in terms of a given basis function. Section 7 provides a preliminary
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analysis of spline estimation in additive models. The Appendix gives a general
result on the stability in L∞ norm of L2 projections onto spline spaces, which
plays a key role in studying the bias of polynomial spline regression in Section 5.
This result also has independent interest.

Zhou, Shen and Wolfe (1998) (henceforth ZSW) studied local asymptotics for
univariate spline regression. The geometric approach used in this paper is novel
and distinguishes our treatment from the previous work. The present approach
allows us to obtain a quite general understanding of the local asymptotics of
polynomial spline regression. The general result applies to univariate splines,
tensor product splines, and bivariate or multivariate splines on triangulations. In
this approach, we see precisely how the special properties of polynomial splines
are used in the analysis of the bias term, whereas these properties are not needed
in the treatment of the asymptotic normality of the variance term. We obtain
substantial additional insights even for univariate spline regression. The setup
of ZSW (1998) is restricted: the knots are required to be asymptotically equally
spaced, the design density is continuous, and the order of the spline equals
the assumed order of derivative of the unknown regression function. All these
assumptions are relaxed in this paper. Our condition on the allowed rate of growth
of the number of knots for the random design case (i.e., limn Jn logn/n = 0
where Jn is the number of knots) is much weaker than that used in ZSW (i.e.,
limn J 2

n /n = 0). We believe our condition is close to the minimal. Actually this
condition is compatible with the similar condition for the local polynomial method
(i.e., limn nhn = ∞ where hn is the bandwidth). We think the logn term in our
condition cannot be dropped because, as a global method, the spline estimator
deals with all points in the design space X at the same time, while the local method
treats one point a time.

It is common in the literature to assume the continuity of certain partial
derivatives of the unknown function in studying local asymptotics; see, for
example, Ruppert and Wand (1994) for results on local polynomial regression.
ZSW (1998) followed such a tradition and obtained asymptotic results for a
degree p − 1 spline estimator when the regression function µ has a pth order
derivative. Their setup is restricted and rules out the use of quadratic or cubic
splines if µ has a continuous second derivative. A general, alternative view of
point is taken in this paper. Precisely, the asymptotic bias of a spline estimator
is described by the approximation power of the spline space to the unknown
regression function, which can be obtained explicitly for any given smoothness
condition using results from approximation theory. This general view has the
advantage that it allows us to study the asymptotic behavior of a specific degree
spline estimator under various smoothness conditions and the behavior of spline
estimators with different degrees under the same smoothness conditions.

We believe that the theoretical insights provided by this paper and the
techniques developed in this paper are useful for understanding the properties
of polynomial spline based estimators in other contexts such as generalized
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regression, density estimation and hazard regression and for structural models such
as additive models. Recently, Huang, Wu and Zhou (2000) extended the techniques
in this paper to analyze the asymptotic properties of spline based estimators in the
context of longitudinal data analysis.

In what follows, for any function f on X, set ‖f ‖∞ = supx∈X |f (x)|. Given
positive numbers an and bn for n ≥ 1, let an � bn and bn � an mean that an/bn

is bounded and let an � bn mean that an � bn and bn � an. Given random
variables Wn for n ≥ 1, let Wn = OP (bn) mean that limc→∞ lim supn P (|Wn| ≥
cbn) = 0 and let Wn = oP (bn) mean that limn P (|Wn| ≥ cbn) = 0 for all
c > 0. When a supremum of an expression of a ratio is taken over some set of
arguments, we use the convention that the supremum is always taken with respect
to the arguments such that the involved denominator is not zero. For example,
supg∈G |‖g‖∞/‖g‖ − 1| should read supg∈G,‖g‖�=0 |‖g‖∞/‖g‖ − 1|.

2. Least squares estimator as a projection. In this section we show that,
for a general linear estimation space, the least squares estimate is an orthogonal
projection relative to an appropriate inner product. We also give sufficient
conditions for the least squares estimate to be well defined.

We start by introducing two inner products on the space of square-integrable
functions on X. For any integrable function f defined on X, set En(f ) =
1
n

∑n
i=1 f (Xi) and E(f ) = E[f (X)]. Define the empirical inner product and norm

by 〈f1, f2〉n = En(f1f2) and ‖f1‖2
n = 〈f1, f1〉n for square-integrable functions

f1 and f2 on X. The theoretical versions of these quantities are given by 〈f1, f2〉 =
E(f1f2) and ‖f1‖2 = 〈f1, f1〉.

The estimation space G is said to be theoretically identifiable if g ∈ G and
‖g‖ = 0 together imply that g = 0 everywhere on X. When G is theoretical
identifiable, it is a Hilbert space equipped with the theoretical inner product.
To rule out pathological choices of the estimation space that are not useful
in practice, we require throughout the paper that the estimation space G be
theoretically identifiable. This space is said to be empirically identifiable (relative
to X1, . . . ,Xn) if g ∈ G and ‖g‖n = 0 together imply that g = 0 everywhere on X.
As we shall see, the empirical identifiability of the estimation space G ensures that
the least squares estimate is well defined.

Since X has a density with respect to Lebesgue measure, with probability one,
the design points X1, . . . ,Xn are distinct and hence we can find a function defined
on X that interpolates the values Y1, . . . , Yn at these points. With a slight abuse of
notation, let Y = Y (·) denote any such function. The following result is obviously
valid.

LEMMA 2.1. Given a realization of X1, . . . ,Xn, suppose G is empirically
identifiable. Then G is a Hilbert space equipped with the empirical inner product.
The least squares estimate µ̂ is the orthogonal projection of Y onto G relative to
the empirical inner product and is uniquely defined.
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The following lemma, which follows easily from the definitions, tells us that if
the theoretical norm is close to the empirical norm uniformly over the estimation
space, then theoretical identifiability implies empirical identifiability.

LEMMA 2.2. SupposeG is theoretically identifiable. If supg∈G |‖g‖n/‖g‖−1|
= oP (1), then G is empirically identifiable except on an event whose probability
tends to zero as n → ∞.

We now give sufficient conditions for the theoretical norm to be close to the
empirical norm uniformly over estimation spaces. These conditions together with
Lemmas 2.1 and 2.2 yield sufficient conditions for the least squares estimate
to be well defined. The discussion is presented in a general form for weighted
versions of theoretical and empirical norms. The weighted versions of these norms
are useful in discussions of heteroscedastic errors; see Remarks 3.2, 6.1 and 6.2
in the following. For a nonnegative weight function w defined on X, let the
theoretical and empirical inner products be defined by 〈f1, f2〉w = E(f1f2w

2) and
〈f1, f2〉n,w = En(f1f2w

2). Denote the corresponding norms by ‖ ·‖w and ‖ ·‖n,w .
Set An = supg∈G(‖g‖∞/‖g‖). Observe that 1 ≤ An < ∞. This constant can be

understood as a measure of irregularity of the estimation space G. It was used
in Huang (1998a) in a general discussion of L2 rate of convergence for least
squares estimation and will appear again in our discussion of asymptotic normality.
Since g ∈ G and ‖g‖ = 0 implies that ‖g‖∞ = 0, we see that ‖g‖∞ ≤ An‖g‖ for
all g ∈ G.

Note that An depends on the distribution of X. When the density of X is
bounded away from zero, An can be bounded above by a constant that does not
depend on the distribution of X. Specifically, suppose that there is a constant c > 0
such that infx pX(x) ≥ c. Let ‖ · ‖L2 denote the L2 norm relative to the uniform
distribution on X; that is, ‖f ‖2

L2
= ∫X f 2(x) dx/|X| for any square-integrable

function f . Set An = supg∈G{‖g‖∞/‖g‖L2}. Then An ≤ √|X|/cAn.
Further discussion about the constant An (or An) can be found in Section 2.2 of

Huang (1998a). Here we only cite some examples from that paper. Suppose X is
a compact interval. Let Pol(J ), TriPol(J ), and Spl(J ) denote, respectively, the
space of polynomials of degree J or less, the space of trigonometric polynomials
of degree J or less, and the space of polynomial splines with fixed degree m and
J equally spaced knots. Then, when G equals Pol(Jn), TriPol(Jn), or Spl(Jn), we

have, respectively, An � Jn, An � J
1/2
n or An � J

1/2
n . For the multidimensional

case, suppose that X is the Cartesian product of compact intervals X1, . . . ,Xd .
Let Gl be a linear space of functions on Xl for 1 ≤ l ≤ d and let G be the tensor
product of these spaces. Then, when Gl equals Pol(Jn), TriPol(Jn) or Spl(Jn)

for 1 ≤ l ≤ d , we have, respectively, An � J d
n , An � J

d/2
n or An � J

d/2
n .

The next lemma gives sufficient conditions for the empirical norm to be
close to the theoretical norm uniformly over the estimation spaces. Note that
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supg∈G |‖g‖n,w/‖g‖w − 1| = oP (1) is equivalent to supg∈G |‖g‖2
n,w/‖g‖2

w − 1| =
oP (1).

LEMMA 2.3. Suppose that 0 < infx∈X w(x) ≤ supx∈X w(x) < ∞.

(i) (General case.) If limn A2
nNn/n = 0, then supg∈G |‖g‖n,w/‖g‖w − 1| =

oP (1).
(ii) (Polynomial splines.) Suppose pX is bounded away from zero and infinity.

Suppose G is a space of polynomial splines satisfying Condition A.2 in the
Appendix. If limn Nn logn/n = 0, then supg∈G |‖g‖n,w/‖g‖w − 1| = oP (1).

In particular, letting w ≡ 1, either (i) or (ii) implies that supg∈G |‖g‖n/

‖g‖ − 1| = oP (1).

PROOF. The result for case (i) is a direct consequence of Lemma 10 of Huang
(1998a). The result for case (ii) follows from Lemma A.1 in the Appendix. �

We end this section by giving a result relating the conditional mean of µ̂

to an orthogonal projection. Let �n denote the empirical orthogonal projection
(i.e., the orthogonal projection relative to the empirical inner product) onto G.
Then µ̂ = �nY .

LEMMA 2.4. E(µ̂|X1, . . . ,Xn) = �nµ.

This lemma follows easily from the properties of the expectation and orthogonal
projection operators and details are omitted.

3. Asymptotic normality of the variance term. In this section we establish
the asymptotic normality of least squares estimates for general estimation spaces.
For notational simplicity, we first present the result for the homoscedastic error
case and then discuss extensions to the heteroscedastic error case and the fixed
design case. Let �(·) denote the standard normal distribution function.

3.1. Homoscedastic error case. Write Y = µ(X)+ ε with ε = Y − µ(X). We
say that the errors are homoscedastic if σ 2(x) = E(ε2|X = x) does not depend
on x.

THEOREM 3.1. Suppose σ 2(x) = σ 2 is a constant and that supg∈G |‖g‖n/

‖g‖−1| = oP (1). In addition, assume that

lim
λ→∞E

(
ε2 ind{|ε| > λ}|X = x

)= 0.

If limn A2
n/n = 0, then, for x ∈ X,

P
(
µ̂(x) − µ̃(x) ≤ t

√
Var
(
µ̂(x)|X1, . . . ,Xn

)∣∣X1, . . . ,Xn

)
− �(t)

= oP (1), t ∈ R;
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consequently,

L

(
µ̂(x) − µ̃(x)√

Var(µ̂(x)|X1, . . . ,Xn)

)
⇒ N(0,1), n → ∞.

The condition limn A2
n/n = 0 is straightforward to verify for commonly used

estimation spaces. Suppose that, for example, X is the Cartesian product of
compact intervals X1, . . . ,Xd . Suppose also that the density of X is bounded
away from zero. Let Gl be a linear space of functions on Xl for 1 ≤ l ≤ d and let G

be the tensor product of these spaces. Then, when Gl equals Pol(Jn), TriPol(Jn),
or Spl(Jn) for 1 ≤ l ≤ d , this condition reduces respectively to limn N2

n/n = 0,
limn Nn/n = 0, or limn Nn/n = 0 (see the discussion above Lemma 2.3). In this
theorem it is not required that the design density be continuous, which is usually
assumed for proving asymptotic normality of kernel or local polynomial regression
estimators; compare with Theorem 4.2.1 of Härdle (1990) and Theorem 5.2 of Fan
and Gijbels (1996).

Asymptotic distribution results such as Theorem 3.1 can be used to construct
asymptotic confidence intervals; see, for example, the general discussion in Sec-
tion 3.5 of Hart (1997). One sensible approach is to think of µ̃ as the estimable part
of µ and construct an asymptotically valid confidence interval for µ̃. Note that µ̃ =
�nµ can be interpreted as the best approximation in the estimation space G to µ.
When σ 2 is known, SD(µ̂(x)|X1, . . . ,Xn) = √Var(µ̂(x)|X1, . . . ,Xn) depends
only on the data. Note that SD(µ̂(x)|X1, . . . ,Xn) can be conveniently calculated
by using the formula given in Theorem 6.1 of Section 6. Set µl

α(x) = µ̂(x) −
z1−α/2SD(µ̂(x)|X1, . . . ,Xn) and µu

α(x) = µ̂(x) + z1−α/2SD(µ̂(x)|X1, . . . ,Xn),
where z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution. Sup-
pose the conclusion of Theorem 3.1 holds. Then [µl

α(x),µu
α(x)] is an asymptotic

level 1 − α confidence interval of µ̃(x); that is,

lim
n

P
(
µl

α(x) ≤ µ̃(x) ≤ µu
α(x)

)= 1 − α.

In fact, the conditional coverage probability is also close to 1 − α; that is,

P
(
µl

α(x) ≤ µ̃(x) ≤ µu
α(x)|X1, . . . ,Xn

)= 1 − α + oP (1).

To construct an asymptotic confidence interval when the error variance σ 2 is not
known, we can simply replace σ 2 by any consistent estimate. Such estimates of σ 2

can be found, for example, in Rice (1984), Gasser, Sroka and Jennen-Steinmetz
(1986) and Hall, Kay and Titterington (1990).

Another, perhaps more acceptable, approach is to select the estimation space G

so that, asymptotically, the bias term µ̃ − µ is of negligible magnitude compared
with the variance term µ̂ − µ̃. Then the above confidence interval for µ̃ is also an
asymptotically valid confidence interval for µ. To this end, however, one needs to
study the magnitude of µ̃ − µ, which will be discussed in Section 5.

The next result gives the size of the asymptotic conditional variance.
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COROLLARY 3.1. Under the conditions of Theorem 1,

sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)= A2
n

n
σ 2(1 + oP (1)

)
.

Consequently, µ̂(x) − µ̃(x) = OP (An/
√

n ) uniformly in x ∈ X; that is,

lim
C→∞ lim sup

n→∞
sup
x∈X

P

(
|µ̂(x) − µ̃(x)| ≥ C

√
A2

n

n

)
= 0.

In light of Corollary 3.1, Theorem 3.1 can be interpreted as follows: If the
supremum over X of the conditional variance of µ̂(x) given X1, . . . ,Xn converges
to zero, then the asymptotic normality holds for all x ∈ X. Another interesting
consequence of Corollary 3.1 is that, provided the estimation spaces have the
same dimensions, in the worst situation the local conditional variance of the least
square estimate for polynomial regression is much larger than its counterpart for
polynomial spline regression. To be specific, suppose X is a compact interval and
that the density of X is bounded away from zero and infinity. If G is a space of
polynomial splines of a fixed degree m and having Jn = Nn −m− 1 interior knots
with bounded mesh ratio [see (5.3)], then

V1 := sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)� Nn

n

(
1 + oP (1)

)
(3.1)

and, if G is the space of polynomials of degree Jn = Nn − 1 or less, then

V2 := sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)� N2
n

n

(
1 + oP (1)

)
.(3.2)

In contrast, we have that for both choices of G,

V3 :=
∫
X

Var
(
µ̂(x)|X1, . . . ,Xn

)
dx = OP

(
Nn

n

)
.(3.3)

Proofs of these results are given in Section 3.3.

3.2. Extensions to heteroscedastic case and fixed design.

REMARK 3.1. When the errors are heteroscedastic [i.e., σ 2(x) = Var(Y |
X = x) is not a constant], Theorem 1 still holds (with the same proof) if the
function σ(·) is bounded away from zero and infinity. Moreover,

sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)≤ A2
n

n
sup
x

σ 2(x)
(
1 + oP (1)

)
,

and as a consequence, µ̂(x) − µ̃(x) = OP (An/
√

n) uniformly in x ∈ X.
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REMARK 3.2. In the case of heteroscedastic errors, if σ 2(x) is known, we
can also consider the weighted least squares estimate µ̂w, which is defined
as the minimizer in G of

∑
i[(Yi − g(Xi))

2/σ 2(Xi)]. Redefine the theoreti-
cal and empirical inner products by 〈f1, f2〉1/σ = E[f1(X)f2(X)/σ 2(X)] and
〈f1, f2〉n,1/σ = En[f1(X)f2(X)/σ 2(X)]. The corresponding norms are denoted
by ‖ · ‖1/σ and ‖ · ‖n,1/σ . Let �w

n denote the orthogonal projection onto G rela-
tive to the above modified empirical inner product. Observe that µ̂w = �w

n Y . Set
µ̃w = E(µ̂w|X1, . . . ,Xn). Then µ̃w = �w

n µ. Suppose σ(·) is bounded away from
zero and infinity and that supg∈G |‖g‖n,1/σ /‖g‖1/σ − 1| = oP (1). The same argu-
ment as in the proof of Theorem 1 gives that if limn A2

n/n = 0, then

P
(
µ̂w(x) − µ̃w(x) ≤ t

√
Var
(
µ̂w(x)|X1, . . . ,Xn

)∣∣X1, . . . ,Xn

)
− �(t)

= oP (1), t ∈ R,

and

L

(
µ̂w(x) − µ̃w(x)√

Var(µ̂w(x)|X1, . . . ,Xn)

)
⇒ N(0,1), n → ∞.

Moreover,

sup
x

Var
(
µ̂w(x)|X1, . . . ,Xn

)= 1

n
sup
g∈G

‖g‖2∞
‖g‖2

n,1/σ

≤ A2
n

n
sup
x

σ 2(x)
(
1 + oP (1)

)
,

and consequently, µ̂w(x) − µ̃w(x) = OP (An/
√

n ) uniformly in x ∈ X.

REMARK 3.3. The discussion for the random design case carries over
to the fixed design case. We need only replace expectations conditional on
X1, . . . ,Xn by unconditional expectations. The definitions of empirical inner
product, empirical norm, and empirical projection carry over to the fixed design
case in an obvious manner. Let Yi = µ(xi) + εi,n, i = 1, . . . , n, where x1, . . . , xn

are fixed design points in X and ε1,n, . . . , εn,n are independent errors with mean 0
and variances σ 2

1 , . . . , σ 2
n . Suppose there are constants C1 and C2 with 0 < C1 ≤

C2 < ∞ such that C1 ≤ σ 2
i ≤ C2 for i = 1, . . . , n. Moreover, assume that

lim
λ→∞ sup

n
sup

1≤i≤n

E
(
ε2
i,n ind{|εi,n| > λ})= 0.

Let µ̂ and µ̂w be the ordinary least squares estimate and the weighted least squares
estimate defined above. Set Ãn = supg∈G(‖g‖∞/‖g‖n). If limn Ã2

n/n = 0, then

L

(
µ̂(x) − E[µ̂(x)]√

Var(µ̂(x))

)
⇒ N(0,1), n → ∞,

and

L

(
µ̂w(x) − E[µ̂w(x)]√

Var(µ̂w(x))

)
⇒ N(0,1), n → ∞.

The conditions on the design points are implicit in the condition that limn Ã2
n/n=0.
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3.3. Proofs.

PROOF OF THEOREM 3.1. Let {φj ,1 ≤ j ≤ Nn} be an orthonormal basis of G

relative to the empirical inner product. Since

µ̂(x) =∑
j

〈Y,φj 〉nφj (x)

and

µ̃(x) = (�nµ)(x) =∑
j

〈µ,φj 〉nφj (x),

we have that

µ̂(x) − µ̃(x) =
〈
Y − µ,

∑
j

φj (x)φj

〉
n

=∑
i

aiεi,

where ai = ai(x;X1, . . . ,Xn) =∑j φj (x)φj (Xi)/n, εi = Yi − µ(Xi), and
∑

i is
summation is over 1 ≤ i ≤ n. Consequently,

Var
(
µ̂(x)|X1, . . . ,Xn

)=∑
i

a2
i σ

2.

We need the following lemma, which can be proved easily by checking the
Lindeberg condition.

LEMMA 3.1. Suppose ξi,n are independent with mean 0 and variance 1. In
addition, assume that

lim
λ→∞ sup

n
sup

1≤i≤n

E
(
ξ2
i,n ind{|ξi,n| > λ})= 0.

If maxi α
2
i /
∑

i α
2
i → 0, then ∑

i αiξi,n√∑
i α

2
i

⇒ N(0,1).

Note that

∑
i

a2
i = 1

n2

∑
i

(∑
j

φj (x)φj (Xi)

)2

= 1

n

〈∑
j

φj (x)φj ,
∑
j

φj (x)φj

〉
n

.

Since {φj } is orthonormal,∑
i

a2
i = 1

n

∑
j

φ2
j (x)‖φj‖2

n = 1

n

∑
j

φ2
j (x).
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By the Cauchy–Schwarz inequality,

a2
i ≤ 1

n2

∑
j

φ2
j (x)

∑
j

φ2
j (Xi).

Thus

a2
i∑

i a
2
i

≤ 1

n

∑
j

φ2
j (Xi) ≤ 1

n
sup
x

∑
j

φ2
j (x).

Observe that

sup
x

√∑
j

φ2
j (x) = sup

x
sup
(bj )

|∑j bjφj (x)|√∑
j b2

j

≤ sup
(bj )

supx |∑j bjφj (x)|√∑
j b2

j

= sup
g∈G

‖g‖∞
‖g‖n

.

(3.4)

[In fact, equality holds, since supx |∑j bjφj (x)| ≤
√∑

j b2
j supx

√∑
j φ2

j (x) by
the Cauchy–Schwarz inequality.] Hence,

max
i

a2
i∑

i a
2
i

≤ 1

n
sup
g∈G

‖g‖2∞
‖g‖2

n

= 1

n
sup
g∈G

‖g‖2∞
‖g‖2

(
1 + oP (1)

)= A2
n

n

(
1 + oP (1)

)
.

Consequently, there is a set 
n with P (
n) → 0 such that, maxi a
2
i /
∑

i a
2
i ≤

2A2
n/n on 
n. On the other hand, according to Lemma 3.1, if maxi a

2
i /
∑

i a
2
i → 0,

then for any η > 0,∣∣∣P (µ̂(x) − µ̃(x) ≤ t

√
Var
(
µ̂(x)|X1, . . . ,Xn

)∣∣X1, . . . ,Xn

)
− �(t)

∣∣∣< η

for n sufficiently large. The first conclusion follows. The second conclusion then
follows by the dominated convergence theorem. �

PROOF OF COROLLARY 3.1. By the proof of Theorem 1,

Var
(
µ̂(x)|X1, . . . ,Xn

)= σ 2

n

∑
j

φ2
j (x).

It follows from (3.4) and its parenthetical remark that

sup
x

∑
j

φ2
j (x) =

(
sup
g∈G

‖g‖∞
‖g‖n

)2

.
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Since supg∈G |‖g‖n/‖g‖ − 1| = oP (1),

sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)= σ 2

n

(
sup
g∈G

‖g‖∞
‖g‖

)2(
1 + oP (1)

)
= A2

n

n
σ 2(1 + oP (1)

)
.

Thus, there is a set 
n with P (
n) → 1 such that, on 
n,

sup
x

Var
(
µ̂(x)|X1, . . . ,Xn

)≤ 2A2
nσ

2

n
.

Hence, by conditioning and using Chebyshev’s inequality, we get that

sup
x

P

(
|µ̂(x) − µ̃(x)| ≥ C

√
A2

n

n

)

≤ P (
c
n) + sup

x
E

[
I
P

(
|µ̂(x) − µ̃(x)| ≥ C

√
A2

n

n

∣∣∣X1, . . . ,Xn

)]

≤ P (
c
n) + 2σ 2

C2 .

The desired result follows. �

PROOFS OF (3.1)–(3.3). Since An � An = supg∈G(‖g‖∞/‖g‖L2),

(3.1) follows from the fact that An � J
1/2
n for polynomial splines [see Theo-

rem 5.4.2 of DeVore and Lorentz (1993)]. To prove (3.2), without loss of gen-
erality, suppose X = [−1,1]. We need only prove that An � Jn. It follows from
Theorem 4.2.6 of DeVore and Lorentz (1993) that An � Jn. To see that An � Jn,
consider the Legendre polynomials pj , j = 0, . . . , Jn, which are special cases of
Jacobi polynomials; see Section 4.1 of Szegö (1975). We have that pj (1) = 1,

j = 1, . . . , Jn, and∫ 1

−1
pj(x)pj ′(x) dx = 2

2j + 1
δjj ′, j = 0, . . . , Jn,

where δjj ′ is the Kronecker delta; see pages 58 and 68 of Szegö (1975).
Set p̃j (x) = √

2j + 1pj (x), j = 1, . . . , Jn. Then {p̃j , j = 1, . . . , Jn} is an
orthonormal basis of G relative to the inner product induced by the uniform density
on [−1,1]. Thus

A
2
n = sup

g∈G

(‖g‖∞
‖g‖L2

)2

≥ sup
x

Jn∑
j=0

p̃2
j (x) ≥

Jn∑
j=0

p̃2
j (1) ≥

Jn∑
j=0

(2j + 1) = (Jn + 1)2,
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as desired; here the first “≥” is obtained using the same argument as in (3.4).
Finally let us prove (3.3). Let 
n with P (
n) → 1 be the event that
supg∈G |‖g‖n/‖g‖ − 1| < 1/2 (see Lemma 2.3 for the existence of such a 
n).
Note that

V3 := E

{∫
X

(
µ̂(x) − µ̃(x)

)2
dx
∣∣∣X1, . . . ,Xn

}
.

Then E(V3I
n) � E[‖µ̂ − µ̃‖2I
] � E[‖µ̂ − µ̃‖2
n] = O(Nn/n) [see the proof of

Theorem 1 of Huang (1998a)]. Consequently, V3 = OP (Nn/n). �

4. Uniform asymptotic normality. We have proved in the last section
that µ̂(x) − µ̃(x) is asymptotically normally distributed for general linear
estimation spaces. In this section we show that a stronger result holds, namely
that the asymptotic normality holds uniformly over the points x ∈ X where the
regression function is to be estimated and uniformly over a broad class of design
densities, error distributions, and regression functions. This type of uniformity is
of interest in constructing asymptotic confidence intervals.

4.1. Homoscedastic error case. Consider now the regression model Y =
µ(X) + ε, where X and ε are independent, E(ε) = 0, and Var(ε) = σ 2 < ∞.
Let (X1, Y1), . . . , (Xn,Yn) be a random sample from the joint distribution
of (X,Y ). Let PX be a class of possible distributions of X, and let Pε be a class
of possible distributions of ε. Let F be a function class in which µ resides.

Recall that the constant An defined in the previous section depends on the
design distribution L(X). To specify this dependence, write An = An(L(X)). The
uniform asymptotic normality is given in the following theorem, whose proof is
postponed to the end of this section.

THEOREM 4.1. Suppose

lim
n→∞ sup

{
A2

n(L(X)) :L(X) ∈ PX

}
/n = 0,(4.1)

lim sup
λ→∞

sup
{

E[ε2 ind{ε2 ≥ λE(ε2)}]
E(ε2)

:L(ε) ∈ Pε

}
= 0,(4.2)

and

sup
{
P

(
sup
g∈G

∣∣∣∣‖g‖n

‖g‖ − 1
∣∣∣∣> η

)
:L(X) ∈ PX

}
= o(1), η > 0.(4.3)

Set

�n = sup
t

∣∣∣∣P( µ̂(x) − µ̃(x)√
Var(µ̂(x)|X1, . . . ,Xn)

≤ t
∣∣∣X1, . . . ,Xn

)
− �(t)

∣∣∣∣.
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Then

sup
{
P (�n > η) :x ∈ X,L(X) ∈ PX,L(ε) ∈ Pε,µ ∈ F

}= o(1), η > 0.

Consequently,

sup
{∣∣∣P (µ̃(x) ≥ µ̂(x) − t

√
Var
(
µ̂(x)|X1, . . . ,Xn

) )− �(t)
∣∣∣,

t ∈ R, x ∈ X, L(X) ∈ PX,L(ε) ∈ Pε,µ ∈ F
}

= o(1).

When the density of X is bounded away from zero uniformly over PX ,
there is a simple upper bound for the quantity sup{A2

n(L(X)) :L(X) ∈ PX}
and the assumption (4.1) can be simplified accordingly. To be precise, suppose
there is a constant c > 0 such that infx pX(x) ≥ c for LX ∈ PX . Recall
that An = supg∈G{‖g‖∞/‖g‖L2}, where ‖ · ‖L2 is the L2 norm relative to the
uniform distribution on X. We have that An(L(X)) ≤ √|X|/c An and hence that

limn A
2
n/n = 0 is sufficient for (4.1).

The assumption (4.2) requires the class of standardized error distributions
{ε/[E(ε2)]1/2 :L(ε) ∈ Pε} to be uniformly integrable. It is satisfied when
the standardized error distributions ε/[E(ε2)]1/2 for ε in the class Pε pos-
sess uniformly bounded moments of order 2 + δ for some δ > 0, that is,
sup{[E(|ε|2+δ)]1/(2+δ)/[E(ε2)]1/2 :L(ε) ∈ Pε} < ∞.

The assumption (4.3) requires that the empirical and theoretical norms be
close uniformly over the estimation space when the sample size is large and
that this should also hold uniformly over the class PX of design densities. It
follows from the proof of Lemma 10 of Huang (1998a) that (4.3) is satisfied if
limn sup{A2

n(L(X)) :L(X) ∈ PX}Nn/n = 0, so a sufficient condition for (4.3) is

that limn A
2
nNn/n = 0 when the density of X is bounded away from zero uniformly

over PX . If G is a space of polynomial splines satisfying Condition A.2 in the
Appendix, then limn Nn log n/n = 0 is sufficient for (4.3), provided that the density
of X is bounded away from zero and infinity uniformly over PX .

We now discuss the implication of this theorem. Let µl
α(x) and µu

α(x) be
defined as in the previous section. Suppose the conclusion of Theorem 4.1 holds.
Then

lim
n

sup
{∣∣P (µl

α(x) ≤ µ̃(x) ≤ µu
α(x)

)− (1 − α)
∣∣ :

x ∈ X,L(X) ∈ PX,L(ε) ∈ Pε,µ ∈ F
}= 0.

This says that the probability that the confidence interval [µl
α(x),µu

α(x)] contains
µ̃(x) is arbitrarily close to 1 − α when n is sufficiently large; moreover, this
closeness holds uniformly over the entire domain of the predictor and over a
broad range of design densities, error distributions and regression functions. To be
more specific, for any δ > 0, there is a positive integer nδ such that the coverage
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probability of the confidence interval differs from 1 − α by less than δ when
n > nδ , where nδ can be chosen to work simultaneously for x ∈ X, L(X) ∈ PX ,
L(ε) ∈ Pε and µ ∈ F . Thus [µu

α(x),µl
α(x)] is an asymptotic level (1 − α)

confidence interval for µ̃(x) in the strong sense of Lehmann [(1999), page 222].
The uniform convergence of the coverage probability of a confidence interval to the
nominal level is called uniform robustness by Lehmann and Loh (1990). Results
in Section 5 can be used to determine when the bias term is of negligible size
compared with the variance term; see Remark 5.2.

4.2. Extensions.

REMARK 4.1. Theorem 4.1 can be extended to handle heteroscedastic errors.
Consider the model Y = µ(X) + σ(X)ε, where X and ε are independent,
E(ε) = 0, and Var(ε) < ∞. For 0 < C1 ≤ C2 < ∞, set 
 = {σ(·) :C1 ≤
σ(x) ≤ C2, x ∈ X}. Under the conditions of Theorem 4.1, the least squares
estimate µ̂, standardized by its conditional mean and conditional standard
deviation, is asymptotically N(0,1) uniformly in x ∈ X, L(X) ∈ PX , L(ε) ∈ Pε ,
σ ∈ 
 and µ ∈ F . The same result holds for the weighted least squares
estimate µ̂w defined in Remark 3.2.

REMARK 4.2. Theorem 4.1 (and Remark 4.1) can also be extended to the
general case when the error is not independent of the design random variable.
Suppose we observe a random sample from the joint distribution of X and Y . Set
ε = Y −E(Y |X), which need not be independent of X. Theorem 4.1 remains valid
if (4.2) is replaced by

lim sup
λ→∞

sup
{

E[ε2 ind{ε2 ≥ λE(ε2|X = x)}|X = x]
E(ε2|X = x)

:

x ∈ X, L(ε|X = x) ∈ Pε

}
= 0,

where Pε is now a class of possible conditional distributions of ε given X = x.
This condition is satisfied if sup{[E(|ε|2+δ|X = x)]1/(2+δ)/[E(ε2|X = x)]1/2 :
x ∈ X, L(ε|X = x) ∈ Pε} < ∞ for some δ > 0.

REMARK 4.3. The discussions in Theorem 4.1 and Remark 4.1 carry over to
the fixed design case in an obvious manner as explained in Remark 3.3.

4.3. Proof.

PROOF OF THEOREM 4.1. From the proof of Theorem 1,

µ̂(x) − µ̃(x)√
Var(µ̂(x)|X1, . . . ,Xn)

=
∑

i aiεi√∑
i a

2
i

,
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where ai’s are defined as in the proof of Theorem 1. It follows from Theorem V.8
of Petrov (1975) that there is an absolute constant C such that, for δ > 0,

sup
t

∣∣∣∣∣P
( ∑

i aiεi

σ
√∑

i a
2
i

≤ t
∣∣∣X1, . . . ,Xn

)
− �(t)

∣∣∣∣∣
≤ C

{
δ +∑

i

E

[
a2
i ε

2
i∑

i a
2
i σ

2
ind
(

a2
i ε

2
i∑

i a
2
i σ

2
> δ2

)∣∣∣X1, . . . ,Xn

]}

≤ C

{
δ +∑

i

a2
i∑

i a
2
i

E

[
ε2
i

σ 2 ind
(

maxi a
2
i∑

i a
2
i σ

2
ε2
i > δ2

)∣∣∣X1, . . . ,Xn

]}
.

Since maxi a
2
i /(
∑

i a
2
i ) ≤ (1/n) supg∈G{‖g‖2∞/‖g‖2

n},

sup
t

∣∣∣∣∣P
( ∑

i aiεi

σ
√∑

i a
2
i

≤ t
∣∣∣X1, . . . ,Xn

)
− �(t)

∣∣∣∣∣
≤ C

{
δ + max

i
E

[
ε2
i

σ 2 ind
(

1

n
sup
g∈G

{‖g‖2∞
‖g‖2

n

}
ε2
i > σ 2δ2

)∣∣∣X1, . . . ,Xn

]}
.

Note that the right-hand side of the above inequality does not depend on µ

or x ∈ X. By (4.2), we can choose ξ small enough so that E[ε2/σ 2 ind(ε2 >

σ 2δ2/ξ)] < δ uniformly for all ε with L(ε) ∈ Pε . Thus,{
1

n
sup
g∈G

‖g‖2∞
‖g‖2

n

≤ ξ

}

⊂
{

sup
t

∣∣∣∣∣P
( ∑

i aiεi

σ
√∑

i a
2
i

≤ t
∣∣∣X1, . . . ,Xn

)
− �(t)

∣∣∣∣∣≤ 2Cδ

}
.

(4.4)

On the other hand, (4.3) implies that

sup
{∣∣∣∣P(1

n
sup
g∈G

{‖g‖2∞
‖g‖2

n

}
≤ 2

1

n
sup
g∈G

{‖g‖2∞
‖g‖2

})
− 1
∣∣∣∣ :L(X) ∈ PX

}
= o(1).(4.5)

Moreover,

1

n
sup
g∈G

{‖g‖2∞
‖g‖2

}
≤ 1

n
sup
{
A2

n(L(X)) :L(X) ∈ PX

}= o(1).

The first conclusion then follows from (4.1), (4.4) and (4.5). Note that∣∣∣P (µ̃(x) ≥ µ̂(x) − t

√
Var
(
µ̂(x)|X1, . . . ,Xn

) )− �(t)
∣∣∣

≤ E|�n| ≤ η + P (�n > η), η > 0.

The second conclusion is a simple consequence of the first one. �
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5. Size of the bias in polynomial spline regression. We show in Section 5.1
that the bias µ̃(x) − µ(x) in polynomial spline regression is controlled by
the minimum L∞ norm of the error when the target regression function µ is
approximated by a function in the estimation space. In contrast to the asymptotic
normality result, the special properties of polynomial splines now play a crucial
role. In Section 5.2, we will provide a condition for the bias to be asymptotically
negligible compared with the variance term. Some discussion on obtaining the
asymptotic expression of the bias is given in Section 5.3.

5.1. Bias bound. The control of the bias term relies on the stability in L∞
norm of L2 projections onto polynomial spline spaces. Specifically, let G = Gn be
a sequence of linear spaces and let P = Pn denote the L2 orthogonal projection
onto G relative to an inner product (·, ·)n. Denote the norm corresponding
to (·, ·)n by ||| · |||n. Since P is an orthogonal projection, it follows immediately
that |||Pf |||n ≤ |||f |||n. If G is a sequence of polynomial spline spaces, we have
the following much stronger result: under some regularity conditions, there is an
absolute constant C which does not depend on n such that ‖Pf ‖∞ ≤ C‖f ‖∞
for any function f . The precise statement of such a result and its proof, along
with the regularity conditions, will be given in the Appendix. The importance of
this stability property of polynomial spline spaces can be seen from the following
lemma.

LEMMA 5.1. If there is an absolute constant C such that ‖Pf ‖∞ ≤ C‖f ‖∞
for any function f , then ‖Pµ − µ‖∞ ≤ (C + 1) infg∈G ‖µ − g‖∞.

PROOF. Since G is finite-dimensional, by a compactness argument there is
a g∗ ∈ G such that ‖µ − g∗‖∞ = infg∈G ‖µ − g‖∞. Note that Pµ − g∗ =
P (µ − g∗). So ‖Pµ − g∗‖∞ ≤ C‖µ − g∗‖∞. Hence, by the triangle inequality,

‖Pµ − µ‖∞ ≤ ‖Pµ − g∗‖∞ + ‖µ − g∗‖∞ ≤ (C + 1)‖µ − g∗‖∞. �

The stability in L∞ norm of L2 projections enjoyed by polynomial spline
spaces is not shared by other linear spaces such as polynomial or trigonometric
polynomial spaces. In fact, if G is the space of polynomials (or trigonometric
polynomials) of degree Jn or less on a compact interval, then there is a constant C

that does not depend on n such that, supf {‖Pf ‖∞/‖f ‖∞} ≥ C logJn, where the
supremum is taken over all continuous functions; see Corollaries 5.2 and 5.4 in
Chapter 9 of DeVore and Lorentz (1993).

In applications to polynomial spline regression, we take (·, ·)n to be the
empirical inner product and G = G in the above general discussion. The desired
stability property is satisfied according to the general result in the Appendix. The
main result of this section is the following theorem. Set ρn = infg∈G ‖µ − g‖∞.
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THEOREM 5.1. Suppose the sequence of estimation spaces G satisfies
Conditions A.2 and A.3 in the Appendix, the density of X is bounded away from
zero and infinity, and limn Nn logn/n = 0. Then there is an absolute constant
C such that, except on an event whose probability tends to zero as n → ∞,
‖�nµ − µ‖∞ ≤ Cρn [i.e., supx |µ̃(x) − µ(x)| ≤ Cρn].

The desired result follows from Corollary A.1 in the Appendix and Lemma 5.1.

5.2. Univariate splines and tensor product splines. If µ satisfies a suitable
smoothness condition, results in approximation theory can be used to quantify ρn

in Theorem 5.1. Under reasonable conditions, it can be shown that ρn � N
−p/d
n ,

where p typically corresponds to the number of bounded or continuous derivatives
of µ. In the following we will give a precise statement of such a result in the case of
univariate splines and tensor product splines. Results for bivariate or multivariate
splines on triangulations are much more complicated. We refer readers to the
approximation theory literature; see, for example, Chui (1988), de Boor, Höllig
and Riemenschneider (1993) and Oswald (1994).

We first describe a smoothness condition commonly used in the nonparametric
estimation literature and give the magnitude of ρn under such a condition. To this
end, assume that X is the Cartesian product of compact intervals X1, . . . ,Xd . Let
0 < β ≤ 1. A function h on X is said to satisfy a Hölder condition with exponent β
if there is a positive number γ such that |h(x2) − h(x1)| ≤ γ |x2 − x1|β for x1,

x2 ∈ X; here |x| = (∑d
l=1 x2

l

)1/2 is the Euclidean norm of x = (x1, . . . , xd) ∈ X.
Given a d-tuple α = (α1, . . . , αd) of nonnegative integers, set [α] = α1 + · · · + αd

and let Dα denote the differential operator defined by

Dα = ∂ [α]

∂x
α1
1 · · · ∂x

αd

d

.

Let k be a nonnegative integer and set p = k + β . A function on X is said to
be p-smooth if it is k times continuously differentiable on X and Dα satisfies a
Hölder condition with exponent β for all α with [α] = k.

Given a set of real numbers a = t0 < t1 < · · · < tJ < tJ+1 = b, a function
on [a, b] is a polynomial spline with degree m and J interior knots {tj ,1 ≤ j ≤ J }
if it is a polynomial of degree m in the intervals [tj , tj+1], 0 ≤ j ≤ J , and globally
has m − 1 continuous derivatives. Let Gl , 1 ≤ l ≤ d , be a space of polynomial
splines on Xl with degree m ≥ p − 1 and Jn interior knots. Suppose the knots
have bounded mesh ratio (that is, the ratios of the differences between consecutive
knots are bounded away from zero and infinity uniformly in n). Let G be the tensor
product of G1, . . . ,Gd . (For d = 1, G = G1, which is a univariate spline space.)
If µ is p-smooth, then ρn � J

−p
n = N

−p/d
n [see (13.69) and Theorem 12.8 of

Schumaker (1981)]. Consequently, by Theorem 5.1, the bias is bounded above by

a constant multiple of N
−p/d
n except on an event with probability tending to zero.
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THEOREM 5.2. Suppose pX is bounded away from zero and infinity. In
addition, assume that σ(·) is bounded away from 0. Under the above setup, if
limn Nn/nd/(2p+d) = ∞ and limn Nn log n/n = 0, then

sup
x∈X

∣∣∣∣ µ̃(x) − µ(x)√
Var(µ̂(x)|X1, . . . ,Xn)

∣∣∣∣= oP (1).

PROOF. Let {Bj,1 ≤ j ≤ Nn} be the tensor product B-spline basis of G [see
Chapter 12 of Schumaker (1981)]. Then Conditions A.2 and A.3 are satisfied. It
follows from Theorem 5.1 that

sup
x

|µ̃(x) − µ(x)| = OP (ρn) = OP (N−p/d
n ).(5.1)

By Lemma 2.3, limn Nn logn/n = 0 ensures that supg∈G |‖g‖n/‖g‖−1| = oP (1).
Let {φj ,1 ≤ j ≤ Nn} be an orthonormal basis of G relative to the empirical inner
product. For any g ∈ G, write g =∑j bjφj with bj = 〈g,φj 〉n. By the proof of
Theorem 3.1 and the Cauchy–Schwarz inequality,

Var
(
µ̂(x)|X1, . . . ,Xn

)
� 1

n

∑
j

φ2
j (x) ≥ 1

n

|∑j bjφj (x)|2∑
j b2

j

= 1

n

|g(x)|2
‖g‖2

n

= 1

n

|g(x)|2
‖g‖2

(
1 + oP (1)

)
.

(5.2)

Set gx = ∑j∈Ix
Bj , where Ix denotes the set of indices of the basis functions

whose support contains x. Then, by (A.2) in the Appendix, ‖gx‖2 � hd#(Ix) �
hd � N−1

n . Moreover, gx(x) = 1 since
∑

j Bj (x) = 1 for all x. Taking g = gx

in (5.2), we obtain that

Var
(
µ̂(x)|X1, . . . ,Xn

)≥ 1

n

|gx(x)|2
‖gx‖2

(
1 + oP (1)

)≥ C
Nn

n

(
1 + oP (1)

)
for some constant C that can be made independent of x. This together with (5.1)
yields the desired result. �

The above theorem determines when the bias term is of negligible magnitude
compared with the variance term. For example, if µ is a univariate function
with bounded second derivative, then a sufficient condition for being able to
“ignore” the bias asymptotically in constructing a confidence interval is that
limn Nn/n1/5 = ∞. Note that the variance is of order Nn/n. Balancing the
squared bias and variance, that is, letting N

−2p/d
n � Nn/n or equivalently

Nn � nd/(2p+d), yields the optimal rate of convergence n−2p/(2p+d) [see Stone
(1982)]. The required condition that limn Nn/nd/(2p+d) = ∞ for making the
bias asymptotically negligible simply means that one need use a larger number
of knots than what is needed for achieving the optimal rate of convergence
(“undersmoothing”).
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REMARK 5.1. Consider G being a space of univariate splines on a compact
interval [a, b] with degree m and knots a = t0 < t1 < · · · < tJ < tJ+1 = b,
where J = Jn. It is required in Theorems 5.1 and 5.2 that the knot sequence have
bounded mesh ratio, that is,

max0≤j≤J (tj+1 − tj )

min0≤j≤J (tj+1 − tj )
≤ γ(5.3)

for some positive constant γ . In light of the work of de Boor (1976), this condition
can be weakened to

max0≤j≤J−m(tj+m+1 − tj )

min0≤j≤J−m(tj+m+1 − tj )
≤ γ

for some positive constant γ . In ZSW (1998) a stronger condition was used; it is
required that the knots be asymptotically equally spaced, namely,

max
1≤j≤J

∣∣∣∣(tj+1 − tj )

(tj − tj−1)
− 1
∣∣∣∣= o(1).(5.4)

REMARK 5.2. Theorems 5.1 and 5.2 also hold when the weighted least
squares estimate is used, that is, when �n is replaced by �w

n as defined in
Remark 3.2. [We need to assume that the variance function σ(·) is bounded away
from zero and infinity.] Moreover, this theorem extends to the fixed design case
in an obvious manner. Note that �n depends on the design points X1, . . . ,Xn

and hence on the design density pX . The result in Theorems 5.1 and 5.2 can be
made to hold uniformly over a class of design densities. Specifically, let C1 and C2
be constants such that 0 < C1 ≤ C2 < ∞. Set PX = {pX :C1 ≤ pX(x) ≤ C2
for x ∈ X}. Then, under the conditions in Theorem 5.1, there is an absolute
constant C such that

lim
n

sup
{
P (‖�nµ − µ‖∞ ≤ Cρn) :L(X) ∈ PX

}= 1.

Similarly, under the conditions in Theorem 5.2,

sup
{
P

(
sup
x∈X

∣∣∣∣ µ̃(x) − µ(x)√
Var(µ̂(x)|X1, . . . ,Xn)

∣∣∣∣> η

)
:L(X) ∈ PX

}
= o(1), η > 0.

5.3. Asymptotic bias expression. In the previous section, we derived an upper
bound for the bias term in polynomial spline regression. It is tantalizing to obtain
precise asymptotic bias expressions for our spline estimators in the general setup
of this paper. We found that this is a very difficult task, however. Recently, ZSW
(1998) provided formulas of local asymptotic bias for univariate spline regression
assuming that the regression function µ is in Cp (i.e., µ has a continuous pth
derivative). In the following we will discuss what additional insights we can gain
using our general results. We found that, surprisingly, the leading term in the
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asymptotic bias expression disappears if one uses splines with higher degree than
that in ZSW (1998).

Consider estimating a univariate regression function µ(x) = E(Y |X = x) based
on an i.i.d. sample from the joint distribution of (X,Y ), where X ∈ X, Y ∈ R with
X a compact interval on R. Let the estimation space G = Gn be the space of
polynomial splines on X = [a, b] with degree m and knots a = t0 < t1 < · · · <

tJ < tJ+1 = b. Denote hj = tj+1 − tj and hn = maxj hj . Suppose that µ ∈ Cp

for an integer p > 0. ZSW (1998) obtain that, under some regularity conditions, if
the degree of splines satisfies m = p − 1 and the knots are asymptotically equally
spaced [see (5.4)], then

E
(
µ̂(x)|X1, . . . ,Xn

)− µ(x)

= −f (p)(x)h
p
i

p! Bp

(
x − ti

hi

)
+ o(hp

n), ti < x ≤ ti+1,
(5.5)

where Bp is the pth Bernoulli polynomial [see Barrow and Smith (1978)]. This
provides the first asymptotic bias expression for polynomial spline regression.
However, the condition on the knot sequence is stringent and one would like to
know if it can be relaxed. Inspecting the proofs reveals that the condition on the
knots is a critical one. A key step in the argument uses a result of Barrow and Smith
(1978), which relies crucially on the assumption that the knots be asymptotically
equally spaced. Moreover, the requirement that the degree of the spline must
satisfy m = p −1 may significantly limit the scope of application of the result. For
example, if µ has a continuous second derivative, (5.5) only gives the asymptotic
bias for linear spline estimates. One wonders what we can say about the bias for
quadratic or cubic spline estimates. Indeed, quadratic or cubic splines are more
commonly used than linear splines in practice because of their smooth appearance.

Can our general results shed some light? Let the degree of splines satisfy
m ≥ p. Since µ ∈ Cp , it follows from Theorem 6.27 of Schumaker (1981)
that ρn = infg∈G ‖µ − g‖∞ = o(h

p
n). [If m = p − 1, we only have ρn =

O(h
p
n ).] Suppose the knot sequence has bounded mesh ratio [see (5.3)]. By

Theorem 5.1, we have that supx |E(µ̂(x)|X1, . . . ,Xn) − µ(x)| ≤ Cρn = o(h
p
n).

Hence, interestingly enough, if one were to increase the degree of spline
from m = p − 1 to any integer m ≥ p, then the leading term in the bias
expression (5.5) would disappear. To be specific, suppose that µ has a continuous
second derivative. Then if one uses linear splines, the asymptotic bias is given
by (5.5) according to ZSW (1998). On the other hand, if one uses quadratic or
cubic splines, then the asymptotic bias is of a smaller order. Hence, for constructing
asymptotic confidence intervals, use of quadratic or cubic splines will make the
bias asymptotically negligible and thus avoid the additional burden of estimating
the second derivative in (5.5) for linear splines. Note that increasing the degree of
splines by a fixed amount will not change the asymptotic order of the variance
term (see Corollary 3.1 and the proof of Theorem 5.2). The above discussion



1622 J. Z. HUANG

could be viewed as an asymptotic argument for promoting the use of quadratic
or cubic splines instead of linear splines. Of course, one could prefer quadratic or
cubic splines to linear splines just because they provide estimates with smoother
visual appearance.

It is interesting to compare the results in the previous paragraph with those in
Section 5.2. If µ has bounded (not necessarily continuous) pth derivative, then
supx |E(µ̂(x)|X1, . . . ,Xn)−µ(x)| = O(N

−p
n ) = O(h

p
n). Taking hn � n−1/(2p+1)

(or, equivalently, Nn � n2p+1), which balances the order of squared bias and
variance (Section 5.2), we obtain the optimal rate of convergence n−2p/(2p+1)

[see Stone (1982)]. On the other hand, if µ has continuous pth derivative,
for hn � n−(2p+1), the squared bias is bounded by o(h

2p
n ) = o(n−2p/(2p+1)) while

the variance is of order n−2p/(2p+1). Hence, if one would like to assume the
continuity of the pth derivative of µ, then the bias is asymptotically negligible
when the number of knots is chosen for the estimate to achieve the optimal rate of
convergence.

To generalize the above discussion to tensor product splines, let X be the
Cartesian product of compact intervals X1, . . . ,Xd , and as in Theorem 5.2, let
the estimation space G be the tensor product of spaces G1, . . . ,Gd , of univariate
splines with degree m defined on X1, . . . ,Xd , respectively. The proof of the next
result is similar to that of Theorem 5.2 and is omitted.

THEOREM 5.3. Suppose pX is bounded away from zero and infinity and
that µ has all continuous partial derivatives of order p > 0. If m ≥ p and
limn Nn logn/n = 0, then µ̃(x)−µ(x) = oP (N

−p/d
n ) and Var(µ̂(x)|X1, . . . ,Xn)�

Nn/n. Consequently, if Nn � nd/(2p+d), then

sup
x∈X

∣∣∣∣ µ̃(x) − µ(x)√
Var(µ̂(x)|X1, . . . ,Xn)

∣∣∣∣= oP (1).

According to this theorem, if one assumes the continuity of all order p > 0
partial derivatives of µ, then the leading term in the asymptotic bias of a
tensor product spline estimate (with degree m ≥ p) is zero. We believe that the
leading term will not be zero if we assume only boundedness of all the partial
derivatives of µ. However, finding the precise asymptotic bias expression for
spline estimates under this assumption is difficult. As a comparison, Ruppert and
Wand (1994) derive the asymptotic bias expression for multivariate local linear
and quadratic regression assuming the continuity of partial derivatives of the
regression function. (They also require that the density of X be continuously
differentiable, which is not needed for our results.) No result is available for
multivariate local polynomial regression under boundedness conditions on the
partial derivatives of the regression function.
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6. Expressions of the conditional variance. In applications, a convenient
basis of the linear estimation space is usually employed and consequently the least
squares estimate is represented as a linear combination of the basis functions.
For example, the B-spline basis is often used if polynomial splines are used
to construct the estimation space. In this section we give expressions for the
conditional variance and asymptotic conditional variance of the least squares
estimate in terms of a basis of the estimation space. These expressions help in
evaluating the variability of the least squares estimate. They also tell us how the
variance of the least squares estimate at a point depends on the design densities
and the location of this point. The results in this section apply to general estimation
spaces.

6.1. Homoscedastic error case. Let {Bj,1 ≤ j ≤ Nn} be a basis of G

and let B(x) denote the column vector with entries Bj(x),1 ≤ j ≤ Nn. Then
the matrix En[B(X)Bt (X)] is nonnegative definite. When G is empirically
identifiable, En[B(X)Bt (X)] is positive definite. In fact, βtEn[B(X)Bt (X)]β = 0
implies that En[(Bt (X)β)2] = 0. By the empirical identifiability of G, Bt (x)β = 0
for all x ∈ X and hence β = 0.

THEOREM 6.1. Suppose σ 2(x) = σ 2 is a constant. If G is empirically
identifiable, then

Var
(
µ̂(x)|X1, . . . ,Xn

)= 1

n
Bt (x)

{
En[B(X)Bt (X)]}−1B(x)σ 2.

Moreover, if supg∈G |‖g‖n/‖g‖ − 1| = oP (1), then

Var
(
µ̂(x)|X1, . . . ,Xn

)= 1

n
Bt (x)

{
E[B(X)Bt (X)]}−1B(x)σ 2(1 + oP (1)

)
.

PROOF. The first conclusion of Theorem 6.1 follows from standard linear
regression theory. To prove the second conclusion, we need the following lemma,
whose proof is simple and thus omitted.

LEMMA 6.1. For positive definite symmetric matrices A and B , set

εn = sup
u

∣∣∣∣utAu

utBu
− 1
∣∣∣∣.

Then

sup
u

∣∣∣∣utA−1u

utB−1u
− 1
∣∣∣∣≤ ε2

n

1 − εn

+ 2
εn√

1 − εn

.

Consequently, if A = An and B = Bn, then

sup
u

∣∣∣∣utAu

utBu
− 1
∣∣∣∣= o(1) ⇐⇒ sup

u

∣∣∣∣utA−1u

utB−1u
− 1
∣∣∣∣= o(1).
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Note that

sup
β

∣∣∣∣βtEn[B(X)Bt (X)]β
βtE[B(X)Bt (X)]β − 1

∣∣∣∣
= sup

β

∣∣∣∣En[(βtB(X))2]
E[(βtB(X))2] − 1

∣∣∣∣= sup
g∈G

∣∣∣∣‖g‖2
n

‖g‖2
− 1
∣∣∣∣= oP (1).

It follows from Lemma 6.1 that

sup
x

∣∣∣∣Bt (x){En[B(X)Bt (X)]}−1B(x)

Bt (x){E[B(X)Bt (X)]}−1B(x)
− 1
∣∣∣∣= oP (1),

which yields the second conclusion of Theorem 6.1. �

6.2. Extensions to heteroscedastic case and fixed design.

REMARK 6.1. When the errors are heteroscedastic, expressions for condi-
tional variance of the least squares estimate can be obtained similarly. Indeed,

Var
(
µ̂(x)|X1, . . . ,Xn

)
= 1

n
Bt (x)

{
En[B(X)Bt (X)]}−1

En[σ 2(X)B(X)Bt (X)]
× {En[B(X)Bt (X)]}−1B(x).

(6.1)

If supg∈G |‖g‖n/‖g‖ − 1| = oP (1) and supg∈G |‖g‖n,σ /‖g‖σ − 1| = oP (1), then

Var
(
µ̂(x)|X1, . . . ,Xn

)
= 1

n
Bt (x)

{
E[B(X)Bt (X)]}−1

E[σ 2(X)B(X)Bt (X)]
× {E[B(X)Bt (X)]}−1B(x)

(
1 + oP (1)

)
.

(6.2)

The argument in the proof of Theorem 6.1 can be modified to prove these results.

REMARK 6.2. When the errors are heteroscedastic, if the variance func-
tion σ(·) is known, the weighted least squares estimate µ̂w in Remark 3.2 can
be used. Suppose g ∈ G and ‖g‖n,1/σ = 0 together imply that g = 0 everywhere
on X. Then En[B(X)Bt (X)/σ 2(X)] is positive definite. The same argument as in
the proof of Theorem 6.1 yields that

Var
(
µ̂w(x)|X1, . . . ,Xn

)= 1

n
Bt (x)

{
En[B(X)Bt (X)/σ 2(X)]}−1B(x).

Moreover, if supg∈G |‖g‖n,1/σ /‖g‖1/σ − 1| = oP (1), then

Var
(
µ̂w(x)|X1, . . . ,Xn

)= 1

n
Bt (x)

{
E[B(X)Bt (X)/σ 2(X)]}−1B(x)

(
1 + oP (1)

)
.
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REMARK 6.3. Theorem 6.1 and Remarks 6.1 and 6.2 carry over to the fixed
design case. We need only replace conditional expectations by unconditional
expectations. Obviously, the empirical inner products are interpreted as nonrandom
quantities and conditions such as supg∈G |‖g‖n/‖g‖ − 1| = oP (1) should be
replaced by supg∈G |‖g‖n/‖g‖ − 1| = o(1) and so forth.

7. Additive models. In this section we give a preliminary analysis of additive
models. For tractability, we focus on the special case of tensor product designs.
Such a design was used in Chen (1991) when discussing rates of convergence
of interaction spline models, and can be viewed as a first step towards a general
theory.

Let X be the Cartesian product of compact intervals X1, . . . ,Xd . Consider the
additive model

µ(x) = µ1(x1) + µ2(x2) + · · · + µd(xd), xl ∈ Xl ,1 ≤ l ≤ d.

To construct an appropriate estimation space G, let Gl , 1 ≤ l ≤ d , be a space of
polynomial splines on Xl of a fixed degree m > 0 and having Jn = Nn − m − 1
interior knots with bounded mesh ratio [see (5.3)]. Here the number of interior
knots is chosen to be the same for all Gl for notational simplicity. Set G =
G1 + · · · + Gd = {g1 + · · · + gd :gl ∈ Gl,1 ≤ l ≤ d}. The asymptotic normality
results in Sections 3 and 4 are established for general estimation spaces and thus
are applicable to the current situation to deal with the variance term. However,
since G does not have a locally supported basis, the argument in Section 5 cannot
be used to handle the bias term. In fact, a basis of G consists of basis functions
of G1, . . . ,Gd . For each l = 1, . . . , d , any basis function of Gl , viewed as a
function on X, will be supported on the whole range of Xk for all k �= l.

In the following we will restrict our attention to the special case of fixed tensor
product design where we can get a good handle on the bias term. To be specific,
suppose the observed covariates are {(x(1)

i1
, . . . , x

(d)
id

), x
(l)
il

∈ Xl ,1 ≤ il ≤ nl,

1 ≤ l ≤ d} so that the sample size is n = ∏d
l=1 nl . We consider the asymptotics

when n → ∞ and nl → ∞, 1 ≤ l ≤ k. Note that in this setup,

En(f ) = 1

n1 · · ·nd

∑
i1,...,id

f
(
x

(1)
i1

, . . . , x
(d)
id

)
.

As in previous sections, let �n be the orthogonal projection onto G relative
to the empirical inner product. According to Lemma 2.4, the bias is E(µ̂) − µ =
�nµ − µ. We need to know how to handle the projection operator �n. Let �n,0
and �n,l , 1 ≤ l ≤ d , be orthogonal projections onto the space of constant functions
and onto Gl , respectively. Because of the tensor product design, for any function
f on X, �n,0(f ) = En(f ) and �nf −�n,0f =∑1≤l≤d(�n,lf −�n,0f ). Hence
the projection onto G can be decomposed as the summation of the projections
onto component spaces Gl . This turns out to be important, as the projection onto
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the individual spline space Gl can then be handled as in Section 5.1 using results
in the Appendix.

Set ρn = infg∈G ‖µ − g‖∞. We present results only for the homoscedastic error
case. An extension to the heteroscedastic error case is straightforward.

CONDITION 7.1. For each l, 1 ≤ l ≤ d , there is a probability cumulative
distribution function F (l) which has a density that is bounded away from 0 and
infinity on Xl such that

sup
x∈Xl

∣∣F (l)
n (x) − F (l)(x)

∣∣= o

(
1

Jn

)
, 1 ≤ l ≤ d,

where F
(l)
n (x) = (1/nl)

∑nl

j=1 ind(x
(l)
j ≤ x) is the empirical cumulative distribu-

tion of x
(l)
1 , . . . , x

(l)
nl

.

THEOREM 7.1. Suppose σ 2(x) = σ 2 is a constant and Condition 7.1 holds.
Under the above setup, if limn Jn/n = 0, then

L

(
µ̂(x) − E(µ̂(x))√

Var(µ̂(x))

)
⇒ N(0,1), n → ∞.

Moreover, there is an absolute constant C such that supx∈X |E(µ̂(x)) − µ(x)| ≤
Cρn.

We should point out that the above theorem only deals with a special case of
additive models. Local asymptotics for general random design additive models
are unknown. It is also of interest to study the behavior of the components of
the estimates in additive models. Such issues are of both theoretical and practical
importance and deserve substantial further development.

PROOF OF THEOREM 7.1. The first part of the theorem follows from
Theorem 3.1 (see Remark 3.3). To check the required conditions, one need only
note that

Ãn �
∑

1≤l≤d

sup
gl∈Gl

‖gl‖∞
‖gl‖n

� J 1/2
n ,

which follows from the nature of the tensor product design, the properties of
polynomial splines and Lemma 7.1 in the following. It remains to prove the second
part of the theorem. By a compactness argument, there is a µ∗ in G such that
‖µ∗ − µ‖∞ = ρn. Set µ0 = En(µ) and µ∗

0 = En(µ). Since

�n

(
(µ − µ0) − (µ∗ − µ∗

0)
)=∑

j

�n,j

(
(µ − µ0) − (µ∗ − µ∗

0)
)
,
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we have that, except on an event whose probability tends to zero,∥∥�n

(
(µ − µ0) − (µ∗ − µ∗

0)
)∥∥∞ ≤∑

j

∥∥�n,j

(
(µ − µ0) − (µ∗ − µ∗

0)
)∥∥

�
∑
j

‖(µ − µ0) − (µ∗ − µ∗
0)‖∞ � ‖µ − µ∗‖∞;

here we used Theorem A.1, Lemma 7.1, and the fact that ‖µ0 − µ∗
0‖∞ ≤

‖µ−µ∗‖∞. Consequently, ‖�nµ−µ∗‖∞ � ‖µ−µ∗‖∞ = ρn. The desired result
then follows from the triangle inequality. �

LEMMA 7.1. Let Gl be defined as at the beginning of this section and
denote by t0 < t1 < · · · < tJ < tJ+1 the knot sequence of splines in Gl . Suppose
Condition 7.1 holds. Then

sup
g∈Gl

∣∣∣∣∣
∫ tj+1
tj

g2(x) dF
(l)
n (x)∫ tj+1

tj
g2(x) dF (l)(x)

− 1

∣∣∣∣∣= o(1), 0 ≤ j ≤ J.

PROOF. Denote hn = maxj (tj+1 − tj ). Integration by parts gives∫ tj+1

tj

g2(x) dF (l)
n (x) −

∫ tj+1

tj

g2(x) dF (l)(x)

= −
∫ tj+1

tj

{
F (l)

n (x) − F (l)(x)
}
g(x)g′(x) dx.

By Theorem 2.7 of Chapter 4 in DeVore and Lorentz (1993),{∫ tj+1

tj

{g′(x)}2 dx

}1/2

≤ h−1
n

{∫ tj+1

tj

g2(x) dx

}1/2

.

Thus,∣∣∣∣∫ tj+1

tj

g2(x) dF (l)
n (x) −

∫ tj+1

tj

g2(x) dF (l)(x)

∣∣∣∣
≤ sup

x∈Xl

∣∣F (l)
n (x) − F (l)(x)

∣∣{∫ tj+1

tj

g2(x) dx

}1/2{∫ tj+1

tj

{g′(x)}2 dx

}1/2

≤ o(hn)h
−1
n

∫ tj+1

tj

g2(x) dx.

The desired result follows. �
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APPENDIX:
THE STABILITY IN L∞ NORM OF L2 PROJECTIONS ONTO

POLYNOMIAL SPLINE SPACES

In this Appendix we prove a result on the stability in L∞ norm of L2 projec-
tions onto polynomial spline spaces, which plays a key role in controlling the bias
for polynomial spline regression. This result is general enough to handle
polynomial spline spaces on regions of arbitrary dimension. In particular,
the polynomial spline space we considered can be a tensor product of an arbitrary
number of univariate spline spaces or a space of splines constructed directly on
triangles or high-dimensional simplices. Similar results were established by Dou-
glas, Dupont and Wahlbin (1975) and de Boor (1976) for univariate spline spaces;
see also Section 13.4 of DeVore and Lorentz (1993). A result for the tensor product
of two univariate spline spaces was obtained by Stone (1989).

Let X be a closed, bounded subset of R
d . Suppose that X is polyhedral, that

is, representable by a finite partition into nondegenerating simplices. Consider a
sequence of partitions �n = {δ : δ ⊂ X} of X. We require that each δ ∈ �n be
polyhedral. This includes as special cases simplicial (triangular in R2, tetrahedral
in R3) or rectangular partitions of X (if X itself is composed of Rd -rectangles).
As n grows, the elements in �n are required to be shrinking in size and increasing
in number. In statistical applications the index n usually corresponds to sample
size.

Consider a space Gn of piecewise polynomials (polynomial splines) over the
partition �n of X with the degree of each polynomial piece bounded above by
a common constant. Specifically, let m be a fixed integer. Every g ∈ Gn is a
polynomial of degree m or less when restricted to each δ ∈ �n. In our discussion
the polynomial pieces may or may not join together smoothly.

Let νn be a measure on X. Define a corresponding inner product by (f1, f2)n =∫
X f1f2 dνn for any functions f1 and f2 on X such that the indicated integral is

well defined. Denote the induced L2 norm by ||| · |||n. For later usage, we define
the local versions of this L2 norm by |||f |||n,δ = (

∫
δ f 2 dνn)

1/2 for δ ∈ �n. For
any function f on X, let Pnf denote the orthogonal projection onto G relative to
(·, ·)n. The main result of this appendix is concerned with bounding the supreme
norm of Pnf by the supreme norm of f under suitable conditions.

The dependence on n of the measure νn and hence of the projection operator
Pn is important in the formulation, since νn will be taken as the empirical
distribution in our application of the result. This formulation is different from those
in the mathematics literature, where νn is usually taken as Lebesgue measure. For
notational convenience, we suppress from now on the subscript n in �n, Gn, νn,
(·, ·)n, ||| · |||n, |||f |||n,δ and Pn.

Let ||| · |||∗ denote the L2 norm induced by Lebesgue measure, that is, |||f |||∗2 =∫
X f 2(x) dx. Given δ ∈ �, we define the supreme norm and the L2 norm induced
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by Lebesgue measure by ‖f ‖∞,δ = sup{|f (x)| : x ∈ δ} and |||f |||∗δ = (
∫
δ f 2 dx)1/2

for a function f on δ.

CONDITION A.1. There are absolute constants γ1 and γ2 that do not depend
on n such that

γ1|||f |||∗δ 2 ≤ |||f |||2δ ≤ γ2|||f |||∗δ 2
, δ ∈ �,f ∈ G = Gn.

We now state some regularity conditions on G. The first set of condi-
tions is on the partition �. Define the diameter of a set δ to be diam(δ) =
sup{|x1 − x2| :x1, x2 ∈ δ}.

CONDITION A.2. (i) Given any distinct δ, δ′ ∈ �, the closures of δ and δ′
are disjoint or intersect in a common vertex, edge, face and so on (no mixture
allowed).

(ii) There is a constant γ3 > 0 (independent of n) such that the ratio of the sizes
of inscribed and circumscribed balls of each δ ∈ � is bounded from below by γ3.

(iii) The partition is quasi-uniform; that is, there is a constant γ4 < ∞
(independent of n) such that

max{diam(δ) : δ ∈ �}
min{diam(δ) : δ ∈ �} ≤ γ4.

These mild conditions are commonly used in the literature. For the univariate
case, Condition A.2 reduces to the requirement of bounded mesh ratio, which
was used in Douglas, Dupont and Wahlbin (1975). Set h = h(�) = max{diam(δ) :
δ ∈ �}, which is usually called the (maximal) mesh size of � in the approximation
theory literature. Under Condition A.2, h can be used as a universal measure of size
for elements of �.

For δ ∈ � and a function f on X, we say that f is active on δ if it is not
identically zero on the interior of δ. The following condition says that there is a
locally supported basis of G and the basis has some special properties.

CONDITION A.3. There is a basis {Bi} of G satisfying the following
requirements.

(i) For each basis function Bi , the union of the elements of � on which Bi

is active is a connected set. In addition, there is a constant γ5 < ∞ (independent
of n) such that, for each Bi , the number of elements of � on which Bi is active is
bounded by γ5.

(ii) Let Iδ denotes the collection of indices i whose corresponding basis
function Bi is active on δ. There are positive constants γ6 and γ7 (independent
of n) such that

γ6h
d
∑
i∈Iδ

α2
i ≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Iδ

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
∗

δ

2

≤ γ7h
d
∑
i∈Iδ

α2
i , δ ∈ �.
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This condition is satisfied for commonly used finite element spaces [see
Chapter 2 of Oswald (1994)]. For a univariate spline space, it is sufficient to use
a B-spline basis to satisfy this condition [see Section 4.4 of DeVore and Lorentz
(1993)]. Tensor products of B-splines can be used for a tensor product spline space.

Condition A.1 implies that the norms ||| · ||| = ||| · |||n are equivalent to ||| · |||∗; that
is,

γ1|||f |||∗2 ≤ |||f |||2 ≤ γ2|||f |||∗2
, f ∈ G = Gn.

It follows from Condition A.1 and Condition A.3(ii) that

γ1γ6h
d
∑
i∈Iδ

α2
i ≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Iδ

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ

≤ γ2γ7h
d
∑
i∈Iδ

α2
i , δ ∈ �.(A.1)

This, together with Condition A.3(i), implies that

γ1γ6h
d
∑
i

α2
i ≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑

i

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

≤ γ2γ5γ7h
d
∑
i

α2
i , δ ∈ �.(A.2)

The following theorem is the main result of this appendix.

THEOREM A.1. Suppose Conditions A.1–A.3 hold. Then there is a con-
stant C that depends on γ1, . . . , γ7 but not on n such that ‖Pu‖∞ ≤ C‖u‖∞ for
any function u on X.

The proof of this theorem, which extends the ideas of Douglas, Dupont and
Wahlbin (1975), will be given shortly. One can also use the result of Descloux
(1972) on finite element matrices to establish a similar result.

In application of the above result to polynomial spline regression (Theorem 5.1,
Section 5), ν = νn is chosen to be the empirical measure. Recall that the
empirical and theoretical norms are defined by ‖f ‖2

n = En[f 2(X)] and ‖f ‖2 =
E[f 2(X)]. Define their local versions by ‖f ‖2

n,δ = En[f 2(X)1δ(X)] and ‖f ‖2
δ =

E[f 2(X)1δ(X)] for δ ∈ �. The following result is from Huang (1999).

LEMMA A.1. Suppose Condition A.2 is satisfied and that the density pX of X

is bounded away from zero and infinity on X. If limn dim(G) log n/n = 0, then
supδ∈� supg∈G |‖g‖n,δ/‖g‖δ − 1| = oP (1).

If the design density is bounded away from zero and infinity, then the theoretical
norm is equivalent to the L2 norm induced by Lebesgue measure and so are
their local versions. Thus, if the conclusion of the above lemma holds, then
Condition A.1 is satisfied with ν = νn being the empirical measure, except on
an event whose probability tends to 0 as n → ∞. Let Q denote the empirical
projection onto G. The following is a direct consequence of Theorem A.1.
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COROLLARY A.1. Suppose Conditions A.2 and A.3 hold, that the density
of X is bounded away from zero and infinity, and that limn dim(G) logn/n = 0.
Then there is an absolute constant C such that ‖Qf ‖∞ ≤ C‖f ‖∞ except on an
event whose probability tends to zero as n → ∞.

In the proof of Theorem A.1 we need a distance measure between elements of �

defined as follows. Given δ, δ′ ∈ �, set d(δ, δ) = 0 and for a positive integer l, set
d(δ, δ′) = l if there is a connected path of line segments V1V2 · · ·Vl with V1 a
vertex of δ, Vl a vertex of δ′ and ViVi+1 an edge of some δ ∈ � for 1 ≤ i < l,
and no shorter such path. Note that d(δ, δ′) is symmetric in δ and δ′. Under
Condition A.2, there is a constant C = C(γ3, γ4) such that #{δ′ :d(δ′, δ) = l} ≤
Cld for δ ∈ �. For sequences of numbers an and bn, let an � bn mean that
an ≤ Cbn for some constant C which does not depend on n but may depend on the
constants γ1, . . . , γ7 above.

PROOF OF THEOREM A.1. Write u = ∑
δ′ uδ′ , where uδ′(x) = u(x) ×

ind(x ∈ δ′) for δ′ ∈ �. Note that the supreme norm and the L2 norm are equivalent
on a space of polynomials of bounded degree in a bounded region of Rd . Since Pu

is a polynomial on δ ∈ �, by affine transforming each δ to a set circumscribing
the unit ball we obtain that ‖Pu‖∞,δ ≤ Ch−d/2|||Pu|||∗δ for δ ∈ �, where the
constant C can be chosen independently of n by Condition A.2. Thus it follows
from Condition A.1 that

‖Pu‖∞,δ � h−d/2|||Pu|||δ ≤ h−d/2
∑
δ′

|||Puδ′ |||δ, δ ∈ �.(A.3)

We need the following lemma, whose proof will be given shortly.

LEMMA A.2. Suppose Conditions A.2 and A.3 hold. There is a constant
λ ∈ (0,1) that depends on γ1, . . . , γ7 but not on n such that, for any δ0 ∈ � and
any function v supported on δ0 [i.e., v(x) = 0 for x /∈ δ0],∑

δ:d(δ,δ0)=l

|||Pv|||2δ ≤ λl−1|||Pv|||2, l ≥ 1.

It follows from Conditions A.1 and A.2 that the ν-measure ν(δ) of δ

satisfies ν(δ) � hd/2 for δ ∈ �. Since P is an orthogonal projection,

|||Puδ′ ||| ≤ |||uδ′ ||| ≤ (ν(δ′))1/2‖uδ′‖∞ � hd/2‖uδ′‖∞ ≤ hd/2‖u‖∞.

By Lemma A.2, for δ ∈ � such that d(δ, δ′) = l ≥ 1,

|||Puδ′ |||2δ ≤ ∑
δ′′:d(δ′′,δ′)=l

|||Puδ′ |||2δ′′ ≤ λl−1|||Puδ′ |||2.
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Moreover, |||Puδ|||δ ≤ |||Puδ|||. Hence, by (A.3),

‖Pu‖∞,δ � h−d/2|||Puδ|||δ + h−d/2
∑

δ′ : δ′ �=δ

|||Puδ′ |||δ

� ‖u‖∞ + h−d/2
∑
l≥1

#{δ′ :d(δ′, δ) = l}λ(l−1)/2hd/2‖u‖∞.

Under Condition A.2, #{δ′ :d(δ′, δ) = l} ≤ Cld for l ≥ 1. Consequently,

‖Pu‖∞,δ � ‖u‖∞ + ‖u‖∞
∑
l≥1

λ(l−1)/2ld � ‖u‖∞.

�

PROOF OF LEMMA A.2. Write Pv = ∑i αiBi , where {Bi} is the locally
supported basis specified in Condition A.3. For a nonnegative integer l, set

ṽl =∑
i∈Il

αiBi,(A.4)

where Il denotes the collection of indices i whose corresponding basis function Bi

is active on a δ ∈ � such that d(δ, δ0) ≤ l.
Since Pv is an orthogonal projection onto G, |||Pv − v|||2 ≤ |||ṽl − v|||2. Note

that Pv = ṽl on those δ ∈ � with d(δ, δ0) ≤ l. Moreover, v = 0 on δ �= δ0. Hence∑
δ : d(δ,δ0)>l

|||Pv|||2δ ≤ ∑
δ : d(δ,δ0)>l

|||ṽl |||2δ .(A.5)

On the other hand, let δ ∈ � be such that d(δ, δ0) > l and suppose that Bi appears
in the expansion (A.4) of ṽl and is active on δ. Then there is a δ′ ∈ � such
that d(δ′, δ0) = l and Bi is active on δ′, since the union of the elements of �

on which Bi is active is a connected set. Thus

ṽl(x) =∑
i∈Ĩl

αiBi(x), x ∈ δ, d(δ, δ0) > l,

where Ĩl denotes the collection of indices i whose corresponding function Bi is
active on a δ ∈ � such that d(δ, δ0) = l. Consequently,

∑
δ : d(δ,δ0)>l

|||ṽl |||2δ = ∑
δ : d(δ,δ0)>l

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Ĩl

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ

≤
∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Ĩl

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

.(A.6)

Recall that Iδ is the collection of indices i whose corresponding basis function Bi

is active on δ. It follows from (A.1) and (A.2) that∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Ĩl

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

� hd
∑
i∈Ĩl

α2
i

≤ hd
∑

δ : d(δ,δ0)=l

∑
i∈Iδ

α2
i �

∑
δ : d(δ,δ0)=l

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Iδ

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ

.

(A.7)
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Combining (A.5)–(A.7), we obtain that

∑
δ : d(δ,δ0)>l

|||Pv|||2δ �
∑

δ : d(δ,δ0)=l

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Iδ

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ

.(A.8)

Since Pv = ṽl =∑i∈Iδ
αiBi on each δ with d(δ, δ0) = l,

∑
δ : d(δ,δ0)=l

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣∑
i∈Iδ

αiBi

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
2

δ

= ∑
δ : d(δ,δ0)=l

|||Pv|||2δ .(A.9)

Set al =∑δ : d(δ,δ0)=l |||Pv|||2δ . Then it follows from (A.8) and (A.9) that
∑

k>l ak ≤
cal , l ≥ 0, for some constant c. Set sl =∑k>l ak. Then sl ≤ c(sl−1 − sl), which
implies that sl ≤ [c/(c + 1)]ls0 for l ≥ 0. Hence

al ≤ sl−1 ≤
(

c

c + 1

)l−1

s0 ≤
(

c

c + 1

)l−1∑
l≥0

al, l ≥ 1;

equivalently, ∑
δ : d(δ,δ0)=l

|||Pv|||2δ ≤
(

c

c + 1

)l−1

|||Pv|||2, l ≥ 1.

The proof of Lemma A.2 is complete. �
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