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TESTING HOMOGENEITY OF MULTIVARIATE NORMAL MEAN
VECTORS UNDER AN ORDER RESTRICTION WHEN THE
COVARIANCE MATRICES ARE COMMON BUT UNKNOWN

BY SHOICHI SASABUCHI, KOJI TANAKA AND TAKESHI TSUKAMOTO

Kyushu Institute of Design, Tosu High School and Hitachi Software Corporation

Suppose that an order restriction is imposed among several p-variate
normal mean vectors. We are interested in testing the homogeneity of
these mean vectors under this restriction. This problem is a multivariate
extension of Bartholomew’s [Biometrika 46 (1959) 36–48]. When the
covariance matrices are known, this problem has been studied by Sasabuchi,
Inutsuka and Kulatunga [Hiroshima Math. J. 22 (1992) 551–560], Sasabuchi,
Kulatunga and Saito [Amer. J. Math. Management Sci. 18 (1998) 131–
158] and some others. In the present paper, we consider the case when the
covariance matrices are common but unknown. We propose a test statistic,
study its upper tail probability under the null hypothesis and estimate its
critical points.

1. Introduction. Bartholomew (1959) considered the problem of testing the
homogeneity of several univariate normal means against an order restricted
alternative hypothesis. He derived the likelihood ratio test statistic, χ̄2

k , and its
null distribution under the assumption that the variances are known. Since then, an
extensive literature concerning this problem has appeared and most of it has been
summarized by Barlow, Bartholomew, Bremner and Brunk (1972) and Robertson,
Wright and Dykstra (1988). They have shown by numerical computation that, for
the order restricted alternative hypothesis, the χ̄2

k test is more powerful than the
usual χ2 test, which is the likelihood ratio test for testing homogeneity against
the unrestricted alternative hypothesis.

Sasabuchi, Inutsuka and Kulatunga (1983) generalized Bartholomew’s (1959)
problem to that of several multivariate normal mean vectors. Their theory enables
us to study, for example, statistical inference in the case where the effects of
several factors increase (or decrease) simultaneously. [See Sasabuchi, Inutsuka and
Kulatunga (1983).]

Consider p-variate normal distributions Np(µi,�i), i = 1,2, . . . , k. We are
interested in the problem of testing H0 :µ1 = µ2 = · · · = µk versus H1 :µ1 ≤
µ2 ≤ · · · ≤ µk , where “µi ≤ µj ” means that all the elements of µj − µi are non-
negative. This problem is a multivariate extension of Bartholomew’s (1959) one
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and may arise in the situation where the values of several parameters increase
simultaneously. For example, if we want to know whether both average height and
average weight of the children of an area increase simultaneously year by year, we
could apply our test to the bivariate data sets obtained by random sampling from
the population.

When the covariance matrices are known, this problem has been studied to some
extent. Sasabuchi, Inutsuka and Kulatunga (1983) derived the likelihood ratio test
statistic, χ̄2

k,p , Kulatunga and Sasabuchi (1984) studied its null distribution, and
Nomakuchi and Shi (1988) proposed a new test whose null distribution was easier
to calculate than that of the χ̄2

k,p test. Sasabuchi, Kulatunga and Saito (1998) made
some power comparisons by simulation in the bivariate case and showed that over
H1 the χ̄2

k,p test is more powerful than the usual χ2 test, which is the likelihood
ratio test for H0 against the unrestricted alternative hypothesis.

In the present paper, we assume that the covariance matrices are common but
unknown. When p = 1, this case has been studied by Bartholomew (1961) and
many others, and the likelihood ratio test statistic is well known as Ē2

k . We shall
study its multivariate extension. For the multivariate case, the likelihood ratio
test statistic for H0 against the unrestricted alternative hypothesis was given by
Anderson [(1984), Section 8.8]. But, in our problem, the alternative has an order
restriction; thus we should take this restriction into consideration.

To the authors’ knowledge, the likelihood ratio test for H0 versus H1 in the case
when the covariance matrices are common but unknown has not been obtained
yet. Perlman (1969) studied a multivariate one-sided testing problem with an
unknown covariance matrix and derived its likelihood ratio test. It may seem that
our problem may be reduced to his, but the structure of our model is different from
his, so we cannot apply his methods or results directly to our problem.

The purposes of the present paper are to propose a test statistic and study its
upper tail probability under H0. In Section 2 we describe the problem and propose
a test statistic. Main theorems about its null distribution and upper tail probability
under H0 are presented in Section 3. In Section 4 preliminary definitions and
results on a convex cone and projection are given. Proofs of the main theorems
are given in Section 5. In Section 6 a table of the critical points estimated by
simulation is presented. In Section 7 a justification of the plausibility of our test
statistic is discussed. Proofs of some of the lemmas are given in the Appendix.

2. The problem and proposed test statistic. Suppose that Xi1, . . . ,XiNi
are

random samples from a p-variate normal distribution Np(µi ,�), i = 1,2, . . . , k.
We assume that � is unknown and N1 + · · · + Nk > p + k.

Throughout this paper, any vectors are column vectors as a rule. As usual, for
any vector x and matrix A, x′ and A′ denote their transposed vector and transposed
matrix, respectively.

Consider the problem of testing

H0 :µ1 = µ2 = · · · = µk versus H1 :µ1 ≤ µ2 ≤ · · · ≤ µk,
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where “µi ≤ µj ” means that all the elements of µj − µi are non-negative. The
restriction imposed on H1 means that all the components of the p-dimensional
mean vector µi increase simultaneously as i increases.

In order to discuss the order restricted problem, we prepare some definitions.

DEFINITION 2.1 [Barlow, Bartholomew, Bremner and Brunk (1972)]. Given
real numbers x1, . . . , xk and positive numbers w1, . . . ,wk , a k-dimensional real
row vector (θ̂1, . . . , θ̂k) is said to be the isotonic regression (IR) of x1, . . . , xk with
weights w1, . . . ,wk if θ̂1 ≤ θ̂2 ≤ · · · ≤ θ̂k and (θ̂1, . . . , θ̂k) satisfies

min
θ1≤θ2≤···≤θk

k∑
i=1

(xi − θi)
2wi =

k∑
i=1

(xi − θ̂i )
2wi.

The isotonic regression can be computed easily by the well-known method,
Pool–Adjacent–Violators algorithm. [See Barlow, Bartholomew, Bremner and
Brunk (1972).]

DEFINITION 2.2 [Sasabuchi, Inutsuka and Kulatunga (1983)]. Given
p-dimensional real vectors x1, . . . ,xk and p × p positive definite matrices
�1, . . . ,�k, a p × k real matrix (θ̂1, . . . , θ̂ k) is said to be the multivariate iso-
tonic regression (MIR), in fact, p-variate isotonic regression, of x1, . . . ,xk with
weights �−1

1 , . . . ,�−1
k if θ̂1 ≤ θ̂2 ≤ · · · ≤ θ̂k and (θ̂1, . . . , θ̂ k) satisfies

min
θ1≤θ2≤···≤θk

k∑
i=1

(xi − θ i)
′�−1

i (xi − θ i ) =
k∑

i=1

(xi − θ̂ i )
′�−1

i (xi − θ̂ i ),

where “θ i ≤ θ j ” means that all the elements of θj − θ i are non-negative.

Sasabuchi, Inutsuka and Kulatunga (1983) proposed an iterative algorithm for
the computation of MIR and studied its convergence in the case when p = 2. This
algorithm was extended to the general multivariate case by Sasabuchi, Inutsuka
and Kulatunga (1992).

When � is known, the likelihood ratio test for H0 versus H1 is given by the
following theorem.

THEOREM 2.1 [Sasabuchi, Inutsuka and Kulatunga (1983)]. When � is
known, the critical region of the likelihood ratio test for H0 versus H1 is given
by

χ̄2
k,p =

k∑
i=1

Ni(µ̂i − X)′�−1(µ̂i − X) ≥ c1,

where (µ̂1, . . . , µ̂k) is the MIR of X1, . . . ,Xk with weights N1�
−1, . . . ,Nk�

−1,

c1 is a positive constant depending on the significance level, Xi = N−1
i

∑Ni

j=1 Xij ,
i = 1, . . . , k, and X = (

∑k
i=1 Ni)

−1∑k
i=1 NiXi .
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The χ̄2
k,p statistic is the multivariate extension of Bartholomew’s (1959)

χ̄2
k statistic. This test has been studied by Kulatunga and Sasabuchi (1984),

Kulatunga (1984), Sasabuchi, Kulatunga and Saito (1998) and some others.
In this paper, we assume that � is unknown. In this case, to the authors’

knowledge, the likelihood ratio test for H0 versus H1 has not been obtained yet.
Replacing the unknown covariance matrix in the χ̄2

k,p by its estimator, we
propose the following test:

T
2 =

k∑
i=1

Ni(µ̂i − X)′S−1(µ̂i − X) ≥ c2 �⇒ reject H0,

where S =∑k
i=1
∑Ni

j=1(Xij − Xi )(Xij − Xi )
′, (µ̂1, . . . , µ̂k) is the MIR of X1, . . . ,

Xk with weights N1S
−1, . . . ,NkS

−1, and c2 is a positive constant depending on the
significance level. Note that S has the Wishart distribution Wp(N − k;�), where
N = N1 + · · · + Nk, and is statistically independent of X1, . . . ,Xk .

3. Main theorems. When we use T
2

to test H0 versus H1, we need to
compute the supremum of its upper tail probability under H0; that is,

sup
�

sup
H0

Pµ,�

(
T

2 ≥ c
)

(1)

for arbitrary constant c. Here Pµ,� denotes the probability measure corresponding
to the parameters µ = (µ′

1, . . . ,µ
′
k)

′ and �, supH0
denotes the supremum for

µ1, . . . ,µk with µ1 = · · · = µk , and sup� denotes the supremum for all the p × p

positive definite real matrices.
Proofs of the theorems presented in this section are given in Section 5.
First we get the following theorem.

THEOREM 3.1. Under H0, the distribution of T
2

is independent of µ0,
where µ0 is the common value of µ1, . . . ,µk .

According to this theorem, we can assume that µ = 0 in computing the upper

tail probability of T
2

under H0. But it still depends on the unknown �.
Now we introduce the following statistic:

T ∗ =
k∑

i=1

Ni(Xi − X)′S−1(Xi − X) − 1

s11

k∑
i=1

Ni(Xi1 − µ̂i1)
2,

where Xi1 is the first component of Xi , i = 1,2, . . . , k, s11 is the (1,1)th element
of S, and (µ̂11, . . . , µ̂k1) is the IR of X11, . . . ,Xk1 with weights N1, . . . ,Nk .

We can show the following theorem.
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THEOREM 3.2. Under H0, the distribution of T ∗ is independent of µ0 and �,
where µ0 is the common value of µ1, . . . ,µk .

According to this theorem, we can assume that µ = 0 and � = Ip , the unit
matrix, in computing the upper tail probability of T ∗ under H0.

The supremum of the upper tail probability of T
2

under H0 is given by the
following theorem.

THEOREM 3.3. For any real number c,

sup
�

sup
H0

Pµ,�
(
T

2 ≥ c
)= sup

�
P0,�
(
T

2 ≥ c
)= P0,Ip (T ∗ ≥ c).

According to this theorem, we only need to compute P0,Ip(T ∗ ≥ c) in order
to compute (1). We do not know the exact distribution of T ∗, but we can easily
get the approximate value of P0,Ip (T ∗ ≥ c) by using Monte Carlo simulation
generating standard normal random numbers, because T ∗ is easy to calculate and
the distribution is that under µ = 0 and � = Ip .

4. Preliminary definitions and results on a convex cone and projection. In
this section, we prepare some definitions and basic results about a convex cone and
projection. They are modifications of those of Perlman (1969) in accordance with
our situation. Proofs of the lemmas in this section are omitted.

Let R
p and R

pk denote the p-dimensional and pk-dimensional real Euclidean
spaces, respectively. For a point x in a real Euclidean space, we write “x ≥ 0
(x > 0)” to indicate that all the elements of x are non-negative (positive).

Note that all vectors are column vectors as mentioned in Section 2.
Let C be a nonempty subset in a real Euclidean space. We call C a convex cone

if

x,y ∈ C, β ≥ 0, γ ≥ 0 �⇒ βx + γ y ∈ C.

Further, we call C a closed convex cone if it is a convex cone and closed set.

LEMMA 4.1. Let

An =
{(

x

y

) ∣∣∣∣∣ x ∈ R
1, y ∈ R

1

x ≥ 0, y ≥ −nx

}
, n = 1,2, . . . .

Then

(i) An is a closed convex cone in R
2, n = 1,2, . . . ,

(ii) An ⊂ An+1, n = 1,2, . . . ,

(iii)
⋃∞

n=1 An =
{(

x

y

) ∣∣∣∣x ≥ 0
y ≥ 0

}
∪
{(

x

y

) ∣∣∣∣x > 0
y ≤ 0

}
.
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For a q × r matrix A = (aij ) and an s × t matrix B = (bkl), as usual, A ⊗ B

denotes their Kronecker product, that is,

A ⊗ B =
 a11B . . . a1rB

...
...

aq1B . . . aqrB

 .

Let � be a p × p positive definite real matrix. Let x1, . . . ,xk,y1, . . . ,yk be
p-dimensional real vectors and put

x =
x1

...

xk

 , y =
y1

...

yk

 .

Define an inner product 〈·, ·〉� in R
pk by

〈x,y〉� =
k∑

i=1

Nix′
i�

−1yi

= (x′
1, . . . ,x′

k )

N1�
−1 0

. . .

0 Nk�
−1


y1

...

yk


= x′(D ⊗ �−1)y,

where

D =
N1 0

. . .

0 Nk

 .

Further, define a norm ‖ · ‖� in R
pk by

‖x‖� = 〈x,x〉1/2
� .

Let C be a closed convex cone in R
pk .

For x ∈ R
pk , the orthogonal projection of x onto C with respect to 〈·, ·〉�,

denoted by π�(x;C), is defined by the point which minimizes ‖x − z‖� under
the restriction that z ∈ C.

Note that π�(x;C) is determined uniquely since C is a closed convex cone. If
x ∈ C, then π�(x;C) = x.

For any set A ⊂ R
pk and any p × p real nonsingular matrix B , (Ik ⊗ B)A

denotes the image of A by Ik ⊗ B; that is, (Ik ⊗ B)A = {(Ik ⊗ B)x | x ∈ A}.

LEMMA 4.2. For any point x ∈ R
pk and any p×p real nonsingular matrix B ,

‖x − π�(x;C)‖� = ∥∥(Ik ⊗ B)x − πB�B ′
(
(Ik ⊗ B)x; (Ik ⊗ B)C

)∥∥
B�B ′ .
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LEMMA 4.3. Let {Cn}n=1,2,... be a sequence of closed convex cones in R
pk . If

C1 ⊂ C2 ⊂ · · · ⊂ Cn ⊂ · · · , then

lim
n→∞‖x − π�(x;Cn)‖� = ‖x − π�(x;C∞)‖�,

where C∞ denotes the closure of C∞ =⋃∞
n=1 Cn.

5. Proofs of the main theorems. Now we can represent our test statistic in
terms of the projection. Recall that

T
2 =

k∑
i=1

Ni(µ̂i − X)′S−1(µ̂i − X).

By using Theorem 2.2 of Sasabuchi, Inutsuka and Kulatunga (1983), T
2

is
rewritten as

T
2 =

k∑
i=1

Ni(Xi − X)′S−1(Xi − X) −
k∑

i=1

Ni(Xi − µ̂i)
′S−1(Xi − µ̂i ).

Put

X =
X1

...

Xk

 , X̃ =
X

...

X

 , µ̂ =
 µ̂1

...

µ̂k

 .

Then, by using the norm defined in Section 4, we can write

T
2 = ‖µ̂ − X̃‖2

S = ‖X − X̃‖2
S − ‖X − µ̂‖2

S.

Now it is important to note that (X, . . . ,X) and (µ̂1, . . . , µ̂k) are the values
of (µ1, . . . ,µk) which minimize

∑k
i=1 Ni(Xi − µi )

′S−1(Xi − µi ) under the
restrictions that µ1 = µ2 = · · · = µk and µ1 ≤ µ2 ≤ · · · ≤ µk , respectively.

Define two closed convex cones C0 and C1 in R
pk by

C0 =

µ =


µ1
µ2
...

µk


∣∣∣∣∣µ1 = µ2 = · · · = µk,µi ∈ R

p, i = 1, . . . , k

 ,

C1 =

µ =


µ1
µ2
...

µk


∣∣∣∣∣µ1 ≤ µ2 ≤ · · · ≤ µk,µi ∈ R

p, i = 1, . . . , k

 .

Then, from the definition of projection in Section 4, X̃ = πS(X;C0) and µ̂ =
πS(X;C1); hence we can write

T
2 = ‖πS(X;C1) − πS(X;C0)‖2

S = ‖X − πS(X;C0)‖2
S − ‖X − πS(X;C1)‖2

S.
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PROOF OF THEOREM 3.1. The proof is based on the location invariance

of T
2
. Recall that µ0 is the common unknown value of µ1, . . . ,µk under H0.

Put

Y =
Y1

...

Yk

=
X1 − µ0

...

Xk − µ0

= X −
µ0

...

µ0

 .

Then we can easily show that

‖X − πS(X;C0)‖2
S = ‖Y − πS(Y;C0)‖2

S,

‖X − πS(X;C1)‖2
S = ‖Y − πS(Y;C1)‖2

S

and hence

T
2 = ‖X − πS(X;C0)‖2

S − ‖X − πS(X;C1)‖2
S

= ‖Y − πS(Y;C0)‖2
S − ‖Y − πS(Y;C1)‖2

S.

Under H0, the distribution of ‖Y − πS(Y;C0)‖2
S − ‖Y − πS(Y;C1)‖2

S is indepen-
dent of µ0 because Yi is distributed as Np(0,N−1

i �), i = 1, . . . , k. This completes
the proof. �

Now we define another closed convex cone C2 in R
pk by

C2 =

µ =


µ1
µ2
...

µk


∣∣∣∣∣µ11 ≤ µ21 ≤ · · · ≤ µk1, µi ∈ R

p, i = 1, . . . , k

 ,

where µi1 denotes the first component of µi , i = 1, . . . , k. Further we define
another statistic T ∗∗ by

T ∗∗ = ‖X − πS(X;C0)‖2
S − ‖X − πS(X;C2)‖2

S.

Note that C0 ⊂ C1 ⊂ C2, so we have

‖X − πS(X;C0)‖2
S ≥ ‖X − πS(X;C2)‖2

S

and thus T ∗∗ ≥ 0.

LEMMA 5.1. Let � be a p × p positive definite real matrix. Then we have:

(i) for any p × p orthogonal matrix U ,(
Ik ⊗ (U�−1/2)

)
C0 = C0;

(ii) there exists a p × p orthogonal matrix U which satisfies(
Ik ⊗ (U�−1/2)

)
C2 = C2.
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Note that �1/2 is the positive definite real (symmetric) matrix such that
�1/2�1/2 = � and �−1/2 = (�1/2)−1.

The proof will be given in the Appendix.

LEMMA 5.2. Under H0, the distribution of T ∗∗ is independent of µ0 and �,
where µ0 is the common value of µ1, . . . ,µk .

PROOF. Let Y be the same as that defined in the proof of Theorem 3.1. We
can easily show that

‖X − πS(X;C0)‖2
S = ‖Y − πS(Y;C0)‖2

S,

‖X − πS(X;C2)‖2
S = ‖Y − πS(Y;C2)‖2

S

and hence

T ∗∗ = ‖X − πS(X;C0)‖2
S − ‖X − πS(X;C2)‖2

S

= ‖Y − πS(Y;C0)‖2
S − ‖Y − πS(Y;C2)‖2

S.

Let U be the p × p orthogonal matrix which satisfies (ii) of Lemma 5.1 and
consider the linear transformation given by (Ik ⊗ (U�−1/2)); then, by Lemma 4.2,
T ∗∗ can be rewritten as

T ∗∗ = ‖Y − πS(Y;C0)‖2
S − ‖Y − πS(Y;C2)‖2

S

= ∥∥(Ik ⊗ (U�−1/2)
)
Y

− πU�−1/2S�−1/2U ′
((

Ik ⊗ (U�−1/2)
)
Y;(

Ik ⊗ (U�−1/2)
)
C0
)∥∥2

U�−1/2S�−1/2U ′

− ∥∥(Ik ⊗ (U�−1/2)
)
Y

− πU�−1/2S�−1/2U ′
((

Ik ⊗ (U�−1/2)
)
Y;(

Ik ⊗ (U�−1/2)
)
C2
)∥∥2

U�−1/2S�−1/2U ′ .

Put

Z =
Z1

...

Zk

=
U�−1/2Y1

...

U�−1/2Yk

= (Ik ⊗ (U�−1/2)
)
Y,

S∗ = U�−1/2S�−1/2U ′;
then, by Lemma 5.1, we have

T ∗∗ = ‖Z − πS∗(Z;C0)‖2
S∗ − ‖Z − πS∗(Z;C2)‖2

S∗ .
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By their definition, S∗ and Z1, . . . ,Zk are mutually independent, S∗ has the
Wishart distribution Wp(N − k; Ip) and Zi is distributed as Np(0,N−1

i Ip), i =
1, . . . , k, hence the joint distribution of (S∗,Z1, . . . ,Zk) does not depend on µ0
or �. This completes the proof. �

LEMMA 5.3. For any real number c,

sup
�

sup
H0

Pµ,�
(
T

2 ≥ c
)= sup

�
P0,�
(
T

2 ≥ c
)≤ P0,Ip (T ∗∗ ≥ c).

PROOF. Since C1 ⊂ C2, we have ‖X−πS(X;C1)‖2
S ≥ ‖X−πS(X;C2)‖2

S and
hence T

2 ≤ T ∗∗. Thus, by Theorem 3.1 and Lemma 5.2, we have

sup
�

sup
H0

Pµ,�
(
T

2 ≥ c
)= sup

�
P0,�
(
T

2 ≥ c
)

≤ sup
�

P0,�(T ∗∗ ≥ c)

= P0,Ip(T ∗∗ ≥ c). �

In order to prove the inverse inequality of that in the above lemma, define a
sequence of p×p nonsingular real matrices {Bn} and a sequence of p×p positive
definite real matrices {�n} by

Bn =


1 0

−n 1
...

. . .

−n 0 1

 , n = 1,2, . . . ,

and

�n = (B ′
nBn)

−1, n = 1,2, . . . ,

respectively.

LEMMA 5.4. For the closed convex cones C0,C1 and C2, {Bn} satisfies:

(i) (Ik ⊗ Bn)C0 = C0, n = 1,2, . . . ,

(ii) C1 ⊂ (Ik ⊗ B1)C1 ⊂ (Ik ⊗ B2)C1 ⊂ · · · ⊂ (Ik ⊗ Bn)C1 ⊂ · · · ,
(iii)
⋃∞

n=1(Ik ⊗ Bn)C1 = C2.

LEMMA 5.5. For any real number c and n = 1,2, . . . ,

P0,�n

(
T

2 ≥ c
)

= P0,Ip

(
‖X − πS(X;C0)‖2

S − ∥∥X − πS

(
X; (Ik ⊗ Bn)C1

)∥∥2
S ≥ c
)
.

Proofs of the above two lemmas will be given in the Appendix.
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LEMMA 5.6. For any real number c,

sup
�

sup
H0

Pµ,�

(
T

2 ≥ c
)= sup

�
P0,�

(
T

2 ≥ c
)≥ P0,Ip(T ∗∗ ≥ c).

PROOF. By Lemmas 5.5, 4.3 and 5.4,

lim
n→∞ P0,�n

(
T

2 ≥ c
)

= lim
n→∞ P0,Ip

(
‖X − πS(X;C0)‖2

S − ∥∥X − πS

(
X; (Ik ⊗ Bn)C1

)∥∥2
S ≥ c
)

= P0,Ip

(
‖X − πS(X;C0)‖2

S − lim
n→∞
∥∥X − πS

(
X; (Ik ⊗ Bn)C1

)∥∥2
S ≥ c

)

= P0,Ip

(
‖X − πS(X;C0)‖2

S −
∥∥∥∥∥X − πS

(
X;

∞⋃
n=1

(Ik ⊗ Bn)C1

)∥∥∥∥∥
2

S

≥ c

)

= P0,Ip
(‖X − πS(X;C0)‖2

S − ‖X − πS(X;C2)‖2
S ≥ c
)

= P0,Ip (T ∗∗ ≥ c).

Thus, by Theorem 3.1, we get

sup
�

sup
H0

Pµ,�
(
T

2 ≥ c
)

= sup
�

P0,�

(
T

2 ≥ c
)≥ lim

n→∞ P0,�n

(
T

2 ≥ c
)= P0,Ip (T ∗∗ ≥ c). �

PROOF OF THEOREM 3.2. By Lemma 5.2, it is sufficient to show that T ∗ =
T ∗∗. Recall that

T ∗∗ = ‖X − πS(X;C0)‖2
S − ‖X − πS(X;C2)‖2

S.

For the first term of T ∗∗, as we have seen at the beginning of this section,

‖X − πS(X;C0)‖2
S =

k∑
i=1

Ni(Xi − X)′S−1(Xi − X).

For the second term of T ∗∗,

‖X − πS(X;C2)‖2
S = min

µ∈C2
‖X − µ‖2

S

= min
µ∈C2

k∑
i=1

Ni(Xi − µi)
′S−1(Xi − µi ).

Let µi ,Xi and S be partitioned as

µi =
(

µi1

µi2

)
, Xi =

(
Xi1

Xi2

)
, S =

(
s11 S12

S21 S22

)
,

where µi1, Xi1 and s11 are scalars, i = 1,2, . . . k. Then, by a well-known result on
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a partitioned matrix [e.g., see Anderson (1984), Appendix A],

(Xi − µi )
′S−1(Xi − µi)

=
(

Xi1 − µi1
Xi2 − µi2

)′ (
s11 S12
S21 S22

)−1 (
Xi1 − µi1
Xi2 − µi2

)
= 1

s11
(Xi1 − µi1)

2

+
{

Xi2 − S21

s11
(Xi1 − µi1) − µi2

}′
S−1

22.1

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}
,

where S22.1 = S22 − S2
21/s11. Hence

‖X − πS(X;C2)‖2
S

= min
µ∈C2

k∑
i=1

Ni

[
1

s11
(Xi1 − µi1)

2 +
{

Xi2 − S21

s11
(Xi1 − µi1) − µi2

}′

× S−1
22.1

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}]

= min
µ11≤···≤µk1

min
µ12,...,µk2

[
1

s11

k∑
i=1

Ni(Xi1 − µi1)
2

+
k∑

i=1

Ni

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}′

× S−1
22.1

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}]

= min
µ11≤···≤µk1

[
1

s11

k∑
i=1

Ni(Xi1 − µi1)
2

+ min
µ12,...,µk2

k∑
i=1

Ni

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}′

× S−1
22.1

{
Xi2 − S21

s11
(Xi1 − µi1) − µi2

}]

= min
µ11≤···≤µk1

1

s11

k∑
i=1

Ni(Xi1 − µi1)
2 = 1

s11

k∑
i=1

Ni(Xi1 − µ̂i1)
2,

where (µ̂11, . . . , µ̂k1) is the IR of X11, . . . ,Xk1 with weights N1, . . . ,Nk . Thus we
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have obtained

T ∗∗ =
k∑

i=1

Ni(Xi − X)′S−1(Xi − X) − 1

s11

k∑
i=1

Ni(Xi1 − µ̂i1)
2 = T ∗.

�

PROOF OF THEOREM 3.3. By Lemmas 5.3 and 5.6, we have

sup
�

sup
H0

Pµ,�
(
T

2 ≥ c
)= sup

�
P0,�
(
T

2 ≥ c
)= P0,Ip (T ∗∗ ≥ c).

As we have shown in the proof of Theorem 3.2, T ∗ = T ∗∗, thus we complete the
proof. �

6. Critical points estimated by simulation. By Theorem 3.3, in order to get

the upper α point of T
2

under H0, we only need to obtain that of T ∗ when µ = 0
and � = Ip .

We generated N1 + N2 + · · · + Nk sets of p-variate normal random vectors
from Np(0, Ip) and computed T ∗. We repeated this computation 20,000 times to
get an estimated upper α point of T ∗. We further repeated this process 10 times
and computed the average of the 10 estimated upper α points for α = 0.01,0.05,
p = 2,5,10, k = 2,5,10, and Ni = 5,10,20,30, i = 1,2, . . . , k, respectively, and
we list them in Table 1.

TABLE 1
Upper α points estimated by simulation

N1(= N2 = ···= Nk)

α p k 5 10 20 30

0.01 2 2 2.4623 0.6471 0.2511 0.1572
5 1.1673 0.4157 0.1810 0.1151

10 0.7778 0.3053 0.1377 0.0889
5 2 18.9569 1.6017 0.5083 0.2990

5 3.2160 0.9683 0.3988 0.2526
10 2.0458 0.7675 0.3419 0.2196

10 2 — 5.8425 1.0101 0.5411
5 10.5996 2.0200 0.7565 0.4645

10 4.6477 1.5503 0.6623 0.4218

0.05 2 2 1.1673 0.3639 0.1488 0.0953
5 0.7761 0.2936 0.1310 0.0836

10 0.5847 0.2359 0.1079 0.0699
5 2 7.6463 1.0071 0.3472 0.2081

5 2.3794 0.7688 0.3247 0.2056
10 1.7130 0.6587 0.2952 0.1901

10 2 — 3.4425 0.7310 0.4018
5 7.6404 1.6830 0.6483 0.4008

10 4.0074 1.3824 0.5985 0.3812
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7. Discussion. Our proposed test statistic, T
2
, is obtained by replacing the

unknown covariance matrix in the χ̄2
k,p statistic by its estimator. This method

seems somewhat ad hoc. In this section, we discuss a justification of the plausibility
of our test statistic.

Using Lemma 3.2.2 of Anderson (1984) in the way similar to that of Anderson
[(1984), Section 8.8], in order to get the likelihood ratio test for our problem we
need to minimize the determinant∣∣∣∣∣S +

k∑
i=1

Ni(Xi − µi)(Xi − µi )
′
∣∣∣∣∣

under the restriction that µ1 ≤ µ2 ≤ · · · ≤ µk . We have∣∣∣∣∣S +
k∑

i=1

Ni(Xi − µi)(Xi − µi )
′
∣∣∣∣∣

= |S| ·
∣∣∣∣∣Ip + S−1/2

k∑
i=1

Ni(Xi − µi )(Xi − µi)
′S−1/2

∣∣∣∣∣,
so we need to minimize∣∣∣∣∣Ip + S−1/2

k∑
i=1

Ni(Xi − µi )(Xi − µi)
′S−1/2

∣∣∣∣∣
under the above restriction. The difficulty in deriving the likelihood ratio test arises
in this minimization problem.

Now suppose that A is a p × p non-negative definite real (symmetric) matrix,
λ1, λ2, . . . , λp are the characteristic roots of A, and ε is a positive number. Then

|Ip + εA| =
p∏

i=1

(1 + ελi) = 1 +
p∑

i=1

ελi + O(ε2) = 1 + tr(εA) + O(ε2).

Taking this expansion into account, instead of minimizing the determinant,
consider the problem of minimizing

1 + tr

[
S−1/2

k∑
i=1

Ni(Xi − µi)(Xi − µi )
′S−1/2

]

= 1 +
k∑

i=1

Ni(Xi − µi)
′S−1(Xi − µi )

under the restriction that µ1 ≤ µ2 ≤ · · · ≤ µk . The solution of this minimization
problem is nothing but the MIR of X1, . . . ,Xk with weights N1S

−1, . . . ,NkS
−1.

This consideration might add some justification to the plausibility of our test
statistic.
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APPENDIX

A. Proofs of some of the lemmas.

PROOF OF LEMMA 5.1.

(i)

(
Ik ⊗ (U�−1/2)

)
C0 =

(Ik ⊗ (U�−1/2)
)µ1

...

µk

∣∣∣∣∣µ1 = · · · = µk


=

U�−1/2µ1

...

U�−1/2µk

∣∣∣∣∣µ1 = · · · = µk


= C0.

(ii) C2 is rewritten as

C2 =
µ =

µ1
...

µk

∣∣∣∣∣µ11 ≤ · · · ≤ µk1


=

k−1⋂
i=1


µ1

...

µk

∣∣∣∣∣µi1 ≤ µ(i+1)1


=

k−1⋂
i=1


µ1

...

µk

∣∣∣∣∣e′
1(µi+1 − µi ) ≥ 0

 ,

where e1 = (1,0,0, . . . ,0)′. Hence

(Ik ⊗ �−1/2)C2 =
k−1⋂
i=1


�−1/2µ1

...

�−1/2µk

∣∣∣∣∣e′
1(µi+1 − µi ) ≥ 0

 .

Put �−1/2µi = νi . Then µi = �1/2νi and hence

(Ik ⊗ �−1/2)C2 =
k−1⋂
i=1


 ν1

...

νk

∣∣∣∣∣e′
1�

1/2(ν i+1 − νi ) ≥ 0

 .

Put

a1 = (e′
1�e1)

−1/2�1/2e1 = (σ11)
−1/2�1/2e1,
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where σ11 is the (1,1)th element of �. Then a′
1a1 = 1 and hence there exists a

p × p orthogonal matrix U such that Ua1 = e1 since e′
1e1 = 1. For this U , we

have

(
Ik ⊗ (U�−1/2)

)
C2 =

k−1⋂
i=1


Uν1

...

Uνk

∣∣∣∣∣e′
1�

1/2(νi+1 − νi ) ≥ 0

 .

Put Uνi = ηi . Then νi = U ′ηi and hence

(
Ik ⊗ (U�−1/2)

)
C2 =

k−1⋂
i=1


η1

...

ηk

∣∣∣∣∣e′
1�

1/2U ′(ηi+1 − ηi ) ≥ 0

 .

By the definition of U , U�1/2e1 = (σ11)
1/2e1, and hence e′

1�
1/2U ′ = (σ11)

1/2e′
1

since �1/2 is symmetric. Thus we obtain

(
Ik ⊗ (U�−1/2)

)
C2 =

k−1⋂
i=1


η1

...

ηk

∣∣∣∣∣(σ11)
1/2e′

1(ηi+1 − ηi) ≥ 0


=

k−1⋂
i=1


η1

...

ηk

∣∣∣∣∣e′
1(ηi+1 − ηi ) ≥ 0


= C2. �

PROOF OF LEMMA 5.4.
(i)

(Ik ⊗ Bn)C0 =

Bnµ1

...

Bnµk

∣∣∣∣∣µ1 = · · · = µk

 = C0.

(ii) Put νi = Bnµi , i = 1,2, . . . , k; then

(Ik ⊗ Bn)C1 =

Bnµ1

...

Bnµk

∣∣∣∣∣µ1 ≤ · · · ≤ µk


=

ν1

...

νk

∣∣∣∣∣B−1
n ν1 ≤ · · · ≤ B−1

n νk

 .

By the definition of Bn,

B−1
n =


1 0
n 1
...

. . .

n 0 1

 , n = 1,2, . . . .
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Hence put

νi =


νi1
νi2
...

νip

 , i = 1,2, . . . , k.

Then

(Ik ⊗ Bn)C1 =


ν1

...

νk


∣∣∣∣∣∣∣∣∣

ν11 ≤ · · · ≤ νk1
nν11 + ν12 ≤ · · · ≤ nνk1 + νk2

...

nν11 + ν1p ≤ · · · ≤ nνk1 + νkp

 .

From the above expression, it is easy to see that

C1 ⊂ (Ik ⊗ B1)C1 ⊂ (Ik ⊗ B2)C1 ⊂ · · · ⊂ (Ik ⊗ Bn)C1 ⊂ · · · .
(iii)

(Ik ⊗ Bn)C1 =

µ =
µ1

...

µk


∣∣∣∣∣∣∣∣∣

µ11 ≤ · · · ≤ µk1
nµ11 + µ12 ≤ · · · ≤ nµk1 + µk2

...

nµ11 + µ1p ≤ · · · ≤ nµk1 + µkp



=
k−1⋂
i=1

µ

∣∣∣∣∣∣∣∣∣
µ(i+1)1 − µi1 ≥ 0
µ(i+1)2 − µi2 ≥ −n(µ(i+1)1 − µi1)

...

µ(i+1)p − µip ≥ −n(µ(i+1)1 − µi1)


=

k−1⋂
i=1

p⋂
j=2

{
µ

∣∣∣∣µ(i+1)1 − µi1 ≥ 0
µ(i+1)j − µij ≥ −n(µ(i+1)1 − µi1)

}
.

Put

Cn,ij =
{
µ

∣∣∣∣µ(i+1)1 − µi1 ≥ 0
µ(i+1)j − µij ≥ −n(µ(i+1)1 − µi1)

}
.

Then
∞⋃

n=1

(Ik ⊗ Bn)C1 =
∞⋃

n=1

k−1⋂
i=1

p⋂
j=2

Cn,ij =
k−1⋂
i=1

p⋂
j=2

∞⋃
n=1

Cn,ij .

It is easy to see that the second equality holds true since Cn,ij ⊂ Cn+1,ij for
n = 1,2, . . . ; i = 1,2, . . . , k − 1; j = 2,3, . . . , p. Put

Cij =
{
µ

∣∣∣∣µ(i+1)1 − µi1 ≥ 0
µ(i+1)j − µij ≥ 0

}
∪
{
µ

∣∣∣∣µ(i+1)1 − µi1 > 0
µ(i+1)j − µij ≤ 0

}
.
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Then, by Lemma 4.1,
∞⋃

n=1

Cn,ij = Cij ,

hence
∞⋃

n=1

(Ik ⊗ Bn)C1 =
k−1⋂
i=1

p⋂
j=2

Cij .

Now

Cij ⊂
[{

µ

∣∣∣∣µ(i+1)1 − µi1 ≥ 0
µ(i+1)j − µij ≥ 0

}
∪
{
µ

∣∣∣∣µ(i+1)1 − µi1 ≥ 0
µ(i+1)j − µij ≤ 0

}]
= {µ|µ(i+1)1 − µi1 ≥ 0}

and

Cij ⊃
[{

µ

∣∣∣∣µ(i+1)1 − µi1 > 0
µ(i+1)j − µij ≥ 0

}
∪
{
µ

∣∣∣∣µ(i+1)1 − µi1 > 0
µ(i+1)j − µij ≤ 0

}]
= {µ|µ(i+1)1 − µi1 > 0},

hence
∞⋃

n=1

(Ik ⊗ Bn)C1 ⊂
k−1⋂
i=1

{µ|µ(i+1)1 − µi1 ≥ 0} = {µ|µ11 ≤ · · · ≤ µk1},

∞⋃
n=1

(Ik ⊗ Bn)C1 ⊃
k−1⋂
i=1

{µ|µ(i+1)1 − µi1 > 0} = {µ|µ11 < · · · < µk1}.

Thus we obtain
∞⋃

n=1

(Ik ⊗ Bn)C1 = {µ|µ11 ≤ · · · ≤ µk1} = C2. �

PROOF OF LEMMA 5.5. Put

X∗ =
X∗

1
...

X∗
k

=
BnX1

...

BnXk

= (Ik ⊗ Bn)X, S∗ = BnSB ′
n.

By Lemmas 4.2 and 5.4,

‖X − πS(X;C0)‖2
S

= ∥∥(Ik ⊗ Bn)X − πBnSB ′
n

(
(Ik ⊗ Bn)X; (Ik ⊗ Bn)C0

)∥∥2
BnSB ′

n

= ‖X∗ − πS∗(X∗;C0)‖2
S∗ .
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Similarly, by Lemma 4.2,

‖X − πS(X;C1)‖2
S = ∥∥X∗ − πS∗

(
X∗; (Ik ⊗ Bn)C1

)∥∥2
S∗ .

Now P0,�n(T
2 ≥ c) is the probability that

T
2 = ‖X − πS(X;C0)‖2

S − ‖X − πS(X;C1)‖2
S ≥ c

when Xi ∼ Np(0,N−1
i �n), i = 1,2, . . . , k, and S ∼ Wp(N − k;�n). This

probability can be rewritten as the probability that

‖X∗ − πS∗(X∗;C0)‖2
S∗ − ∥∥X∗ − πS∗

(
X∗; (Ik ⊗ Bn)C1

)∥∥2
S∗ ≥ c

when X∗
i ∼ Np(0,N−1

i Ip), i = 1,2, . . . , k, and S∗ ∼ Wp(N − k; Ip), since �n =
(B ′

nBn)
−1, while P0,Ip (‖X − πS(X;C0)‖2

S − ‖(X − πS(X; (Ik ⊗ Bn)C1)‖2
S ≥ c) is

the probability that

‖X − πS(X;C0)‖2
S − ∥∥(X − πS

(
X; (Ik ⊗ Bn)C1

)∥∥2
S ≥ c

when Xi ∼ Np(0,N−1
i Ip), i = 1,2, . . . , k, and S ∼ Wp(N −k; Ip). Thus the proof

is complete. �
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