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ESTIMATING MULTIPLICATIVE AND ADDITIVE HAZARD
FUNCTIONS BY KERNEL METHODS

BY OLIVER B. LINTON,1 JENS PERCH NIELSEN2 AND SARA VAN DE GEER

London School of Economics, Codan and University of Leiden

We propose new procedures for estimating the component functions
in both additive and multiplicative nonparametric marker-dependent hazard
models. We work with a full counting process framework that allows for left
truncation and right censoring and time-varying covariates. Our procedures
are based on kernel hazard estimation as developed by Nielsen and Linton
and on the idea of marginal integration. We provide a central limit theorem
for the marginal integration estimator. We then define estimators based on
finite-step backfitting in both additive and multiplicative cases and prove that
these estimators are asymptotically normal and have smaller variance than
the marginal integration method.

1. Introduction. Suppose that the conditional hazard function

λ(t|Zi) = lim
ε↓0

1

ε
P

(
Ti ≤ t + ε|Ti > t; (

Zi(s), s ≤ t
))

for the survival time Ti of an individual i with the covariate or marker process
Zi = (Zi(t)) has the form

λ(t|Zi) = α
(
t,Zi(t)

)
,(1)

where α is an unknown function of time t and the value of the covariate process of
the individual at time t only. Inference for this general class of models was initiated
by Beran (1981) and extended by Dabrowska (1987), McKeague and Utikal
(1990) and Nielsen and Linton (1995). Nielsen and Linton (1995) established
asymptotic normality and uniform convergence of their estimators of α(t, z) in the
case where one observes the event times of a sample of mutually independent
individuals along with their covariate processes, but where there has perhaps been
some (noninformative) censoring and truncation. Unfortunately, the achievable
rate of convergence of estimators of α(t, z) increases rapidly with the number of
covariates, as in the regression case studied by Stone (1980). Furthermore, it is
hard to visualize the model in high dimensions.

This motivates the study of separable structures, in particular, additive and
multiplicative models. These models can be used in their own right or as an aid to

Received February 2001; revised April 2002.
1Supported in part by the NSF.
2Supported in part by Bergiafonden.
AMS 2000 subject classifications. 62G05, 62M09.
Key words and phrases. Additive model, censoring, kernel, proportional hazards, survival

analysis.

464



ESTIMATING HAZARD FUNCTIONS 465

further model specification. They allow for the visual display of the components
of high-dimensional models and for a clean interpretation of effects. Also, the
optimal rate of convergence in additive and other separable regression models has
been shown to be better than in the unrestricted case; see Stone (1985, 1986). In
this paper, we consider additive and multiplicative submodels of (1). Multiplicative
separability of the baseline hazard from the covariate effect has played a central
role in survival analysis as is evident from the enormous literature inspired by
Cox (1972); see Andersen, Borgan, Gill and Keiding [(1993), Chapter 7] for
a discussion of semiparametric and nonparametric hazard models, and see Lin and
Ying (1995), Dabrowska (1997), Nielsen, Linton and Bickel (1998) and Huang
(1999) for some recent contributions. Additive models are perhaps less common,
but have been studied in Aalen (1980) and McKeague and Utikal (1991).

We propose a class of kernel-based marginal integration estimators for the
component functions in nonparametric additive and multiplicative models. This
methodology has been developed in Linton and Nielsen (1995) for regression.
We extend this literature to counting process models in which a wide range of
censoring and truncation can be allowed. The estimation idea involves integrating
out a high-dimensional preliminary estimator, which we call the “pilot”; in our
case this is provided by Nielsen and Linton’s (1995) kernel hazard estimator. The
averaging (or integration) reduces variance and hence permits faster convergence
rates. We establish that marginal integration estimators converge pointwise and
indeed uniformly at the same rate as a one-dimensional regression estimator
would; we also give the limiting distributions.

Marginal integration estimators are known to be inefficient in general, and in
particular to have higher mean squared error than a corresponding oracle estimator
that could be computed were all but one of the component functions known;
see Linton (1997, 2000) for discussion in regression and other models. This
motivates our extension to “m-step” estimators, which in other contexts have been
shown to improve efficiency [Linton (1997, 2000)]. The origin of this estimator
lies in the backfitting methodology as applied to nonparametric regression in
Hastie and Tibshirani (1990). The “usual” backfitting approach as implemented
in regression (for counting processes we have not found a reference) is to use
an iterative solution scheme to some sample equations that correspond to the
population projection interpretation of the additive model, say. Starting from some
initial condition, one continues until some convergence criterion is satisfied. Under
some conditions this algorithm converges; see Opsomer and Ruppert (1997) and
Mammen, Linton and Nielsen (1999). We shall work with certain backfitting
equations but start with a consistent estimator of the target functions, and we shall
just iterate a finite number (m) of times. We establish the asymptotic distribution of
the m-step method; under some conditions, it achieves an oracle efficiency bound.
Specifically, the asymptotic variance of the m-step estimator is the same as that of
the estimator one would use when the other components are known; this is true for
any m, and, in particular, for m = 1. In the additive regression case, Linton (1997)
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proved a similar result. We define the corresponding concepts for hazard estimation
in both additive and multiplicative cases. One-step and m-step approximations to
maximum likelihood estimators in parametric models have been widely studied,
following Bickel (1975). The application of this idea in nonparametric estimation
has only come about fairly recently; see Fan and Chen (1999).

We provide a new result on uniform convergence of kernel hazard estimators
in the counting process framework. This result is fundamental to the proofs
of limiting properties of many nonparametric and semiparametric procedures,
including our own. The result contained herein greatly improves and extends the
result contained in Nielsen and Linton (1995) and gives the optimal rate. Our proof
makes use of the recently derived exponential inequality for martingales obtained
in van de Geer (1995). This paper is an abbreviated version of Linton, Nielsen and
van de Geer (2001), which contains more details and references to applications.

2. The marker-dependent hazard model.

2.1. The observable data. Let T be the survival time and let T̃ = min{T,C},
where C is the censoring time. Suppose that T and C are conditionally independent
given the left-continuous covariate process Z and suppose that the conditional
hazard of T at time t given {Z(s), s ≤ t} is α(t,Z(t)). For each of n independent
copies (Ti,Ci,Zi), i = 1, . . . , n, of (T ,C,Z), we observe T̃i , δi = 1(Ti < Ci)

and Zi(t) for t ≤ Ti. Define also Yi(t) = 1(T̃i ≤ t), the indicator that the
individual is observed to be at risk at time t, and Ni(t) = 1(T̃i > t, δi = 1). Then
N(t) = (N1(t), . . . ,Nn(t)) is a multivariate counting process, and Ni has intensity
λi(t) = α(t,Zi(t))Yi(t), as we discuss below. See Linton, Nielsen and van de Geer
(2001) for more discussion.

2.2. The counting process formulation. We next embed the above model in-
side the counting process framework laid down in Aalen (1978). This framework is
very general and can be shown to accommodate a wide variety of censoring mech-
anisms, including that of the previous section. Let N(n)(t) = (N1(t), . . . ,Nn(t)) be
an n-dimensional counting process with respect to an increasing, right-continuous,
complete filtration F (n)

t , t ∈ [0, T ]; that is, N(n) is adapted to the filtration and has
components Ni, which are right-continuous step functions, zero at time zero, with
jumps of size one such that no two components jump simultaneously. Here, Ni(t)

records the number of observed failures for the ith individual during the time in-
terval [0, t] and is defined over the whole period (taken to be [0, T ], where T is
finite). Suppose that Ni has intensity

λi(t) = lim
ε↓0

1

ε
P

(
Ni(t + ε) − Ni(t) = 1|F (n)

t

) = α
(
t,Zi(t)

)
Yi(t),(2)

where Yi is a predictable process taking values in {0,1}, indicating (by the value 1)
when the ith individual is observed to be at risk, while Zi is a d-dimensional
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predictable covariate process with support in some compact set Z ⊆ R
d . The

function α(t, z) represents the failure rate for an individual at risk at time t with
covariate Zi(t) = z.

We assume that the stochastic processes (N1,Z1, Y1), . . . , (Nn,Zn,Yn) are
independent and identically distributed (i.i.d.) for the n individuals. In the rest of
the paper we therefore drop the n superscript for convenience. This simplifying
assumption has been adopted in a number of leading papers in this field, for
example, Andersen and Gill [(1982), Section 4] and McKeague and Utikal [(1990),
Section 4]. Let Ft,i = σ {Ni(u),Zi(u), Yi(u);u ≤ t} and Ft = ∨n

i=1 Ft,i . With
these definitions, λi is predictable with respect to Ft,i and hence Ft , and the
processes Mi(t) = Ni(t) − �i(t), i = 1, . . . , n, with compensators �i(t) =∫ t

0 λi(u) du, are square integrable local martingales with respect to Ft,i on the
time interval [0, T ]. Hence, �i(t) is the compensator of Ni(t) with respect to both
the filtration Ft,i and the filtration Ft . In fact, rather than observing the whole
covariate process Zi, it is sufficient to observe Zi at times when the individual is
at risk, that is, when Yi(s) = 1.

2.3. Separable models and estimands. For notational convenience we com-
bine time and the covariates into one vector, that is, we write x = (t, z) and
Xi(t) = (t,Zi(t)), and label the components of x as 0,1, . . . , d, with x0 = t. Let
x−j = (x0, . . . , xj−1, xj+1, . . . , xd) be the d × 1 vector of x excluding xj and like-
wise for X−j i(s).

The main object of interest is the hazard function α(·) and functionals computed
from it. Consider the case that α is separable either additively or multiplicatively:
the multiplicative model is that

α(x) = cM

d∏
j=0

hj(xj )(3)

for some constant cM and functions hj , j = 0,1, . . . , d; the additive model is

α(x) = cA +
d∑

j=0

gj (xj )(4)

for some constant cA and functions gj , j = 0,1, . . . , d. The constants and
functions must be such that the hazard function itself is nonnegative every-
where. Also, the functions hj (·) and gj (·) and constants cA and cM are not
separately identified, and we need to make a further restriction in both cases
to obtain uniqueness. Let Q be a given absolutely continuous c.d.f. and de-
fine the marginals Qj(xj ) = Q(∞, . . . ,∞, xj ,∞, . . . ,∞) and Q−j (x−j ) =
Q(x0, . . . , xj−1,∞, xj+1, . . . , xd), j = 0,1, . . . , d . For simplicity of notation we
shall suppose that Q = Q0 ⊗Q1 ⊗· · ·⊗Qd, although this is not necessary for the
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main results. We identify the models (3) and (4) through these probability mea-
sures. Specifically, we suppose that in the additive case

∫
gj (xj ) dQj(xj ) = 0,

while in the multiplicative case
∫

hj (xj ) dQj(xj ) = 1 for each j = 0, . . . , d.

These restrictions ensure that the model components (cA, g0, . . . , gd) and
(cM,h0, . . . , hd), respectively, are well defined and imply that cA = cM = c =∫

α(x) dQ(x).
Now consider the following contrasts:

αQ−j
(xj ) =

∫
α(x) dQ−j (x−j ),

αA
Q−j

(xj ) = αQ−j
(xj ) −

∫
αQ−j

(xj ) dQj(xj ) = αQ−j
(xj ) − c,

αM
Q−j

(xj ) = αQ−j
(xj )∫

αQ−j
(xj ) dQj (xj )

= αQ−j
(xj )

c
,

αA(x) =
d∑

j=0

αA
Q−j

(xj ) + c, αM(x) = c

d∏
j=0

αM
Q−j

(xj ),

(5)

j = 0, . . . , d. In the additive model, αQ−j
(xj ) = gj (xj ) + c so that the recentered

quantity αA
Q−j

(xj ) = gj (xj ), while in the multiplicative model, αQ−j
(xj ) =

hj (xj )c and the rescaled quantity αM
Q−j

(xj ) = hj (xj ). It follows that αQ−j
(·) is,

up to a constant factor, the univariate component of interest in both additive and
multiplicative structures. What happens when neither (3) nor (4) is true but only (2)
holds? In this case, the quantity αQ−j

(·) still has an interpretation as an average
of the higher dimensional surface with respect to Q−j . In addition, one can also
interpret

∑
j αQ−j

(·) as a projection:
∑

j αQ−j
(·) is the closest additive function

to α(x) when distance is computed using a product measure; see Nielsen and
Linton (1998).

3. Estimation. We first define a class of estimators of the unrestricted
conditional hazard function α(x). Defining the bandwidth parameter b and product
kernel function Kb(u0, . . . , ud) = ∏d

j=0 kb(uj ), where k(·) is a one-dimensional
kernel with kb(uj ) = b−1k(uj/b), we let

α̂(x) = (1/n)
∑n

i=1
∫ T

0 Kb(x − Xi(s)) dNi(s)

(1/n)
∑n

i=1
∫ T

0 Kb(x − Xi(s))Yi(s) ds
≡ ô(x)

ê(x)
(6)

be our estimator of α(x), a ratio of local occurrence ô(x) to local exposure ê(x).
The estimator α̂(x) was introduced in Nielsen and Linton (1995) who gave
some statistical properties of (6) for general d . When the bandwidth sequence is
chosen of order n−1/(2r+d+1), the random variable α̂(x) − α(x) is asymptotically
normal with rate of convergence n−r/(2r+d+1), where r is an index of smoothness
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of α(x). This is the optimal rate for the corresponding regression problem without
separability restrictions; see Stone (1980). We shall be using α̂(x) as an input into
our procedures and will refer to it as the “pilot” estimator. Although α̂(x) is not
guaranteed to be positive everywhere when the kernel K takes on negative values,
the probability of a negative value decreases to 0 very rapidly.

We now define a method of estimating the components in (3) and (4) based
on the principle of marginal integration. We estimate the quantities αQ−j

(xj ),

c, gj (xj ), hj (xj ), αA(x) and αM(x) by replacing the unknown quantities by
estimators; thus,

α̂Q−j
(xj ) =

∫
α̂(x) dQ̂−j (x−j ), ĉ =

∫
α̂(x) dQ̂(x),(7)

α̂A
Q−j

(xj ) = α̂Q−j
(xj ) − ĉ, α̂M

Q−j
(xj ) = α̂Q−j

(xj )

ĉ
,(8)

α̂A(x) =
d∑

j=0

α̂A
Q−j

(xj ) + ĉ, α̂M(x) = ĉ

d∏
j=0

α̂M
Q−j

(xj ),(9)

where α̂(x) is the unrestricted estimator (6). Here, Q̂ is a probability mea-
sure that converges in probability to the distribution Q, while Q̂j and Q̂−j ,

j = 0, . . . , d, are the corresponding marginals. We assume that Q̂ and its mar-
ginals are continuous except at a finite number of points, which implies that the
integrals in (7)–(9) are well defined because α̂(·) is continuous when K is.

The quantities α̂A(x) and α̂M(x) estimate consistently αA(x) and αM(x),

respectively, which are both equal to α(x) in the corresponding submodel.
For added flexibility, we suggest using a different bandwidth sequence in the
estimator ĉ; we can expect to estimate the constants at rate root n because the
target quantities are integrals over the entire covariate vector.

The distribution Q̂ can essentially be arbitrary, although its support should
be contained within the support of the covariates. The most obvious choices
of Q seem to be Lebesgue measure on some compact set I or an empirical
measure similarly restricted. There has been some investigation of the choice of
weighting in regression; see, for example, Linton and Nielsen (1995), Fan, Härdle
and Mammen (1998) and Cai and Fan (2000). Finally, the marginal integration
procedures we have proposed are based on high-dimensional smoothers and can
suffer some small-sample problems if the dimensions are high. See Sperlich,
Linton and Härdle (1999) for numerical investigation.

4. Asymptotic properties. We derive the asymptotic distribution of the
marginal integration estimators α̂Q−j

at interior points under the general sampling
scheme (2); that is, we do not assume either of the separable structures holds.
However, when either the additive or multiplicative submodel (3) or (4) is true,
our results are about the corresponding univariate components. We are assuming
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an i.i.d. setup throughout. We could weaken this along the lines of McKeague and
Utikal [(1990), condition A] but at the cost of quite complicated notation. We shall
assume that the support of Zi(s) does not depend on s and is rectangular. This
is just to avoid a more complicated notation. We also assume that the estimation
region is a strict rectangular subset of the covariate support, and so ignore boundary
effects.

For any vectors x = (x1, . . . , xp) and a = (a1, . . . , ap) of common length p, we
let xa = x

a1
1 · · ·xap

p and |a| = ∑p
j=1 aj . Finally, for any function g : Rp → R, let

Dag(x) = (∂ |a|/∂x
a1
1 · · · ∂x

ap
p )g(x). For functions g : Rp 	→ R, define the Sobolev

norm of order s, ‖g‖2
p,s,I = ∑

a:|a|≤s

∫
I{Dag(z)}2 dz, where I ⊆ R

p is a compact
set, and let Gp,s(I) be the class of all functions with domain I with Sobolev norm
of order s bounded by some constant C. An important step in our argument is to
replace Q̂ by Q; we shall use empirical process arguments to show that this can
be done without affecting the results. We make the following assumptions:

(A1) The covariate process is supported on the compact set X = [0, T ] × Z,

where Z = Z1 × · · · × Zd . For each t ∈ [0, T ], define the conditional
[given Yi(s) = 1] distribution function of the observed covariate process
Ft(z) = Pr(Zi(t) ≤ z|Yi(t) = 1) and let ft (z) be the corresponding density
with respect to Lebesgue measure. For each x = (t, z) ∈ X, define the
exposure e(x) = ft (z)y(t), where y(t) = E[Yi(t)]. The functions t 	→ y(t)

and t 	→ ft(z) are continuous on [0, T ] for all z ∈ Z.
(A2) The probability measure Q = Q = Q0 ⊗ Q1 ⊗ · · · ⊗ Qd is absolutely

continuous with respect to Lebesgue measure and has density function q =
q0 ⊗ q1 ⊗ · · · ⊗ qd. It has support on the compact interval I = I0 × · · · × Id,

which is strictly contained in Z. Furthermore, 0 < infxj∈Ij
qj (xj ) for all j.

(A3) The functions α(·) and e(·) are r-times continuously differentiable on X
and satisfy infx∈X e(x) > 0 and infx∈X α(x) > 0. The integer r satisfies
(2r + 1)/3 > (d + 1).

(A4) The kernel k has support [−1,1], is symmetric about 0 and is of order r ,
that is,

∫ 1
−1 k(u)uj du = 0, j = 1, . . . , r − 1, and µr(k) = ∫ 1

−1 k(u)ur du ∈
(0,∞), where r ≥ 2 is an even integer. The kernel is also r − 1 times
continuously differentiable on [−1,1] with Lipschitz remainder; that is, there
exists a finite constant klip such that |k(r−1)(u)−k(r−1)(u′)| ≤ klip|u−u′| for
all u,u′. Finally, k(j)(±1) = 0 for j = 0, . . . , r − 1.

(A5) The probability measure Q̂ has support on I and satisfies supx∈I |Q̂(x) −
Q(x)| = Op(n−1/2). Furthermore, for some s with r ≥ s > d/2, the
empirical process {νn(·) :n ≥ 1} with νn(g) = √

n{∫I−j
g(z) dQ̂−j (z) −∫

I−j
g(z) dQ−j (z)} for any g ∈ Gd+1,s(I−j ), where the set I−j = ∏

	�=j I	,
is stochastically equicontinuous on Gd+1,s(I−j ) at g0(·) = α(xj , ·); that is,
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for all ε, η > 0 there exists δ > 0 such that

lim sup
n→∞

P∗
[

sup
g∈Gd+1,s(I−j ),‖g−g0‖d+1,s,I−j

≤δ

|νn(g) − νn(g0)| > η

]
< ε,(10)

where P∗ denotes outer probability.

The smoothness and boundedness conditions in (A1), (A3) and (A4) are fairly
standard in local constant kernel estimation. For simplicity, these conditions are
assumed to hold on the entire support of the covariate process, whereas some
of our results below can be established when these conditions hold only on I.

Our assumptions are strictly stronger than those of McKeague and Utikal (1990)
and indeed imply the conditions of their Proposition 1. In particular, we assume
smoothness of e with respect to all its arguments rather than just continuity. We
use this assumption in our proof of the limiting distribution of our estimator.
If instead a local polynomial pilot estimator were used [see Fan and Gijbels
(1996) and Nielsen (1998)], we would most likely require only continuity of the
exposure e. Nevertheless, these conditions are likely to hold for a large class of
covariate processes. Certainly, time-invariant covariates can be expected to satisfy
this condition. When Z is the time since a certain event, such as onset of disability,
we can model the stochastic process Zi(t) as Zi(t) = t − Z0i for some random
variable Z0i that represents the age at which disability occurred. This is essentially
as in McKeague and Utikal [(1990), Example 5, page 1180], especially, and under
smoothness conditions on their αjk we obtain the smoothness of (in our notation)
the corresponding exposure e(x). The restriction on (r, d) is used to ensure that the
remainder terms in the expansion of α̂ − α are of smaller order in probability than
the leading terms; the remainder terms are of order n−1b−(d+1) log n + b2r , so we
must have r > d. We require slightly stronger restrictions in order to deal with the
passage from Q̂ to Q. The stochastic equicontinuity condition in (A5) is satisfied
under conditions on the entropy of the class of functions; see van de Geer (2000).

Our main theorem gives the pointwise distribution of the marginal integration
estimator α̂Q−j

(xj ) and the corresponding additive and multiplicative reconstruc-
tions α̂A(x), α̂M(x). As discussed earlier, we do not maintain either separability
hypothesis in this theorem, and so the result is about the functionals of the under-
lying function α(x).

THEOREM 1. Suppose that (A1)–(A5) hold and that n1/(2r+1)b → γ for
some γ with 0 < γ < ∞. Then there exist functions mj(·), υj (·) that are bounded
and continuous on Ij such that, for any xj ∈ Ij ,

nr/(2r+1)
(
α̂Q−j

− αQ−j

)
(xj ) ⇒ N

[
mj(xj ), υj (xj )

]
,(11)
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where, with ‖k‖2
2 = ∫ 1

−1 k(u)2 du,

υj (xj ) = γ −1‖k‖2
2

∫
I−j

α(x)q2−j (x−j )

e(x)
dx−j .

Suppose also that ĉ − c = OP (n−1/2). Then α̂A
Q−j

(xj ) has the same asymptotic
distribution as α̂Q−j

(xj ), while α̂M
Q−j

(xj ) has asymptotic mean mj(xj )/c and

asymptotic variance υj (xj )/c
2. Finally,

nr/(2r+1)(α̂A − αA)(x) ⇒ N [mA(x), vA(x)] ,(12)

nr/(2r+1)(α̂M − αM)(x) ⇒ N [mM(x), vM(x)] ,(13)

where mA(x) = ∑d
j=0 mj(xj ) and vA(x) = ∑d

j=0 υj (xj ), while mM(x) =∑d
j=0 mj(xj )sj (x−j ) and vM(x) = ∑d

j=0 υj (xj )s
2
j (x−j ), where sj (x−j ) =∏

k �=j αQ−k
(xk)/c

d .

The bandwidth rate b ∼ n−1/(2r+1) gives an optimal (pointwise mean squared
error) rate of convergence for α̂Q−j

(xj ), α̂A(x) and α̂M(x) [i.e., this is the same
rate as the optimal rate of convergence in one-dimensional kernel regression
estimation; see Stone (1980)]. The bias function mj(·) is just proportional to the
integrated bias of the pilot estimator, in our case the Nadaraya–Watson estimator.
If instead we were to use a local polynomial pilot estimator [see Nielsen (1998) for
the definition of the local linear estimator in hazard estimation], we would obtain
a simpler expression for the bias and indeed an estimator that has better properties
[see Fan and Gijbels (1996)]. Also, by undersmoothing in the direction not of
interest (we have used the same bandwidth for all directions), we obtain a different
bias expression that corresponds to the bias of the corresponding one-dimensional
oracle smoother; see below. See Linton and Nielsen (1995) for discussion. Finally,
the estimator ĉ is root-n consistent under slightly different bandwidth conditions:
specifically, a standard proof along the lines of Nielsen, Linton and Bickel (1998)
would require that

√
nbr → 0, which requires undersmoothing in all directions.

5. m-step backfitting. The marginal integration estimators defined above are
inefficient. We suggest an alternative estimation method that is more efficient. We
shall assume throughout this section that the corresponding submodel (additive
or multiplicative) is true and that the associated normalization is made. We first
outline an infeasible procedure that sets performance bounds against which to
measure the feasible procedures that we have introduced.

5.1. Oracle estimation. Suppose that an oracle has told us what c and gl(·),
l �= j , are in the additive model and equivalently in the multiplicative model what
c and hl(·), l �= j , are. The question is, how would we use this information
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to obtain a better estimator of the remaining component? We pursue a local
likelihood approach to this question; this, it turns out, leads to a procedure with
smaller variance than the marginal integration estimators. This approach has
been discussed in Linton (2000) in the context of generalized additive regression
models. Fan and Gijbels (1996) discuss the application of local partial likelihood
to estimation of nonparametric proportional hazard models where the data are i.i.d.
and the covariates are one dimensional. Hastie and Tibshirani (1990) discuss quasi-
backfitting methods for estimating nonparametric proportional hazard models
where the data are i.i.d. and the covariates are multidimensional and the covariate
effect is multiplicative. Our situation is more general, and we shall not rely on the
partial likelihood idea because that only works in the multiplicative case and even
then it will only solve part of the problem; that is, we are also interested in the
baseline hazard.

The (conditional on Y and X) log-likelihood for a counting process is∑n
i=1

∫ T
0 ln λi(s) dNi(s) − ∑n

i=1
∫ T

0 λi(s) ds, where λi(s) = α(Xi(s))Yi(s). Sup-
pose that the additive model is true and that an oracle has told us what c and gl(·),
l �= j , are. Then define the normalized local log-likelihood function

lnj (θ) = 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)
× [

ln α
(
θ,X−j i(s)

)
dNi(s) − α

(
θ,X−j i(s)

)
Yi(s) ds

]
,

(14)

where α(θ, x−j ) = θ + c + ∑d
l �=j gl(xl) as before. Let θ̂ maximize lnj (θ) with

respect to θ ∈ �, where � is some compact subset of R that contains θ0 = gj (xj )

and that satisfies infθ∈� infx−j
α(θ, x−j ) > 0, and let g̃o

j (xj ) = θ̂ . This estimator

is not explicitly defined and is, in general, nonlinear. In the multiplicative case,
we use (14) but with α(θ, x−j ) = θ · c · ∏

l �=j hl(xl); in this case, the local log-
likelihood estimator is explicitly defined; indeed, it is

h̃o
j (xj ) = θ̂ =

∑n
i=1

∫ T
0 kb(xj − Xji(s)) dNi(s)

c
∑n

i=1
∫ T

0 kb(xj − Xji(s))
∏

k �=j hk(Xki(s))Yi(s) ds
.(15)

Define also α̃o
A(x) = ∑d

j=0 g̃o
j (xj ) + c and α̃o

M(x) = c
∏d

j=0 h̃o
j (xj ).

The estimators g̃o
j (xj ) and h̃o

j (xj ) are basically one-dimensional conditional
hazard smooths on the covariate process Xj(·), and their properties are easy to
derive from existing theory like Nielsen and Linton (1995).

THEOREM 2. Suppose that (A1), (A3) and (A4) hold and that n1/(2r+1)b → γ

for some 0 < γ < ∞. Then, when the corresponding additive/multiplicative model
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is true, there exist functions moA
j (·), υoA

j (·),moM
j (·), υoM

j (·) that are bounded and
continuous on Ij such that, for any xj ∈ Ij ,

nr/(2r+1)
(
g̃o

j (xj ) − gj (xj )
) ⇒ N

[
moA

j (xj ), υ
oA
j (xj )

]
,(16)

nr/(2r+1)
(
h̃o

j (xj ) − hj(xj )
) ⇒ N

[
moM

j (xj ), υ
oM
j (xj )

]
,(17)

nr/(2r+1)(α̃o
A − αA)(x) ⇒ N

[
moA(x), voA(x)

]
,(18)

nr/(2r+1)(α̃o
M − αM)(x) ⇒ N

[
moM(x), voM(x)

]
,(19)

where moA(x) = ∑d
j=0 moA

j (xj ) and voA(x) = ∑d
j=0 υoA

j (xj ), while moM(x) =
α(x)

∑d
j=0 moM

j (xj )/hj (xj ) and voM(x) = α2(x)
∑d

j=0 υoM
j (xj )/h2

j (xj ), where

υoA
j (xj ) = γ −1‖k‖2

2
1∫

I−j
(e(x)/α(x)) dx−j

,

υoM
j (xj ) = γ −1‖k‖2

2

h2
j (xj )∫

I−j
α(x)e(x) dx−j

.

(20)

We suppose that the variances in (20) set the standard for the two models. It
follows that υoA

j (xj ) ≤ υj (xj ) and υoM
j (xj ) ≤ υj (xj )/c

2 by the Cauchy–Schwarz
inequality. Therefore, the marginal integration procedure is inefficient relative to
the oracle estimator.

5.2. Feasible estimation. In this section we define a feasible version of the
above oracle estimators and derive their asymptotic distribution. We first define
the starting point of our algorithms, which are initial consistent estimators of
gj (xj ) and hj (xj ), specifically, renormalized versions of the marginal integration

estimators. Thus, we take, for j = 0,1, . . . , d, g̃
[0]
j (xj ) = α̂Q−j

(xj )− ĉ, h̃
[0]
j (xj ) =

α̂Q−j
(xj )/ĉ and ĉ = ∫

α̂(x) dQ̂(x). We have shown that these are consistent
estimates of gj (xj ), hj (xj ) and c, respectively, for any xj ∈ Ij . Although
α̂Q−j

(xj ), ĉ are not guaranteed to be positive everywhere, the probability of
negative values decreases to 0 very rapidly. For our procedure below we should
compute these quantities on the entire covariate support Xj except that this will
cause problems because of the well-known boundary bias of local constant-type
kernel smoothers. For each j and n, let Xin

j,n denote the interior region, so,
for example, Xin

0,n = [b,T − b]. Then define the boundary region Xout
j,n as the

complement of Xin
j,n in Xj . We trim out the boundary region and average over

interior points only; specifically, we define g̃
[0]
j (xj ), h̃

[0]
j (xj ) as above for any

xj ∈ Xin
j,n but g̃

[0]
j (xj ), h̃

[0]
j (xj ) = 0 for any xj ∈ Xout

j,n. The results reported in

Theorem 1 continue to hold when Ij = Xin
j,n.
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In the additive case, for each it = 0,1, . . . , define the estimated normalized local
likelihood function

l̃
[it+1]

nj (θ) = 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)
× [

ln α̃[it](θ,X−j i(s)
)
dNi(s) − α̃[it](θ,X−j i(s)

)
Yi(s) ds

]
,

where α̃[it](θ, x−j ) = θ + c + ∑d
l �=j g̃

[it]
l (xl). For each it = 0,1, . . . , let

g̃
[it+1]
j (xj ) = θ̂ maximize l̃ [it+1]

n (θ) with respect to θ ∈ �. In the multiplicative
model, define for each j and xj the following updated estimator:

h̃
[it+1]
j (xj ) =

∑n
i=1

∫ T
0 kb(xj − Xji(s)) dNi(s)

ĉ
∑n

i=1
∫ T

0 kb(xj − Xji(s))
∏

k �=j h̃
[it]
k (Xki(s))Yi(s) ds

,(21)

where it = 0,1, . . . . We have the following result.

THEOREM 3. Suppose that all the conditions of Theorem 1 apply. Then there
exist bounded continuous functions b

[m]
Ak (·) and b

[m]
Mk(·), k = 0,1, . . . , d, such that

nr/(2r+1)
{
g̃

[m]
j (xj ) − g̃o

j (xj )
} → pb

[m]
Aj (xj ) when (3) is true,

nr/(2r+1)
{
h̃

[m]
j (xj ) − h̃o

j (xj )
} → pb

[m]
Mj (xj ) when (4) is true.

This theorem says that the m-step estimator has the same asymptotic variance as
the oracle estimator, although the biases are different. This is true for any m ≥ 1.

The number of iterations only affects the bias of the estimator and perhaps the
quality of the asymptotic approximation. Thus, from a statistical point of view,

one iteration from g̃
[0]
j (xj ) and h̃

[0]
j (xj ) seems to be all that is needed. This result

is similar to what is known in the parametric case, that is, that one step from an
initial root-n consistent estimator is asymptotically equivalent to the full maximum
likelihood (or more generally optimization) estimator; see Bickel (1975).

APPENDIX

For two random variables Xn,Yn, we say that Xn � Yn whenever Xn =
Yn(1 + op(1)).

Preliminary results. We first establish an exponential inequality, which is
a version of Bernstein’s inequality for sums of independent martingales. This is
used in establishing the uniform convergence of α̂, which is the third result of this
section.

Let (�,F ,P) be a probability triple and let {Ft}t≥0 be a filtration satisfying the
usual conditions. Consider n independent martingales M1, . . . ,Mn. Let V2,i be the
predictable variation of Mi and let Vm,i be the mth-order variation process of Mi ,
i = 1, . . . , n, m = 3,4, . . . .
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LEMMA 1. Fix 0 < T ≤ ∞ and suppose that for some FT -measurable
random variable R2

n(T ) and some constant 0 < K < ∞, one has
∑n

i=1 Vm,i(T ) ≤
(m!/2)Km−2R2

n(T ). Then, for all a > 0, b > 0,

Pr

(
n∑

i=1

Mi(T ) ≥ c and R2
n(T ) ≤ d2

)
≤ exp

[
− c2

2(cK + d2)

]
.(22)

PROOF. Define for 0 < λ < 1/K , i = 1, . . . , n, Zi(t) = λMi(t)−Si(t), t ≥ 0,

where Si is the compensator of

Wi = 1
2λ2〈Mc

i ,M
c
i 〉 + ∑

s≤·

(
exp[λ|�Mi(s)|] − 1 − λ|�Mi(s)|).

Then expZi is a supermartingale, i = 1, . . . , n [see the proof of Lemma 2.2
in van de Geer (1995)]. So E expZi(T ) ≤ 1, i = 1, . . . , n. But then also
E exp[∑n

i=1 Zi(T )] ≤ 1. One easily verifies that
∑n

i=1 Si(T ) ≤ λ2R2
n(T )/

2(1 − λK). So on the set A = {∑n
i=1 Mi(T ) ≥ c and R2

n(T ) ≤ d2}, one has
exp[∑n

i=1 Zi(T )] ≥ exp[λc − λ2d2/2(1 − λK)]. Therefore, Pr(A) ≤ exp[−λc +
λ2d2/2(1 − λK)]. The result follows by choosing λ = c/(d2 + Kc). �

This result is formulated for fixed T , and K may depend on T and n. If the
conditions of Lemma 1 hold for all T,n, then it can be extended to stopping times
[see Section 8.2 in van de Geer (2000) for related results].

In the next lemma, we assume as in the main text that T is fixed and finite
and write

∫ = ∫ T
0 . We also assume that the �n

i (t) exist and are bounded by a
(nonrandom) constant � for all 1 ≤ i ≤ n and 0 ≤ t ≤ T .

LEMMA 2. Let � be a bounded subset of R
d+1 and, for each θ ∈ �, consider

independent predictable functions g1,θ , . . . , gn,θ . Suppose that for some constants
Ln, Kn, and ρn ≥ 1, we have

|gi,θ (t) − gi,θ̃ (t)| ≤ Ln|θ − θ̃ | for all θ, θ̃ ∈ � and all i ≥ 1 and t ≥ 0,

|gi,θ (t)| ≤ Kn for all θ ∈ � and all i ≥ 1 and t ≥ 0,
(23)

1

n

n∑
i=1

∫
|gi,θ (t)|2 dt ≤ ρ2

n for all θ ∈ � and all n > 1,

Ln ≤ nν for all n > 1 and some ν < ∞
(24)

and

Kn ≤
√

n

logn
ρn for all n > 1.(25)



ESTIMATING HAZARD FUNCTIONS 477

Then, for some constant c0, we have, for all C ≥ c0 and n > 1,

Pr

(
sup
θ∈�

1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θ d(N

(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ Cρn

√
log n

)
≤ c0 exp

[
−C log n

c0

]
.

PROOF. From Lemma 1, we know that, for each θ ∈ �, a > 0 and R > 0,

Pr

(
1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θ d(N

(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ a and
1

n

n∑
i=1

∫
g2

i,θ d�
(n)
i ≤ R2

)

≤ 2 exp
[
− a2

2(aKnn
−1/2 + R2)

]
.

(26)

Let ε > 0 to be chosen later and let {θ1, . . . , θN } ⊂ � be such that, for each
θ ∈ �, there is a j (θ) ∈ 1, . . . ,N , such that |θ − θj (θ)| ≤ ε. Then, by the

Lipschitz condition (23), one has (1/
√

n)|∑n
i=1

∫
(gi,θ −gi,θj (θ)

) d(N
(n)
i −�

(n)
i )| ≤√

nLnε(1 + �̄), where �̄ is an upper bound for �
(n)
i (t), 1 ≤ i ≤ n, n ≥ 1, t ≥ 0.

Now, in (26), take a = Cρn

√
log n/2 and R2

n = ρ2
nλ̄, with λ̄ an upper bound for

λ
(n)
i (t), 1 ≤ i ≤ n, n ≥ 1, t ≥ 0. Moreover, take ε = a/(

√
nLn(1 + �̄)). With these

values, we find

Pr

(
sup
θ∈�

1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θ d(N

(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ Cρn

√
logn

)

= Pr

(
sup
θ∈�

1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θ d(N

(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ 2a

)

≤ Pr

(
max

j=1,...,N

1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θj

d(N
(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ a

)

≤ 2 exp
[

logN − a2

2(aKnn−1/2 + ρ2
nλ̄)

]
.

Because � is a bounded, finite-dimensional set, we know that, for some
constant c1, logN ≤ c1 log(1/ε). By our choice, ε = Cρn

√
logn/(2

√
nL(1 + �̄)),

and using condition (24), we see that, for C ≥ 1 (say) and some constant c2,
logN ≤ c2 log n. Invoking, moreover, condition (25), we arrive at

Pr

(
sup
θ∈�

1√
n

∣∣∣∣∣
n∑

i=1

∫
gi,θ d(N

(n)
i − �

(n)
i )

∣∣∣∣∣ ≥ Cρn

√
log n

)

≤ 2 exp
[
c2 log n − C2ρ2

n logn

8(Cρn

√
log nKnn−1/2/2 + ρ2

nλ̄)

]
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≤ 2 exp
[
c2 logn − C2 logn

8(C/2 + λ̄)

]

≤ 2 exp
[
c2 logn − C logn

8

]

≤ 2 exp
[
−C log n

16

]
,

where in the last two steps we take C ≥ 2λ̄ and C ≥ 16c2. �

Note that by the continuity of (23) and the boundedness of �, the statement
of Lemma 2 does not give rise to measurability problems. Note, moreover, that
(23)–(25) imply that Kn,ρn, and Ln cannot be chosen in an arbitrary manner.
Most important here is that the sup-norm should not grow too fast as compared to
the L2 norm.

LEMMA 3. Suppose that the assumptions stated in Theorem 1 hold. Then, for
any a = (a0, . . . , ad) with |a| ≤ r − 1,we have:

(a) sup
x∈I

∣∣Daê(x) − Dae(x)
∣∣ = OP (br−|a|) + OP

{(
logn

nbd+1+2|a|
)1/2}

,

(b) sup
x∈I

∣∣Daα̂(x) − Daα(x)
∣∣ = OP (br−|a|) + OP

{(
logn

nbd+1+2|a|
)1/2}

.

PROOF. We write Daê(x) − Dae(x) = Daê(x) − EDaê(x) + EDaê(x) −
eDa(x), a decomposition into a “stochastic” part Daê(x)−EDaê(x) and a “bias”
part EDaê(x) − Dae(x). Nielsen and Linton (1995) showed, for the case a = 0,

that EDaê(x) − Dae(x) = O (br) for any interior point x. The extension to
general a just uses integration by parts and the same Taylor series expansion.

We now turn to the stochastic part of ê(x). We claim that supx∈I |̂e(x)−
Eê(x)| = OP {(logn/nbd+1)1/2}. The pointwise result (without the logarithmic
factor) is given in Nielsen and Linton (1995). The uniformity (at the cost of the
logarithmic factor) follows by standard arguments, the key component of which
is the application of an exponential inequality like that obtained in Lemma 2.
We write ê(x) − Eê(x) = ∑n

i=1 ζ c
n,i(x), where ζ c

n,i(x) = ζn,i(x) − Eζn,i(x) with

ζn,i(x) = n−1 ∫ T
0 Kb(x − Xi(s))Yi(s) ds. Note that ζ c

n,i(x) are independent and
mean-zero random variables with mn = supx,i |ζ c

n,i(x)| = c1n
−1b−(d+1) for some

constant c1; thus, mn is uniformly bounded because nbd+1 → ∞ by assumption.

Following Nielsen and Linton (1995), we have σ 2
ni = var[ζ c

n,i(x)] ≤ c2n
−1b−(d+1)

for some constant c2. Let {B(x1, εL), . . . ,B(xL, εL)} be a cover of I, where
B(xl, ε) is the ball of radius ε centered at xl. Hence, εL = c3/L for some
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constant c3. We have, for some constant c4,

sup
x∈I

∣∣∣∣∣
n∑

i=1

ζ c
n,i(x)

∣∣∣∣∣ ≤ max
1≤l≤L

∣∣∣∣∣
n∑

i=1

ζ c
n,i(xl)

∣∣∣∣∣ + max
1≤l≤L

sup
x∈B(xl,ε)

n∑
i=1

|ζ c
n,i(xl) − ζ c

n,i(x)|

≤ max
1≤l≤L

∣∣∣∣∣
n∑

i=1

ζ c
n,i(xl)

∣∣∣∣∣ + c4εL

b2d+2

using the differentiability of k. Provided εL

√
n/(b3d+3 log n) → 0, we have, by

the Bonferroni and Bernstein inequalities,

Pr

(√
nbd+1

log n
max

1≤l≤L

∣∣∣∣∣
n∑

i=1

ζ c
n,i(xl)

∣∣∣∣∣ > λ

)

≤
L∑

l=1

Pr

(∣∣∣∣∣
n∑

i=1

ζ c
n,i(xl)

∣∣∣∣∣ > λ

√
logn

nbd+1

)
+ o(1)

≤
L∑

l=1

exp

(
− λ2(log n/(nbd+1))

2c2(1/(nbd+1)) + (c1/(nbd+1))λ
√

logn/(nbd+1)

)

=
L∑

l=1

exp
(−(log nλ2/2c2)

)
.

By taking λ large enough, the latter probability goes to 0 fast enough to kill
L(n) = nκ with κ = 1 + η + (3d + 3)/(2r + 1) for some η > 0, and this choice
of L satisfies the restriction. The result for general a follows the same pattern;
differentiation to order a changes K to Ka and adds an additional bandwidth factor
of order b−2|a|.

To establish (b), we first write α̂(x) = ô(x)/ê(x) and α(x) = o(x)/e(x), where
o(x) = α(x)e(x). We then apply the chain rule and Lemma 3 to obtain

sup
x∈I

∣∣Daα̂(x) − Daα(x)
∣∣

≤ κ
∑

|c|≤|a|
sup
x∈I

∣∣Dcô(x) − Dco(x)
∣∣ + OP (br−|a|) + OP

{(
logn

nbd+1+2|a|
)1/2}

for some positive finite constant κ, and it suffices to establish the result for the
numerator statistic Dcô(x)−Dco(x) only. Again, we shall just work out the details
for the case a = 0. The bias calculation Eô(x) − o(x) is as for E ê(x) − e(x)

discussed above. Therefore, it suffices to show that supx∈I |̂o(x) − Eô(x)| =
supx∈I |Vn(x)| is the stated magnitude, where Vn(x) = n−1 ∑n

i=1
∫ T

0 Kb(x −
Xi(s)) d(Ni(s) − �i(s)). We now apply Lemma 2 with gi,θ (t) = Kb(x − Xi(t)),
θ = x and � = I. Conditions (23)–(25) hold with probability tending to 1 for



480 O. B. LINTON, J. P. NIELSEN AND S. VAN DE GEER

some constant γ and Kn = γ · b−(d+1), Ln = γ · b−2(d+1) and ρ2
n = γ · b−(d+1) by

the boundedness and differentiability of the kernel. It now follows that for some
constant c0 we have, for all C ≥ c0 and n > 1, Pr[supx∈I

√
nbd+1/ logn|Vn(x)| ≥

C] ≤ c0 exp(−C logn/c0) as required. �

PROOF OF THEOREM 1. Standard empirical process arguments give that
νn(α̂(xj , ·)) − νn(α(xj , ·)) p→ 0 using (A5), Lemma 3 and the fact that r > d/2.

Thus, it suffices to work with the stochastic integrator Q̂−j replaced by the
deterministic Q−j .

Write (α̂ − α)(x) = (Vn(x) + Bn(x))/ê(x), where Vn(x) = n−1 ∑n
i=1

∫ T
0 Kb×

(x − Xi(s)) dMi(s) and Bn(x) = n−1 ∑n
i=1

∫ T
0 Kb(x − Xi(s))[α(Xi(s))−

α(x)]Yi(s) ds. Therefore,(
α̂Q−j

− αQ−j

)
(xj ) = VQ−j

(xj ) + B
Q−j

(xj ),(27)

where VQ−j
(xj ) = n−1 ∑n

i=1
∫ T

0 H
(n)
i (xj , s) dMi(s) and B

Q−j
(xj ) = ∫

I−j
Bn(x)/

ê(x) dQ−j (x−j ), with H
(n)
i (xj , s) = ∫

I−j
Kb(x − Xi(s))/ ê(x) dQ−j (x−j ). The

proof of (11) is divided into the proofs of the following two results:

nr/(2r+1)V
Q−j

(xj ) ⇒ N
(
0, υj (xj )

)
,(28)

nr/(2r+1)B
Q−j

(xj )
p→ mj(xj ).(29)

PROOF OF (28). Define

h̃
(n)
i (xj , s) =

∫
I−j

Wni(x, s)

e(x)
dQ−j (x−j ),

ĥ
(n)
i (xj , s) =

∫
I−j

Wni(x, s)

ê(x)
dQ−j (x−j )

and

ḧ
(n)
i (xj , s) =

∫
I−j

Wni(x, s)

ê−i(x)
dQ−j (x−j ),

where ê−i(x) = n−1 ∑
j �=i

∫ T
0 Kb(x − Xj(s))Yj (s) ds is the leave-one-out expo-

sure estimator, while Wni(x, s) = (b/n)1/2 Kb(x − Xi(s)). Then define

(nb)1/2ṼQ−j
(xj ) =

n∑
i=1

∫ T

0
h̃

(n)
i (xj , s) dMi(s).

The proof of (28) is given in a series of lemmas below. We approximate V
Q−j

(xj )

by ṼQ−j
(xj ) and then apply a martingale central limit theorem to this quantity.

Lemma 4 gives the CLT for ṼQ−j
(xj ), while Lemmas 5 and 6 show that the

remainder terms are of smaller order.



ESTIMATING HAZARD FUNCTIONS 481

LEMMA 4. (nb)1/2ṼQ−j
(xj ) ⇒ N(0, υ∗

j (xj )), where υ∗
j (xj ) = γ · υj (xj ).

PROOF. Since the h̃
(n)
i processes are predictable, asymptotic normality fol-

lows by an application of Rebolledo’s central limit theorem for martingales
[see Proposition 1 of Nielsen and Linton (1995)]. Specifically, we must show that,
for all ε > 0,

n∑
i=1

∫ T

0

{
h̃

(n)
i (xj , s)

}21
(|h̃(n)

i (xj , s)| > ε
)
d〈Mi〉(s) p→ 0,(30)

n∑
i=1

∫ T

0

{
h̃

(n)
i (xj , s)

}2
d〈Mi〉(s) p→ υ∗

j (xj ),(31)

where 〈M〉 is the quadratic variation of a process M, in our case 〈Mi〉 (s) =
�i(s) = α(s,Zi(s))Yi(s). We make a further approximation of h̃

(n)
i (xj , s) by

h
(n)

i (xj , s) = n−1/2b−1/2k

(
xj − Xji(s)

b

)
q−j (X−j i(s))

e(xj ,X−j i(s))
,

which is valid because
∑n

i=1
∫ T

0 [{h̃(n)
i (xj , s)}2 − {h(n)

i (xj , s)}2]d〈Mi〉(s) p→0.

Then we have
n∑

i=1

∫ T

0

{
h

(n)

i (xj , s)
}2

d〈Mi〉(s)

p→E

[∫ T

0

1

b
k2

(
xj − Xji(s)

b

) q2−j (X−j i(s))

e2(xj ,X−j i(s))
α

(
s,Zi(s)

)
Yi(s) ds

]
by the law of large numbers for independent random variables. The above
expectation is approximately equal to υj (xj ), by Fubini’s theorem, a change
of variables and dominated convergence. The proof of (30) follows because
sups∈[0,T ] |h̃(n)

i (xj , s)| ≤ k/
√

nb for some constant k < ∞. �

To complete the proof of (28), we now must show that

(nb)1/2{ṼQ−j
(xj ) − V

Q−j
(xj )

} p→0.(32)

By the triangle inequality,

(nb)1/2∣∣ṼQ−j
(xj ) − VQ−j

(xj )
∣∣

≤
∣∣∣∣ n∑
i=1

∫ T

0
ĥ

(n)
i (xj , s) dMi(s) −

n∑
i=1

∫ T

0
ḧ

(n)
i (xj , s) dMi(s)

∣∣∣∣
+

∣∣∣∣ n∑
i=1

∫ T

0
ḧ

(n)
i (xj , s) dMi(s) −

n∑
i=1

∫ T

0
h̃

(n)
i (xj , s) dMi(s)

∣∣∣∣.
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Therefore, it suffices to show that each of these terms goes to 0 in probability. This
is shown in Lemmas 5 and 6 below.

LEMMA 5.
n∑

i=1

∫ T

0
ĥ

(n)
i (xj , s) dMi(s) −

n∑
i=1

∫ T

0
ḧ

(n)
i (xj , s) dMi(s)

p→0.(33)

PROOF. By the Cauchy–Schwarz inequality,∣∣ĥ (n)
i (xj , s) − ḧ

(n)
i (xj , s)

∣∣
=

∣∣∣∣ ∫
I−j

Wni(x, s)
êi(x) − ê(x)

ê(x)̂e−i (x)
dQ−j (x−j )

∣∣∣∣
≤

[∫I−j
W 2

ni(x, s) dQ−j (x−j ) · ∫
I−j

{̂e−i(x) − ê(x)}2 dQ−j (x−j )]1/2

infx∈I |̂e(x)̂e−i (x)| ,

where ê−i(x) − ê(x) = n−1 ∫ T
0 Kb{x − Xi(t)}Yi(t) dt. By straightforward bound-

ing arguments and Lemma 3, we can show that sup0≤s≤T | ∫I−j
W 2

ni(x, s)×
dQ−j (x−j )| = OP (n−1b−(d+1)),

∫
I−j

{̂e−i(x) − ê(x)}2 dQ−j (x−j ) = OP (n−2×
b−(d+1)) and infx∈I |̂e(x)̂e−i (x)| ≥ ε + op(1) for some ε > 0. It follows that∣∣∣∣∣

n∑
i=1

∫ T

0
ĥ

(n)
i (xj , s) dMi(s) −

n∑
i=1

∫ T

0
ḧ

(n)
i (xj , s) dMi(s)

∣∣∣∣∣
≤ nOP

(
1

nb(d+1)/2

)
OP

(
1

n1/2b(d+1)/2

)
,

(34)

which is oP (1) because nb2(d+1) → ∞. �

LEMMA 6.
n∑

i=1

∫ T

0
ḧ

(n)
i (xj , s) dMi(s) −

n∑
i=1

∫ T

0
h̃

(n)
i (xj , s) dMi(s)

p→0.(35)

PROOF. We write
Mt = Mt1 + Mt2 + Mt3

=
n∑

i=1

∫ T

0

{∫
I−j

Wni(x, s)
e(x) − E(̂e−i(x))

e2(x)
dQ−j (x−j )

}
dMi(s)

+
n∑

i=1

∫ T

0

{∫
I−j

Wni(x, s)
E(̂e−i(x)) − ê−i(x)

e2(x)
dQ−j (x−j )

}
dMi(s)

+
n∑

i=1

∫ T

0

{∫
I−j

Wni(x, s)
{e(x) − ê−i(x)}2

e2(x)̂e−i (x)
dQ−j (x−j )

}
dMi(s).

(36)
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We first examine Mt1. We have {E [̂e−i(x)] − e(x)}/e2(x) = brγn(x) for some
bounded continuous function γn, and hence∫

I−j

Wni(x, s)
(
Ei [̂e−i (x)] − e(x)

)
e−2(x) dQ−j (x−j )

= n−1/2b−1/2brk

(
xj − Xji(s)

b

)
γ ∗
n

(
xj ,X−j i(s)

)
for some bounded continuous function γ ∗

n . Therefore,

Mt1 � br

√
nb

n∑
i=1

∫ T

0
γ ∗
n

(
xj ,X−j i(s)

)
k

(
xj − Xji(s)

b

)
dMi(s) = Op(br),

which follows by the same arguments used in the proof of Theorem 1 of Nielsen
and Linton (1995) because this term is like the normalized stochastic part of a
one-dimensional kernel smoother multiplied by br. Therefore, Mt1 = op(1).

The term Mt3 in (36) is handled by direct methods using the uniform
convergence of ê−i (x), which follows from Lemma 3. Thus, Mt3 = OP (n−1/2×
b−3(d+1)/2) + OP (n1/2b2r−(d+1)/2).

We now deal with the stochastic term Mt2, which is of the form Mt2 =∑n
i=1

∫ T
0 h

(n)
i (u) dMi(u), where the Mi process is a martingale, but h

(n)
i (u) is not

a predictable process according to the usual definition. Therefore, we must use
the argument developed in Nielsen (1999) and Linton, Nielsen and van de Geer
[(2001), Lemma 4] to solve this “predictability problem.” Let

h
(n)
i (u) =

∫
I−j

Wni(x,u)
ê−i(x) − E [̂e−i(x)]

e2(x)
dQ−j (x−j )

=
n∑

l=1, l �=i

{anil(u) − Eianil(u)},
(37)

where Ei denotes conditional expectation given Xi(u), while

anil(u) = (n3b−1)−1/2

×
∫
I−j

∫ T

0
Yl(s)

Kb(x − Xi(u))Kb(x − Xl(s))

e2(x)
ds dQ−j (x−j ).

Let also h
(n)
i,j (u) = ∑n

l=1,l �=i,j {anil(u) − Eianil(u)}. We show that

n∑
i=1

E

∫ T

0

{
h

(n)
i (u)

}2
d�i(u) ≤ c′

nbd+1

1

nb

n∑
i=1

∫ T

0
Ek2

(
xj − Xji(u)

b

)
d�i(u)

= O(n−1b−(d+1)) = op(1),
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because nb(d+1) → ∞. Furthermore, h
(n)
i (u) − h

(n)
i,j (u) = anij (u) − Eianij (u), so

that similar arguments show that

E

∫ T

0

{
h

(n)
i (u) − h

(n)
i,j (u)

}2
d�i(u) ≤ O(n−3b−(d+1)).

Applying Lemma 4 of Linton, Nielsen and van de Geer (2001), we have
established that E[M2

t2] = o(1), as required. This concludes the proof of (35).
�

PROOF OF (29). We have

BQ−j
(xj ) =

∫
I−j

Bn(x)

e(x)
dQ−j (x−j ) +

∫
I−j

Bn(x)
ê(x) − e(x)

ê(x)e(x)
dQ−j (x−j ),

where, by the uniform convergence result of Lemma 3(a),

∣∣∣∣ ∫
I−j

Bn(x)
ê(x) − e(x)

ê(x)e(x)
dQ−j (x−j )

∣∣∣∣
≤ supx−j∈I−j

|Bn(x)| supx−j∈I−j
|̂e(x) − e(x)|

infx−j∈I−j
|̂e(x)e(x)|

= OP (br)OP (br) = oP (br).

The term
∫
I−j

(Bn(x)/e(x)) dQ−j (x−j ) is handled by Taylor’s expansion. Specif-
ically, we show using (A4) and the fact that x is an interior point of X that

E

[∫
I−j

Bn(x)

e(x)
dQ−j (x−j )

]
= µr(k)

r! br
d∑

j=0

∫
I−j

β
(r)
j (x) dQ−j (x−j ){1 + o(1)}

by continuity and dominated convergence. The variance of
∫
I−j

(Bn(x)/

e(x)) dQ−j (x−j ) is of smaller order. This concludes the proof of (11). �

PROOF OF (12) AND (13). By Taylor’s expansion,

α̂A(x) − αA(x) =
d∑

j=0

{
α̂Q−j

(xj ) − αQ−j
(xj )

} + OP (n−1/2),

α̂M(x) − αM(x) = 1

cd

d∑
j=0

{
α̂Q−j

(xj ) − αQ−j
(xj )

} ∏
k �=j

αQ−k
(xk) + δn,

where δn = OP (n−1/2) + OP (
∑d

j=0 |α̂Q−j
(xj ) − αQ−j

(xj )|2). We next substitute
in the expansions for α̂Q−j

(xj ) − αQ−j
(xj ), which were obtained above. To show

that α̂Q−j
(xj ) − αQ−j

(xj ) and α̂Q−k
(xk) − αQ−k

(xk) are uncorrelated, it suffices
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to show that the leading stochastic terms are so. We have

cov

(
n∑

i=1

∫ T

0
h̃

(n)
i (xj , s) dMi(s),

n∑
i=1

∫ T

0
h̃

(n)
i (xk, s) dMi(s)

)

= b

∫
X

[∫
I−j

kb(xj − wj)kb(x
′
k − wk)

∏
m�=j,k kb(x

′
m − wm)

e(xj , x
′−j )

dQ−j (x
′−j )

×
∫
I−k

kb(x
′
j − wj)kb(xk − wk)

∏
m�=j,k kb(x

′
m − wm)

e(xk, x
′−k)

dQ−k(x
′−k)

]
(38)

× e(w)dwd〈Mi(s)〉
� b

∫
X

kb(xj − wj)kb(xk − wk)
q−j (w−j )

e(xj ,w−j )

q−k(w−k)

e(xk,w−k)
e(w)α(w)dwds

= O(b).

The first equality follows by the independence of the processes, while the
second equality follows by a change of variables and dominated convergence.
Therefore, the covariance between the normalized component estimators is
O(b)—so the covariance between the unnormalized estimators is O(1/n). �

PROOF OF THEOREM 2. We give the result for the additive case only because
the multiplicative estimator is somewhat easier—it is explicitly defined and the
proof follows directly from the results of Nielsen and Linton (1995). Let Sn(θ) =
lnj (θ) − lnj (θ0), where θ0 = gj (xj ). Then we show that

sup
θ∈�

|Sn(θ) − S(θ)| = op(1),(39)

S(θ) < 0 = S(θ0) ∀ θ �= θ0,(40)

where

S(θ) =
∫ [

ln
{

α(θ, x−j )

α(x)

}
− α(θ, x−j )

α(x)
+ 1

]
α(x)e(x) dx−j .

The result (39) follows from the same arguments as in Lemma 3. The result (40)
follows because S(θ) is continuous in θ at θ0 and because ln(x) − x + 1 < 0 for
all x �= 1. It follows that at least one consistent solution θ̂ exists to the pseudo-
likelihood equation. By standard arguments, we obtain that

θ̂ − θ0 = −
[
∂2Sn

∂θ2
(θ0)

]−1
∂Sn

∂θ
(θ0) × [1 + op(1)],
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where

∂Sn

∂θ
(θ0) = 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)[ dNi(s)

α(θ0,X−j i(s))
− Yi(s) ds

]
,

∂2Sn

∂θ2
(θ0) = −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) dNi(s)

α2(θ0,X−j i(s))
.

We have (∂Sn/∂θ)(θ0) = Tn1 + Tn2, where

Tn1 = n−1
n∑

i=1

∫ T

0
kb

(
xj − Xji(s)

) dMi(s)

α(θ0,X−j i(s))

satisfies the central limit theorem of Nielsen and Linton (1995) at rate n−1/2b−1/2,

while

Tn2 = n−1
n∑

i=1

∫ T

0
kb

(
xj − Xji(s)

)[ α(Xi(s))

α(θ0,X−j i(s))
− 1

]
Yi(s) ds

is a bias term that converges in probability after dividing through by br to a
constant for each xj ∈ Ij . We also have

∂2Sn

∂θ2
(θ0) = −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) d�i(s)

α2(θ0,X−j i(s))

− 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) dMi(s)

α2(θ0,X−j i(s))

= −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) d�i(s)

α2(θ0,X−j i(s))
+ op(1)

= −
∫

e(x)

α(x)
dx−j + op(1).

(41)

Together, these results imply (16). �

PROOF OF THEOREM 3. We just show the argument for the additive case.
First, we establish the result for it = 1. We have

sup
θ∈�

∣∣̃l [1]
nj (θ) − lnj (θ)

∣∣
≤ sup

θ∈�

∣∣∣∣∣1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)
ln

α̃[0](θ,X−j i(s))

α(θ,X−j i(s))
dNi(s)

∣∣∣∣∣
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+ sup
θ∈�

∣∣∣∣∣1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)[
α̃[0](θ,X−j i(s)

)

− α
(
θ,X−j i(s)

)]
Yi(s) ds

∣∣∣∣∣
= op(1),

provided supθ∈� supx−j
|α̃[0](θ, x−j ) − α(θ, x−j )| = op(1). In fact, from

Lemma 3,

sup
θ∈�

sup
x−j

∣∣α̃[0](θ, x−j ) − α(θ, x−j )
∣∣

≤ d sup
x

|α̂(x) − α(x)| + Op(n−1/2)

= Op

(√
logn

nbd+1

)
+ Op(br),

which is op(1) under our bandwidth conditions. It follows that g̃
[1]
j (xj ) = θ̂ is

consistent. Indeed, it follows that supxj
|g̃[1]

j (xj ) − gj (xj )| = op(1).

By the same arguments as in the proof of Theorem 2, we have

θ̂ − θ0 = −
[∂2 l̃

[1]
nj

∂θ2
(θ0)

]−1 ∂l̃
[1]

nj

∂θ
(θ0) × [1 + op(1)],(42)

where

∂l̃
[1]

nj

∂θ
(θ0) = 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)[ dNi(s)

α̃[0](θ0,X−j i(s))
− Yi(s) ds

]
,

∂2 l̃
[1]

nj

∂θ2
(θ0) = −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) dNi(s)

α̃[0](θ0,X−j i(s))2
.

By the triangle inequality,∣∣∣∣∂2 l̃
[1]

nj

∂θ2 (θ0) +
∫

e(x)

α(x)
dx−j

∣∣∣∣
≤

∣∣∣∣∂2 l̃
[1]

nj

∂θ2 (θ0) − ∂2lnj

∂θ2 (θ0)

∣∣∣∣ + ∣∣∣∣∂2lnj

∂θ2 (θ0) +
∫

e(x)

α(x)
dx−j

∣∣∣∣
= op(1)

by the uniform convergence of α̃[0](θ0,X−j i(s)) to α(θ0,X−j i(s)) and (41).
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Furthermore, we have

∂l̃
[1]

nj

∂θ
(θ0) − ∂lnj

∂θ
(θ0)

= −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)n

)

× [α̃[0](θ0,X−j i(s)) − α(θ0,X−j i(s))]dNi(s)

α(θ0,X−j i(s))2

+ 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)

× [α̃[0](θ0,X−j i(s)
) − α(θ0,X−j i(s))]2 dNi(s)

α(θ0,X−j i(s))2α̃[0](θ0,X−j i(s))
.

The second term is Op(logn/nbd+1) + Op(b2r) by uniform convergence argu-
ments and is op(n−r/(2r+1)) under our bandwidth conditions.

We have α̃[0](θ0,X−j i(s)) − α(θ0,X−j i(s)) = V [0](θ0,X−j i(s)) +
B[0](θ0,X−j i(s)) + Op(n−1/2), where V [0](θ0,X−j i(s)) = ∑

l �=j VQ−l
(Xli (s))

and B[0](θ0,X−j i(s)) = ∑
l �=j B

Q−l
(Xli (s)). Then

∂l̃
[1]

nj

∂θ
(θ0) − ∂lnj

∂θ
(θ0)

= −1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)V [0](θ0,X−j i(s))

α(θ0,X−j i(s))2
dNi(s)

− 1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

)B[0](θ0,X−j i(s))

α(θ0,X−j i(s))
2 dNi(s) + op(n−r/(2r+1))

≡ −[
V

[1]
j (xj ) + B

[1]
j (xj )

] + op(n−r/(2r+1)).

The terms V
[1]
j (xj ) and B

[1]
j (xj ) are averages of the stochastic and bias terms

of α̃[0]; therefore, V
[1]
j is of smaller order than

∑
l �=j VQ−l

, although B
[1]
j is the

same magnitude as
∑

l �=j BQ−l
.

LEMMA 7. Suppose that nr/(2r+1)B
[0]
l (xl)

p→b
[0]
l (xl) for some bounded

continuous functions b
[0]
l (xl). Then there exist bounded continuous functions

b
[1]
j (xj ) such that nr/(2r+1)B

[1]
j (xj )

p→b
[1]
j (xj ).
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PROOF. It suffices to show that for some b
[1]
j (xj ) we have

∣∣∣∣B̃[1]
j (xj ) − 1

nr/(2r+1)
b

[1]
j (xj )

∣∣∣∣ = op(n−r/(2r+1)),(43)

∣∣B[1]
j (xj ) − B̃

[1]
j (xj )

∣∣ = op(n−r/(2r+1)),(44)

where

B̃
[1]
j (xj ) = ∑

l �=j

n−1
n∑

i=1

∫ T

0
kb

(
xj − Xji(s)

)B[0]
(θ0,X−j i(s))

α(θ0,X−j i(s))2
ds

in which B
[0]

(θ0,X−j i(s)) = ∑
l �=j B

Q−l
(Xli (s)), where B

Q−l
(xl) = ∫

I−l
Bn(x)/

e(x) dQ−l(x−l).

The magnitude of B̃
[1]
j (xj ) is the same as the magnitude of B

[0]
(·), which has

been shown earlier to be OP (br), so that (43) is evident. By the triangle inequality,

we have∣∣B[1]
j (xj ) − B̃

[1]
j (xj )

∣∣
≤

∣∣∣∣∣∑
l �=j

n−1
n∑

i=1

∫ T

0
kb

(
xj − Xji(s)

)
B

∗
Q−l

(Xli (s)) ds

∣∣∣∣∣ + op(n−r/(2r+1)),

where

B
∗
Q−l

(xl) = −
∫
I−l

Bn(x)

e(x)

ê(x) − e(x)

ê(x)
dQ−l(x−l).

By the Cauchy–Schwarz inequality the first term on the right-hand side is
bounded by a constant times b−1 sup |B

Q−l
(xl)| times sup |̂e(x) − e(x)|, which

is op(n−r/(2r+1)). �

LEMMA 8. We have V
[1]
j (xj ) = oP (n−r/(2r+1)).

PROOF. Let

Ṽ
[1]
j (xj ) = ∑

l �=j

1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) Ṽ
Q−l

(Xli (s))

α(θ0,X−j i(s))2 ds,

V
[1]
j (xj ) = ∑

l �=j

1

n

n∑
i=1

∫ T

0
kb

(
xj − Xji(s)

) V
Q−l

(Xli (s))

α(θ0,X−j i(s))
2 ds,
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where

V
Q−j

(xj ) = n−1
n∑

i=1

∫ T

0
kb

(
xj − Xji(s)

) q−j (X−j i(s))

e(xj ,X−j i(s))
dMi(s).

Then, by the triangle inequality, |V [1]
j (xj )| ≤ |V [1]

j (xj )|+ |Ṽ [1]
j (xj )−V

[1]
j (xj )|+

|V [1]
j (xj ) − Ṽ

[1]
j (xj )|. Interchanging summations, we have

V
[1]
j (xj ) = 1

n

n∑
k=1

∫ T

0

∑
l �=j

q−l(X−lk(t))

e(xl,X−lk(t))

×
{

1

n

n∑
i=1

∫ T

0

kb(xj − Xji(s))kb(Xli (s) − Xlk(t)) ds

α(θ0,X−j i(s))2

}
dMk(t)

� 1

n

n∑
k=1

∫ T

0

∑
l �=j

q−l(X−lk(t))

e(xl,X−lk(t))

∫
e
(
xj ,Xlk(t), x−j,l

)
dx−j,l dMk(t),

(45)

where x−j,l is the subvector of x that has excluded xj and xl. The approximation
in (45) is valid by the same arguments given in (38)—namely, the covariance
between different components is O(1/n). See Linton (1997) for a similar

calculation. It now follows that V
[1]
j (xj ) = Op(n−1/2) as required. Finally, we

show that |Ṽ [1]
j (xj )−V

[1]
j (xj )|+|V [1]

j (xj )− Ṽ
[1]
j (xj )| = op(n−r/(2r+1)) by using

similar arguments to those used already. �

The proof for general it is by induction. First, we have established the expansion
for it = 1. Now suppose that the expansion holds for iteration it. Then the
expansion holds for iteration it + 1 by the same calculations given above for
iteration one. The multiplicative case follows by somewhat more direct arguments.

�
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