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ESTIMATION IN A COX REGRESSION MODEL WITH
A CHANGE-POINT ACCORDING TO A THRESHOLD

IN A COVARIATE

BY ODILE PONS

INRA and University of Paris V

We consider a nonregular Cox model for independent and identically
distributed right censored survival times, with a change-point according to the
unknown threshold of a covariate. The maximum partial likelihood estimators
of the parameters and the estimator of the baseline cumulative hazard are
studied. We prove that the estimator of the change-point is n-consistent
and the estimator of the regression parameters are n1/2-consistent, and we
establish the asymptotic distributions of the estimators. The estimators of the
regression parameters and of the baseline cumulative hazard are adaptive in
the sense that they do not depend on the knowledge of the change-point.

1. Introduction. The proportional hazards regression model introduced by
Cox (1972) assumes that conditionally on a vector of covariates Z, the hazard
function of a survival time is λ(t | Z) = λ(t) exp{βT Z(t)} at t ≥ 0, where β is a
vector of unknown regression parameters and λ is an unknown and unspecified
baseline hazard function. Inference on the regression parameters is based on a
partial likelihood and the asymptotic properties of the estimators of β and of the
cumulative hazard function gave rise to many papers, among them Cox (1975),
Tsiatis (1981), Næs (1982), Bailey (1983) for time-independent covariates, and
Andersen and Gill (1982) and Prentice and Self (1983) in a more general set-up.
In data analysis, the assumption of proportional hazards is not always relevant in
the whole range of a covariate and the covariate may be dichotomized to define
new variables satisfying this assumption [Kleinbaum (1996)]. This procedure led
to a two-phase Cox model with a change-point according to a threshold that may
be fixed or estimated from the data. Several authors also considered a nonregular
Cox model involving a two-phase regression on time-dependent covariates, with a
change-point at an unknown time [Liang, Self and Liu (1990), Luo, Turnbull and
Clark (1997) and Luo (1996)].

The aim of the present paper is to study the asymptotic behavior of the
maximum partial likelihood estimator of the parameters in a nonregular Cox
model with a change-point according to the unknown threshold of a covariate. Let
Z = (ZT

1 ,ZT
2 ,Z3)

T be a vector of covariates, where Z1 and Z2 are respectively
p and q-dimensional left-continuous processes with right-hand limits and Z3 is a
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one-dimensional random variable. We assume that conditionally on Z the hazard
rate of a survival time T 0 has the form

λθ (t | Z) = λ(t) exp{rθ (Z(t))}(1.1)

with

rθ (Z(t)) = αT Z1(t) + βT Z2(t)1{Z3≤ζ } + γ T Z2(t)1{Z3>ζ },
where θ = (ζ, ξT )T , with ξ = (αT ,βT , γ T )T the vector of the regression
parameters, and λ is an unknown baseline hazard function. Here the regression
parameters α, β and γ belong respectively to bounded subsets of Rp and Rq and
the threshold ζ is a parameter lying in a bounded interval [ζ1, ζ2] strictly included
in the support of Z3. The true parameter values θ0 and λ0 are supposed to be
identifiable, that is, θ0 is such that β0 �= γ0 and a change-point actually occurs
at ζ0. We suppose that the survival time T 0 with hazard function (1.1) may be
right-censored at a noninformative censoring time C such that C is independent
of T 0 conditionally on Z. We observe the censored time T = T 0 ∧ C and the
censoring indicator δ = 1{T 0≤C}.

In the same framework, Luo and Boyett (1997) studied a model where a constant
is added to the regression on a covariate Z1 after a change-point in another
variable Z2, rθ (Z(t)) = αT Z1(t) + β1{Z2≤ζ }. They proved the consistency of
the maximum partial likelihood estimators and applied the results to a clinical
data set of patients with leukemia. Jespersen (1986) studied a test for no change-
point in the submodel rθ (Z) = β1{Z≤ζ } of (1.1) and investigated risk factors for
breast cancer with a threshold in the effect of estrogen receptors. Several other
applications of such models may also be found in the literature, for example, a
study of the effect of tumor thickness on survival with melanoma in Andersen,
Borgan, Gill and Keiding (1993), pages 547–550, and others mentioned by Luo
and Boyett (1997). Model (1.1) extends these models by taking into account the
smallest value of a variable Z3 having an interacting effect on covariates Z2 in a
Cox model, as in the linear models with a change in regression coefficients.

Inference will be based on a sample (Ti, δi,Zi)1≤i≤n of n independent and
identically distributed observations. As in the classical Cox model for i.i.d.
individuals, we assume that the variables Ti are observed on a time interval [0, τ ]
such that Pr(T ≥ τ ) > 0 [Andersen and Gill (1982), Theorem 4.1]. In the
model (1.1), θ0 is estimated by the value θ̂n that maximizes the partial likelihood

Ln(θ) = ∏
i≤n

{
exp{rθ (Zi(Ti))}∑

j Yj (Ti) exp{rθ (Zj (Ti))}
}δi

where Yi(t) = 1{Ti≥t} indicates whether individual i is still under observation at t .

Let S
(0)
n (t; θ) = ∑

i≤n Yi(t) exp{rθ (Zi(t))}. The logarithm of the partial likelihood
ln = logLn is written

ln(θ) = ∑
i≤n

δi

{
rθ (Zi(Ti)) − logS(0)

n (Ti; θ)
}
.(1.2)
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The estimator θ̂n is obtained in the following way: For fixed ζ , let ξ̂n(ζ ) =
arg maxξ∈
 ln(ζ, ξ) and ln(ζ ) = ln(ζ, ξ̂n(ζ )). Then ζ0 is estimated by ζ̂n which
satisfies the relationship

ζ̂n = inf
{
ζ ∈ [ζ1, ζ2] : max{ln(ζ−), ln(ζ )} = sup

ζ∈[ζ1,ζ2]
ln(ζ )

}
,

where ln(ζ
−) denotes the left-hand limit of ln at ζ . The maximum likelihood

estimator of ξ0 satisfies ξ̂n = ξ̂n(ζ̂n), and θ̂n = (ζ̂n, ξ̂n). The cumulative hazard
function �0(t) = ∫ t

0 λ0(s) ds is estimated as in Breslow (1972) by

�̂n(t) =
∫ t

0

dN̄n(s)

S
(0)
n (s; θ̂n)

.

In the two-phase linear regression models with a change-point over time and
Gaussian errors, a standard approach consists in indexing the observations
according to time, considered as fixed, and in estimating the change-point by
the proportion of data in the first phase of the regression [Csörgő and Horváth
(1997)]. In such regression models and for Poisson processes with a change-point
in the hazard rate [Nguyen, Rogers and Walker (1984) and Kutoyants (1984)],
maximum likelihood inference is classically based on random walks which appear
in a factorization of the likelihood as a product of terms for individuals in each
phase of the model. The Cox model (1.1) involves a nonparametric function λ0
and θ is estimated by maximization of the partial likelihood Ln which cannot be
simply related to random walks because all the individual contributions involve the
process S

(0)
n , and they are therefore all dependent and it is not possible to split (1.2)

into terms for individuals with Z3i ≤ ζ0 and individuals with Z3i > ζ0. Here we
follow the approach of Ibragimov and Has’minskii (1981) for the parameters of a
density with jumps, as in Kutoyants (1998) for change-points in nonhomogeneous
Poisson processes.

Assumptions and notation for the asymptotic properties of the estimators are
given in the following section. In Section 3 we establish the consistency and the
convergence rate of the estimators. In the nonregular model (1.1), the convergence
rate derives from the asymptotic behavior of the process u �→ {ln(θn,u) − ln(θ0)},
with θn,u = (ζ0 + n−1u1, ξ0 + n−1/2u2) for u = (u1, u2), u1 in R, u2 in Rp+2q .
We show that it is asymptotically bounded in probability, which entails that
ζ̂n is n-consistent and ξ̂n is n1/2-consistent. Section 4 presents weak convergence
results. They are deduced from the limiting distribution of the process u �→
{ln(θn,u) − ln(θ0)} on compact sets: n(ζ̂n − ζ0) converges weakly to the value v̂Q

where a jump process reaches its maximum and v̂Q is a.s. finite, n1/2(̂ξn − ξ0)

is asymptotically Gaussian, n(ζ̂n − ζ0) and n1/2(̂ξn − ξ0) are asymptotically
independent, n1/2(�̂n − �0) converges weakly to a Gaussian process. Moreover,
n1/2(̂ξn − ξ0) and n1/2(�̂n − �0) are adaptive in the sense that their limiting
distribution is the same as if ζ0 were known (Theorems 5 and 6). This result is
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important for inference on ξ0 and �0 in practical applications and it allows us to
estimate ζ0 on a grid in [ζ1, ζ2] with a path of order smaller than n−1. Technical
proofs are detailed in Section 5.

2. Notation and conditions. Let (�,F ,Pθ,λ)θ,λ be a family of complete
probability spaces provided with a history F = (Ft )t , where Ft ⊆ F is an
increasing and right-continuous filtration such that N and Z are F-adapted. We
assume that under Pθ,λ, T 0 satisfies (1.1), C and Z having the same distribution
under all probabilities Pθ,λ. Under the true parameter values, let P0 = Pθ0,λ0 and
let E0 be the expectation of the random variables. The processes Z1 and Z2 have
left-continuous sample paths with right-hand limits, with values in sets Z1 ⊂ Rp

and Z2 ⊂ Rq . The random variable Z3 has its values in Z3, a subset of R. For
t in [0, τ ], θ = (ζ, ξT )T and k = 0,1,2, we denote

Z̃(t; ζ ) = (
ZT

1 (t),ZT
2 (t)1{Z3≤ζ },ZT

2 (t)1{Z3>ζ }
)T

,

S(k)
n (t; θ) = ∑

i

Yi(t)Z̃
⊗k
i (t; ζ ) exp{rθ (Zi(t))},

where x⊗0 = 1, x⊗1 = x and x⊗2 = xxT , for x in Rp+2q . For 1 ≤ i ≤ n,
let Ni(t) = δi1{Ti≤t} be the counting process of death for individual i and let
Mi(t) = Ni(t) − ∫ t

0 Yi(s) exp{rθ0(Zi(s))}d�0(s), a martingale on [0, τ ]. We also

denote N̄n = ∑
i≤n Ni , M

(0)
n (t) = n−1/2{N̄n(t) − ∫ t

0 S
(0)
n (θ0) d�0} and M

(1)
n (t) =

n−1/2{∑i

∫ t
0 Z̃i(ζ0) dNi − ∫ t

0 S
(1)
n (θ0) d�0} = n−1/2 ∑

i

∫ t
0 Z̃i(ζ0) dMi .

Adapting the notation given in Andersen and Gill (1982), we define

s(k)(t; θ) = E0
[
Yi(t)Z̃

⊗k
i (t; ζ ) exp{rθ (Zi(t))}],

Vn(t; θ) = {
S(2)

n S(0)−1
n − [

S(1)
n S(0)−1

n

]⊗2}
(t; θ),

v(t; θ) = {
s(2)s(0)−1 − [

s(1)s(0)−1]⊗2}
(t; θ),

I (θ) =
∫ τ

0
v(s; θ)s(0)(s; θ0)λ0(s) ds.

We denote the first p components of s(1) by s
(1)
1 (t; θ) = E0[Yi(t)Z1i (t)×

exp{rθ(Zi(t)}]. Let also s
(1)−
2 (θ) and s

(1)+
2 (θ) be the q-dimensional components

of s(1) related to the component Z2 of Z under restrictions on the location of the
variable Z3 with respect to the parameter ζ ,

s
(1)−
2 (t; θ) ≡ s

(1)−
2 (t; ζ,α,β)

= E0
[
Yi(t)Z2i (t)1{Z3i≤ζ } exp

{
αT Z1i(t) + βT Z2i(t)

}]
,

s
(1)+
2 (t; θ) ≡ s

(1)+
2 (t; ζ,α, γ )

= E0
[
Yi(t)Z2i (t)1{Z3i>ζ } exp

{
αT Z1i (t) + γ T Z2i (t)

}]
.
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For ζ < ζ ′, let s
(1)
2 (]ζ, ζ ′], α,β) = s

(1)−
2 (ζ ′, α,β) − s

(1)−
2 (ζ,α,β) and s

(1)
2 (]ζ, ζ ′],

α, γ ) = s
(1)+
2 (ζ,α, γ ) − s

(1)+
2 (ζ ′, α, γ ). Similar notation is used for the processes

S
(k)
n ,

S(k)−
n (t; θ) = ∑

i

Yi(t)Z̃
⊗k
i (t; ζ )1{Z3i≤ζ } exp

{
αT Z1i (t) + βT Z2i (t)

}
,

S(k)+
n (t; θ) = ∑

i

Yi(t)Z̃
⊗k
i (t; ζ )1{Z3i>ζ } exp

{
αT Z1i (t) + γ T Z2i(t)

}
,

S
(1)
1n (t; θ) = ∑

i

Yi(t)Z1i (t) exp{rθ (Zi(t)},

S
(1)−
2n (t; θ) = ∑

i

Yi(t)Z2i (t)1{Z3i≤ζ } exp
{
αT Z1i (t) + βT Z2i (t)

}
,

S
(1)+
2n (t; θ) = ∑

i

Yi(t)Z2i (t)1{Z3i>ζ } exp
{
αT Z1i (t) + γ T Z2i (t)

}
, etc.,

and S
(k)−1
n denotes the inverse of S

(k)
n .

Using (1.2), the estimator θ̂n maximizes the process

Xn(θ) = n−1{ln(θ) − ln(θ0)}
(2.1)

= n−1
∑
i≤n

{
(rθ − rθ0)(Zi(Ti)) − log

S
(0)
n (Ti; θ)

S
(0)
n (Ti; θ0)

}

and we define the function

X(θ) =
∫ τ

0

{
(ξ − ξ0)

T s(1)(θ0) + (β − β0)
T s

(1)−
2 (ζ ∧ ζ0, α0, β0)

+ (γ − γ0)
T s

(1)+
2 (ζ ∨ ζ0, α0, γ0)

(2.2)
+ (β − γ0)

T s
(1)
2 (]ζ0, ζ ], α0, γ0)

+ (γ − β0)
T s

(1)
2 (]ζ, ζ0], α0, β0) − s(0)(θ0) log

s(0)(θ)

s(0)(θ0)

}
d�0.

The norms in Rp+2q and in (Rp+2q)⊗2 are denoted ‖ · ‖. The asymptotic
properties of the estimators will be established under the following conditions:

C1. The variable Z3 has a density h3 which is strictly positive, bounded and
continuous in a neighborhood of ζ0, supt∈[0,τ ] λ0(t) < ∞ and P0(T ≥ τ ) > 0.
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C2. There exists a neighborhood V (ζ0) of ζ0 such that the variance Var Z̃(t; ζ ) is
positive definite on [0, τ ] × V (ζ0),∫ τ

0
E0 inf

β

[
Y (t)

{
(β0 − γ0)

T Z2(t)
}2

eαT
0 Z1(t)+βT Z2(t)

∣∣ Z3 = ζ0

]
d�0 > 0,(2.3)

where the infimum is over β between β0 and γ0, and there exists a convex and
bounded neighborhood  of θ0 such that for k = 0,1,2,

E0 sup
t∈[0,1]

sup
θ∈

{(‖Z1(t)‖k + ‖Z2(t)‖k
)
erθ (Z(t))

}2
< ∞,(2.4)

sup
z∈[ζ1,ζ2]

E0

[
sup

t∈[0,1]
sup
θ∈

{(‖Z1(t)‖k + ‖Z2(t)‖k)
erθ (Z(t))}j ∣∣ Z3 = z

]
< ∞,

j = 1,2,

sup
z,z′

sup
t∈[0,1]

sup
θ∈

∣∣E0
{
erθ (Z(t)) | Z3 = z

} − E0
{
erθ (Z(t)) | Z3 = z′}∣∣ |z−z′|→0−→ 0,

where z and z′ vary in [ζ1, ζ2] and both z and z′ are either larger than ζ0 or
smaller than ζ0.

C3. The variables supt∈[0,1] supθ∈ ‖n−1S
(k)
n (t; θ) − s(k)(t; θ)‖ converge a.s. to

zero, k = 0,1,2.

If Z is a random variable, C3 is satisfied by the Glivenko–Cantelli theorem. If Z1 or
Z2 are processes, it may be proved by the arguments of Theorem 4.1, Appendix III,
in Andersen and Gill (1982).

3. Convergence of the estimators. In this section we establish the consis-
tency and the rate of convergence of ζ̂n and ξ̂n. Luo and Boyett (1997) proved
the consistency in their submodel of (1.1) from a local approximation of the
process Xn. Here the proof is based on the uniform convergence of Xn to X and
on properties of X in the neighborhood of θ0. The behavior of X follows from the
next lemma which ensures properties similar to those of condition D in Andersen
and Gill (1982) and the arguments of its proof are the same as in their Theorem 4.1.

LEMMA 1. Under conditions C1–C2, s(0) is bounded away from zero on
[0, τ ] × , s(1)(t; ζ, ξ) and s(2)(t; ζ, ξ) are the first two partial derivatives of
s(0)(t; ζ, ξ) with respect to ξ , and the functions s(k) are continuous on , uniformly
in t ∈ [0, τ ], for k = 0,1,2, with s(k)(t; θ ′) − s(k)(t; θ) = O(|ζ − ζ ′| + ‖ξ − ξ ′‖)
uniformly on [0, τ ] × , as ‖θ − θ ′‖ → 0. Moreover, as ‖θ − θ ′‖ → 0,

s(0)(θ ′) − s(0)(θ) = (ξ ′ − ξ)T s(1)(θ) + 1
2 (ξ ′ − ξ)T s(2)(θ)(ξ ′ − ξ)

+ (ζ ′ − ζ )ṡ
(0)
ζ (θ) + o(|ζ − ζ ′| + ‖ξ − ξ ′‖2)

uniformly on [0, τ ] × , where ṡ
(0)
ζ (θ) = h3(ζ )E0{eαT Z1(eβT Z2 − eγ T Z2) |

Z3 = ζ }.
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LEMMA 2. Under conditions C1–C3, supθ∈ |Xn − X|(θ) converges in
probability to zero as n → ∞.

THEOREM 1. Under conditions C1–C3, there exists a neighborhood B0 of θ0
such that if θ̂n lies in B0, then it converges weakly to θ0 as n → ∞.

PROOF. For every θ = (ζ, ξT )T in , the first derivatives of the function X

with respect to α, β and γ are zero at θ0 and the second derivative of the function
X(θ) with respect to ξ , at fixed ζ , is the matrix −I (θ). The assumptions that λ0 is
bounded and Var Z̃(t; ζ ) is positive definite imply that I (θ) is positive definite in
a neighborhood of θ0 [Pons and de Turckheim (1988), Lemma 2.2], and therefore
the function ξ �→ X(ζ, ξ) is concave for every (ζ, ξT )T in a neighborhood of θ0.

Moreover, in a neighborhood of θ0, X has partial derivatives with respect to ζ ,
at fixed ξ , Ẋ−

ζ (ζ, ξ) for ζ < ζ0 and Ẋ+
ζ (ζ, ξ) for ζ > ζ0. They are defined by

Ẋ−
ζ (θ) =

∫ τ

0
E0

[
Y

{
(β − γ )T Z2e

αT
0 Z1+βT

0 Z2

− eαT Z1
(
eβT Z2 − eγ T Z2

)s(0)(θ0)

s(0)(θ)

} ∣∣ Z3 = ζ

]
h3(ζ ) d�0,

Ẋ+
ζ (θ) =

∫ τ

0
E0

[
Y

{
(β − γ )T Z2e

αT
0 Z1+γ T

0 Z2

− eαT Z1
(
eβT Z2 − eγ T Z2

)s(0)(θ0)

s(0)(θ)

} ∣∣ Z3 = ζ+
]
h3(ζ ) d�0.

If θ tends to θ0 with ζ < ζ0, the continuity of s(0)(t; θ) with respect to θ (Lemma 1)
implies that Ẋ−

ζ (θ) tends to

Ẋ−
ζ (θ0) =

∫ τ

0
E0

[
YeαT

0 Z1
{
(β0 − γ0)

T Z2e
βT

0 Z2

+ eγ T
0 Z2 − eβT

0 Z2
} ∣∣ Z3 = ζ0

]
d�0h3(ζ0)(3.1)

= 1
2

∫ τ

0
E0

[
YeαT

0 Z1{(β0 − γ0)
T Z2}2eβT∗ Z2

∣∣ Z3 = ζ0
]
d�0h3(ζ0),

where β∗ is between β0 and γ0. By condition (2.3), Ẋ−
ζ (θ0) is strictly positive and

therefore Ẋ−
ζ (θ) is strictly positive in a neighborhood of θ0. Similarly, if θ tends

to θ0 with ζ < ζ0, Ẋ+
ζ (θ) tends to

Ẋ+
ζ (θ0) =

∫ τ

0
E0

[
YeαT

0 Z1
{
(β0 − γ0)

T Z2e
γ T

0 Z2

(3.2)
+ eγ T

0 Z2 − eβT
0 Z2

} ∣∣ Z3 = ζ+
0

]
d�0h3(ζ0)
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and it is strictly negative. This implies the existence of a neighborhood B0 of θ0
where X attains a strict maximum at θ0 and where X is concave. As Xn converges
uniformly to X (Lemma 2), it follows that if θ̂n lies in B0 then it converges weakly
to θ0 as n → ∞. �

To study the rates of convergence of ζ̂n and ξ̂n, let Un = {u = (u1, u
T
2 )T :u1 =

n(ζ − ζ0), u2 = n1/2(ξ − ξ0) with ζ ∈ [ζ1, ζ2], ξ ∈ 
}. For x = (x1, x
T
2 )T with

x1 ∈ R and x2 ∈ R
p+2q , we denote ρ(x) = (|x1| + ‖x2‖2)1/2 and Vε(θ0) =

{θ ∈  :ρ(θ − θ0) < ε} an ε-neighborhood of θ0 with respect to ρ, though it is
not a norm. For u = (u1, u

T
2 )T ∈ Un, let ζn,u = ζ0 + n−1u1, ξn,u = ξ0 + n−1/2u2

and θn,u = (ζn,u, ξ
T
n,u)

T in , and let Un,ε = {u ∈ Un :ρ(u) ≤ n1/2ε}. Let Wn be
the partial log-likelihood process defined by

Wn(θ) = n1/2(Xn − X)(θ),(3.3)

with Xn and X given by (2.1) and (2.2). The rates of convergence of ζ̂n and ξ̂n

will be deduced from the limiting behavior of the process Wn following classical
arguments. It relies on the next lemmas, proved in Section 5.

LEMMA 3. Under conditions C1–C3, for every ε > 0 there exists a constant
κ > 0 such that E0 supθ∈Vε(θ0)

|Wn(θ)| ≤ κε as n → ∞.

LEMMA 4. Under conditions C1–C2, for ε sufficiently small there exists a
constant κ0 > 0 such that for all θ in Vε(θ0), X(θ) ≤ −κ0{ρ(θ − θ0)}2.

THEOREM 2. Under conditions C1–C3, for ε > 0 sufficiently small,
P0(supu∈Un,ε,ρ(u)>A Xn(θn,u) ≥ 0) tends to zero as n and A → ∞, and

lim sup
n→∞,A→∞

P0(n|̂ζn − ζ0| > A) = 0, lim sup
n→∞,A→∞

P0(n
1/2‖ξ̂n − ξ0‖ > A) = 0.

PROOF. Let ûn = (n(ζ̂n − ζ0), n
1/2(̂ξn − ξ0)), let η > 0 and let ε > 0

be sufficiently small to ensure that Lemma 4 holds on Vε(θ0). From The-
orem 1, for all n larger than some integer n0, P0{ûn ∈ Un,ε} = P0{θ̂n ∈
Vε(θ0)} > 1 − η. Both probabilities P0(n|̂ζn − ζ0| > A2) and P0(n

1/2‖ξ̂n −
ξ0‖ > A) are bounded by P0(ρ(ûn) > A) ≤ P0(supu∈Un,ε,ρ(u)>A Ln(θn,u) ≥
Ln(θ0)) + η = P0(supu∈Un,ε,ρ(u)>A Xn(θn,u) ≥ 0) + η. The latter probability
is finally bounded following the arguments of Theorem 5.1 in Ibragimov and
Has’minskii (1981), where Un,ε is split into subsets Hn,j defined by its in-
tersection with the sets {g(j) < ρ(u) ≤ g(j + 1)}, j ∈ N, for a function g

such that
∑

j ;g(j)>A g(j + 1)/g2(j) tends to zero as A → ∞. Then from
Lemma 3, P0(supu∈Un,ε,ρ(u)>A Xn(θn,u) ≥ 0) ≤ ∑

j ;g(j)>A P0(supHn,j
Wn(θn,u) ≥

n−1/2g2(j)κ0) and it tends to zero by the Bienaymé–Chebyshev inequality. �
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4. Asymptotic distribution of the estimators. Let A > 0 and UA
n = {u ∈

Un; |u1| + ‖u2‖2 ≤ A}. The limiting distribution of (n(ζ̂n − ζ0), n
1/2(̂ξn − ξ0))

will be deduced from Theorem 2 and from the behavior of the restriction of the
process u �→ ln(θn,u) − ln(θ0) to the compact set UA

n , for A sufficiently large. We
define a process Qn on R and a variable l̃n by

Qn(u1) = ∑
i

δi

{
(γ0 − β0)

T Z2i (Ti)
(
1{ζnu<Z3i≤ζ0} − 1{ζ0<Z3i≤ζnu}

)

− S
(0)
n (Ti; ζnu, ξ0) − S

(0)
n (Ti; θ0)

S
(0)
n (Ti; θ0)

}
,(4.1)

l̃n = n−1/2
∑
i

∫ τ

0

{
Z̃i(ζ0) − S

(1)
n (θ0)

S
(0)
n (θ0)

}
dMi,

THEOREM 3. Under conditions C1–C3, the following approximation holds
uniformly on UA

n , for every A > 0, as n → ∞:

ln(θn,u) − ln(θ0) = Qn(u1) + uT
2 l̃n − 1

2uT
2 I (θ0)u2 + op(1).

The proof of Theorem 3 is given in Section 5. We now study the weak
convergence of Qn as a random variable on the space D of right-continuous
functions with left-hand limits on R endowed with the Skorohod topology, and
on its restriction to the space DA of right-continuous functions with left-hand limit
functions on [−A,A], for any A > 0. The process Qn is written as the difference
Qn = Q+

n − Q−
n , where Q+

n and Q−
n are defined by Q+

n = 0 on R−, Q−
n = 0

on R+,

Q+
n (v) = ∑

i

δi

{
(β0 − γ0)

T Z2i (Ti)1{ζ0<Z3i≤ζ0+n−1v}

−
∑

j Yj (Ti)e
αT

0 Z1j (Ti )(eβT
0 Z2j (Ti ) − eγ T

0 Z2j (Ti ))1{ζ0<Z3j ≤ζ0+n−1v}
S

(0)
n (θ0)

}
if v > 0,

Q−
n (v) = ∑

i

δi

{
(γ0 − β0)

T Z2i (Ti)1{ζ0+n−1v<Z3i≤ζ0}

−
∑

j Yj (Ti)e
αT

0 Z1j (Ti )(eβT
0 Z2j (Ti ) − eγ T

0 Z2j (Ti ))1{ζ0+n−1v<Z3j ≤ζ0}
S

(0)
n (Ti; θ0)

}
if v < 0.

In order to describe the asymptotic distribution of Qn, let ν+ and ν− be the real
jump processes such that ν+ = 0 on R−, ν− = 0 on R+, ν+(s) is a Poisson variable
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with parameter sh3(ζ0) on R+ and ν−(s) is a Poisson variable with parameter
−sh3(ζ0) on R−. Let (V +

k )k≥1 and (V −
k )k≥1 be independent sequences of i.i.d.

random variables with characteristic functions

ϕ+(t) = E0
(
eitV +

k
)

= E0

[
eit{δ(β0−γ0)

T Z2(T )−∫ τ
0 Ye

αT
0 Z1 (e

βT
0 Z2−e

γ T
0 Z2 ) d�0} ∣∣ Z3 = ζ+

0

]
,

(4.2)
ϕ−(t) = E0

(
eitV −

k
)

= E0

[
eit{δ(γ0−β0)

T Z2(T )−∫ τ
0 Ye

αT
0 Z1 (e

βT
0 Z2−e

γ T
0 Z2 ) d�0} ∣∣ Z3 = ζ0

]
and let V +

0 = V −
0 = 0; (V +

k )k≥1 and (V −
k )k≥1 are supposed to be independent

of ν+ and ν−.
Let Q = Q+ − Q− be the right-continuous jump process defined on R by

Q+(s) = ∑
0≤j≤ν+(s)

V +
k ,Q−(s) = ∑

0≤j≤ν−(s)

V −
k ,(4.3)

and let v̂Q = inf{v;Q(v) = arg maxQ} be the maximum value of Q.

LEMMA 5. The process Q has independent increments, Q+ = 0 on R−,
Q− = 0 on R+ and the variables Q+(s) and Q−(s) have the character-
istic functions φ+

s (t) = exp[sh3(ζ0){ϕ+(t) − 1}] for s in R+ and φ−
s (t) =

exp[−sh3(ζ0){ϕ−(t) − 1}] for s in R−. Moreover, v̂Q is a.s. a finite random time.

THEOREM 4. Under conditions C1–C3, the variable l̃n converges weakly to a
Gaussian variable N (0, I (θ0)), the process Qn converges weakly to Q in DA, for
every A > 0, and they are asymptotically independent.

PROOF. As in Theorem 4.1 of Andersen and Gill (1982), the variable l̃n
in (4.2) converges weakly to a Gaussian variable N (0, I (θ0)). For the convergence
of Qn, we may restrict our attention to Q+

n and the proof extends to (Q+
n ,Q−

n )

since the processes Q+
n and Q−

n are independent and similarly defined. To prove
the weak convergence of the finite dimensional distributions of Q+

n , we shall
prove their tightness and the convergence of their characteristic functions. Let
J ∈ N, let 0 = v0 < v1 < · · · < vJ ≤ A be an increasing sequence and Inj =
]ζ0 + n−1vj−1, ζ0 + n−1vj ] and let q1, . . . , qJ be constants. The variable �n =∑

j≤J qj {Q+
n (vj )−Q+

n (vj−1)} is the sum of the n variables ηn,i = ∑
j≤J qjηnj,i ,

where ηnj,i = η
(1)
nj,i + η

(2)
nj,i ,

η
(1)
nj,i = 1Inj

(Z3i)

{
δi(β0 − γ0)

T Z2i (Ti) −
∫ τ

0
φi d�0

}
,

η
(2)
nj,i = 1Inj

(Z3i)

∫ τ

0
φi

{
S(0)−1

n (θ0) dN̄n − d�0
}
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with φi = Yie
αT

0 Z1i (eβT
0 Z2i − eγ T

0 Z2i ). Since the intervals Inj and Inl are disjoint,

η
(�)
nj,iη

(�)
nl,i = 0 if j �= l, for � = 1,2. Let �

(1)
n = ∑

i≤n

∑
j≤J qjη

(1)
nj,i and �

(2)
n =∑

i≤n

∑
j≤J qjη

(2)
nj,i . By the martingale property E0�

(2)
n = 0, and by C3 and (2.4),

E0
{
η

(2)
nj,i

}2 = E01Inj
(Z3i )

∫ τ

0
φ2

i S
(0)−1
n (θ0) d�0

= n−2(vj − vj−1)h3(ζ0)

×
∫ τ

0
E0(φ

2
i | Z3i = ζ+

0 )s(0)−1(θ0) d�0 + o(n−2),

E0
{
η

(2)
nj,iη

(2)
nk,l

} = n−3(vj − vj−1)(vk − vk−1)h
2
3(ζ0)

×
∫ τ

0
E

2
0(φi | Z3i = ζ+

0 )s(0)−1(θ0) d�0 + o(n−3).

Therefore E0{�(2)
n }2 = O(n−1) and �

(2)
n converges to zero in probability. The

variable �
(1)
n is the sum of the n i.i.d. variables η

(1)
n,i = ∑

j≤J qjη
(1)
nj,i . Its mean and

its variance are mn = ∑
j qjmnj and σ 2

n = ∑
j q2

j E0{η(1)
nj,i}2 − m2

n, with

mnj =
∫ τ

0
E0

[
Y1Inj

(Z3)
{
(β0 − γ0)

T Z2e
rθ0(Z) − φ

}]
d�0

= n−1(vj − vj−1)m1 + o(n−1),

E0
{
η

(1)
nj,i

}2 = E0

[
1Inj

(Z3i )

{
δi(β0 − γ0)

T Z2i (Ti) −
∫ τ

0
φi d�0

}2]
≤ 2n−1(vj − vj−1)m2 + o(n−1)

for constants m1 and m2 depending only on the distributions under P0. Then the
sequence of the distributions of �n, n ≥ 1, is tight since, for all K > 0,

P (|�n| > K) ≤ 2K−2[
E0{�(1)

n }2 + E0{�(2)
n }2]

≤ 2K−2(nσ 2
n + n2m2

n + o(1)
) = O(K−2).

As �
(2)
n converges to zero in probability, �n and �

(1)
n have the same limiting

distribution if they converge. The characteristic function of �
(1)
n is ϕn(s) =

(E0 exp
∑

j isqjη
(1)
nj,k)

n. Since the intervals Inj do not overlap, for each k there is

at most one index j such that ηnj,k �= 0. Then using the equality e
∑

j aj − 1 =∑
j (e

aj − 1) for a sum where only one term aj is different from zero,
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E0 exp{∑j≤J isqjη
(1)
nj,k} = 1 + ∑

j≤J n−1{(vj − vj−1)ϕ(s, qj) + o(1)} with

ϕ(s, qj) = h3(ζ0)

×
{
E0

(
exp

[
isqj

{
δ(β0 − γ0)

T Z2(T )−
∫ τ

0
φ d�0

}] ∣∣∣ Z3 = ζ+
0

)
− 1

}
,

and ϕn(s) converges to ϕ(s) = exp{∑j≤J (vj − vj−1)ϕ(s, qj )}. It follows that the
finite-dimensional distributions of Q+

n converge weakly to those of Q+ defined
by (4.3).

To prove the weak convergence of the process Q+
n in the Skorohod topology

on DA, it remains to prove its tightness. Let 0 ≤ v1 ≤ v ≤ v2 ≤ A. Since the
intervals I ′

n1 =]ζ0 + n−1v1, ζ0 + n−1v] and I ′
n2 =]ζ0 + n−1v, ζ0 + n−1v2] are

disjoint,

E0|Q+
n (v) − Q+

n (v1)| |Q+
n (v2) − Q+

n (v)|

≤ ∑
i �=j

E01I ′
n1

(Z3i )1I ′
n2

(Z3j )

×
{
δi |(β0 − γ0)

T Z2i (Ti)| +
∣∣∣∣∣∑

k

∫ τ

0
δkφi(Tk)S

(0)−1
n (Tk; θ0)

∣∣∣∣∣
}

and it is bounded by (v2 − v1)
2 times a constant for every n by similar argu-

ments as above. Hence the process Q+
n satisfies the D-tightness criterion (15.21)

of Billingsley (1968), and then the processes Qn converge weakly to Q. Fi-
nally, Qn and l̃n are asymptotically independent because any linear combi-
nation a�

(1)
n + bT l̃n converges weakly to a

∑
j≤J qj {Q+(vj ) − Q+(vj−1)} +

bT N (0, I (θ0)), since the variable n−1/2 ∑
i≤n

∑
j≤J qj1Inj

(Z3i )
∫ τ

0 {Z̃i(ζ0) −
S

(1)
n (θ0)S

(0)−1
n (θ0)}dMi tends to zero in probability. �

THEOREM 5. Under conditions C1–C3, n(ζ̂n − ζ0) and n1/2(̂ξn − ξ0)

are asymptotically independent, n(ζ̂n − ζ0) = arg maxu1 Qn(u1) + op(1) and it
converges weakly to v̂Q, and n1/2(̂ξn − ξ0) = I (θ0)

−1̃ln + op(1) and converges
weakly to a Gaussian variable N (0, I (θ0)

−1).

PROOF. Let ûn = (n(ζ̂n − ζ0), n
1/2(̂ξn − ξ0)

T )T . For every x ∈ R and
y ∈ Rp+2q ,

P0
(
ûn < (x, yT )T

)
= P0

{(
arg max

u1
Qn(u

−
1 ) ∨ Qn(u1), I (θ0)

−1̃l T
n

)T

+ op(1) < (x, yT )T
}

with a uniform op on UA
n for every A ≥ (|x| + ‖y‖2)1/2, by Theorem 3. The

asymptotic independence of Qn and l̃n and their weak convergence (Theorem 4)
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entail that P0(ûn < (x, yT )T ) tends to P0(v̂Q < x)P0(G0 < y), where G0 is a
Gaussian variable N (0, I (θ0)

−1). Using this convergence and Theorem 2, for
every ε > 0, there exist n0 and A0 such that for all n ≥ n0, P0(‖û2n‖ ≥ A0) ≤ ε/3,
|P0(û1n < x,‖û2n‖ < A0) − P0(v̂Q < x)P0(‖G0‖ < A0)| ≤ ε/3, P0(‖G0‖ ≥
A0) ≤ ε/3, and hence

|P0(û1n < x) − P0(v̂Q < x)|
≤ |P0(û1n < x,‖û2n‖ < A0) − P0(v̂Q < x)P0(‖G0‖ < A0)|

+ P0(v̂Q < x)P0(‖G0‖ ≥ A0) + P0(û1n < x,‖û2n‖ ≥ A0) ≤ ε,

so û1n converges weakly to v̂Q. By the same arguments, û2n converges weakly
to G0. Moreover, they are asymptotically independent, and on the set {ρ(ûn) < A0}
with probability larger than 1 − ε, we have û1n = arg maxu1 Qn(u

−
1 ) ∨ Qn(u1) +

op(1) and û2n = I (θ0)
−1 l̃n + op(1). �

REMARK 1. As proved in Lemma 5, v̂Q is a.s. finite and by Theorem 2, it
is sufficient to consider the distribution of Q on compacts to build asymptotic
confidence intervals for ζ0. However, the distribution of Q depends on the
unknown parameter θ0 and it seems difficult to use the conditional characteristic
functions (4.2). Bootstrap confidence intervals with a resampling of the individuals
could be considered but their asymptotic behavior will not be studied here.

REMARK 2. If ζ0 were known, the maximum partial likelihood estimator of ξ0
would have the same asymptotic distribution as n1/2(̂ξn − ξ0) in Theorem 5 and
it would be an efficient estimator of ξ0. With ζ0 unknown, ξ̂n is thus an adaptive
estimator of ξ0.

The weak convergence of n1/2(�̂n −�0) may be established using the approach
of Andersen and Gill (1982). Its asymptotic behavior follows from Theorem 5 and
from the next result, which is the same as if ζ0 were known. From Theorem 6 and
Remark 2, the limit distribution of n1/2(�̂n − �0) does not depend on knowledge
of ξ0.

THEOREM 6. Under conditions C1–C3, the process defined for t ∈ [0, τ ] by

n1/2(�̂n − �0)(t) + n1/2(̂ξn − ξ0)
T

∫ t

0

s(1)

s(0)
(θ0) d�0(4.4)

converges weakly to a centered Gaussian process with covariance∫ s∧t
0 s(0)−1(θ0) d�0 at s and t in [0, τ ], and it is asymptotically independent of

n1/2(̂ξn − ξ0).
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PROOF. By definition of the predictable compensator of N̄n,

n1/2(�̂n − �0)(t) =
∫ t

0

dM
(0)
n

n−1S
(0)
n (θ̂n)

−
∫ t

0

n−1/2{S(0)
n (θ̂n) − S

(0)
n (θ0)}

n−1S
(0)
n (θ̂n)

d�0.

The first term in the right-hand side is the integral of the left-continuous process
nS

(0)−1
n (θ̂n) with respect to the martingale M

(0)
n and it converges weakly to a

centered Gaussian process with covariance
∫ s∧t

0 s(0)−1(θ0) d�0 by Rebolledo’s
(1980) convergence theorem. The asymptotic equivalence of the second term and
n1/2(̂ξn − ξ0)

T
∫ t

0 s(1)(θ0)s
(0)−1(θ0) d�0 is obtained from the expansion

n−1/2{S(0)
n (θ̂n) − S(0)

n (θ0)
}

= n1/2(̂ξn − ξ0)
T n−1S(1)

n (ζ̂n, ξ
∗
n ) + n−1/2{S(0)

n (ζ̂n, ξ0) − S(0)
n (θ0)

}
,

with ξ∗
n between ξ̂n and ξ0. From Condition C3, Lemma 1 and Theorem 1,

supt∈[0,τ ] ‖n−1S
(0)
n (t; θ̂n) − s(0)(t; θ0)‖ and supt∈[0,τ ] supξ∈]̂ξn,ξ0[∪ ]ξ0 ,̂ξn[ ‖n−1 ×

S
(1)
n (t; ζ̂n, ξ) − s(1)(t; θ0)‖ tend to zero in probability. Moreover,

n−1/2{S(0)
n (ζ̂n, ξ0) − S(0)

n (θ0)
}

= n−1/2
∑
i

Yie
αT

0 Z1i
(
eβT

0 Z2i − eγ T
0 Z2i

)(
1{ζ0<Z3i≤ζ̂n} − 1{ζ̂n<Z3i≤ζ0}

)
,

denoted n−1/2 ∑
i Yiφi(1{ζ0<Z3i≤ζ̂n} − 1{ζ̂n<Z3i≤ζ0}). From Theorem 5, for every

ε > 0, there exist A and n0 such that for n ≥ n0, P0(n|̂ζn − ζ0| > A) ≤ ε/2.
Let �nA = {n|̂ζn − ζ0| ≤ A}. For every η > 0, P0(supt n

−1/2|∑i Yi(t)φi(t)×
1{ζ0<Z3i≤ζ̂n}| > η) is smaller than

P0

(
sup

t
n−1/2

∣∣∣∣∣∑
i

Yi(t)φi(t)1{ζ0<Z3i≤ζ̂n}1�nA

∣∣∣∣∣ > η

)
+ ε

2

≤ 1

η2
E0

{
sup

t
Y (t)φ2(t)1{ζ0<Z3≤ζ0+n−1A}

}

+ n − 1

η2

[
E0

{
sup

t
Y (t)|φ|(t)1{ζ0<Z3≤ζ0+n−1A}

}]2

+ ε

2

≤ Ah3(ζ0)

nη2 E0

{
sup

t
|φ|2(t) ∣∣ Z3 = ζ+

0

}

+ (n − 1)(Ah3(ζ0))
2

n2η2

[
E0

{
sup

t
|φ|(t) ∣∣ Z3 = ζ+

0

}]2

+ ε

2
,
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which is smaller than ε for n large enough and the same result holds for
n−1/2 ∑

i Yiφi1{ζ̂n<Z3i≤ζ0}. Therefore the process n−1/2{S(0)
n (ζ̂n, ξ0) − S

(0)
n (θ0)}

tends to zero in probability uniformly on [0, τ ], and (4.4) is uniformly approxi-

mated by
∫ t

0 nS
(0)−1
n (θ̂n) dM

(0)
n .

The asymptotic independence of (4.4) and n1/2(̂ξn − ξ0) is a consequence of the
approximation n1/2(̂ξn − ξ0) = I (θ0)

−1 l̃n +op(1) since l̃n and the local martingale∫ ·
0 nS

(0)−1
n (θ̂n) dM

(0)
n are asymptotically Gaussian with mean zero and they satisfy

E0 l̃n
∫ t

0 S
(0)−1
n (θ̂n) dM

(0)
n = 0 for all t in [0, τ ]. �

REMARK 3. As ξ̂n and �̂n are adaptive with respect to ζ0, asymptotic
confidence intervals for the components of ξ0 and for �0 are the same as in the
regular Cox model with a change-point at a known time ζ0. This enables one to
use the standard software for survival data analysis by a maximization of the partial
likelihood Ln(ak, ξ) with respect to the parameter ξ for successive values ak on
a grid in [ζ1, ζ2], with a path of order o(n−1). The maximization of Ln(ak, ·)
provides an estimator ξ̂k,n for ξ0 and ζ̂n can be approximated by the value ζ̃n that
maximizes the sequence (L̂n(ak))k = (Ln(ak, ξ̂k,n))k . Then ξ̂n is approximated
by the value of ξ̃n associated with ζ̃n and �̂n is approximated by the Breslow
estimator �̃n calculated with S

(0)
n (ζ̃n, ξ̃n). Under the above conditions, they have

the same asymptotic behavior as ζ̂n, ξ̂n and �̂n, described in Theorems 5 and 6.

5. Proofs of results. The proofs are based on functional convergences of
empirical processes which are established in a preliminary lemma. We denote
Ui = δiZ2i (Ti), P δ,T

n and P
U,Z3
n the empirical distributions of the variables

(δi, Ti)i≤n and (Ui,Z3i )i≤n, respectively, and P
δ,T
0 and P

U,Z3
0 their distributions

under P0. Let also νδ,T
n and ν

U,Z3
n be the related empirical processes and νt

n be
the empirical process associated with the variables (Yi(t),Zi(t)), 1 ≤ i ≤ n. We
consider functional families defined by

ϕθ (d, t) = d log
{
s(0)(t; θ)s(0)−1(t; θ0)

}
, d ∈ {0,1}, t ∈ [0, τ ],

f +
ζ,j (u, z) = uj1{ζ<z≤ζ0}, f −

ζ,j (u, z) = uj1{ζ<z≤ζ0},

z, u = (uj )1≤j≤q ∈ R
q,

ψ1,t,θ (y, z) = y

{
eαT z1+βT z2

s(0)(t; θ)
− eαT

0 z1+βT
0 z2

s(0)(t; θ0)

}
1{z3≤ζ0},

ψ2,t,θ (y, z) = y

{
eαT z1+γ T z2

s(0)(t; θ)
− eαT

0 z1+γ T
0 z2

s(0)(t; θ0)

}
1{z3>ζ0},
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ψ3,t,θ (y, z) = y

{
eαT z1+γ T z2

s(0)(t; θ)
− eαT

0 z1+βT
0 z2

s(0)(t; θ0)

}
1{ζ<z3≤ζ0},

ψ4,t,θ (y, z) = y

{
eαT z1+βT z2

s(0)(t; θ)
− eαT

0 z1+γ T
0 z2

s(0)(t; θ0)

}
1{ζ0<z3≤ζ }

for y ∈ {0,1} and z = (z1, z2, z3) with zj ∈ Zj , F +
ε = {fζ,j ; ζ0 < ζ ≤ ζ0 + ε2,

1 ≤ j ≤ q} and F −
ε = {fζ,j : ζ0 − ε2 ≤ ζ < ζ0,1 ≤ j ≤ q}.

LEMMA 6. Under conditions C1–C3, supθ |(P δ,T
n − P

δ,T
0 )(ϕθ )|,

supζ,j |(P U,Z3
n − P

U,Z3
0 )(f +

ζ,j )| and supζ,j |(P U,Z3
n − P

U,Z3
0 )(f −

ζ,j )| converge
in probability to zero. For every n, E0 supF +

ε
|νn(f

+)|, E0 supF −
ε

|νn(f
−)|,

E0 supθ∈Vε(θ0)
|νδ,T

n (ϕθ )| and supt∈[0,τ ] E0 supθ∈Vε(θ0)
|νn(k, t; θ)|, k = 1, . . . ,4,

are bounded by ε times a constant.

PROOF. The first two convergences are consequences of the Glivenko–
Cantelli theorem for uniformly continuous and integrable functions (ϕθ )θ∈

and for the Vapnik–Cervonenkis class (]ζ, ζ0])ζ∈[ζ1,ζ2] and (]ζ0, ζ ])ζ∈[ζ1,ζ2]. The
L2(P0) norm of the envelope function of F +

ε is less than

E0 sup
ζ∈V

ε2(ζ0)

‖Ui‖1{ζ0<Z3i≤ζ } ≤
{
E01{ζ0<Z3i≤ζ0+ε2}

∫ τ

0
‖Z2i‖2 dNi

}1/2

= O(ε).

For Fε = F +
ε or F −

ε , the bound of E0 supFε
|νn(f )| is a consequence of

Theorem 2.14.1 in van der Vaart and Wellner (1996). For the functions ϕθ and for
every t ∈ [0, τ ], θ and θ ′ in Vε(θ0), ϕθ ′(1, t) − ϕθ(1, t) = {(ξ ′ − ξ)T s(1)(t; θ) +
(ζ ′ − ζ )ṡ

(0)
ζ (t; θ)}s(0)−1(t; θ) + 1

2 (ξ ′ − ξ)T v(t; θ)(ξ ′ − ξ) + o(ε2) by Lemma 1,

where s(1), ṡ
(0)
ζ , s(0)−1 and v are uniformly bounded. The family {ϕθ : θ ∈ Vε(θ0)}

has therefore an envelope function with an L2(P
δ,T
0 )-norm of order ε and its

L2(P
δ,T
0 )-bracketing integral J[ ](1,L2(P

δ,T
0 )) is finite by Theorem 2.7.11 in

van der Vaart and Wellner (1996). The bound of E0 supθ∈Vε(θ0)
|νδ,T

n (ϕθ )| is a
consequence of their Theorem 2.14.2. Similar arguments hold for the classes
of functions �k,t = {ψk,t,θ : θ ∈ Vε(θ0)}: For k = 1,2 and for every t ∈ [0, τ ],
the functions ψk,t,θ are continuously differentiable with respect to θ and their
derivatives are uniformly square integrable on [0, τ ] × Vε(θ0), and for every
t ∈ [0, τ ], the functions ψk,t,θ are continuously differentiable with respect to θ and
their derivatives are uniformly square integrable on [0, τ ] × Vε(θ0), by Lemma 1.
For k = 3,4, the functions ψk,t,θ are the product of the indicator function 1]ζ,ζ0],
with ζ ∈ [ζ0 − ε2, ζ0[ , and of a continuously differentiable function with respect
to θ having uniformly square integrable derivatives on [0, τ ] × Vε(θ0). Moreover,
�k,t has a finite L2-bracketing integral which does not depend on t . �
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PROOF OF LEMMA 2. The process Xn is written

Xn(θ) = (ξ − ξ0)
T

{
n−1/2

M
(1)
n (τ ) +

∫ τ

0
n−1S(1)

n (θ0) d�0

}

−
∫ τ

0
log

S
(0)
n (θ)

S
(0)
n (θ0)

n−1 dN̄n

(5.1)

+ (β − γ )T

{
n−1

∑
i≤n

δiZ2i (Ti)1{ζ0<Z3i≤ζ }

− n−1
∑
i≤n

δiZ2i(Ti)1{ζ<Z3i≤ζ0}
}
.

Under C3,
∫ τ

0 n−1S
(1)
n (θ0) d�0 converges to

∫ τ
0 s(1)(θ0) d�0 and the variable

n−1/2M
(1)
n (τ ) converges in probability to zero since E0{M(1)

n (τ )}2 = E0
∫ τ

0 n−1 ×
S

(2)
n (θ0) d�0 is bounded. The convergence of the last three terms in (5.1) is a

consequence of Lemma 6 and C3. �

PROOF OF LEMMA 3. The process Wn is written W1n − W2n where

W1n(θ) = n−1/2
∑
i

[
rθ (Zi(Ti)) − rθ0(Zi(Ti))

− E0
{
rθ (Zi(Ti)) − rθ0(Zi(Ti))

}]
,

W2n(θ) = n−1/2
∑
i

[
log

S
(0)
n (Ti; θ)

S
(0)
n (Ti; θ0)

−
∫ τ

0
log

{
s(0)(θ)

s(0)(θ0)

}
s(0)(θ0) d�0

]
.

Let G
(1)
n = n1/2(n−1S

(1)
n − s(1)) be the empirical processes associated with S

(1)
n .

We shall bound successively the supremum of each term in a neighborhood
of θ0. First, W1n(θ) = n−1/2 ∑

i≤n[(α − α0)
T

∫ τ
0 {Z1i dNi − s

(1)
1 (θ0) d�0} +

(β − β0)
T

∫ τ
0 {Z2i1{Z3i≤ζ0} dNi − s

(1)−
2 (ζ0, α0, β0) d�0} + (γ − γ0)

T
∫ τ

0 {Z2i ×
1{Z3i>ζ0} dNi − s

(1)+
2 (ζ0, α0, γ0) d�0} + (β − γ )T

∫ τ
0 {Z2i1{ζ0<Z3i≤ζ } dNi −

s
(1)
2 (]ζ0, ζ ], α0, γ0) d�0} + (γ − β)T

∫ τ
0 {Z2i1{ζ<Z3i≤ζ0}}dNi − s

(1)
2 (]ζ, ζ0],

α0, β0) d�0}]. The sum of the first three terms in this expression is (ξ − ξ0)
T ×

[n−1/2 ∑
i≤n

∫ τ
0 {Z̃i(ζ0) dNi − s(1)(θ0) d�0}] and

E0

∥∥∥∥∥n−1/2
∑
i≤n

∫ τ

0

{
Z̃i(ζ0) dNi − s(1)(θ0) d�0

}∥∥∥∥∥
2

≤ E0‖M
(1)
n (τ )‖2 + E0

∥∥∥∥∫ τ

0
G

(1)
n (θ0) d�0

∥∥∥∥2
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which is bounded by n−1E0
∫ τ

0 ‖S(2)
n ‖d�0 + n−1E0

∫ τ
0 ‖S(2)

n (s; 2θ0)‖λ2
0(s) ds.

Then for every n, the mean of the supremum of the first three terms in W1n is O(ε).
For the fourth term in the expression of W1n(θ),

E0 sup
ζ∈V

ε2(ζ0)

∥∥∥∥∥n−1/2
∑
i≤n

∫ τ

0

{
Z2i1{ζ0<Z3i≤ζ } dNi − s

(1)
2 (]ζ0, ζ ], α0, γ0) d�0

}∥∥∥∥∥
≤ q1/2

E0 sup
f ∈F +

ε

∣∣νU,Z3
n (f )

∣∣
and a similar bound holds for last term, so they are O(ε) by Lemma 6. Moreover,

W2n(θ) = νδ,T
n (ϕθ ) + n−1/2

∑
i

δi

{
log

n−1S
(0)
n (Ti; θ)

s(0)(Ti; θ)
− log

n−1S
(0)
n (Ti; θ0)

s(0)(Ti; θ0)

}
.

By a Taylor expansion as n → ∞, the second term is uniformly approximated by

n−3/2
∑
i,j

δi

{
Yj (Ti)e

rθ (Zj (Ti ))

s(0)(Ti; θ)
− Yj (Ti)e

rθ0(Zj (Ti ))

s(0)(Ti; θ0)

}
{1 + oa.s.(1)}

where n−3/2 ∑
i E0 supθ∈Vε(θ0)

δi{erθ (Zi (Ti))s(0)−1(Ti; θ)+erθ0(Zi (Ti ))s(0)−1(Ti; θ0)}
= o(1) and

E0 sup
θ∈Vε(θ0)

n−3/2
∑
i �=j

δi

{
Yj (Ti)e

rθ (Zj (Ti))

s(0)(Ti; θ)
− Yj(Ti)e

rθ0(Zj (Ti))

s(0)(Ti; θ0)

}

≤ E0

∫ τ

0
sup

θ∈Vε(θ0)

n−1/2
∑
j

{
Yj (t)e

rθ (Zj (t))

s(0)(t; θ)
− Yj(t)e

rθ0 (Zj (t))

s(0)(t; θ0)

}

× s(0)(t; θ0) d�0(t)

by an integration conditionally on (Yj ,Zj ), 1 ≤ j ≤ n. Splitting the integrand
in the right-hand side of this inequality into a sum of four terms according to
the location of the variables Z3j with respect to ζ and ζ0, we see that the last
expression is bounded by b1 + · · · + b4 = O(ε) from Lemma 6, with

bk =
∫ τ

0

{
E0 sup

θ∈Vε(θ0)

νt
n(ψk,t,θ )

}
s(0)(t; θ0) d�0(t). �

PROOF OF LEMMA 4. Since X(θ0) = Ẋξ (θ0) = 0, by a Taylor expansion for
ε sufficiently small and for θ in Vε(θ0),

X(θ) = −|ζ − ζ0|Ẋ−
ζ (θ0) − 1

2 (ξ − ξ0)
T I (θ∗)(ξ − ξ0)

+ o(|ζ − ζ0|) if ζ < ζ0,
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X(θ) = |ζ − ζ0|Ẋ+
ζ (θ0) − 1

2 (ξ − ξ0)
T I (θ∗)(ξ − ξ0)

+ o(|ζ − ζ0|) if ζ > ζ0,

where θ∗ is between θ and θ0 and with (3.1) and (3.2). The matrix I (θ∗) is positive
definite for all θ∗ in a neighborhood of θ0 and by Lemma 1 ‖I (θ)−I (θ0)‖ tends to
zero as ρ(θ − θ0) → 0. Moreover Ẋ−

ζ (θ0) is strictly positive if ζ < ζ0 and strictly
negative if ζ > ζ0 (cf. proof of Theorem 1). The result follows if ε is sufficiently
small. �

PROOF OF LEMMA 5. Let µ = h3(ζ0). For s in R+,

φ+
s (t) = E0

[
E0

{
eitQ+(s) | ν+(s)

}] = e−µs
∑
j≥0

(µs)j

j ! E0e
it

∑
0≤k≤j V +

k

= e−µs
∑
j≥0

(µsϕ+(t))j

j !

from the independence assumptions, and the proof is similar for φ−
s . From (4.2)

and by the mean value theorem, there exist x1 and x2 lying strictly between β0 and
γ0 such that

E0V
+
k =

∫ τ

0
E0

{
(β0 − γ0)

T Z2YeαT
0 Z1+γ T

0 Z2

− YeαT
0 Z1

(
eβT

0 Z2 − eγ T
0 Z2

) ∣∣ Z3 = ζ+
0

}
d�0

= (β0 − γ0)
T

[∫ τ

0
E0

{
Z⊗2

2 YeαT
0 Z1+xT

2 Z2
∣∣ Z3 = ζ+

0

}
d�0

]
(γ0 − x1)

and therefore E0V
+
k is strictly negative. By the same arguments, E0V

−
k is strictly

positive, and the sums
∑

j≥0 V +
k and

∑
j≥0 −V −

k converge a.s. to −∞ and the
maximum value v̂Q of the process Q is a.s. finite. �

PROOF OF THEOREM 3. Let A > 0, u = (u1, u2) ∈ UA
n , u1 in R and

u2 in Rp+2q , and let θn,u = (ζn,u, ξ
T
n,u)

T with ζn,u = ζ0 + n−1u1 and ξn,u =
ξ0 + n−1/2u2. For 1 ≤ i ≤ n,(

rθnu − rθ0

)
(Zi(Ti))

= n−1/2{uT
2 Z̃i(Ti; ζnu)

+ (γ0 − β0)
T Z2i(Ti )

(
1{ζnu<Z3i≤ζ0} − 1{ζ0<Z3i≤ζnu}

)}
.
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Using C3 and the continuity of the functions s(k), a Taylor expansion for ξnu close
to ξ0 gives

S(0)
n (θnu) = S(0)

n (ζnu, ξ0) + n−1/2uT
2 S(1)

n (ζnu, ξ0)

+ 1
2n−1uT

2 S(2)
n (ζnu, ξ0)u2 + oa.s.(1),

log
S

(0)
n (θnu)

S
(0)
n (θ0)

= S
(0)
n (ζnu, ξ0) − S

(0)
n (θ0)

S
(0)
n (θ0)

+ n−1/2uT
2

S
(1)
n (ζnu, ξ0)

S
(0)
n (θ0)

+ n−1

2
uT

2 Vn(ζnu, ξ0)u2 + oa.s.(1)

uniformly on UA
n as n → ∞. By the uniform convergence of n−1N̄n to∫ ·

0 s(0)(θ0) d�0, we obtain ln(θn,u)− ln(θ0) = uT
2 Cn(u)− 1

2uT
2 I (θ0)u2 +Qn(u1)+

op(1) uniformly on UA
n , where

Cn(u) = n−1/2
∑
i

∫ τ

0

{
Z̃i(ζnu) − S

(1)
n (ζnu, ξ0)

S
(0)
n (θ0)

}
dNi

= n−1/2
∑
i

∫ τ

0

{
Z̃i(ζnu) − S

(1)
n (ζnu, ξ0)

S
(0)
n (θ0)

}
dMi

+n−1/2
∫ τ

0

{
S(1)

n (]ζ0, ζnu], α0, γ0) − S(1)
n (]ζ0, ζnu], α0, β0)

+ S(1)
n (]ζnu, ζ0], α0, β0) − S(1)

n (]ζnu, ζ0], α0, γ0)

}
d�0.

Let a1i(u1) = ∫ τ
0 {Z̃i(ζnu) − Z̃i(ζ0)}dMi and a2i(u1) = ∫ τ

0 {S(1)
n (ζnu, ξ0)−

S
(1)
n (θ0)}S(0)−1

n (θ0) dMi , 1 ≤ i ≤ n. The variables a1i(u1) and
∑

i a2i(u1) have
mean zero as integrals of predictable processes with respect to Mi and

∑
i Mi ,

respectively. Let 0q be the zero q-dimensional vector. Then

Z̃i(t; ζnu) − Z̃i(t; ζ0)

= (
0p,ZT

2i(t),−ZT
2i (t)

)T (
1{ζ0<Z3i≤ζnu} − 1{ζnu<Z3i≤ζ0}

)
,

S(1)
n (t; ζnu, ξ0) − S(1)

n (t; θ0)

= ∑
i

Yi(t)e
αT

0 Z1i (t)
(
1{ζ0<Z3i≤ζnu} − 1{ζnu<Z3i≤ζ0}

)
× {(

ZT
1i (t),Z

T
2i (t),0T

q

)T }
eβT

0 Z2i (t) − (ZT
1i ,0T

q ,ZT
2i )

T eγ T
0 Z2i (t),
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for � = 1,2, E0 sup|u1|≤A ‖a�i(u1)‖2 = O(n−1); therefore E0 sup|u1|≤A n−1/2 ×∑
i a�i(u1) = O(n−1), since the supremum is over the intervals ]ζ0, ζnu] and

]ζnu, ζ0], and the result follows. �
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