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ESTIMATION IN A COX REGRESSION MODEL WITH
A CHANGE-POINT ACCORDING TO A THRESHOLD
IN A COVARIATE

BY ODILE PONS
INRA and University of Paris V

We consider a nonregular Cox model for independent and identically
distributed right censored survival times, with a change-point according to the
unknown threshold of a covariate. The maximum partial likelihood estimators
of the parameters and the estimator of the baseline cumulative hazard are
studied. We prove that the estimator of the change-point is n-consistent
and the estimator of the regression parameters are n!/2_consistent, and we
establish the asymptotic distributions of the estimators. The estimators of the
regression parameters and of the baseline cumulative hazard are adaptive in
the sense that they do not depend on the knowledge of the change-point.

1. Introduction. The proportional hazards regression model introduced by
Cox (1972) assumes that conditionally on a vector of covariates Z, the hazard
function of a survival time is A(r | Z) = A(t) exp{BT Z(¢)} at t > 0, where B is a
vector of unknown regression parameters and X is an unknown and unspecified
baseline hazard function. Inference on the regression parameters is based on a
partial likelihood and the asymptotic properties of the estimators of 8 and of the
cumulative hazard function gave rise to many papers, among them Cox (1975),
Tsiatis (1981), Nas (1982), Bailey (1983) for time-independent covariates, and
Andersen and Gill (1982) and Prentice and Self (1983) in a more general set-up.
In data analysis, the assumption of proportional hazards is not always relevant in
the whole range of a covariate and the covariate may be dichotomized to define
new variables satisfying this assumption [Kleinbaum (1996)]. This procedure led
to a two-phase Cox model with a change-point according to a threshold that may
be fixed or estimated from the data. Several authors also considered a nonregular
Cox model involving a two-phase regression on time-dependent covariates, with a
change-point at an unknown time [Liang, Self and Liu (1990), Luo, Turnbull and
Clark (1997) and Luo (1996)].

The aim of the present paper is to study the asymptotic behavior of the
maximum partial likelihood estimator of the parameters in a nonregular Cox
model with a change-point according to the unknown threshold of a covariate. Let
Z =(ZT, 7T 73T be a vector of covariates, where Z; and Z, are respectively
p and g-dimensional left-continuous processes with right-hand limits and Z3 is a
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one-dimensional random variable. We assume that conditionally on Z the hazard
rate of a survival time T° has the form

(1.1) Ao(t | Z) = (1) explra(Z (1))}
with
re(Z(@1) =l Z1(t) + BT Zy() Nl zy<c) + v Zo(O) 1255},

where 0 = (¢,EN)T, with £ = (a7, BT, yT)T the vector of the regression
parameters, and A is an unknown baseline hazard function. Here the regression
parameters «, B and y belong respectively to bounded subsets of R? and R? and
the threshold ¢ is a parameter lying in a bounded interval [{1, &3] strictly included
in the support of Z3. The true parameter values 6y and Ay are supposed to be
identifiable, that is, 6y is such that Sy # yp and a change-point actually occurs
at ¢o. We suppose that the survival time T° with hazard function (1.1) may be
right-censored at a noninformative censoring time C such that C is independent
of TY conditionally on Z. We observe the censored time T = T° A C and the
censoring indicator § = 1izo ).

In the same framework, Luo and Boyett (1997) studied a model where a constant
is added to the regression on a covariate Z; after a change-point in another
variable Z», ro(Z(t)) =« Z1(t) + Bliz,<¢). They proved the consistency of
the maximum partial likelihood estimators and applied the results to a clinical
data set of patients with leukemia. Jespersen (1986) studied a test for no change-
point in the submodel ry(Z) = B1(z<,) of (1.1) and investigated risk factors for
breast cancer with a threshold in the effect of estrogen receptors. Several other
applications of such models may also be found in the literature, for example, a
study of the effect of tumor thickness on survival with melanoma in Andersen,
Borgan, Gill and Keiding (1993), pages 547-550, and others mentioned by Luo
and Boyett (1997). Model (1.1) extends these models by taking into account the
smallest value of a variable Z3 having an interacting effect on covariates Z; in a
Cox model, as in the linear models with a change in regression coefficients.

Inference will be based on a sample (7, d;, Z;)1<i<, of n independent and
identically distributed observations. As in the classical Cox model for i.i.d.
individuals, we assume that the variables 7; are observed on a time interval [0, 7]
such that Pr(T > t) > 0 [Andersen and Gill (1982), Theorem 4.1]. In the
model (1.1), 6 is estimated by the value 6, that maximizes the partial likelihood

BA
Zi(T; i
Ln(9)=n{ eXp{rG( i( 1))} }
> Yj(Ti) explro(Z;(T:))}
where Y;(t) = 1{7;>+) indicates whether individual i is still under observation at ¢.
Let S\ (t; 0) = Y, -, Yi (1) explrg(Z; ())). The logarithm of the partial likelihood
I, =log L, is written

(1.2) 1,0) = 8i{re(Zi(T})) — log S(T;: 6)).

i<n

i<n
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The estimator 9,, is obtained in the followmg way: For fixed ¢, let Sn €)=
argmaxgez (¢, 8) and [,(¢) =1,(¢, Sn(;‘)) Then ¢p is estimated by ;‘n which
satisfies the relationship

G=intle el limax(l, € ). L) = s L©},
¢eltr,42]
where /,(¢7) denotes the left-hand limit of /, at {. The maximum likelihood
estimator of & satisfies &, = &,(¢,), and 8, = (&,, &,). The cumulative hazard
function Ag(t) = f(; Ao(s) ds is estimated as in Breslow (1972) by

t
R= [ g
0 Sp7(s;6n)
In the two-phase linear regression models with a change-point over time and
Gaussian errors, a standard approach consists in indexing the observations
according to time, considered as fixed, and in estimating the change-point by
the proportion of data in the first phase of the regression [Csorgé and Horvéth
(1997)]. In such regression models and for Poisson processes with a change-point
in the hazard rate [Nguyen, Rogers and Walker (1984) and Kutoyants (1984)],
maximum likelihood inference is classically based on random walks which appear
in a factorization of the likelihood as a product of terms for individuals in each
phase of the model. The Cox model (1.1) involves a nonparametric function g
and 6 is estimated by maximization of the partial likelihood L, which cannot be
simply related to random walks because all the individual contributions involve the
process S,(,O), and they are therefore all dependent and it is not possible to split (1.2)
into terms for individuals with Z3; < &g and individuals with Z3; > {y. Here we
follow the approach of Ibragimov and Has ’minskii (1981) for the parameters of a
density with jumps, as in Kutoyants (1998) for change-points in nonhomogeneous
Poisson processes.

Assumptions and notation for the asymptotic properties of the estimators are
given in the following section. In Section 3 we establish the consistency and the
convergence rate of the estimators. In the nonregular model (1.1), the convergence
rate derives from the asymptotic behavior of the process u +— {1,,(6,,.,) — [,,(60)},
with 6, , = (¢o +n~"'uy, & + n="%uy) for u = (uy, us), uy in R, up in RP24,
We show that it is asymptotically bounded in probability, which entails that
7, is n-consistent and &, is n'/2-consistent. Section 4 presents weak convergence
results. They are deduced from the limiting distribution of the process u —
{1, (64.4) — 1,,(60)} on compact sets: n(;‘n — o) converges weakly to the value Vg
where a jump process reaches its maximum and Vg is a.s. finite, n'/2(&, — &)
is asymptotically Gaussian, n(@, — o) and n'/2E, — &) are asymptotically
independent, n'/ 2(An — Ag) converges weakly to a Gaussian process. Moreover,
nl/ 2@, — &) and n'/ Z(Kn — Ag) are adaptive in the sense that their limiting
distribution is the same as if ¢y were known (Theorems 5 and 6). This result is
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important for inference on &y and Ag in practical applications and it allows us to
estimate ¢o on a grid in [, &»] with a path of order smaller than n~!. Technical
proofs are detailed in Section 5.

2. Notation and conditions. Let (2, ¥, Py ))g., be a family of complete
probability spaces provided with a history F = (¥;);, where ¥ C ¥ is an
increasing and right-continuous filtration such that N and Z are F-adapted. We
assume that under Py ;, 79 satisfies (1.1), C and Z having the same distribution
under all probabilities Py ;. Under the true parameter values, let Py = Py, ;, and
let Eg be the expectation of the random variables. The processes Z and Z; have
left-continuous sample paths with right-hand limits, with values in sets Z; C R”
and Z, C RY. The random variable Z3 has its values in Z3, a subset of R. For
tin [0, 7], 0 = (¢, ST)T and k =0, 1, 2, we denote

5 T

Z(t;0) = (2] (1), 2] O Wz=¢), Z3 (D z35))

SO(t:0) =DV (OZP (15 £) explro(Zi (1)),
i

where x®0 = 1, x®! = x and x®2 = xx7, for x in RPt2, For 1 <i <n,
let N;(t) = §;1(1,<;) be the counting process of death for individual i and let
M;(t) = N;(t) — fé Y;(s)expirg,(Zi(s))}d Ao(s), a martingale on [0, T]. We also
denote Ny, = Y-, Niy MO (1) = n=V2(N,, (1) — f& S\ (60) d Ao} and M (1) =

VY 5 ZiGGo) AN =[5 Si 60y d Aoy =n" 2 Y, f3 ZiGo) d M.
Adapting the notation given in Andersen and Gill (1982), we define

sW(t;0) = Eo[Y; (1) Z2* (15 ¢) explre (Z: (1))}],
V,(1:0) = {Sr(zZ)Sr(lO)_l _ [Sr(zl)Sr(LO)_l]@)z}(t; 9.
u(t;0) = [s@Ps O~ [s(l)s(o)_1]®2}(t; 0),

10) = /OT v(s: 0)s @ (s: 00)ro(s) ds.

We denote the first p components of s by s{l)(t;e) = EolY; (1) Z1; (¢) x
exp{ro(Z;(t)}]. Let also sél)_(e) and s§1)+(9) be the ¢g-dimensional components

of s(I related to the component Z, of Z under restrictions on the location of the
variable Z3 with respect to the parameter ¢,

V710 =571 ¢, B)
= Eo[ Y (1) Zai (1)L (zy <ty expler” Z1i(6) + B Zai(0)}].
sV 0)=sPt (¢ 0 y)

= Eo[Yi(t) Zai () Lizy=cyexpla’ Z1i(t) + v Zoi (1)}].
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For¢ <¢/,lets; (18, ¢/l o B) =537 (¢ 0, ) =53~ (5, v, B) and 53 (12, ¢,
a,y)= sélH(g, a,y) — s£1)+(§’, o, v). Similar notation is used for the processes
(k)
n o

SET(#:0) =Y Yi(OZE (t: O)Lizy <) expla” 21 (1) + BT Zoi (1)),

1

SO 0) = Vi ZE (1 )12y > expla” Z1i()) + ¥ Zoi (1)},

1

SO (1:0) = 3 ¥i(1) 21 () explrg (Z: (1)),

Sy~ (1:0) = > Yi(1) Zoi () Lz, ¢y expla’ Z1i (1) + BT Zai (1)),

1

1
S 0) =Y Vi) Zoi Oz =cyexpla’ Z1() + v  Zu ()}, et

1

and S,(,k)_1 denotes the inverse of S,(,k).
Using (1.2), the estimator 6, maximizes the process

X, (0) =n"1,(0) — 1,(60))
(2.1)

S (T 6)
_ ! (T)) — log 21 L120)
=n ifzn{(re - VGO)(ZI(TZ)) IOg S,(lo)(Tl’ ) }

and we define the function

xo) = [ {(& — £ sV @) + (B — o) sV (¢ A go. 0. o)

+ (@ — Vo)TSSH({ V &0, @0, Y0)
(2.2)
_ T (D)
+ (IB )/0) 52 (];07 é_]’ @o, VO)
0

(N (0) s7(6)

+ (v — B sy (¢, Lol @0, o) — sV (60) log —-~ [ d Ao.
2 =50 (00)

The norms in RP*24 and in (RP129)®2 are denoted | -||. The asymptotic

properties of the estimators will be established under the following conditions:

C1. The variable Z3 has a density k3 which is strictly positive, bounded and
continuous in a neighborhood of ¢y, Sup;eq0,7] A0(#) < oo and Po(T > 7) > 0.
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C2. There exists a neighborhood V (¢g) of ¢ such that the variance Var Z(t; Z)is
positive definite on [0, T] x V (o),

T

T
ey | Eoinf[ ¥ (0{(Bo = )" Zo()) e 0 1O 20| 73 = o[ d Ao > 0,

where the infimum is over 8 between o and yy, and there exists a convex and
bounded neighborhood ® of 6y such that for k =0, 1, 2,

2.4) Eo sup sup{(I1Z1()[* + [ Z20)[})e* #D)? < oo,
tel0,110€O

sup Eo[ sup sup{ (I Z1 ()" + 1 Z2 @) ]|F)e™ # D) ]Z3=z]<oo,
z€[£1,82] t€[0,110€0

j = 1, 27
— 0
sup sup Sup|E0{ere(Z(Z)) | Z3 = Z} _ Eo{ere(Z(t)) | Z3 = Z/}| 12 Z_‘;) 0,
2,7/ t€[0,1]160€0®
where z and 7’ vary in [], 2] and both z and 7z’ are either larger than ¢y or
smaller than &p.
C3. The variables SUP;<(0,1] SUPgeo ||n_1S,(,k)(t; 0) — s®(t; 0)| converge a.s. to
zero, k=0,1,2.

If Z is arandom variable, C3 is satisfied by the Glivenko—Cantelli theorem. If Z; or
Z» are processes, it may be proved by the arguments of Theorem 4.1, Appendix I,
in Andersen and Gill (1982).

3. Convergence of the estimators. In this section we establish the consis-
tency and the rate of convergence of ¢, and &,. Luo and Boyett (1997) proved
the consistency in their submodel of (1.1) from a local approximation of the
process X,. Here the proof is based on the uniform convergence of X, to X and
on properties of X in the neighborhood of 8y. The behavior of X follows from the
next lemma which ensures properties similar to those of condition D in Andersen
and Gill (1982) and the arguments of its proof are the same as in their Theorem 4.1.

LEMMA 1. Under conditions C1-C2, s© is bounded away from zero on
[0,7] x ©, sD(; £, &) and s (s £, &) are the first two partial derivatives of
sO(t; ¢, &) with respect to &, and the functions s® are continuous on ©, uniformly
int€l0,1], fork=0,1,2, with s® ;60" —s®@;:0) = 0(¢c —'| + IIE — &'|)
uniformly on [0, 1] x ©, as |0 — 0’| — 0. Moreover, as |0 — 0’| — 0,

sO©) —sQ0)=E -6V o)+ 1E -6)TsPO)E - ¢)
+ @ =05 ©O) +olle — 1+ 15— €17

uniformly on [0,t] X ©, where ééo)(Q) = 113(4“)1[:710{60‘TZl (e’gTZ2 — eVTZ2)|
Z3=1¢}.
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LEMMA 2. Under conditions C1-C3, supy.q |X, — X|(0) converges in
probability to zero as n — 0.

THEOREM 1. Under conditions C1-C3, there exists a neighborhood By of 6
such that if 6, lies in By, then it converges weakly to 6y as n — o0.

PROOF. For every 6 = (¢,£7)T in O, the first derivatives of the function X
with respect to «, 8 and y are zero at §y and the second derivative of the function
X (0) with respect to £, at fixed ¢, is the matrix —/ (9). The assumptions that Ag is
bounded and Var Z(t; ¢) is positive definite imply that 1 (9) is positive definite in
a neighborhood of 6y [Pons and de Turckheim (1988), Lemma 2.2], and therefore
the function £ — X (¢, &) is concave for every (¢, £7)7 in a neighborhood of 6.

Moreover, in a neighborhood of 8y, X has partial derivatives with respect to ¢,
at fixed &, X (¢,&) for ¢ <¢pand XJr (¢, &) for ¢ > &o. They are defined by

. T
X;(Q):/ EO[Y{(ﬂ_y)Tzzeang'f‘ﬁgZZ
0

0
eO‘TZI (elgTz2 _ eyTzz)S (0)((?90)) } ‘ 23 _ {]hg({)dAo,
S

. T
XF®) = f Eo[Y {(ﬂ — ) 2yt BN 22
0

©) g
A A eVTzz)i<o>((90))} |123= §+] 1) dho

If 6 tends to 6y with £ < o, the continuity of s (z; 0) with respect to § (Lemma 1)
implies that X ; (0) tends to

. T
X7 (60) = / Eo[Ye® 71 {(Bo — y0)T Zoed %2
0
3.1) + e 22— f022) | 73 = o] d Aoha(Zo)
T T T
=1 /0 Eo[Ye®0 “1{(Bo — yo)T Z2)?eP+ %2 | Z3 = ¢o] d Aoh3(&o),

where S, is between By and yp. By condition (2.3), X C_ (6p) is strictly positive and
therefore X; (0) is strictly positive in a neighborhood of 6y. Similarly, if 6 tends
to 6y with ¢ < &, XZF(G) tends to

. T T T
X7 (60) = /0 Eo[Y e “1{(Bo — y0)T Zae?0 %2
(3.2)
et 22 eﬁ"TZZ} | Z3 = ¢y | d Aoh3(%o)
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and it is strictly negative. This implies the existence of a neighborhood By of 6y
where X attains a strict maximum at 6y and where X is concave. As X,, converges
uniformly to X (Lemma 2), it follows that if (9\" lies in By then it converges weakly
tofypasn — oco. [

To study the rates of convergence of En and E,,, let U, ={u = (uq, uzT Youy =
n(¢ — &), uz = n'?(€ — &) with ¢ € [&1, 82,6 € E). For x = (x1,x;)" with
x; € R and xp € R4, we denote p(x) = (|x1| + |x2]|?)/? and V,(6y) =
{0 € ®:p(0 —6y) < e} an e-neighborhood of 6y with respect to p, though it is
not a norm. For u = (u1, ug)T € Up, let &y =80 + n~luy, Enu=260+ n—12y,
and 6, , = ($n.us SZM)T in®, and let Uy ={u e Uy:pu) < n'2¢}. Let W, be
the partial log-likelihood process defined by

(3.3) W, (0) =n'/?(X, — X)(9),

with X, and X given by (2.1) and (2.2). The rates of convergence of E,, and E,,
will be deduced from the limiting behavior of the process W,, following classical
arguments. It relies on the next lemmas, proved in Section 5.

LEMMA 3. Under conditions C1-C3, for every ¢ > 0 there exists a constant
Kk > 0 such that Eg SUPgev, gy) | Wn(0)| < ke asn — oo.

LEMMA 4. Under conditions C1-C2, for ¢ sufficiently small there exists a
constant ko > 0 such that for all 6 in V. (6p), X (0) < —ko{p (0 — 09)})>.

THEOREM 2. Under conditions C1-C3, for & > 0 sufficiently small,
Po(sup,cqy, )= A X, (6y.4) = 0) tends to zero as n and A — 00, and

limsup Po(n|¢, — &o| > A) =0, limsup Po(n'/?|[&, — &l > A) =0.

n—00,A—00 n—00,A—00

PROOF. Let i, = (n(Z — 20),n'/2(E, — &), let n > 0 and let ¢ > 0
be sufficiently small to ensure that Lemma 4 holds on V,(6p). From The-
orem 1, for all n larger than some integer ng, Pol{u, € Uy} = Po{é;, €
Ve(60)} > 1 — 1. Both probabilities Py(n|Z, — ¢o| > A2) and Py(n'/2||E, —
&l > A) are bounded by Po(p(u,) > A) < PO(supue‘u,,.g,p(u)>A Lp(Op,u) =
L,(00)) +1n = PO(SuPue‘u,,.g,p(upA X (6n.u) = 0) + n. The latter probability
is finally bounded following the arguments of Theorem 5.1 in Ibragimov and
Has’minskii (1981), where U, . is split into subsets H), ; defined by its in-
tersection with the sets {g(j) < p(u) < g(j + 1)}, j € N, for a function g
such that } ;..j)-48( + 1)/¢%(j) tends to zero as A — oo. Then from
Lemma 3, PO(Supue‘un,g,p(u)>A Xn(On,u) = 0) < Zj;g(j)>A PO(SUPH,”‘ Wi (On,u) >
n~12g2(j)kp) and it tends to zero by the Bienaymé—Chebyshev inequality. [
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4. Asymptotic distribution of the estimators. Let A > 0 and ‘u;j ={u e
Uy 1] + |lu2]|® < A}. The limiting distribution of (n(Z, — Zo), n'/2&, — &)
will be deduced from Theorem 2 and from the behavior of the restriction of the
process u > 1, (6,.,) — 1,,(6p) to the compact set ‘L(fl‘, for A sufficiently large. We
define a process Q, on R and a variable I, by

On(uy) = Z(S,' {(VO - :BO)TZZi(Ti)(]l{{nu<z35§§0} — L{go<Z3 <tui))

i

O .. _ o .
4.1) S0 (T35 S §0) — S (TZ,BO)}’

S\ (T3 60)

1)
7 _ (6o)
—n1/? E Z; }dM,-,
=n / { (;0) (0)(0 )

THEOREM 3. Under conditions C1-C3, the following approximation holds
uniformly on ‘u,?,for every A >0, as n — oo:

Ly O ) — 1n(00) = Qu(u) +ul T, — Yul 1(O0)uz + 0, (1).

The proof of Theorem 3 is given in Section 5. We now study the weak
convergence of O, as a random variable on the space D of right-continuous
functions with left-hand limits on R endowed with the Skorohod topology, and
on its restriction to the space D4 of right-continuous functions with left-hand limit
functions on [—A, A], for any A > 0. The process Q,, is written as the difference
O, = 0 — 0Q,, where Q) and Q, are defined by O;f =0 onR_, 0, =0
onR,,

07 () = Z&‘{(ﬂo —v0)" Z2i (T) Ly < 75 <o 4n—1)
i

Zj YJ' (Tl.)eaoTle(Ti)(eﬂoTsz(ﬂ) _ e)/()TZZj(Ti))]]_

{¢o<Z3j<to+n~lv} }
0
sy (6o)
ifv>0,

0, )= Z&‘{(Vo — B0 Zoi (T Ly 11025 <20)

i

Zj YJ' (Tl.)eaoTle(Ti)(eﬂoTsz(ﬂ) _ e)/()TZZj(Ti))]]_

{¢o+n—lv<Z3;=<t0} }
0) .
Sn (T3 00)
if v <O.

In order to describe the asymptotic distribution of Q,, let vt and v~ be the real
jump processes such that vT =0onR_, v~ =0on R, vT(s) is a Poisson variable
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with parameter sh3(p) on Ry and v~ (s) is a Poisson variable with parameter
—sh3(&p) on R_. Let (V,:r)kzl and (V; )x>1 be independent sequences of i.i.d.
random variables with characteristic functions

et () = IE0(6Wk+)

T T T
—E, [eir{8<ﬂ(>—y(>)Tzz<T)—f(f Y e 71(eP0 22— #2) d o) | Z3 = §0+]

’

“4.2)
@ (1) =Eo(e'"r)

=E, [eif{rS(yo—ﬂo)Tzz(T)—fg yeed 71(eP0 72070 2 d o) | Z3 = ;o]

and let V0+ =V, =0 (V,:r)kzl and (V, )¢>1 are supposed to be independent
of vt and v™.
Let Q = Q" — O be the right-continuous jump process defined on R by

(4.3) 0fs= ), Vo o= ) Vv,

0<j<vt(s) 0<j<v=(s)

and let v = inf{v; Q(v) = argmax Q} be the maximum value of Q.

LEMMA 5. The process Q has independent increments, Qv =0 on R_,
Q- =0 on Ry and the variables Q% (s) and Q(s) have the character-
istic functions ¢ (t) = explsh3(¢o){ptT () — 1}] for s in Ry and ¢; (1) =
expl—sh3(¢o){@~ (1) — 1}] for s in R_. Moreover, Vg is a.s. a finite random time.

THEOREM 4. Under conditions C1-C3, the variable I, converges weakly to a
Gaussian variable N (0, 1 (0y)), the process Q,, converges weakly to Q in D 4, for
every A > 0, and they are asymptotically independent.

PROOF. As in Theorem 4.1 of Andersen and Gill (1982), the variable l~n
in (4.2) converges weakly to a Gaussian variable N (0, I (6p)). For the convergence
of Q,, we may restrict our attention to Q;" and the proof extends to (Q;F, Q;)
since the processes Q)7 and Q are independent and similarly defined. To prove
the weak convergence of the finite dimensional distributions of Q;, we shall
prove their tightness and the convergence of their characteristic functions. Let
JeN,let 0=vyp <vy <--- <vy <A be an increasing sequence and /,; =
1¢0 + n_lvj_l, Lo + n_lvj] and let g1, ..., gy be constants. The variable ¥, =
Y j<s 410 (vj) — O;f (vj—1)} is the sum of the n variables 1, ; =Y ;< ; qjNnj.i»

1 2
where 1,j,; = nr(;j?i + ”r(zj?i’

T
Th%)z =1y, (Z3i){8i (Bo— yo) T Z2i(T}) — /(; b; dAo},

T -
ﬂr%)z =1y, (Z3i)/0 ¢i {Sy” "' (60) AN, — d Ao}
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with ¢; = Y; % Zii (3/30T22i - eVOTZ2i) Since the intervals I,,; and I, are disjoint,
J4 0 1 1 2
neg e =0 lf] #1,for 0=1,2. Let 5\ =3, ., 3, q;m'?; and T =

nj,i

di<n ijj q;j nnj’i. By the martingale property EOE,(, ) = =0, and by C3 and (2.4),
Bl ) =Eot, (Za) [ 6750 @0 dAo
=n"2(v; — vj_1)h3()
x [ Bo@} 1 Zsi = & )s O @0 d Ao + o),
E {77,(3),77,%{)1} 3 —vj—1) (W — ve—1)h3 ()
x [ B3 @1 2 = s O @) o+ o)

Therefore IE(){Z(Z)}2 O(n~') and =@ converges to zero in probablhty The
variable E,(, ) is the sum of the 7 i.i.d. variables n = j<s4j r;nj’i. Its mean and

its variance are m, =} ; qjmy; and o} = >4 Eo{n,(ll) 12 — m2, with

myj = /0 Eo[Y11,,(Z3){(Bo — 1) Z2e™? — p}]d Ao

=n_1(vj —vj_1)m +o(m™h,
1 T 2
Eo{n} ),} =Eo| 11,,(Z3)18: (Bo — y0)" Z2i(T}) — | did Ao
- 0

<2n (v —vj_ma+o(m™")

for constants m| and my depending only on the distributions under Py. Then the
sequence of the distributions of X,, n > 1, is tight since, for all K > 0,

P(B1 = K) < 2K 2[Eo(S{P + Eo(ZP)
< 2K 2(no; +n’my +o(1)) = O(K™).

As E,(,z) converges to zero in probability, X, and E,(,l) have the same limiting
distribution if they converge. The characteristic function of E() is @,(s) =
(Egexp)_; jisq; nn ;. k)” Since the intervals 1,,; do not overlap, for each k there is
at most one index j such that 7,;x # 0. Then using the equality eXi% 1 =
> j(e“j — 1) for a sum where only one term a; is different from zero,
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. 1 — .
Eoexp(¥ <y isqjny i} =1+ X <5 n~H{wj — vj-1)e(s. q;) + o(1)} with

@(s,qj) =h3(o)

x {Bo(exoisa; o080 — ) 2a1) - [ 9ol ||z =5 ) -1},

and ¢, (s) converges to ¢(s) = exp{Zjij(vj —vj-1)e(s, g;)}. It follows that the
finite-dimensional distributions of Q; converge weakly to those of QO defined
by (4.3).

To prove the weak convergence of the process Q) in the Skorohod topology
on Dg4, it remains to prove its tightness. Let 0 < vy < v < vy < A. Since the
intervals I, =1¢0 + n~y, ¢o + n~'v] and Iy =1¢ + n~, co+n"lvy] are
disjoint,

Eol Oy (v) — Oy (v 10y (v2) — Oy (V)]

< ZEOH% (Z3i)1y,(Z3))
i#]

x 18:1(Bo — vo) T Zai (T1)| +

Z/o 8k (Ti) SO~ (Ty; o)
3

|

and it is bounded by (v — vy)? times a constant for every n by similar argu-
ments as above. Hence the process Q; satisfies the D-tightness criterion (15.21)
of Billingsley (1968), and then the processes O, converge weakly to Q. Fi-
nally, Q, and I, are asymptotically independent because any linear combi-

nation aE,gl) + b7, converges weakly to a_;; qj{Q+(vj) — Q+(vj_1)} +
bT N (0,1(6)), since the variable n='/23y";_, > i<rqi11,;(Z3) JiZi(zo) —
5,5”(90)5,50)‘1 (6p)} dM; tends to zero in probability. [J

THEOREM 5. Under conditions C1-C3, n(zn — o) and n'2E, — &)
are asymptotically independent, n(¢, — {o) = argmax,, Q,(u1) + o,(1) and it

converges weakly to Vo, and nl/z@, — &) = 1(90)_17,, + 0, (1) and converges
weakly to a Gaussian variable N (0, [ Bo)™H).

PROOF. Let u, = (n(?n — ;‘0),n1/2(§n — £))T. For every x € R and
y e RPH24,

Po(itn < (x, y")T)
~ T
= o (arzmax 0, 1) v Qe 16T )+ 0,1 < 5" |

with a uniform o, on ‘u;} for every A > (x| + l¥11%)1/2, by Theorem 3. The
asymptotic independence of Q, and /,, and their weak convergence (Theorem 4)
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entail that Py(u, < (x, yT)T) tends to Py(Vp < x) Po(Go < y), where Gy is a
Gaussian variable N (0, I (6p)~1). Using this convergence and Theorem 2, for
every ¢ > 0, there exist ng and Ag such that for all n > ng, Py(||[it2, ]| = Ag) < &/3,
|Po(i1n < x, |2l < Ag) — Po(Vg < x) Po(||Goll < Ao)l < &/3, Po(|lGoll >
Ag) <¢&/3, and hence

| Po(it1, < x) — Po(Vg < x)|
< |Po(it1, < x, |[2, ]l < Ag) — Po(Vg < x) Po(||Goll < Ao)l
+ Py(Vg < x) Po(IGoll = Ag) + Po(it1, < x, |[tt2, ]| > Ag) <e,

so i1, converges weakly to Up. By the same arguments, i, converges weakly
to Go. Moreover, they are asymptotically independent, and on the set {p (i1,,) < Ao}
with probability larger than 1 — &, we have U, = argmax,, Q,(u;) Vv Q,(u1) +
0,(1) and @iz, = 1(60) ' T, + 0, (1). O

REMARK 1. As proved in Lemma 5, Vg is a.s. finite and by Theorem 2, it
is sufficient to consider the distribution of O on compacts to build asymptotic
confidence intervals for ¢g. However, the distribution of Q depends on the
unknown parameter 6y and it seems difficult to use the conditional characteristic
functions (4.2). Bootstrap confidence intervals with a resampling of the individuals
could be considered but their asymptotic behavior will not be studied here.

REMARK 2. If {g were known, the maximum partial likelihood estimator of &
would have the same asymptotic distribution as nl/ 2@, — &) in Theorem 5 and
it would be an efficient estimator of &y. With ¢y unknown, é\n is thus an adaptive
estimator of &g.

The weak convergence of n'/? (An—Ao) may be established using the approach
of Andersen and Gill (1982). Its asymptotic behavior follows from Theorem 5 and
from the next result, which is the same as if ¢y were known. From Theorem 6 and
Remark 2, the limit distribution of n'/2 (Kn — Ag) does not depend on knowledge

of &j.

THEOREM 6. Under conditions C1-C3, the process defined for t € [0, t] by

(1
44) WP Ry~ A0+ E ) [ @dng
0 S

converges weakly to a centered Gaussian process with covariance
fo MsO=1@00)dAg at s and t in [0, T, and it is asymptotically independent of
n'E, — &).



CHANGE-POINT IN THE COX MODEL 455

PROOF. By definition of the predictable compensator of N,

(0) —1/2;¢©) 7 )
- t dM Pnm S (On) — S (B0)}
n'(A, —A0)<z)=/ e —/ — d Ao.
0 n-ls, (On) 0 n-1s, ()
The first term in the right-hand side is the integral of the left-continuous process
nS,(ZO)_I(@\,,) with respect to the martingale MY and it converges weakly to a
centered Gaussian process with covariance f(st(O)_l(Go) d Ao by Rebolledo’s

(1980) convergence theorem. The asymptotic equivalence of the second term and
nl/z(/é\n — )T fé s (G)s@=1(8y) d Ag is obtained from the expansion

n=12189@,) — 599 6p)}
=n'2E, — &) n 'SV @, £5) + 072 SO (@, £0) — S (60)],

with £ between E,, and &). From Condition C3, Lemma 1 and Theorem 1,

1O ,,. 7 _
supscjo,o 117183 (138,) — s (13 60)| and supyep 1) SUPs g, y1u 0 8y 117" X
f,l)(t; Cn, &) — s (z:6p) || tend to zero in probability. Moreover,

28O, &) — SO ©0))

—pn /2 Z Yiea(?zu (eﬂ()Tzzi _ eJ/oTzzi)(]l{

1

C0<Z3<Cn) ]l{En<Zai§C0})’

denoted n~1/2 Y. Yioi (1{§0<Z3i52n} — ]l{fn<23i§§o})' From /Theorem 5, for every
& > 0, there exist A and ng such that for n > ng, Po(n|¢, — &o| > A) < g/2.
Let Q4 = {nlZ, — ol < A). For every n > 0, Po(sup,n~"/2| ¥; Y; (1) () x
L¢y<z4 <z,3] > 1) is smaller than
I3
> 7}) + 5

1 2

Z Yi)di (L5, < 2y <g,) L2

1

P()<supn_1/2
t

n—1

2
&
+ 7]2 [EO{Sl;lpY(t)|¢|(t)]]-{§0<Z3§§()+n_lA}}] + 5

Ah
< 3(§°)Eo{sup|¢|2<r> | Z3= ;J}
nn t

(n — 1)(Ah3(%)*
+ n2y?

2
[Eo{sgp|¢|<t)\za=;5” +7,
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which is smaller than ¢ for n large enough and the same result holds for
n~l2y, Yi$ilz, - 7, <¢,)- Therefore the process =289 @, &) — S 60))
tends to zero in probability uniformly on [0, 7], and (4.4) is uniformly approxi-
mated by [¢ nS\" " 6,) dM.

The asymptotic 1ndependence of (4.4) and n'/ Z(Sn &op) is a consequence of the
approximation nl/2, (& —&)) =1(6g)~ 11,, +0p(1) since Zl and the local martingale
JonSy O-1 ©,) dM are asymptotically Gaussian with mean zero and they satisfy
Eoly f¢ SV (6,)dM? =0 for all 7 in [0, 7]. O

REMARK 3. As &, and A, are adaptive with respect to ¢y, asymptotic
confidence intervals for the components of &y and for Ag are the same as in the
regular Cox model with a change-point at a known time ¢y. This enables one to
use the standard software for survival data analysis by a maximization of the partial
likelihood L, (ax, £) with respect to the parameter £ for successive values a; on
a grid in [¢1, &»], with a path of order o(n—1). The maximization of L (ak, 2
provides an estimator Ek n for &y and g“,, can be approxnnated by the value ¢, that
maximizes the sequence (L (@) = (Ly (ak ék 2 )k. Then én is approximated
by the value of g, associated with ¢, and A, is approximated by the Breslow
estimator A calculated with S(O)(g“,,, &,). Under the above conditions, they have
the same asymptotic behavior as g“n, En and 7\", described in Theorems 5 and 6.

5. Proofs of results. The proofs are based on functional convergences of
empirical processes which are established in a preliminary lemma. We denote

U; = 8;Z»(T;), P,‘E’T and P,,U’Z3 the empirical distributions of the variables
(6i, T;)i<n and (U;, Z3;);<n, respectively, and P(()S T and POU’Z3 their distributions

under Pp. Let also v2>7 and Y% be the related empirical processes and v/ be
the empirical process associated with the variables (Y;(¢), Z;(¢)), 1 <i <n. We
consider functional families defined by

wo(d, 1) =d log{s©z;0)s V1 (z; 60)}, de{0,1}, t €0, 7],

foiw g =ulpazyy,  fr 00 =ulc ),

zou=(uj)<j<q €RY,

eaTzl+ﬂTzz eaOTZl-i-ﬁoTZz
‘”l”ﬁ(y’Z)=y{ 5O 5O 6y) } =

oszH-)/TZz OthH‘V()TZZ
e e
23>4o}>

wz,,,g(y,z)=y{ sO@ o) sO@; 6)
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T T
e utyTn pagzithi 2

Y30y, 2) = )’{ sO(t: 0) N sO(2: 60) }1{§<23§Co}’

7 T
alat+plz pafzityy 22

e
Var60(y,2) :y{ sO(z: 0) o sO(2: 6p) }]1{4“0<Z3§§}

for y € {0, 1} and z = (z1, 22, 23) with z; € Z, Jffg+={fg,j;§o<§§§o+82,
1<j<qland F7 ={f;j:lo—€*<¢ <, 1<j<q}.

LEMMA 6. Under conditions CI1-C3, sup, |(P,ffvT — Pg’T)(¢9)|,
U,z U.z U.zZ U,Z3\ )

sup, j |(Pn" ™% = Py 3)(f:j)| and supg ; |(Py "™ — Py )(f; )| converge

in probability to zero. For every n, I[:?losupﬂJr W, (fD), Eosup?g_ e (),

EO Supgevg(go) |U2’T((p9)| and Supte[ovf] ]EO Supgevg(go) |Un (k, t; 9)', k = 1, ey 4,
are bounded by ¢ times a constant.

PROOF. The first two convergences are consequences of the Glivenko—
Cantelli theorem for uniformly continuous and integrable functions (¢g)gco
and for the Vapnik—Cervonenkis class (1¢, SoD¢e[z;.¢,1 and (10, ¢ Deefey,cp1- The
L>(Py) norm of the envelope function of £, is less than

. 1/2
Eo sup [Uillligy<zy<c) < {Eoﬂ{;0<z3i5;0+82}/ ||ZZi||2dNi} = 0(¢).
£eV2(%0) 0

For ¥, = 3";‘ or ¥, the bound of Egsupg [v,(f)| is a consequence of
Theorem 2.14.1 in van der Vaart and Wellner (1996). For the functions ¢y and for
every ¢ € [0, 7], 0 and €’ in V,(0p), wor(1,1) — @p(1,1) = {(&' — &) sV (1:0) +
@ =05 0))sO~11:0) + L& — £)Tv(:0)(E — £) + 0(e?) by Lemma 1,

where s, 550)’ s©O=1and v are uniformly bounded. The family {¢y : 0 € V.(6p)}

has therefore an envelope function with an Lz(P(;S ’T)—norm of order ¢ and its
Lz(Pg’T)—bracketing integral J[](I,LZ(P(;S’T)) is finite by Theorem 2.7.11 in
van der Vaart and Wellner (1996). The bound of [E SUPgev, (9y) |v2’T((p9)| is a
consequence of their Theorem 2.14.2. Similar arguments hold for the classes
of functions Wy ; = {Vks0:0 € Ve(6p)}: For k = 1,2 and for every t € [0, 7],
the functions vy ;¢ are continuously differentiable with respect to 8 and their
derivatives are uniformly square integrable on [0, 7] x V¢(6p), and for every
t € [0, t], the functions ¥ ; ¢ are continuously differentiable with respect to 6 and
their derivatives are uniformly square integrable on [0, t] x V.(6p), by Lemma 1.
For k = 3, 4, the functions v ;¢ are the product of the indicator function 1y; ¢,
with ¢ € [¢o — &2, Zol, and of a continuously differentiable function with respect
to 6 having uniformly square integrable derivatives on [0, t] x V. (6p). Moreover,
Wy ; has a finite L,-bracketing integral which does not depend on ¢. [J
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PROOF OF LEMMA 2. The process X,, is written

Xn(6) = (& — so)T{n—l/zMﬁ,”m + [ ' n_lS,(,l)(Go)dAo}
0

©)
/1 Si 6) n~'dnN,

(5.1)

+ (B — J/)T{n_l Y81 Zai(T) gy <23 <c)

i<n

—n1y5 ZZi(Ti)]]‘{C<Z3iSCO}}‘
i<n

Under C3, [y n=1SV (@) dAg converges to Jg sD(@p)dAo and the variable

n= ZM,(ZI)(‘L') converges in probability to zero since Il*:o{l\/JIf,l)(‘r)}2 =Eo fot n~!x

S,(,z) (6p) dAg is bounded. The convergence of the last three terms in (5.1) is a
consequence of Lemma 6 and C3. [J

PROOF OF LEMMA 3. The process W, is written Wy, — W5,, where
Win(0) =n~"2 > "[re(Zi(T})) — rgy(Zi (T}))
i
—Eo{re(Zi(T})) — ra,(Zi(Ti)}],

©) . 0)
_ Sp ' (T;5 0) T s%(0)
—_ 12 n 0
Won(0) =n E |:10g SO T 60 /0 log{ SO 60 }s (o) dA01|.

Let Gf,l) =nl/ z(n_lS,(,l) — s(l)) be the empirical processes associated with S,(,l).
We shall bound successively the supremum of each term in a neighborhood
of fy. First, Wi,(0) = n= 2%, [(@ — ao)” [{{Z1idN; — 5" @0)d Ao} +
B — BT 51 Zailizy<e) ANi — 5577 (0. 0. Bo) Ao} + (v — y0)T [ {Zai
1(zy>50) dNi — Sél)+(§0,ao, v dhoy + (B — V7 Ji{Zailigy<zy <) dNi
53 (160, €120, vo)d Aok + (v — BT [§1Zaili<zy<e)}dN: — 372, Gl
a0, Bo) dAo}]. The sum of the first three terms in this expression is (§ — £0)T x
[n 1250 Jo {Zi(20) dN; — sV (60) d Ao}] and

2

Bo\n~ 2 Y [ Ziawyan; - sV @) dno)

i<n

2
T
< Eo M (0)]1? + Eo H /0 G (60 dAoH
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which is bounded by n~'Eq [7 IS5l dAg 4+ n~"Eo [ 1S5 (53 260) || A3(s) dis.
Then for every n, the mean of the supremum of the first three terms in Wy, is O (¢).
For the fourth term in the expression of Wy,(0),

T
n_l/ZZ/O {ZZijl{Co<Z3i§§}dNi - Sél)(]é“o, ¢, @0, v0) dAo}

i<n

Eo sup
£eV2(%0)

<q'?Eq sup Y% (1)
feFt

and a similar bound holds for last term, so they are O(g) by Lemma 6. Moreover,

n=180(T;: 0) n—lsf,(’)(T,-;eo)}

Wa,(0) =v2 T —1/2 8~{lo —lo
n(0) = (po) A Z T8 7500 % 50T a)
By a Taylor expansion as n — 00, the second term is uniformly approximated by

n—3/228.{Yj(Ti)e’9(Zf(Ti)) _Y(men AT }{1 o (1)
=1 5O 0 sO(T;; 6) o

where n—3/2 Zi Eo SUPg v, (6) S; {erg(Zi(Ti))s(O)—l(Ti; 0) +er90(zi(Ti))s(0)—l(Ti; 00)}
=o0(1) and

Eo sup n 32 5i{Yj(Ti)e’9(Zf(Ti))_Yj(Ti)e’GO(Zf(T"))}
0eV,.(0p) Py sO(T;; 0) sO(T;; 6p)

{Yj(t)ere(lj(l)) _ Yj(t)ere()(zj(t)) }
sO(;0) s©(z; 6o)

T
SEo/ sup n_l/zz
0 6eVe(6p) j

x 5O (t: 60) d Ao(1)

by an integration conditionally on (Y}, Z;), 1 < j < n. Splitting the integrand
in the right-hand side of this inequality into a sum of four terms according to
the location of the variables Z3; with respect to ¢ and ¢y, we see that the last
expression is bounded by by + - - - + bgs = O(¢) from Lemma 6, with

T
b= {Eo sup v,iwk,f,e)}s<°><r;eo)dAo<t). 0
0 0€Ve(00)

PROOF OF LEMMA 4. Since X (6p) = Xg (6p) =0, by a Taylor expansion for
¢ sufficiently small and for 6 in V,(6p),

X(0) = —I¢ — 5ol X[ (60) — 3(& — &) 1(6™)(€ — &)
+o(lg —¢ol)  if¢ <,
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X(0) =12 — tol X[ (60) — 3(5 — &) 1(6™)(€ — &)
+o(I¢ =%l  if¢ > o,

where 6* is between 6 and 6y and with (3.1) and (3.2). The matrix I (%) is positive
definite for all #* in a neighborhood of 6y and by Lemma 1 || 7 (6) — I (6p)|| tends to
zero as p(60 — 6y) — 0. Moreover X C_ (6o) 1is strictly positive if ¢ < ¢ and strictly
negative if ¢ > ¢o (cf. proof of Theorem 1). The result follows if ¢ is sufficiently
small. [

PROOF OF LEMMA 5. Let u = h3(gp). For s in Ry,
‘ J .
65 (1) =Eo[Eofe" @ [vF ()] =eh 2%) (M-s!—) Eoe'" Zosksi Vi
iz

ey (Mswf(t))j

!
j=0 J:

from the independence assumptions, and the proof is similar for ¢, . From (4.2)
and by the mean value theorem, there exist x| and x; lying strictly between Sy and
1o such that

T
BV, = /0 EO{(ﬂo — )T ZyY e 17 22

— Y% (eﬁOTZ2 — eyOTZZ) | Z3 = g0+} dAy

T T T
= (Bo — VO)T[/O EO{Z?ZY@%Z'“2 22| 75 = é“(;r}dl\o](yo —x1)

and therefore Eg V,:r is strictly negative. By the same arguments, gV, is strictly
positive, and the sums ;- V,:r and > ;-0 —V, converge a.s. to —oo and the
maximum value V¢ of the process Q is a.s. finite. []

PROOF OF THEOREM 3. Let A > 0, u = (uy,u2) € U?, u; in R and

n°e
up in RP+24 and let Opnu = (;‘n,u,énT’u)T with &, = ¢ + n_lul and &, , =
go+n"'2uy. For1 <i <n,
(r6,. — roy)(Zi(T}))
:n_l/z{”gii(Ti; Snu)

+ (o — B Zai (T)) (L5, < 23 <20} — Leo<Zi <t }-
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Using C3 and the continuity of the functions s, a Taylor expansion for &,, close
to & gives

SO G) = SO (G, €0) + 17 ?ul SO (G, £0)

+ 307 ud S (G, E0)uz + 0as. (1),

S Ou) S£,°><;W,so>—s,$°)<eo> 12,15 G- §0)
©) = ©) U2 =0
Sn” (6o) Sn” (6o) Sn” (60)

log

—1
n
=+ Tl/tgvn (é‘nua SO)”Z + Oa.s.(l)

uniformly on ‘L(A as n — oo. By the uniform convergence of n”!N, to
Jo5@(00) d Ao, we obtain L, (6u) —1n(00) = ub Cpy(u) — Jul I Bo)uz + Q1) +
0p(1) uniformly on ‘un , Where

P Sr(ll) nu»
Cn(M):n_l/ZZ/O {Zi(gnu)_;(f;i(m%b)}dNi
i n 0

e

+”_1/2/o { S3 (120- Cuul. 0. 70) = S5 (120. &uu]. @0, Bo)
+ 85" (1nu S01, @0, Bo) = S5 (s G0l @0, yo)} dAo.

Let ay(un) = [§{ZiGu) — ZiG)}dM; and ax() = [F{Sh" G 80) —
S @018V (@9) dM;, 1 < i < n. The variables a;;(u1) and ¥; az;i(u;) have
mean zero as integrals of predictable processes with respect to M; and ) ; M
respectively. Let 0, be the zero g-dimensional vector. Then

Zi (t; gnu) - Zi (t; 4-0)
T T T
= (017’ Zyi (1), —Zy; (t)) (]l{f()<z3i§§nu} - ]l{Cnu<Z3i§§0})’
St Gnus §0) — SV (3 60)

T .
= Z Yi(1)e® “ (t)(]l{fo<z3i§§nu} - ]l{fnu<Z3i§§0})

x ((z00), Z5,0), 01) T Yefo 20— (zT 0L, ZT)T &0 220,
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for £ =1, 2, EOS“P\u”gA llaei(u)||? = O(n~"Y); therefore EOS“P|u1|§A n—1/2x
Yiag(uy) = O(n_l), since the supremum is over the intervals ]¢o, ¢, ] and
1¢nu, €ol, and the result follows. [
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