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ESTIMATION IN A SEMIPARAMETRIC PARTIALLY
LINEAR ERRORS-IN-VARIABLES MODEL
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Texas A & M University

We consider the partially linear model relating a response Y to
Ž . T Ž .predictors X, T with mean function X � � g T when the X ’s are

measured with additive error. The semiparametric likelihood estimate of
Severini and Staniswalis leads to biased estimates of both the parameter

Ž .� and the function g � when measurement error is ignored. We derive a
simple modification of their estimator which is a semiparametric version
of the usual parametric correction for attenuation. The resulting estimator
of � is shown to be consistent and its asymptotic distribution theory is
derived. Consistent standard error estimates using sandwich-type ideas
are also developed.

1. Introduction and background. Consider the semiparametric par-
tially linear model based on a sample of size n,

1 Y � X T� � g T � � ,Ž . Ž .i i i i

where X is a possibly vector-valued covariate, T is a scalar covariate, thei i
Ž .function g � is unknown and the model errors � are independent withi

conditional mean zero given the covariates. The partially linear model was
Ž .introduced by Engle, Granger, Rice and Weiss 1986 to study the effect of

Ž .weather on electricity demand and further studied by Heckman 1986 , Chen
Ž . Ž . Ž . Ž .1988 , Speckman 1988 , Cuzick 1992a, b , Liang and Hardle 1997 and¨

Ž .Severini and Staniswalis 1994 .
We are interested in the estimation of the unknown parameter � and the

Ž . Ž .unknown function g � in model 1 when the covariates X are measuredi
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with error. Instead of observing X , we observei

2 W � X � U ,Ž . i i i

where the measurement errors U are independent and identically dis-i
Ž .tributed, independent of Y , X , T , with mean zero and covariance matrixi i i

� . We will assume that � is known, taking up the case that it isuu uu
estimated in Section 5. The measurement error literature has been surveyed

Ž . Ž .by Fuller 1987 and Carroll, Ruppert and Stefanski 1995 .
If the X ’s are observable, estimation of � at ordinary rates of convergence

can be obtained by a local-likelihood algorithm, as follows. For every fixed �,
Ž . Ž .let g T, � be an estimator of g T . For example, in the Severini andˆ

Ž .Staniswalis implementation, g T, � maximizes a weighted likelihood as-ˆ
suming that the model errors � are homoscedastic and normally distributed,i
with the weights being kernel weights with symmetric kernel density func-

Ž . Ž .tion K � and bandwidth h. Having obtained g T, � , � is estimated by aˆ
least squares operation,

n
2Tminimize Y � X � � g T , � .Ž .� 4ˆÝ i i i

i�1

In this particular case, the estimate for � can be determined explicitly. Let
Ž . Ž .g � and g � be the kernel regressions with bandwidth h of Y and X onˆ ˆy, h x, h

T, respectively. Then
�1n

T
�̂ � X � g T X � g T� 4 � 4Ž . Ž .ˆ ˆÝn i x , h i i x , h i

i�13Ž .
n

� X � g T Y � g T .� 4Ž . Ž .� 4ˆ ˆÝ i x , h i i y , h i
i�1

Ž .One of the important features of the estimator 3 is that it does not require
undersmoothing, so that bandwidths of the usual order h � n�1�5 lead to the
result

1�2 ˆ �1 �14 n � � � � Normal 0, B CB ,Ž . Ž .Ž .n

Ž � .where B is the covariance matrix of X � E X T and C is the covariance
� Ž � .4matrix of � X � E X T .

Ž .The least squares form of 3 can be used to show that if one ignores the
measurement error and replaces X by W, the resulting estimate is inconsis-
tent for �. The form, though, suggests even more. It is well known that in
linear regression, inconsistency caused by the measurement error can be
overcome by applying the so-called ‘‘correction for attenuation.’’ In the context
of semiparametric models, this suggests that we use the estimator

�1n
T

�̂ � W � g T W � g T � n�� 4 � 4Ž . Ž .ˆ ˆÝn i w , h i i w , h i uu
i�15Ž .

n

� W � g T Y � g T .� 4Ž . Ž .� 4ˆ ˆÝ i w , h i i y , h i
i�1
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Ž .The estimator 5 can be derived in much the same way as the Severini�Stan-
Ž .iswalis estimator. For every �, let g T, � maximize the weighted likelihood,ˆ

ignoring the measurement error. Then form the estimators of � via a
negatively penalized operation

n
2T T6 minimize Y � W � � g T , � � � � � .Ž . Ž .� 4ˆÝ i i i uu

i�1

Ž .The negative sign in the second term in 6 looks odd until one remembers
that the effect of the measurement error is attenuation, that is, to underesti-
mate � in absolute value when it is scalar, and thus one must correct for
attenuation by making � larger, not by shrinking it further towards zero.

Ž .In this paper, we analyze the estimate 5 , and show that it is consistent,
Ž .asymptotically normally distributed with a variance different from 4 . Just

as in the Severini�Staniswalis algorithm, the kernel weight with ordinary
bandwidths of order h � n�1�5 may be used.

The outline of the paper is as follows. In Section 2, we define the weighting
Ž .scheme to be used and hence the estimators of � and g � . Section 3 is the

Ž .statement of the main results for �, while the results for g � are stated in
Section 4. Section 5 states the corresponding results when the measurement
error variance � is estimated. Section 6 gives a numerical illustration.uu
Final remarks are given in Section 7. All proofs are delayed until the
Appendix.

2. Definition of the estimators. For technical convenience we will
� �assume that the T are confined to the interval 0, 1 . Throughout, we shalli

Ž .employ C 0 � C � � to denote some constant not depending on n, but which
may assume different values at each appearance. In our proofs and statement
of results, we will let the X ’s be independent random variables.

Ž . Ž .Let � t � � t; T , . . . , T be weight functions depending only on theni ni 1 n
design points T , . . . , T . For example,1 n

s1 t � si
7 � t � K ds, 1 � i � n ,Ž . Ž . Hni ž /h hsn ni�1

Ž .Ž .where s � 0, s � 1 and s � 1�2 T � T , 1 � i � n � 1, T are the0 n i Ž i. Ž i�1. Ž i.

order statistics of T , h is a sequence of bandwidth parameters which tendsi n
Ž .to zero as n � � and K � is a nonnegative kernel function, which is

supposed to have compact support and to satisfy

� �supp K � �1, 1 , sup K x � C � �,Ž . Ž .

K u du � 1 and K u � K �u .Ž . Ž . Ž .H
Ž .In this paper, for any sequence of variables or functions S , . . . , S , we1 n

T ˜ n ˜T ˜ ˜Ž . Ž . Ž .always denote S � S , . . . , S , S � S � Ý � T S , S � S , . . . , S .1 n i i j�1 n j i j 1 n
˜ T ˜ ˜ ˜ nŽ . Ž . Ž .For example, W � W , . . . , W , W � W � Ý � T W ; g � g T �˜1 n i i j�1 n j i j i i

n ˜ TŽ . Ž . Ž .Ý � T g T , G � g , . . . , g .˜ ˜k�1 nk i k 1 n
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Ž . Ž T � . Ž T � .The fact that g t � E Y � X � T � t � E Y � W � T � t suggestsi i i i
n

Tˆ8 g t � � t Y � W �Ž . Ž . Ž .ˆ Ý ž /n n j j j n
j�1

Ž .as the estimator of g t .
In some cases, it may be reasonable to assume that the model errors �i

2 �are homoscedastic with common variance � . In this event, since E Y �i
T Ž .42 2 � T Ž .42 � T Ž .42X � � g T � � and E Y � W � � g T � E Y � X � � g T �i i i i i i i i

� T � �, we defineuu
n 2

2 �1 T T˜ ˜ ˆ ˆ ˆ9 � � n Y � W � � � � �Ž . ˆ Ý ž /n i i n n uu n
i�1

as the estimator of � 2.

Ž .3. Main results. Let the components of X be X � X be denoted byi i i j
Ž . Ž � . Ž � .X . Denote h T � E X T , V � X � E X T , 1 � i � n, 1 � j � p. Wei j j i i j i i i i i

make the following assumptions.

Ž� � 4 � . Ž T .ASSUMPTION 1.1. sup E X T � t � � and B � E V V is a pos-0 � t �1 1 1 1
itive definite matrix.

Ž . Ž .ASSUMPTION 1.2. g � and h � are Lipschitz continuous of order 1.j

Ž .ASSUMPTION 1.3. The weight functions � � satisfy:ni
n

i max � T � O 1 ,Ž . Ž . Ž .Ý n j i P
1�i�n j�1

ii max � T � O b ,Ž . Ž .Ž .ni j P n
1�i , j�n

n

� �iii max � T I T � T � c � O c ,Ž . Ž . Ž .Ž .Ý n j i j i n P n
1�i�n j�1

where b � n�4�5, c � n�1�5 log n.n n

Ž . Ž . Ž 4 � � 4.ASSUMPTION 1.4. E � � E U � 0 and sup E � � U � �.i i i i i

Our two main results concern the limit distributions of the estimates of �
and � 2.

ˆTHEOREM 3.1. Suppose that Assumptions 1.1�1.4 hold. Then � is ann
asymptotically normal estimator; that is,

1�2 ˆ �1 �1n � � � � N 0, B 	B ,Ž .Ž .n d

�Ž T .� Ž � .4��2 �Ž T . 4�2 Ž T 2 .with 	 � E � � U � X � E X T � E UU � � � � E UU � ,uu
�2 T Ž T .2 �Ž T . 4�2where A � AA . Note that 	 � E � � U � B � E UU � � � �uu

2 Ž .� � if � is homoscedastic and independent of X, T .uu
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THEOREM 3.2. Suppose that the conditions of Theorem 3.1 hold, and that
2 Ž .the � ’s are homoscedastic with variance � and independent of X , T . Theni i

n1�2 � 2 � � 2 � N 0, ��2 ,Ž .ˆŽ .n d

2 �Ž T .2 Ž T 2 .42where �� � E � � U � � � � � � � .uu

ˆŽ .REMARKS. i It is relatively easy to estimate the covariance matrix of � .n
Ž .Let dim X be the number of the components of X. A consistent estimate of

B is just

n
�2�1n � dim X W � g T � � � B .� 4 � 4Ž . Ž .ˆÝ i w , h i uu def n

i�1

Ž .In the general case, one can use 25 below to construct a consistent sand-
wich-type estimate of 	, namely,

n �2
�1 T˜ ˜ ˜ ˆ ˆn W Y � W � � � � .Ý ½ 5ž /i i i n uu n

i�1

Ž .In the homoscedastic case, namely that � is independent of X , T , U withi i i i
variance � 2 and with U being normally distributed, a different formula can

Ž . �Ž T . 4�2be used. Let CC � � E UU � � � . Then a consistent estimate of 	 isuu

2 ˆT ˆ ˆ 2 ˆ� � � � � B � � � � CC � .ˆ ˆ Ž .ž /n n uu n n n uu n

Ž . � Ž .�ii In the classical functional model Kendall and Stuart 1992 , instead
of obtaining an estimate of � through replication, it is instead assumeduu
that the ratio of � to � 2 is known. Without loss of generality, we set thisuu
ratio equal to the identity matrix. The resulting analogue of the parametric
estimators to the partially linear model is to solve the following minimization
problem:

2
Tn ˜ ˜Y � W �i i � min!,Ý 2� �'1 � �i�1

� �here and in the sequel � denotes the Euclidean norm. One can use the
techniques of this paper to show that this estimator is consistent and
asymptotically normally distributed. The asymptotic variance of the estimate

Ž .of � for the case where � is independent of X , T can be shown to bei i i

2T TE � � U � 	 	Ž .½ 52 1 12�1 2 �1� �B 1 � � � B � B ,Ž . 2� �1 � �

Ž � � 2 . Ž T .where 	 � 1 � � U � � � U � �.1
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4. Asymptotic results for the nonparametric part.

Ž .THEOREM 4.1. Suppose that Assumptions 1.1�1.4 hold and that � tni
are Lipschitz continuous of order 1 for all i � 1, . . . , n. Then for fixed T ,i

Ž .the asymptotic bias and asymptotic variance of g t are, respectively,ˆn
n Ž . Ž . Ž . n 2 Ž .Ž T 2 .Ý � t g T � g t and Ý � t � � � � � . These are all of orderi�1 ni i i�1 ni uu
Ž �2�5.O n for the kernel estimators.

5. Estimated error variance. Although in some cases the measure-
ment error covariance matrix � has been established by independentuu
experiments, in others it is unknown and must be estimated. The usual

� Ž . �method of doing so Carroll, Ruppert and Stefanski 1995 , Chapter 3 is by
partial replication, so that we observe W � X � U , j � 1, . . . , m .i j i i j i

For notational convenience, we consider here only the case that m � 2i
and assume that a fraction 
 of the data has such replicates. Let W be thei
sample mean of the replicates. Then a consistent, unbiased method of mo-
ments estimate for � isuu

T
n m iÝ Ý W � W W � Wž / ž /i�1 j�1 i j i i j i

�̂ � .uu nÝ m � 1Ž .i�1 i

The estimator changes only slightly to accommodate the replicates, becoming
�1n �2ˆ ˆ� � W � g T � n 1 � 
�2 �Ž . Ž .ˆ� 4Ýn i w , h i uu

i�110Ž .
n

� W � g T Y � g T ,Ž . Ž .� 4ˆ ˆ� 4Ý i w , h i i y , h i
i�1

Ž .where g � is the kernel regression of the W ’s on T .ˆw, h i i

Using the techniques in the Appendix, one can show that the limit distri-
Ž . Ž �1 �1.bution of 10 is Normal 0, B 	 B , with2

�2T �	 � 1 � 
 E � � U � X � E X T� 4Ž . Ž .Ž .2

�2T �� 
E � � U � X � E X T� 4Ž .Ž .
�2T T 2� 1 � 
 E UU � 1 � 
�2 � � � UU �Ž . Ž .� 4ž /uu

11Ž .

�2T T 2� 
E UU � 1 � 
�2 � � � UU � .Ž .½ 5uuž /
Ž .In 11 , U refers to the mean of two U ’s. In the case that � is independent of

Ž . � 2 TŽ . 4X, T , the sum of the first two terms simplifies to � � � 1 � 
�2 � � B.uu
Standard error estimates can also be derived. A consistent estimate of B is

n �2�1ˆ ˆB � n � dim X W � g T � 1 � 
�2 � .� 4Ž . Ž . Ž .ˆ� 4Ýn i w , h i uu
i�1



PARTIALLY LINEAR MODELS AND MEASUREMENT ERROR 1525

Estimates of 	 can also be easily developed. In the homoscedastic case with2
Ž 2 Žnormal errors, the sum of the first two terms can be estimated by � � 1 �n̂

ˆT ˆ ˆ ˆ. .
�2 � � � B . The sum of the last two terms is a deterministic function ofn uu n n
Ž 2 .�, � , � , and these estimates are simply substituted into the formula.uu

A general sandwich-type estimator is developed as follows. Define � �
n�1Ýn m�1, and definei�1 i

ˆ ˆ� �uu nT˜ ˜˜ ˆR � W Y � W � �ž /i i i i n mi

� 1 T ˆ� m � 1 W � W W � W � � .Ž . Ž . Ž .i i1 i2 i1 i2 uu½ 5
 2

Then a consistent estimate of 	 is the sample covariance matrix of the R ’s.2 i

6. Numerical example. To illustrate our method, we consider data from
the Framingham Heart Study. We consider n � 1615 males with Y being
their average blood pressure in a fixed two-year period, T being their age and
W being the logarithm of the observed cholesterol level, for which there are
two replicates.

We do two analyses. In the first, we use both cholesterol measurements, so
that in the notation of Section 5, 
 � 1. In this analysis, there is not a great
deal of measurement error. Thus, in our second analysis, which is given for
illustrative purposes, we use only the first cholesterol measurement, but fix
the measurement error variance at the value obtained in the first analysis, in
which case 
 � 0. For nonparametric fitting, we chose the bandwidth using
cross-validation to predict the response. In precise terms, we compute the

�squared error using a geometric sequence of 191 bandwidths ranging in 1,
�20 . The optimal bandwidth is selected to minimize the squared error among

these 191 candidates. An analysis ignoring the measurement error found
Ž .some curvature in T ; see Figure 1 for the estimate of g T . All calculations

� Ž .�were performed in XploRe Hardle, Klinke and Turlach 1995 .¨
Our results are as follows. First, consider the case that the measurement

error is estimated and both cholesterol values are used to estimate � . Theuu
estimator of � ignoring the measurement error is 9.438, with estimated
standard error 0.187. When we account for the measurement error, the

ˆestimate increases to � � 12.540 and the standard error increases to 0.195.
In the second analysis, we fix the measurement error variance and use

only the first cholesterol value. The estimator of � ignoring the measurement
error was 10.744, with estimated standard error 0.492. When we account for

ˆthe measurement error, the estimate increases to � � 13.690 and the stan-
dard error increases to 0.495.

Ž .7. Discussion. The nonparametric regression estimator 8 is based on
locally weighted averages. Clearly, results such as Theorem 3.1 should apply
Ž .if 8 is replaced by a locally linear kernel regression estimator or by a spline

estimator, although our proofs do not apply to these estimators.
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Ž .FIG. 1. Estimate of the function g T in the Framingham data ignoring measurement error.

We have treated the case that the parametric part X of the model has
measurement error and the nonparametric part T is measured exactly. An
interesting problem is to interchange the roles of X and T, so that the
parametric part is measured exactly and the nonparametric part is measured

Ž � . Ž . Ž .with error, that is, E Y X, T � �T � g X . Fan and Truong 1993 have
shown in this case that with normally distributed measurement error, the

Ž .nonparametric function g � can be estimated only at logarithmic rates and
not with rate n�2�5. We conjecture even so that � can be estimated at
parametric rates, but this remains an open problem.

APPENDIX

In this Appendix, we prove several required lemmas. Lemma A.1 provides
Ž . n Ž . Ž . Ž . n Ž . Ž .bounds for h T � Ý � T h T and g T � Ý � T g T . Thej i k�1 nk i j k i k�1 nk i k

proof is immediate.

LEMMA A.1. Suppose that Assumptions 1.1�1.4 hold. Then

n

max G T � � T G T � O c for j � 0, . . . , p ,Ž . Ž . Ž . Ž .Ýj i nk i j k p n
1�i�n k�1

Ž . Ž . Ž . Ž .where G � � g � and G � � h � for l � 1, . . . , p.0 l l

�1 ˜ T ˜ Ž .LEMMA A.2. If Assumptions 1.1�1.4 hold, then n X X � B � o 1 .P
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nŽ . Ž . Ž .PROOF. Denote h T � h T � Ý � T X . It follows from X �n s i s i k�1 nk i k s js

˜ T ˜Ž . Ž . Ž .h T � V that the s, m th element of X X s, m � 1, . . . , p iss j js

n m n
˜ ˜X X � V V � h T VŽ .Ý Ý Ýjs jm js jm n s j jm

j�1 j�1 j�1

n n

� h T V � h T h TŽ . Ž . Ž .Ý Ýnm j js n s j nm j
j�1 j�1

n 3
Žq .� V V � R .Ý Ýdef js jm n sm

j�1 q�1

�1 n T Ž .The strong law of large numbers implies that n Ý V V � B � o 1 , andi�1 i i P
Ž3. Ž .Lemma A.1 means R � o n , which together with the Cauchy�Schwarzn sm P

Ž1. Ž . Ž2. Ž .inequality shows that R � o n and R � o n . This completes then sm P n sm P
proof of the lemma. �

Ž .LEMMA A.3 Bernstein’s inequality . Let 	 , . . . , 	 be independent ran-1 n
� �dom variables with zero means and bounded ranges, 	 � M. Then for eachi


 � 0,

n n
2P 	 � 
 � 2 exp �
 2 var 	 � M
 .Ž .Ý Ýi i½ 5½ 5 ½ 5

i�1 i�1

� Ž � � 1�4. 	 � Ž � � 1�4.Denote � � � I � � n and � � � � � � � I � � n , j � 1, . . . , n.j j j j j j j j

We next establish several results for nonparametric regression.

LEMMA A.4. Assume that Assumptions 1.3 and 1.4 hold. Then

n
�2�5max � T � � o n log n .� 4Ž . Ž .Ý nk i k P

1�i�n k�1

PROOF. Fix L � 0 but arbitrarily large. Let

n

B � max w T � L, max w T � Lb .Ž . Ž .Ýn L n j i n j i n½ 51�i�n 1�i , j�nj�1

Then

n
�2�5P max w T � � n log nŽ . Ž .Ý n j i j½ 51�i�n j�1

� P I B � 0� 4Ž .n L12Ž .
n

�2�5� P max w T � � n log n , I B � 1 .Ž . Ž . Ž .Ý n j i j n L½ 51�i�n j�1
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� Ž . 4Since by Assumption 1.3, P I B � 1 can be made arbitrarily small byn L
Ž .choosing L sufficiently large, it suffices to show that the second term in 12

converges to zero for any L.
Ž .Application of Bernstein’s inequality to 12 is complicated by the fact that

Ž . Ž .the terms w T and I B � 1 are random. We first condition on thesen j i n L

terms and will later uncondition. For sufficiently large C, first note that
n

� �P max w T � � E �Ž . Ž .� 4Ý n j i j j½ 1�i�n j�1

�2�5 �� Cn log n w T , I B � 1Ž . Ž . Ž .� 4n j i n L 5
n n

� �� P w T � � E �Ž . Ž .� 4Ý Ý n j i j j½
i�1 j�1

�2�5 �� Cn log n w T , I B � 1 .Ž . Ž . Ž .� 4n j i n L 5
�2�5 Ž . 1�4Now apply Bernstein’s inequality with 
 � Cn log n and M � 2 Lb n .n

Then the right-hand side of the last expression is bounded by
n 2 �4�5 2C n log nŽ .

13 2 I B exp � .Ž . Ž . Ý �n L 1�4�2�5 n 2½ 54LCb n log n � 2Ý w T var �Ž . Ž . Ž .n j�1 n j i ji�1

�4�5 Ž �. Ž .First note that b � n and var � � �. On the set that I B � 1, wen j n L
have thus that

n n
2 2w T � w T max w T � L b .Ž . Ž . Ž .Ý Ýn j i n j i n j i n

1�i , j�nj�1 j�1

Ž . Ž . � Ž . Ž .4 �3�2This means that 13 is bounded by 2nI B exp � C�L log n � n forn L
� Ž .4sufficiently large C. Since this last expression is independent of the w Tn j i

Ž .except through I B , we have thatn L

n
� � �2�5 �3�2�P max w T � � E � � Cn log n I B � 1 � n .Ž . Ž . Ž . Ž .� 4Ý n j i j j n L½ 51�i�n j�1

This shows that
n

� � �2�514 max w T � � E � � o n log n .� 4Ž . Ž . Ž . Ž .� 4Ý n j i j j p
1�i�n j�1

n Ž .� 	 Ž 	 .4Now consider V � max Ý w T � � E � . Let p and q be suchn 1� i� n j�1 n j i j j
that 1 � p � 2, 1�p � 1�q � 1 and 1�q � 2�5 � 1�4. By Holder’s inequal-¨
ity,

1�q 1�pn n
p	 	q� �V � max w T � � E � .Ž . Ž .Ý Ýn n j i j j½ 5 ½ 51�i�n j�1 j�1
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Ž . q Ž . Ž q. q Ž . Ž q.By Assumption 1.3 ii , w T � O b so that Ý w T � O nb �n j i P n j n j i P n
Ž 1�4 q�5.O n , and thusP

1�pn
p	 	Ž1�4 q�5.� q� � � 4V � O n � � E � .Ž .Ýn P j j½ 5

j�1

Clearly,
n

p p	 	 	 	�115 n � � E � � E � � E � � o 1 .Ž . Ž . Ž . Ž .Ý ½ 5j j j j P
j�1

Also, again using Holder’s inequality,¨
1�p�4p�4p p 4	 1�4 1�4� � � � � � � �E � � E � I � � n � E � P � � n ,½ 5 ½ 5Ž . Ž .ž /j j j j j

�1�p�4Ž � � 4. p�4which by Chebyshev’s inequality is bounded by � n E � . It thusj
follows that

n
p	 	 p�416 E � � E � � O n .Ž . Ž . Ž .Ý j j P

j�1

Ž . Ž .Replacing 16 into 15 , we get
n

p	 	 p�4� � E � � O n ,Ž . Ž .Ý j j P
j�1

where, along with the fact that 1�q � 2�5 � 1�4, we find that
n

	 	 Ž1�4 q�5.� q�1�4 �2�5max w T � � E � � O n � o n .Ž . Ž . Ž . Ž .� 4Ý n j i j j P P
1�i�n j�1

This completes the proof of Lemma A.4. �

LEMMA A.5. Suppose that Assumptions 1.1�1.4 hold. Then
n

1�2U g � o n ,Ž .˜Ý i i p
i�1

n
1�2� g � o n .Ž .˜Ý i i p

i�1

Ž . Ž .The same holds if g T is replaced by h T .i j i

PROOF. We prove only the first step, as the other steps follow in a similar
1�2 Ž .fashion. Let � � n �log n :n

n n

� �P U g � � � P U g � � , max g � c log n˜ ˜ ˜Ý Ýi i n i i n i nž / ž /ii�1 i�1

� �� P max g � c log n .˜i nž /
i
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Ž .The second term is o 1 by Lemma A.1. For the first term, let r be the eventP i
� � Ž .that g � c log n . Then,˜i n

n

P U g � � , I r � 1 � i� 4Ž . .˜Ý i i n i
i�1

n
2�2� � E U g I r � 1� 4Ž .˜Ýn i i i

i�1
17Ž .

n
�2� � E U U g g I r � 1 � k .Ž . 4˜ ˜Ýn i k i k k

i
k

� Ž . 4 Ž . Ž .Since g I r � 1 � c log n is independent of U , the first term in 17 is˜i i n i

� �2 2 2Ž .4 Ž .O n� c log n � o 1 . The second term is easily seen to equal zero. �n n

LEMMA A.6. Suppose that Assumptions 1.1�1.4 hold. Then
n n

�1�2n � T � U � o 1 ,Ž . Ž .Ý Ý n j i j i P
i�1 j�1

n n
�1�2n � T � � � o 1 ,Ž . Ž .Ý Ý n j i j i P

i�1 j�1

n n
�1�2n � T U U � o 1 .Ž . Ž .Ý Ý n j i j i P

i�1 j�1

PROOF. We prove only the first step, as the other steps follow in a similar
� Ž . �fashion. Let r be the event that w T � Cb log n:i j n j i n

n n
�1�2P n � T � U � �Ž .Ý Ý n j i j i½ 5

i�1 j�1

n n
�1�2� P n � T � U � � , I r � 1 � i , jŽ . Ž .Ý Ý n j i j i i j½ 5

i�1 j�1

� P max w T � Cb log n .Ž .½ 5n j i n
i , j

Ž .The second term tends to zero by Assumption 1.3 ii . For the first term, note
that

n n
�1�2P n � T � U � � , I r � 1 � i , jŽ . Ž .Ý Ý n j i j i i j½ 5

i�1 j�1

2n n
�1 �2� n � E � T � U I r � 1 � i , jŽ . Ž .Ý Ý n j i j i i j½ 5

i�1 j�1

2n n
�1 �2 2� n � E � T � I r � 1 � i , j EU .Ž . Ž .Ý Ý n j i j i j i½ 5

i�1 j�1
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n Ž . Ž .The last equation holds because U and Ý � T � I r � 1 � i, j arei j�1 n j i j i j

independent for each i, and U are iid with mean zero. It suffices to provei

2n

max E � T � I r � 1 � i , j � 0.Ž . Ž .Ý n j i j i j½ 5i j�1

In fact,

2n

E � T � I r � 1 � i , jŽ . Ž .Ý n j i j i j½ 5
j�1

n
2

� E � T � I r � 1 � i , jŽ .� 4Ž .Ý n j i j i j
j�1

n

� E � T � � T � I r � 1 � i , j .Ž . Ž .� 4Ž .Ý n j i j nk i k i j
j
k

The second term equals zero. The first term equals

n
2

E � T � I r � 1 � i , j ,Ž . Ž .� 4 � 4Ý n j i j i j
j�1

� 2 2Ž .4 Ž .and this is O nb log n � o 1 , as required. �n

LEMMA A.7. Assume that Assumptions 1.1�1.4 hold. Then

�1 ˜ T ˜18 p lim n W W � B � � ,Ž . uu
n��

�1 ˜ T ˜19 p lim n W Y � B� ,Ž .
n��

�1 ˜ T ˜ T 220 p lim n Y Y � � B� � � .Ž .
n��

˜ ˜ ˜ Ž .PROOF. Since W � X � U and W � X � U , for the s, m matrix ele-i i i i i i
ment we obtain

�1 ˜ T ˜ �1 ˜ T ˜ �1 ˜ T ˜21 n W W � n X X � n U XŽ . Ž . Ž . Ž .sm sm sm

�1 ˜ T ˜ �1 ˜ T ˜� n X U � n U U .Ž . Ž .sm sm

First, we prove that the second and third terms converge to zero. It follows
from the strong law of large numbers and Lemma A.2 that

n
�122 n X U � 0 a.s.Ž . Ý js jm

j�1
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Observe that
n n n

�1 T �1˜ ˜n X U � n X U � � T X UŽ . Ž .Ý Ý Ýjs jm nk j k s jmsm ½ 5
j�1 j�1 k�1

n n

� � T U XŽ .Ý Ý nk j k m js½ 5
j�1 k�1

n n n

� � T X � T U .Ž . Ž .Ý Ý Ýnk j k s nk j k m½ 5 ½ 5
j�1 k�1 k�1

Similarly to the proof of Lemma A.4, we can prove that
n

sup � T U � o 1 ,Ž .Ž .Ý nk j k m P
1�j�n k�1

Ž . Ž .which, together with 22 and Assumption 1.3 ii , imply that each term above
�1 ˜ T ˜Ž .tends to zero. The same reason implies that n U X also tends to zero.sm

Second, we prove
�1 ˜ T ˜ 223 n U U � � ,Ž . Ž . smsm

2 Ž .where � is the s, m th element of � ,sm uu

n n n
�1 T �1˜ ˜n U U � n U U � � T U UŽ . Ž .Ý Ý Ýjs jm nk j k s jmsm ½ 5

j�1 j�1 k�1

n n

� � T U UŽ .Ý Ý nk j k m js½ 5
j�1 k�1

n n n

� � T U � T U .Ž . Ž .Ý Ý Ýnk j k s nk j k m½ 5 ½ 5
j�1 k�1 k�1

Obviously, n�1Ýn U U � � 2 . It follows from Lemmas A.4 and A.6 thatj�1 js jm sm
�1 ˜ T ˜Ž . Ž . Ž . Ž .23 holds. Using 21 , 23 and the arguments for n U X � 0 andsm

�1 ˜ T ˜Ž . Ž .n X U � 0, we complete the proof of 18 .sm
˜ T ˜ ˜ T ˜ ˜Ž . Ž .We now prove 19 . Note that W Y � W X � � G � � . From Lemma 1,˜

n 2 Ž 2 .Ý g � O c n , so that˜j�1 j P n

1�2 1�2n n n n
2 2 1�2 2X g � X g � O c n X � O CncŽ .˜ ˜ Ž .Ý Ý Ý Ýjs j js j P n js P nž / ž /

j�1 j�1 j�1 j�1

and
n n

T˜ ˜ ˜ ˜W G � X g � U gŽ . ˜ ˜Ý Ýjs j js js
j�1 j�1

n n n
˜� X � � T X g � U g .˜ ˜Ž .Ý Ý Ýjs nk j k s j js j½ 5

j�1 k�1 j�1

�1 n ˜ �1 ˜ T ˜Ž .Obviously, n Ý U g tends to zero. Therefore n W G tends to zero.˜j�1 js j s
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�1 ˜ T �1 ˜ T ˜Ž . Ž .The proof that n W � tends to zero is similar to that of n W U � 0.˜ s s
Ž . Ž .Combining the above arguments and 18 , we complete the proof of 19 . The

Ž .proof of 20 can be completed by similar arguments. The details are omitted.
�

LEMMA A.8. Assume that Assumptions 1.1�1.4 hold. Then
n n

�1�2 �1�2˜n � X � n � V � o 1 ,Ž .˜Ý Ýi i i i P
i�1 i�1
n n

�1�2 T �1�2 T˜ ˜n X U � n V U � o 1 .Ž .Ý Ýi i i i P
i�1 i�1

PROOF. We show only the first step, as the second step follows in a similar
Ž . Ž � . Ž .fashion. Let h T � E X T and h � h T . By a direct calculation,i i

n n n n
�1�2 �1�2 �1�2˜ ˜n � V � X � n � h � n � w T X � h T .Ž . � 4Ž .Ž .Ý Ý Ý Ýi i i i i i n j i j j

i�1 i�1 i�1 j�1

Ž .The first term is o 1 by Lemma A.4. The second term follows, usingP
Assumption 1.1 by using the same method of proof as in Lemma A.6, upon
remembering that for j 
 k,

�E X � h T X � h T T , . . . , T � 0. �� 4Ž . .� 4Ž .j j k k 1 n

˜ T ˜Ž .PROOF OF THEOREM 3.1. Denote � � W W � n� �n. By Lemma A.7n uu
and a direct calculation,

1�2 ˆ 1�2 �1 ˜ T ˜ ˜ T ˜n � � � � n � W Y � W W� � n� �Ž . ž /n n uu

�1�2 �1 ˜ T ˜ ˜ T ˜ T ˜ ˜ T� n � X G � X � � U G � U �˜ ˜n ž
˜ T ˜ ˜ T ˜�X U� � U U� � n� � .uu /

By Lemmas A.1�A.2, A.4�A.6 and A.8, it is an easy calculation to show that
1�2 ˆ �1�2 �1n � � � � n �Ž .n n

n
T T24 � V � � V U � � U � � U U � � � �Ž . Ž .Ý i i i i i i i i uu

i�1

�o 1Ž .P
n

�1�225 � n � � o 1 .Ž . Ž .Ýdef in P
i�1

�1 n �1 n T Ž 4Since lim n Ý V � 0 and lim n Ý V V � B and sup E � �n�� i�1 i n�� i�1 i i i i
� � 4. � Žk .4 � 4 ŽU � �, it follows that the sequence of kth elements � of � k �in in

. �1 n � Žk .2 Ž � Žk . � 1�2 .41, . . . , p satisfy, for any given � � 0, n Ý E � I � � � n � 0 asi�1 in in
n � �. This means that the Lindeberg condition for the central limit theorem
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holds. Moreover, note that

�2 �2T T T 2cov � � E V � � U � � E U U � � � � E U U �Ž . � 4 � 4Ž . Ž . Ž .ni i i i i i uu i i i

� E V U T�� TU U T � E U U T�� TU V .Ž . Ž .i i i i i i i i

These arguments ensure that
n

�2�1 T �lim n cov � � E � � U � X � E X T� 4Ž . Ž .Ž .Ý ni
n�� i�1

�2T T 2� E UU � � � � E UU � .Ž .� 4Ž .uu

Theorem 3.1 now follows. �

PROOF OF THEOREM 3.2. Denote

T 2 TT T˜ ˜ ˜ ˜ � B� � � � BY Y Y W�1A � n ; A � ;n T T B� B � �˜ ˜ ˜ ˜ uuW Y W W
T T

� � V� � � V� � � V� U � VŽ . Ž . Ž . Ž .�1Ã � n .n T TU � V � � V� U � V U � VŽ . Ž . Ž . Ž .
2 ˆT ˜T T ˜T ˜TŽ . Ž .Note that � � 1, �� A 1, �� � � � � . A direct calculation usingn̂ n n n n uu n

1�2Ž 2 2 . 1�2 4 �1�2Ž .TŽLemma A.6 yields that n � � � � n Ý S � n � � U� � �n̂ j�1 jn
1�2 T 2 ˆT ˜. Ž . Ž . Ž .Ž .ŽU� � n � � � � � � o 1 , where S � 1, �� A � A 1,uu P 1n n n n

ˆT T ˆT ˜ T ˆT T T ˆT ˜. Ž .Ž .Ž . Ž .Ž�� , S � 1, �� A � A 0, � � � , S � 0, � � � A �n 2 n n n n 3n n n
T T ˆ T ˆ.Ž . Ž . Ž .A 1, �� , S � � � � � B � � � . It follows from Theorem 3.1 and4 n n n

Lemma A.7 that n1�2S converges to zero in probability for j � 2, 3, 4. Tojn
1�2 Ž .show that n S � o 1 is more detailed, but follows from Lemmas A.1,1n P

A.4�A.6. This means that
n

21�2 2 2 �1�2 T T 2n � � � � n � � U � � � � � � � � o 1 .Ž .ˆŽ . Ž . Ž .Ý ½ 5n i i uu P
i�1

Theorem 3.2 now follows immediately. �

ˆPROOF OF THEOREM 4.1. Since � is a consistent estimator of �, itsn
n Ž .Ž T .asymptotic bias and variance equal the relative ones of Ý � t Y � W � ,j�1 n j j j

� Ž .which is denoted by g t . By a simple calculation,ˆn

n
�Eg t � g t � � t g T � g t ,Ž . Ž . Ž . Ž . Ž .ˆ Ýn ni i

i�1
n

� � 2 T 2g t � Eg t � � t � � � � � .Ž . Ž . Ž .ˆ ˆ Ž .Ýn n ni uu
i�1

Ž �2�5. Ž .Both terms are O n by Lemma A.1 and Assumption 1.3 iii . Theorem 4.1
then follows. �
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