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ON AN EMPIRICAL BAYES TEST FOR A NORMAL MEAN

By TaChen Liang

Wayne State University

We exhibit an empirical Bayes test δ∗n for the normal mean testing
problem using a linear error loss. Under the condition that the critical
point of a Bayes test is within some known compact interval, δ∗n is shown
to be asymptotically optimal and its associated regret Bayes risk converges
to zero at a rate O�n−1�ln n�1�5�, where n is the number of past experi-
ences available when the current component decision problem is consid-
ered. Under the same condition this rate is faster than the optimal rate of
convergence claimed by Karunamuni.

1. Introduction. LetXdenote a random variable arising from anN�θ�1�-
distribution. We consider the problem of testing the hypotheses H0� θ ≤
θ0 against H1� θ > θ0� with the linear error loss function l�θ� i� = i�θ0 −
θ�I�θ0 − θ� + �1 − i��θ − θ0�I�θ − θ0�� where i denotes the action in favor
of Hi� i = 0�1 and I�x� = 1�0� if x > 0�x ≤ 0�� It is assumed that θ is a
realization of a random parameter � having an unknown prior distribution
G over the parameter space � = �−∞�∞�� Then, X follows a marginal pdf
fG�x� =

∫
f�x
θ� dG�θ�� where f�x
θ� = exp�−�x− θ�2/2�/√2π�

We study the preceding decision problem via the empirical Bayes approach
of Robbins (1956, 1964) when a sequence of past data is available. Interest
in this problem is raised by Karunamuni (1996) where an empirical Bayes
test for a normal mean is proposed and claimed to achieve the optimal rate of
convergence n−2�r−1�/�2r+1� under certain regularities, where n is the number
of past data available and r is a positive integer pertaining to some conditions.
As we shall see, however, the optimal rate of convergence is faster than this
rate.
This paper is organized as follows. In Section 2, we first derive a Bayes test

δG for the underlying decision problem. Then, by mimicking the behavior of
the Bayes test δG� we construct an empirical Bayes test δ∗n� based on Fourier
integral estimates of fG�x� and its derivative f�1�

G �x��We study the asymptotic
optimality of δ∗n in Section 3. For each prior distribution G in ϑA� which
will be defined later, it is shown that δ∗n is asymptotically optimal and its
associated regret Bayes risk converges to zero at a rateO�n−1�ln n�1�5�� which
is an improvement on n−2�r−1�/�2r+1�� This improved rate holds uniformly over
a subclass of priors ϑA�a∗�B∗� φ∗�� a subset of ϑA�
Finally, we note that Johns and Van Ryzin (1972) and Van Houwelingen

(1976) have studied empirical Bayes tests δJVn and δVHn � respectively, for the
continuous one-parameter exponential family and their results can be applied
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to the normal mean testing problem considered in this paper. Under certain
regularity conditions, δJVn and δVHn are shown to be asymptotically optimal
at rates O�n−δr/�2r+1�� and O�n−2r/�2r+3��lnn�2�� where 0 < δ < 1 and r is a
positive integer. For details, interested readers are referred to Johns and Van
Ryzin (1972) and Van Houwelingen (1976).

2. Construction of the empirical Bayes test.

2.1. A Bayes test. Let χ be the sample space of the random variable X.
A test δ is defined to be a mapping from χ into the interval [0,1], so that
δ�x� = P� accepting H1
X = x� the probability of accepting H1 when X = x
is observed. Since X − θ0 ∼ N�θ − θ0�1�� without loss of generality, we may
assume θ0 = 0� Let R�G�δ� denote the Bayes risk of the test δ� Thus,

R�G�δ� = −
∫
χ
δ�x�HG�x�dx+C

= −
∫
χ
δ�x�fG�x�φG�x�dx +C�

(2.1)

where C = ∫
θI�θ�dG�θ��

HG�x� =
∫
θf�x
θ�dG�θ� = f�1�

G �x� + xfG�x��
φG�x� = E��
X = x� =HG�x�/fG�x��

(2.2)

Note that φG�x� is continuous and nondecreasing in x� A Bayes test, say δG�
which minimizes the Bayes risk among a class of tests, is clearly given by the
following: for each x in χ�

δG�x� =
{
1� if HG�x� > 0�
0� otherwise,

=
{
1� if φG�x� > 0�
0� otherwise.

(2.3)

The minimum Bayes risk is

R�G�δG� = −
∫
χ

δG�x�HG�x�dx+C�(2.4)

It is assumed that

lim
x→−∞φG�x� < 0 < lim

x→∞φG�x��(2.5)

Under the assumption of (2.5), the prior G is nondegenerate, and therefore
φG�x� is strictly increasing in x, and there exists a point CG such that φG
�CG� = 0� φG�x� < 0 for x < CG and φG�x� > 0 for x > CG� Hence, the Bayes
test δG can be expressed as

δG�x� = 1 if x > CG and 0 otherwise.(2.6)
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2.2. The proposed empirical Bayes test. Note that the Bayes test δG heav-
ily depends on the unknown prior distribution G� We study empirical Bayes
tests for this decision problem when a sequence of past data is available.
In the following, we investigate an empirical Bayes test for the normal mean

based on Fourier integral estimates of fG�x� and f�1�
G �x� with kernels K�x�

and K�1��x�� respectively, where

K�x� = sin x
πx

�K�1��x� = x cosx− sinx
πx2

�(2.7)

The Fourier transformation of the kernel K�·� is ψK�t� = I�−1�1��t�� For the
two kernels, k0 =

∫ 
K�x�
2 dx <∞ and k1 =
∫ 
K�1��x�
2 dx <∞�

Let ψX�t� denote the characteristic function of the random variableX with
respect to the marginal pdf fG�x�� Then, ψX�t� = ψG�t�ψN�t�� where ψG�t�
is the characteristic function of the prior distribution G� and ψN�t� =
exp�−t2/2�, the characteristic function of anN�0�1� distribution. By the Four-
ier inversion formula,

fG�x� =
1
2π

∫
exp�−itx�ψX�t�dt�(2.8)

f
�1�
G �x� = 1

2π

∫
�−it� exp�−itx�ψX�t�dt�(2.9)

Equations (2.8) and (2.9) will be used for constructing estimates for fG�x� and
f
�1�
G �x�� respectively.
LetX

1
�X

2
� � � � �X

n
andXn+1 be iid random variables, having marginal pdf

fG�x�� where �(n)= �X
1
� � � � �X

n
� denote the n past data andXn+1 =X is the

present random observation. For each n� let b ≡ bn = �2 ln �n/�ln n�t��−1/2�
where 0 < t < 1�5� Define

ψ̂n�t� =
1
n

n∑
j=1

exp�itXj��(2.10)

fn�x� =
1
2π

∫
exp�−itx�ψK�tb�ψ̂n�t�dt�(2.11)

f
�1�
n �x� = 1

2π

∫
�−it� exp�−itx�ψK�tb�ψ̂n�t�dt�(2.12)

The definitions of fn�x� and f�1�
n �x� are motivated by the form of fG�x� and

f
�1�
G �x�� respectively, see (2.8) and (2.9). This type of estimator has been used

by Pensky (1997) for an empirical Bayes estimation problem dealing with
the location-parameter model. Similar estimators have also been used by Fan
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(1991) in the deconvolution problem. Note that fn�x�and f�1�
n �x� can also be

expressed as follows:

fn�x� =
1
nb

n∑
j=1
K

(
x−Xj

b

)
�

(2.13)
f
�1�
n �x� = 1

nb2

n∑
j=1
K�1�

(
x−Xj

b

)
�

Define

Hn�x� = f�1�
n �x� + xfn�x��(2.14)

We consider those prior distributions G for which G ε ϑA ≡ �G 
 
CG
 ≤ A�
By the fact that G ε ϑA and by mimicking the behavior of the Bayes test given
in (2.3), we propose an empirical Bayes test δ∗n as follows. For each x in χ�
define

δ∗n�x� =
{
1� if either x ≥ A or �
x
 < A and Hn�x� > 0��
0� if either x ≤ −A or �
x
 < A and Hn�x� ≤ 0��(2.15)

The Bayes risk of δ∗n is

R�G�δ∗n� = −
∫
χ

En�δ∗n�x��HG�x�dx+C�(2.16)

where the expectation En is taken with respect to the probability measure Pn
generated by ��n�.

3. Asymptotic optimality of �*
n. For an empirical Bayes test δn� let

R�G�δn� denote its associated Bayes risk. Since δG is a Bayes test, R�G�δn�
− R�G�δG� ≥ 0 for all n� The nonnegative regret Bayes risk, R�G�δn� −
R�G�δG�� is often used as a measure of performance of the empirical Bayes
test δn [see Johns and Van Ryzin (1972), Van Houwelingen (1976) and Karun-
amuni (1996)]. An empirical Bayes test δn is said to be asymptotically op-
timal, relative to the prior distribution G� at a rate of convergence O�αn� if
R�G�δn�−R�G�δG� = O�αn�� where �αn is a sequence of decreasing, positive
numbers such that limn→∞ αn = 0�
DefineBG = sup
x
≤A�fG�x�/φ�1�

G �x��� From Lemma 4.3, 0 ≤ BG <∞�Define
aG = min
x
≤A fG�x� and ρ�b� = �1/π��1 + bA� exp�−1/�2b2��� Note that the
function ρ�b� is increasing in b for b > 0 and limb→0 ρ�b� = 0� We let C1 ≡
C1�b� < CG < C2 ≡ C2�b� be the point such that −φG�C1� = φG�C2� =
2ρ�b�/aG� Since φG�x� is continuous and strictly increasing in x and φG�CG� =
0� one can see that C1 and C2 are such that limb→0 C1 = CG = limb→0C2�
Suppose the value of A is large enough so that −A < C1 < C2 < A�
For the empirical Bayes test δ∗n� we claim the following asymptotic optimal-

ity.
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Theorem 3.1. Let δ∗n be the empirical Bayes test constructed in Section 2,
with b = �2 ln �n/�ln n�t��−1/2� 0 < t < 1�5� Then, for each G belonging to ϑA�

R�G�δ∗n� −R�G�δG� ≤
BG
2nb3

[
1

τ�b� aG�−φG�−A��
+ 1
τ�b� aG�φG�A��

]
+ 4ρ�b�

aG

= O
( �ln n�t

n

)
+O

( �ln�n/�ln n�t��1�5
n

)

= O
( �ln n�1�5

n

)
�

where τ�b� a� x� = a2

8�2k1 + 2A2k0b
2 + b�1+ bA�x �

Proof. By the assumption that G ε ϑA� and from (2.4), (2.15) and (2.16),
the regret Bayes risk of δ∗n can be written as

R�G�δ∗n� −R�G�δG�

=
∫ C1

−A
Pn
{
Hn�x� > 0

}[−HG�x�
]
dx+

∫ CG
C1

Pn
{
Hn�x� > 0

}[−HG�x�
]
dx

(3.1)
+
∫ C2

CG

Pn
{
Hn�x� ≤ 0

}
HG�x�dx+

∫ A
C2

Pn
{
Hn�x� ≤ 0

}
HG�x�dx

= In + IIn + IIIn + IVn�

Here,
∫ b
a ≡ 0 if a = b� Therefore, to investigate the asymptotic behavior of

the regret Bayes risk, it suffices to study the asymptotic behavior for each of
the four terms on the rhs of (3.1).
For −A < x < C1� by the increasing property of φG�x� and the definition

of the point C1� we have

HG�x� ≤ φG�C1�fG�x� ≤ φG�C1�aG = −2ρ�b��(3.2)

Combining (3.2) and Lemma 4.1(c) yields that for −A < x < C1,

En�Hn�x�� < HG�x�/2 < −ρ�b��(3.3)

Also, we note that Hn�x� = 1/n
∑n
j=1V�x�Xj� b� where

V�x�Xj� b� =
1
b2
K�1�

(
x−Xj

b

)
+ x

b
K

(
x−Xj

b

)
�(3.4)

V�x�Xj� b�� j = 1� � � � � n� are iid, bounded random variables such that

∣∣V�x�Xj� b� −EnV�x� Xj� b�
∣∣ ≤ 2

(
1
b2

+ A

b

)
�(3.5)
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for 
x
 ≤ A since 
K�t�
 ≤ 1 and
K�1��t�
 ≤ 1 for all t� Also, from Lemma 4.2(c),

Var �V�x� Xj� b�� ≤
(
2k1 + 2A2k0b

2)b−3�(3.6)

Now, by Bernstein inequality and (3.3)–(3.6), it follows that for −A <
x < C1�

Pn�Hn�x� > 0 ≤ Pn�Hn�x� −EnHn�x� > −HG�x�/2

≤ exp
{
− n�HG�x�/2�2/2
Var�V�x� X1� b�� + �2�1/b2 +A/b�/3�
HG�x�/2


}

≤ exp
{
− n

8
× H2

G�x�
�2k1 + 2A2k0b

2�/b3 + �1+ bA�
HG�x�
/�3b2�
}

(3.7)
= exp

{
− nb3

8
× f2G�x�φ2

G�x�
2k1 + 2A2k0b

2 + b�1+ bA�fG�x�
φG�x�
/3
}

≤ exp
{
− nb3

8
× a2Gφ

2
G�x�

2k1 + 2A2k0b
2 + b�1+ bA��−φG�−A��

}

= exp
{− nb3τ�b� aG�−φG�−A��φ2

G�x�
}
�

Replacing (3.7) into In� and from Lemma 4.3, it follows that

In ≤
∫ C1

−A
exp�−nb3τ�b� aG�−φG�−A��φ2

G�x��−φG�x��fG�x�dx

≤ BG
∫ C1

−A
exp�−nb3τ�b� aG�−φG�−A��φ2

G�x��−φG�x��φ�1�
G �x�dx

(3.8)
≤ BG
2nb3τ�b� aG�−φG�−A��

= O
(

1
nb3

)
�

Following a proof analogous to the preceding discussion, we can obtain

IVn ≤ BG
2nb3τ�b� aG�φG�A�� = O

(
1
nb3

)
�(3.9)

Next, by the strictly increasing property of the function φG�x�� and by the
definition of the points C1 and C2� we have −2ρ�b�/aG = φG�C1� ≤ φG�x� ≤
φG�CG� = 0 for C1 ≤ x ≤ CG� and 2ρ�b�/aG = φG�C2� ≥ φG�x� ≥ φG�CG� =
0 for CG ≤ x ≤ C2� Therefore,

IIn ≤
∫ CG
C1

�−φG�x��fG�x�dx ≤ 2ρ�b�
aG

= O�ρ�b���(3.10)

Similarly,

IIIn ≤ 2ρ�b�
aG

= O�ρ�b���(3.11)
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Combining (3.1) and (3.8)–(3.11) together, we conclude that

R�G�δ∗n� −R�G�δG� ≤
BG
2nb3

[ 1
τ�b� aG�−φG�−A��
+ 1
τ�b� aG�φG�A��

]
+ 4ρ�b�

aG

= O
( 1
nb3

)
+O�ρ�b���

(3.12)

When b = �2 ln �n/�ln n�t��−1/2� where 0 < t < 1�5� a straightforward compu-
tation shows that

R�G�δ∗n� −R�G�δG� = O
( �ln n�t

n

)
+O

( �ln �n/�ln n�t��1�5
n

)
�

Note that this rate is close to and a little faster than the rate O��ln n�1�5/n�
for any t between 0 and 1�5� Hence, the proof of the theorem is complete. ✷

For two finite, positive numbers a∗ and B∗, define a class of prior distri-
butions ϑA�a∗�B∗� φ∗� = �GεϑA
aG ≥ a∗�BG ≤ B∗� φG�A� ≤ φ∗� 
φG�−A�
 ≤
φ∗� We consider the performance of the empirical Bayes test δ∗n over
ϑA�a∗�B∗� φ∗�� The following corollary is a direct consequence of Theorem
3.1.

Corollary 3.1. Let δ∗n be the empirical Bayes test constructed in Section
2. Then, under the conditions of Theorem 3�1, we have

sup
GεϑA�a∗�B∗�φ∗�

�R�G�δ∗n� −R�G�δG�� ≤
BG

nb3τ�b� a∗� φ∗� +
4ρ�b�
a∗

= O
( �ln n�1�5

n

)

Remark 3.1. Let G0 be the prior distribution having the probability den-
sity g0�θ� = C.�1 + θ2�−.�−∞ < θ < ∞� where 1 < . < 1�5� Define w�θ� =
1/

√
2π exp�−θ2/2��−∞ < θ < ∞ and let H�θ� = C.�w�θ� − w�θ + 1��� Let

εn = n−1/�2k−4�, where k > 4 is an integer. Define gn�θ� = g0�θ� + εknH�θεn��
For n being sufficiently large, say n ≥ N�k�� gn�θ� is a probability density.
Denote its corresponding distribution by Gn� Let ϑn = �G0�Gn� We also
denote the associated critical point CG by CG0

and CGn� respectively. Since
g0�θ� is an even function, CG0

= 0� Also, for n sufficiently large, CGn is close
to CG0

= 0� Therefore, 
CGn 
 ≤ A for some A > 0 for all n ≥ N�k�� Let
�aGn� BGn�φGn�−A�� φGn�A�� be the values of the pair �aG�BG� φG�−A�� φG
�A�� associated with the distribution Gn� Define a0 = infn≥N�k�aGn� B0 =
supn≥N�k�BGn and φ0 = supn≥N�k�max�
φGn�−A�
� φGn�A��� A straightforward
computation shows that a0 > 0� B0 < ∞ and φ0 < ∞� Therefore, for n being
sufficiently large, ϑn ⊂ ϑA�a0�B0� φ0�� Then, by Corollary 3.1, we have

sup
Gεϑn

�R�G�δ∗n� −R�G�δG�� = O�n−1�ln n�1�5��(3.13)
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Note that this rate is faster than the lower bound convergence rate of
dn−2�k−4�/�2k−4� that was asserted to hold for this example in Karunamuni
(1996).

4. Auxiliary results. The following lemmas are helpful for presenting a
concise proof for Theorem 3.1. Since the proofs are simple algebraic computa-
tions, the details are omitted here.

Lemma 4.1. (a) 
Enfn�x� − fG�x�
 ≤ b/π exp�−1/�2b2���
(b) 
Enf�1�

n �x� − f�1�
G �x�
 ≤ 1/π exp�−1/�2b2���

(c) For 
x
 ≤ A� 
EHn�x� −HG�x�
 ≤ ρ�b�� where ρ�b� = 1/π�1 + bA� ×
exp�−1/2b2��

Lemma 4.2. (a) Var�K��x−Xj�/b�� ≤ bk0�
(b) Var�K�1���x−Xj�/b�� ≤ bk1�
(c) For 
x
 ≤ A�

Var�V�x�Xj� b�� ≤
2
b4
Var

(
K�1�

(
x−Xj

b

))
+ 2A2

b2
Var

(
K

(
x−Xj

b

))
�

≤ (
2k1 + 2A2k0b

2
)
b−3�

Lemma 4.3. Let BG = sup
x
≤A�fG�x�/φ�1�
G �x��� Then, 0 < BG <∞�
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