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EMPIRICAL GEOMETRY OF MULTIVARIATE DATA:
A DECONVOLUTION APPROACH1

By V. I. Koltchinskii

University of New Mexico

Let �Yj � j = 1� � � � � n� be independent observations in R
m
� m ≥ 1

with common distribution Q� Suppose that Yj = Xj + ξj� j = 1� � � � � n�
where �Xj� ξj� j = 1� � � � � n� are independent, Xj� j = 1� � � � � n have
common distribution P and ξj� j = 1� � � � � n have common distribution µ�
so that Q = P ∗ µ. The problem is to recover hidden geometric structure
of the support of P based on the independent observations Yj� Assuming
that the distribution of the errors µ is known, deconvolution statistical
estimates of the fractal dimension and the hierarchical cluster tree of the
support that converge with exponential rates are suggested. Moreover, the
exponential rates of convergence hold for adaptive versions of the estimates
even in the case of normal noise ξj with unknown covariance. In the case of
the dimension estimation, though, the exponential rate holds only when the
set of all possible values of the dimension is finite (e.g., when the dimension
is known to be integer). If this set is infinite, the optimal convergence rate
of the estimator becomes very slow (typically, logarithmic), even when there
is no noise in the observations.

1. Introduction. The goal of this paper is to suggest a new approach
to the problems of statistical recovery of geometric properties of the support
of multivariate data. The support of a Borel probability measure P in R

m is
defined as

supp�P	 �= ⋂{
F� P�F	 = 1� F ⊂ R

m� F is closed
}
�

It is easy to see thatP�supp�P		 = 1� In what follows, we assume that supp�P	
is a compact set. The problems of nonparametric estimation of the set supp�P	�
based on an i.i.d. sample from P (i.e., in the case of direct observations), have
been thoroughly studied by Korostelev and Tsybakov (1993), Korostelev, Simar
and Tsybakov (1995), Mammen and Tsybakov (1995), Polonik (1995), Cuevas
and Fraiman (1997). In this paper, we are interested in estimation only of
some geometric parameters of the support (dimension, number of clusters,
etc.), but in the case of indirect observations.
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The first problem will be to estimate the entropy dimension of the support.
The entropy dimension of a set E ⊂ R

m is defined as

dim�E	 �= lim
ε→0

H�E� ε	/ log�ε−1	�(1.1)

whereH�E� ε	 denotes the ε-entropy of the set E with respect to an arbitrary
norm in R

m� The problem of dimension estimation often occurs in applications
when one deals with high-dimensional data with functionally dependent com-
ponents, contaminated by random noise, the number of functionally indepen-
dent components being relatively small. The case of nonlinear relationships
have been discussed (often at a heuristic level) in pattern recognition litera-
ture, where the problem is often called the estimation of intrinsic dimension
[see Fukunaga (1990), Jain and Dubes (1988), Goldfarb (1985), Wyse, Dubes
and Jain (1980) among others]. We explore the case when the unknown dimen-
sion is not necessarily integer, which could have applications to the problem
of estimation of dimension of fractals [see Falconer (1997), Edgar (1997)].

The second problem will be to estimate the number of clusters (connected
components) and the hierarchical cluster tree of the support, which is a the-
oretical version of empirical hierarchical trees (describing families of hierar-
chically nested partitions of multivariate data) that are frequently used in
cluster analysis and taxonomy [Hartigan (1975), Jambu (1978), Grenander
(1981), Gordon (1996), Bock (1996); see Section 3 for precise definitions]. The
related problem of estimation of the order of mixture models has been studied
recently, for example, in a paper of Dacunha-Castelle and Gassiat (1997). See
also Pollard (1982) for an application of empirical processes in cluster analysis.
We suggest in Section 2 a simple convolution model, which provides a prob-

abilistic framework for these two problems as well as for some other statistical
problems of support geometry. We refer to this circle of problems (in the con-
text of the convolution model) as to empirical geometry of multivariate data.
By this we mean in this paper the whole circle of problems related to sta-
tistical estimation of geometric features of the support of a probability dis-
tribution (especially in the context of the convolution model). Section 3 deals
with the problems of dimension estimation, Section 4 is about the estimation
of the cluster structure. In the next two sections (5 and 6) we discuss the
problem of adaptive estimation of hidden geometric features in the case when
the distribution of the noise is not completely known. The proofs are given in
Section 7.

2. Convolution model and deconvolution estimates: preliminaries.
Let Yj� j = 1�2� � � � � n be i.i.d. random vectors in R

m with m ≥ 1� Let Q
denote the common distribution of Yj� Suppose that

Yj = Xj + ξj� j = 1�2� � � � � n�(2.1)

whereXj� j = 1�2� � � � � n are i.i.d. random vectors in R
m with common distri-

bution P� ξj� j = 1�2� � � � � n are i.i.d. random vectors in R
m with common

distribution µ� Xj � 1 ≤ j ≤ n and ξj � 1 ≤ j ≤ n are independent (so that
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Q = P ∗ µ� where ∗ denotes the convolution). It is supposed that P is the
distribution of interest and its support has certain structure (for instance, it is
a smooth manifold in R

m of unknown dimension, or it consists of an unknown
finite number of mutually disjoint clusters, etc.) Since the sample comes from
the population with the distribution Q = P ∗ µ� the geometric structure of P
is “hidden” in the observations �Y1� � � � �Yn	� Assuming that µ is known, our
goal is to recover hidden geometric characteristics of the support of P�
We outline a deconvolution method of estimation of P�A	 for a given subset

A ⊂ R
m� which is used later in both problems. The methods of nonparametric

deconvolution have been developed intensively in the recent years. We refer to
such authors as Carroll and Hall (1988), Stefanski and Carroll (1990), Zhang
(1990), Fan (1991, 1992), Efromovich (1997).
We assume in what follows, for simplicity, that the distribution µ is symmet-

ric; that is, µ�A	 = µ�−A	 for all Borel setsA ⊂ R
m�Given a signed Borel mea-

sure ν on R
m� ν̃ will denote its Fourier transform: ν̃�t	 = ∫

R
m exp�i�t� x	�ν�dx	,

t ∈ R
m� Suppose there exist a symmetric Borel probability measure � and a

signed measure of bounded total variation � �= �� �= ���µ on R
m such that

� ∗ µ = ��(2.2)

Define

P̂n�A	 �= P̂n���A	 �= P̂n���µ�A	 �= n−1
n∑
j=1

� �A−Yj	� A ⊂ R
m�A is Borel�

(2.3)
It easily follows from (2.2) that for all Borel sets A ⊂ R

m,

EP̂n�A	 = �� ∗Q	�A	 = �� ∗ µ ∗P	�A	 = �� ∗P	�A	 =� P��A	�
In what follows, we call P̂n a deconvolving empirical measure. If µ �= δ0

is the probability measure concentrated at the point 0 ∈ R
m (i.e., there are

no errors, ξj ≡ 0), then one can take � = � = δ0 and P̂n becomes the
empirical measure Pn based on the sample �Y1� � � � �Yn	 = �X1� � � � �Xn	� In
the presence of the errors, it is reasonable to choose a measure � supported
in a small neighborhood of the point 0� or, more generally, such that for some
small ε > 0� δ > 0,

��x� �x� ≥ ε� ≤ δ�(2.4)

where � · � is a norm in R
m� Then the measure P� is close to P� so that P̂n can

be used as an estimator of P�
For instance, assume that µ̃�t	 �= 0 on R

m� and consider a symmetric Borel
probability measure � on R

m� such that the functions �̃/µ̃ and x �→ K�x	 �=
K��x	 �= K��µ�x	, where

K�x	 = �2π	−m
∫
R
m
cos��t� x	��̃�t	/µ̃�t	dt� x ∈ R

m(2.5)

both belong to the space L1�Rm	� Define a signed Borel measure � �= �� �=
���µ on R

m with densityK� � �A	 �= ∫
AK�x	dx� A ⊂ R

m� A is Borel. Then
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it’s easy to check that the condition (2.2) holds. Moreover, even ifK �∈ L1�Rm	�
but �̃/µ̃ ∈ L1�Rm	� we can still get, by a simple computation using Fubini’s
theorem, that for all bounded sets A ⊂ R

m� EP̂n�A	 = �P ∗�	�A	� which will
be enough for our purposes.

We assume that �̃/µ̃ ∈ L1�Rm	 throughout the paper.
One can also consider quite similarly the case when supp�P	� supp�µ	 ⊂

T
m� where T

m is them-dimensional torus [the quotient group R
m/�2πZ	m]. In

this case deconvolving empirical measures are based on Fourier series instead
of integrals [see, e.g., Efromovich (1997)].
The next very easy fact shows that the best possible convergence rate in

such problems as the dimension or the number of connected components (clus-
ters) estimation is exponential. Let � be a class of probability distributions
in R

m with compact supports, and let τ be a function from � into the set of
all nonnegative integers Z+� For instance, τ�P	 could be the dimension or the
number of clusters of the set supp�P	� Given two absolutely continuous prob-
ability distributions on R

m ν1 and ν2� we denote I�ν1�ν2� the Kullback–Leibler
information deviation between ν1 and ν2 � I�ν1�ν2� �= ∫

R
m log�dν1/dν2	dν1�

Given a probability measure ν on R
m and a vector θ ∈ R

m� let νθ be the θ-shift
of ν � νθ�A	 �= ν�A− θ	�

Proposition 2.1. Suppose that card�τ�� 		 ≥ 2� Suppose also that µ is
absolutely continuous with a uniformly bounded density such that

∫ �dµ/dx	
· log�dµ/dx	 dx > −∞� µ̃�t	 �= 0 for all t ∈ R

m� and supθ∈K I�µθ�µ� < +∞ for
all bounded sets K ⊂ R

m� Then there exists q ∈ �0�1	 such that for all large
enough n,

inf
τ̌n
sup
P∈�

P�τ̌n �= τ�P	� ≥ qn�

where the inf is taken over all the estimators τ̌n of τ�P	� based on the sample
�Y1� � � � �Yn	 with distribution Q = P ∗ µ�

Thus, a reasonable goal is to construct the estimates of the dimension, the
number of clusters and the hierarchical cluster tree of the support, which
converge with exponential rates to the true parameters or structures.
Let� �= � �ε	 be a finite set of balls (with respect to the norm �·�) of radius

ε� such that supp�P	 ⊂ ⋃
B∈� �ε	B� Note that� does not have to be a minimal

covering of the set supp�P	� it could cover a much larger subset that is known
to contain the support. Our estimates of various geometric characteristics of
the support of P are based on the geometric properties of such sets as

⋃{
B �

B ∈ � �ε	� P̂n�B	 ≥ γ
}
(with some parameters ε� γ > 0), consisting of the

balls with large enough deconvolution “mass.” We will slightly expand such
sets (say, by adding the neighboring balls, or by increasing the radius of the
balls) and define the estimates of the dimension, the number of clusters, etc.
in terms of various covering numbers and numerical characteristics of the
cluster structure of the expanded sets.
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3. Estimation of the dimension of the support. Given a nonempty
bounded set E ⊂ R

m� denote N�E� ε	 the minimal number of balls (with re-
spect to the norm � · �) of radius ε > 0� covering E� The number H�E� ε	 �=
log N�E� ε	 is called the ε-entropy of the set E and the function ε �→ H�E� ε	
is the metric entropy of E. The entropy dimension of the set E is defined by
(1.1), provided that the limit there exists [see Kolmogorov and Tikhomirov
(1959)]. In fractal geometry this number is also called box (or box-counting)
dimension of E [see Edgar (1997), Falconer (1997)]. It does not depend on the
choice of the norm in R

m� We give here a short list of well-known facts about
this dimension [see Falconer (1997) for more details]:

1. If E is a finite set, then dim�E	 = 0.
2. If E is a nonempty open set in R

m� then dim�E	 = m.
3. If E is a d-dimensional compact manifold in R

m� then dim�E	 = d (here d
is a nonnegative integer).

4. The dimension dim�E	 does not have to be integer. It could take noninteger
values, for instance, for fractals in R

m� For example, the dimension of the
Cantor set in R

1 is log 2/ log 3� the dimension of the Sierpinski gasket in
R
2 is log 3/ log 2� the dimension of the Koch curve in R

2 is log 4/ log 3�
etc.

5. If E1 ⊂ E2� then dim�E1	 ≤ dim�E2	.
6. If f � E �→ R

m is Lipschitz, then dim�f�E		 ≤ dim�E	.
7. If f is bi-Lipschitz (i.e., it is one-to-one and both f and f−1 are Lipschitz),

then dim�f�E		 = dim�E	� In particular, this applies to the so-called simi-
larity transformations [see Falconer (1997)].

8. For any bounded open set V in R
m and for any d ∈ �0�m�� one can find a

set E ⊂ V of dimension d� For instance, one could take the attractor of a
family of similarity transforms with properly choosen similarity ratios [see
Falconer (1997), Theorem 2.7]. If ν is the d-dimensional Hausdorff measure,
then, for such an E with some constants c1� c2 > 0� c1εd ≤ ν�B∩E	 ≤ c2εd
for all the balls B of radius ε > 0 with the centers in E [Falconer (1997),
page 40].

In what follows, we denote dim�P	 �= dim�supp�P		� Given a ball B� denote
B+ (resp., B−) the ball with the same center as B� having twice larger (resp.,
twice smaller) radius.
For any given ε > 0� we fix a minimal collection � �ε	 of balls of radius

ε� covering B�0�1	� Given a set � ⊂ �0�m� and constants ( > 0� C > 0� we
define the set � �= � �� �(�C	 of all Borel probability measures P on R

d such
that:

1. supp�P	 ⊂ B�0�1	.
2. dim�P	 ∈ � .
3. For d �= dim�P	.

card
(�B ∈ � �ε	� dist�B+� supp�P		 ≤ ε�) ≤ (ε−d�(3.1)

4. For any ε > 0 and for all balls B of radius ε,
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P�B	 ≤ Cεd�(3.2)

Given � ⊂ �0�m�� for all large enough ( > 0� C > 0� � �� �(�C	 �= ∅�
Moreover, for all d1� d2 ∈ � one can find P1�P2 ∈ � �� �(�C	 with dim�P1	 =
d1� dim�P2	 = d2 and supp�P1	 ∩ supp�P2	 = ∅�
We assume that the set � is closed and denote

D �= max�� 	� δ �= δ�� 	 �= min��d1 − d2�� d1� d2 ∈ � � d1 �= d2��
Given a Borel probability measure � on R

m and numbers ε > 0� γ > 0�
define

ˆ�n �= ˆ�n�ε�γ��	 �=
{
B ∈ � �ε	� P̂n���B+	 ≥ 2γ

}
�

N̂n �= N̂n�ε�γ��	 �= card
( ˆ�n�ε�γ��	)�

Now we are in a position to define the estimator d̂n �= d̂n�ε�γ��	 of the un-
known dimension d �= dim�P	 as the smallest number a ∈ � � that minimizes
the quantity � log N̂n/ log�ε−1	 − a�.
First we assume that δ�� 	 > 0� and hence � is a finite set. For instance, ifP

is an absolutely continuous distribution on a d-dimensional compact manifold
� ⊂ R

m� such that its density p satisfies the condition 0 < inf x∈� p�x	 ≤
supx∈� p�x	 < +∞, then � = �0�1� � � � �m� and

d̂n �=
[
log N̂n

log�ε−1	 + 1/2

]
�(3.3)

Various models of fractals [e.g., attractors of families of similarity transforms,
Falconer (1997)] could lead to many different choices of the set � �
Define

ε�� �(�C	 �=
(
(−1 ∧ �2C	−1

)2/δ�� 	
and γ�� � ε�(	 �= �εD/�12(		 ∧ �1/2	�(3.4)

Theorem 3.1. Suppose that ε < ε�� �(�C	� γ < γ�� � ε�(	 and � satisfies
the condition

��x� �x� ≥ ε� ≤ γ�(3.5)

Then there exist - > 0 and q ∈ �0�1	 such that

sup
P∈� �� �(�C	

P�d̂n�ε�γ��	 �= dim�P	� ≤ -qn�(3.6)

The next statement shows that for a given µ one can always choose univer-
sal sequences �εn� and �γn� of parameters and ��n� of measures such that
the convergence rate of the estimator d̂n is arbitrarily close to the exponential
one. To this end, let �qn� be a sequence of positive numbers such that qn ↑ 1
as n → ∞ (arbitrarily slow). Choose a sequence �σn� of positive real numbers
such that σn → 0 and σn/ log�q−1

n 	 → ∞ as n → ∞� Denote
ρ�R	 �= inf

�t�∞≤R
�µ̃�t	�� R > 0�
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where �t�∞ �= max1≤j≤m �tj� and suppose that ρ�R	 > 0 for all R ≥ 0� Define
εn as the solution of the equation

εm�m+1	ρ�ε−m−1�log ε−1	2	
�log ε−1	2m+1 = σ1/2n �(3.7)

The solution exists for all large n and is unique, since the function in the left
side of the equation tends to 0 monotonically as ε → 0�
For a > 0 and an even number l ≥ 2� define

ψa�l�u	 �= ac�l	
∣∣∣sin au
au

∣∣∣l� u ∈ R
1� where c�l	 =

(∫
R
1

∣∣∣sin u
u

∣∣∣l du)−1
�

Let �a�l be the measure in R
1 with density ψa� l� Define �n �= �an/2�2 × � � �m ×

�an/2�2 with an �= ε−m−1
n �log ε−1

n 	2� Let γn �= εmn /�log ε−1
n 	�

Theorem 3.2. Suppose that ρ�R	 > 0 for all R ≥ 0� Then, for all ( >

0� C > 0 and � ⊂ �0�m�� the estimate d̂n �= d̂n�εn� γn��n	 satisfies the
following bound:

sup
P∈� �� �(�C	

P�d̂n �= dim�P	� = O�qnn	 as n → ∞�(3.8)

Next we show that, in the case when the set � of all possible dimensions
of the support of P is infinite, the typical minimax rates of convergence of any
dimension estimate could become very slow, for instance logarithmic, even
when there are no errors, that is, ξj ≡ 0�
Consider any closed set � ⊂ �0�m� with D �= sup�� 	� Given a nonde-

creasing nonnegative function ϕ on �0�1� such that ϕ�δ	 ≤ δ� δ ∈ �0�1� let
us call the set � ϕ-rich if, for all δ ∈ �0�1�� there exist d1� d2 ∈ � such that
ϕ�δ	 ≤ d2 − d1 ≤ δ. The set � will be called rich if it is ϕ-rich for ϕ�δ	 = ρδ
with some constant ρ ∈ �0�1�� For example, if � is dense in an interval, then
it is rich; the sets �n−1 � n ≥ 1� and �2−n � n ≥ 1� are also rich, but the set
�2−2n � n ≥ 1� is not; this set is ϕ-rich with ϕ�δ	 = 0�5δ2� More generally, a
set � �= �dn � n ≥ 1�� where dn �= ∑∞

k=n bk� �bn� is a decreasing sequence of
positive numbers, such that

bn → 0 as n → ∞�
∞∑
n=1
bn ≤ m and bn ≥ ϕ�bn−1	 for all n ≥ 1

is ϕ-rich. In particular, if ϕ �= ∑
ϕ�dn	I�dn�dn−1	 (i.e., ϕ is a step function) with

dn − dn+1 ≥ ϕ�dn−1	� then � is ϕ-rich.
Let us call the set � ϕ-poor if for all δ ∈ �0�1� there exists a δ-separated

set � ′ ⊂ � (i.e., �d2 − d1� ≥ δ for all d1� d2 ∈ � ′ such that d1 �= d2) such that
� ⊂ �� ′	ϕ�δ	� For example, any subset of �0�m� is ϕ-poor with ϕ�δ	 = δ (in
this case, take a maximal δ-separated subset of � as the set � ′). Consider
a set � �= �dn � n ≥ 1� and a step function ϕ �= ∑

ϕ�dn	I�dn�dn−1	� where
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dn �= ∑∞
k=n bk� �bn� is a decreasing sequence of positive numbers such that

bn → 0 as n → ∞�
∞∑
n=1
bn ≤ m� dn+1 ≤ bn and dn+1 ≤ ϕ�dn	 for all n ≥ 1�

Then � is ϕ-poor.
In particular, it is easily seen that the set � �= �dn � n ≥ 1�� where

d1 is a small enough number and dn+1 = dαn� n ≥ 1� α > 1 is ϕ-rich with
ϕ �= 1

2

∑
dαnI�dn�dn−1	 and it is ϕ-poor with ϕ �= ∑

dαnI�dn�dn−1	�
Denote � �� 	 the set of all Borel probability measures supported in the ball

B�0�1	 and such that dim�P	 ∈ � � Let � = � �ε	 be a minimal class of balls
of radius ε > 0� covering B�0�1	� Given ε > 0� let �ε�� �(�C	 be the class of
all Borel probability measures on R

m� satisfying, for all ε > ε� the conditions
1–4 of the definition of the set � �� �(�C	 above. Given α > 0, define εn �= n−α

and �n�� 	 �= �εn�� �(�C	�

Theorem 3.3. (i) Suppose the set � of all possible dimensions is ϕ-rich.
For any distribution µ of the noise, for large enough C > 0� ( > 0� for any
α�β > 0 such that αβ < log 2, for all n ≥ 6 and for all estimates ďn of dim�P	�
based on the observations �Y1� � � � �Yn	�

sup
P∈� �� 	

P

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}

≥ sup
P∈�n�� 	

P

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}
≥ 1/4�

(3.9)

(ii) Suppose that the set � of all possible dimensions is ϕ-poor and that with
some A�B > 0,

�µ̃�t	� ≥ B�t�−A for all �t� ≥ 1�(3.10)

Then there exist a constant α�D�m�A	 > 0 and an estimator d̂n� based on
the observations �Y1� � � � �Yn	� such that for all 0 < α < α�D�m�A	� for all
β > 3�� log (� ∨ � log C�	/α� and for all < > 0�

sup
P∈�n�� 	

P

{∣∣d̂n − dim�P	∣∣ ≥ ϕ
(

β

log n

)}
= O�n−<	�(3.11)

Specifically, we choose in part (ii) of Theorem 3.3,

α�D�m�A	 �= 1
2 �A�D+ 1	 + �m+ 1	D�−1(3.12)

and we use there the estimator d̂n�which minimizes the function a �→ ��log N̂n

/ log�ε−1
n 		 − a� on the δ-separated set �n ⊂ � with δ �= β/ log n and such

that � ⊂ ��n	ϕ�δ	 (see the definition of ϕ-poor sets above). The estimate d̂n is
based on the measure � �= �n �= �an�2 × · · · ×�an�2 (see the definition before
Theorem 3.2) with the sequence an �= nσ� It is supposed that σ > α�D + 1	
and σ�m +A	 − α�m +D	 < 1/2� Such a choice of σ is possible if α satisfies
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the condition α < α�D�m�A	. We use εn �= n−α and γ �= γn �= εDn /�log n	1/2
in the estimator d̂n�
Note also that, for a rich set � ⊂ �0�m� [which is, at the same time, ϕ-poor

with ϕ�δ	 ≡ δ� as any subset of �0�m� is], Theorem 3.3 gives the convergence
rate of the order �log n	−1� even in the case when there is no noise (i.e.,
µ̃ ≡ 1). Similarly, in the case of the set � �= �2−2n � n ≥ 1� (that is not rich)
the convergence rate is of the order �log n	−2 both in the upper and in the
lower bounds.

4. Estimation of the hierarchical cluster tree and the number of
clusters. We start this section with precise definition of the hierarchical
cluster tree of the support supp�P	� Let S be a set and � a finite family of
subsets of S such that S ∈ � � and A�B ∈ � implies that either A ⊂ B
or B ⊂ A or A ∩ B = "� Consider � as the set of all vertices of a graph.
Let us connect two vertices A and B with an edge iff A ⊃ B and there is
no C ∈ � such that A ⊃ C ⊃ B� Denote this graph by � � Clearly, � is a
connected graph which does not have cycles, so it is a tree with root S [see,
e.g., Bolobás (1979)]. In cluster analysis, it is often convenient to assign to
each vertex of the tree � a number, � $ V �→ χ�V	 ∈ R� such that V1 ⊂ V2
implies χ�V1	 < χ�V2	� Such a function will be called a height on the tree
� � Given two trees �1 and �2 with heights χ1� χ2 defined on them, we write
��1� χ1	 ∼= ��2� χ2	 if the trees are isomorphic (i.e., there exists a one-to-one
mapping between their vertices such that any two adjacent vertices in one
graph correspond to the adjacent vertices in another one) and the relationship
χ1�V1	 < χ1�U1	 between any two vertices V1�U1 in �1 is equivalent to the
relationship χ2�V2	 < χ2�U2	 between their images under the mappingV2�U2
in �2� This defines an isomorphism between the trees with heights. We write
��1� χ1	 �∼= ��2� χ2	 if there is no such an isomorphism. Most often, the actual
values of the height χ are irrelevant, but it’s rather important to know the
order of the values for different vertices of the tree [see Gordon (1996)], so
the tree � with the height χ on it should be recovered up to isomorphism ∼= �
Often, when it is clear which heights are in mind, we write simply �1

∼= �2�
or �1 �∼= �2�
We are interested in the estimation of the hierarchical cluster tree of the

set supp�P	� We proceed now to the definition of this tree. Any connected
component of the support will be called a cluster of P� Under the assumption
of compactness of the set supp�P	� the clusters are disjoint compact sets; the
distance between any two clusters is strictly positive. The number of different
clusters will be denoted ν�P	� We assume now that the number of clusters of
supp�P	 is finite: ν �= ν�P	 < +∞� Each cluster is supposed to be a closure of
an open set in R

m� Let � �= �Cj� j = 1� � � � � ν� be the set of all clusters.
The minimal distance between two subsets in R

m is defined as

dist�A�B	 �= inf��x− y�� x ∈ A� y ∈ B��
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the Hausdorff distance is

h�A�B	 �= inf�δ > 0� A ⊂ Bδ and B ⊂ Aδ��
Note that dist is not a (pseudo)metric, whereas h is.
Let ρ be a “dissimilarity” (ρ does not have to be a metric) of two compact

sets in R
m� such that ρ�D�D	 = 0 and ρ�D1�D2	 = ρ�D2�D1	 for all compact

sets D�D1�D2 ⊂ R
m�We also assume that ρ satisfies the following properties:

ρ�D1�D2	 > 0 for all compact disjoint sets D1�D2 ⊂ R
m and∣∣ρ�D1�D2	 − ρ�D′

1�D
′
2	
∣∣ ≤ h�D1�D

′
1	 + h�D2�D

′
2	�

For instance, ρ could be the Hausdorff metric h� or it could be the minimal
“distance” dist between the sets.
Given a finite class of compact disjoint sets � �= �K1� � � � �Kr�� denote

δ�� 	 �= δρ�� 	 �= min�ρ�Ki�Kj	� i �= j��
Clearly, δ�� 	 > 0� Given ε ≥ 0� an ordered subset � �= �M1� � � � �Ms� ⊂ �
will be called an ε-chain iff for all k = 1� � � � � s − 1 we have ρ�Mk�Mk+1	
≤ δ�� 	 + ε� A 0-chain will be called simply a chain. A chain (an ε-chain) is
called maximal iff it is not contained in any other chain (ε-chain). Let � ∗

(resp., � ∗
ε ) be the class of all unions of maximal chains (resp., ε-chains) from

� �
Let D ⊂ R

m be any set which consists of ν compact connected compo-
nents, say, D1�D2� � � � �Dν� Denote � �= �D1� � � � �Dν�� Now, we construct a
hierarchical cluster ε-tree of the set D� First, we define the classes of sets
�j�ε	� j = 1� � � � � J and the numbers 0 =� δ0�ε	 < δ1�ε	 < · · · < δJ�ε	 by the
following recursive procedure:

j �= 1�
�j�ε	 �= � �
δj�ε	 �= δ�� 	�
while card��j�ε		 > 1 do

begin

�j+1�ε	 �= ��j�ε		∗
ε�

j �= j+ 1�
δj�ε	 �= δ��j�ε		�

end�
J �= j�

Define � �ε	 �= ⋃J
j=1�j�ε	� We consider � �ε	 as the set of all vertices of a

graph �ε = �ε�D	� Two vertices V1 and V2 are connected with an edge iff
V1 ⊃ V2 and there is no V ∈ � �ε	 such that V1 ⊃ V ⊃ V2� Clearly, �ε is a
tree. We assign to each vertex V of the graph �ε its ε-height, defined as the
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value of δj�ε	 for the maximal j such that V ∈ �j�ε	� The ε-height of V will
be denoted χε�V	� Clearly, V1 ⊂ V2 implies χε�V1	 < χε�V2	�
If ε = 0� we call � �D	 �= �0�D	 the hierarchical cluster tree of the set D�

In this case we also skip ε in other notations introduced above (say, δj �=
δj�0	� χ �= χ0� etc.).
In what follows, a tree � �supp�P		 will be called the hierarchical cluster

tree of the distributionP� It will be denoted simply by � �P	�We also introduce
the notation

δ�P	 �= min
1≤j≤J

�δj − δj−1	�(4.1)

where δj� j = 0� � � � � J are the numerical characteristics of the cluster struc-
ture of the support of P� defined above.
Given a nondecreasing nonnegative function ε �→ τ�ε	 with τ�0+	 = 0 and

a number < > 0� we define the class � τ�< of all Borel probability measures P
on R

m such that:

1. supp�P	 ⊂ B�0�1	.
2. For all ε ∈ �0�1	 and for any ball B of radius ε� the condition B∩supp�P	 �=

∅ implies P�B+	 ≥ τ�2ε	�
3. The set supp�P	 consists of a finite number of connected components and
δ�P	 ≥ <�
We denote B−− �= �B−	−� Let � −− �= � −−�ε	 be a minimal family of balls

of radius ε/4� covering B�0�1	� and let � �= � �ε	 �= �B � B−− ∈ � −−�ε	��
Given ε� γ and �� define

ˆ	n �= ˆ	n�ε� γ��	
�= ⋃{

B̄� B ∈ � �ε	 ∃ B′ ∈ � �ε	� P̂n���B′	 ≥ 2γ and dist�B�B′	 ≤ 2ε
}
�

Now we can define an estimator ν̂n �= ν̂n�ε� γ��	 of the number of clus-
ters ν �= ν�P	 of the support as the number of clusters of the set ˆ	n� Let
�̂n �= �Ĉ�n	

j � j = 1� � � � � ν̂n� be the class of all clusters of the set ˆ	n� We
also define the empirical hierarchical cluster tree, based on the observations
�Y1� � � � �Yn	� as the tree �̂n �= �7ε� ˆ	n	� The empirical height on this tree is
defined as 7ε-height; it will be denoted χ̂n� In what follows, we use ��̂n� χ̂n	 as
the estimator of the tree� �= � �P	with the height χ = χ0 on it. The definition
of the empirical cluster tree above leads to an agglomerative algorithm of hier-
archical clustering similar to the ones described in the literature [see Gordon
(1996) for the review on the subject]. The main difference is that these algo-
rithms should be now applied not to the original data points �Y1� � � � �Yn	� but
rather to the centers of the “massive” balls selected via deconvolution method.

Theorem 4.1. Suppose that ε < �</14	� γ < τ�ε/2	/6 and

��x � �x� ≥ ε/2� ≤ γ�(4.2)
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Then there exist - > 0 and q ∈ �0�1	 such that

sup
P∈� τ� <

P
{��̂n� χ̂n	 �∼= �� � χ	} ≤ -qn�(4.3)

The next statement shows that with no knowledge of the parameters char-
acterizing the geometry of the support, one can still construct an estimate
of the hierarchical cluster tree that converges with a rate arbitrarily close to
the exponential. As in Section 3, let �qn� be a sequence of positive numbers
such that qn ↑ 1 as n → ∞� Recall the definition of the function ρ � ρ�R	 �=
inf��µ̃�t	�� �t�∞ ≤ R��

Theorem 4.2. Suppose that ρ�R	 > 0 for allR > 0� Let ε = εn� γ = γn and
� = �n be the same as in Theorem 3.2. Then, for all τ such that εm = O�τ�ε		
and for all < > 0,

sup
P∈� τ�<

P
{��̂n� χ̂n	 �∼= �� � χ	} = O�qnn	 as n → ∞�

Corollary 4.3. Under the conditions of Theorem 4.1, there exist - > 0 and
q ∈ �0�1	 such that

sup
P∈� τ� <

P
{
ν̂n �= ν�P	} ≤ -qn�(4.4)

Under the conditions of Theorem 4.2, we have, for all τ such that εm = O�τ�ε		
and for all < > 0�

sup
P∈� τ� <

P
{
ν̂n �= ν�P	} = O�qnn	 as n → ∞�(4.5)

A compact set D ⊂ R
m is called k-connected iff its boundary ∂D consists

of k connected components. Suppose that D is k-connected for some k ≥ 1�
and denote υ�D	 �= k and υ�P	 �= υ�supp�P		� Our next goal is to suggest an
estimation procedure for the quantity υ�P	� based on the sample �Y1� � � � �Yn	�
Denote � τ

<�δ the class of all Borel probability measures P on R
m such that:

1. supp�P	 ⊂ B�0�1	.
2. For all ε > 0 and for any ball B of radius ε� the condition B∩ supp�P	 �= "

implies P�B+	 ≥ τ�2ε	.
3. υ�P	 < +∞ and

min
i�=j

dist�Gi�Gj	 ≥ <�(4.6)

where �Gi � 1 ≤ i ≤ υ�P	� is the set of all connected components of the
boundary ∂�supp�P		.

4. For all ε ≤ δ and for any x ∈ ∂�supp�P		� there exists a ball B of radius 2ε
such that dist�B� supp�P		 ≥ ε and dist�x�B	 ≤ 2ε�
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We define the set

∂̂n�P̂n	 �= ⋃{
B̄� B ∈ � �ε	� ∃ B′� B1�B2 ∈ � �ε	� dist�B�B′	 ≤ 6ε�

dist�B′�B1	 ≤ 3ε� dist�B′�B2	 ≤ 3ε� P̂n�B1	 ≥ 2γ� P̂n�B2	 < 2γ
}
�

Let υ̂n denote the number of the clusters of ∂̂n�P̂n	�

Theorem 4.4. Suppose that ε < �</40	∧δ� γ < τ�ε/2	/6 and the condition
(4.2) holds. Then there exist - > 0 and q ∈ �0�1	 such that

sup
P∈� τ

<� δ

P
{
υ̂n �= υ�P	} ≤ -qn�

5. Adaptive estimation of geometric characteristics of the support.
The development of adaptive versions of the estimation procedures consid-
ered in the previous sections poses a number of problems. One can think
about at least two sides of the adaptation: the adaptation of the estimates
to the unknown geometry of the support and the adaptation to the unknown
distribution of the noise. We give below only brief comments on the first side
of the problem; the second one will be developed in some detail in this and,
especially, in the next section.
The choice of the parameters of the estimates of geometric characteristics

in convolution models (such as ε� γ and the measure � in the procedures of
dimension and cluster structure estimation) requires the knowledge of the
minimal size of “geometric features” that are to be recovered in the process of
deconvolution. For instance, in the case of the estimation of the hierarchical
cluster tree one of the important quantities to know is δ�P	� defined by (4.1).
Theorems 3.2 and 4.2 show that there are estimates of the dimension and of
the hierarchical cluster tree of the support that converge to the true param-
eters with probability of the error decreasing almost exponentially fast and
the estimates are not using the information about the geometry of the sup-
port. However, this does not allow one to determine the values of the tunable
parameters of the estimates that provide the recovery of the geometric charac-
teristics for a given finite sample. One of the aspects of the problem is to find
the minimal size of geometric features of the support that can be recovered
for a given sample size with a given level of confidence. The bounds obtained
in the proofs of the main results of Sections 3 and 4 can be used, in principle,
to address such kind of questions, since the constants involved in the bounds
could be written explicitly. Consider, for instance, the problem of estimation
of hierarchical cluster tree of the support in the setting of Section 4. Suppose
that � · � = � · �∞ and assume, for simplicity, that P is a uniform distribution
on its support and that there exists a number ρ�P	 > 0 such that for all
ε ≤ ρ�P	 and for all x ∈ supp�P	 there exists a ball B of radius ε such that
B ⊂ supp�P	� B $ x� For example, if supp�P	 is a finite union of disjoint balls,
then ρ�P	 is the smallest radius of the balls. Note that the condition (2) of the
definition of the set � τ� < holds for such a P and for ε ≤ ρ�P	 with τ�2ε	 = εm�
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Define for a given α ∈ �0�1	 ε̄ �= inf
{
ε > 0� ∃ � ζα��� ε�m	 < Cm

}
� where

ζα��� ε�m	 �= (K�(∞�(K�(L1
∨ 1	 log�2/α	 +m log�1/ε	

n
∨ ��x� �x� ≥ ε/2�

εm
�

HereK� is the kernel of the deconvolution estimate defined by (2.5). It can be
derived from the proof of Theorem 4.1 (using Remark 7.5 below) that with some
constant Cm > 0 (that could be written explicitly) and under the assumption
δ�P	/14∧ρ�P	 > ε̄ we have P

{��̂n� χ̂n	 �∼= �� � χ	} ≤ α� The estimates of
the hierarchical cluster tree ��̂n� χ̂n	 in the last bound use the values of the
parameters ε > ε̄� γ = Cmε

m and � such that ζα��� ε�m	 < Cm� In general,
we do not know whether the condition δ�P	/14∧ρ�P	 > ε̄ is satisfied, or not.
But the deconvolution estimates still provide a partial recovery of the cluster
structure of the support even in the case when such a condition fails. [If Sε�P	
denotes the union of all the clusters of supp�P	 that do not contain a ball of
radius ε (i.e., that are too small to be recovered at the level of resolution
ε), then it follows from the proof of Theorem 4.1 that for ε = ε̄ we have with
probability at least 1−α supp�P	\Sε�P	 ⊂ ˆ	n ⊂ �supp�P		7ε� so, the estimate

ˆ	n still allows one to recover large enough clusters]. Thus, the quantity ε̄
characterizes the size of the features of the support that can be recovered
with confidence 1− α.
To be more specific, let ν be the distribution of a random vector in R

m

with independent components that have bilateral exponential distribution
(i.e., their density is 1

2e
−�x� and their characteristic function is �1 + t2	−1).

Suppose that the noise ξj = σηj� where σ > 0 and ηj� j = 1� � � � � n are i.i.d.
symmetric vectors in R

m with common distribution ν� Then one can show by
a simple computation that for some constant C�m	 > 0,

ε̄ ≤ ε̃ �= inf
{
ε > 0�

[
1+

(σ
ε

)4m(
log

1
ε

)2m]

×
(1
ε

)m(
log

1
ε

)m/2 log�2/α	 +m log�1/ε	
n

≤ C�m	
}
�

We will use ε = ε̃ and � = N�0� δI	 with δ * ε�log�1/ε		−1/2 in the estimates
of the hierarchical cluster tree. If the noise is small (say, under the assumption
that σ ≤ ε), we find that the minimal size of the features that can be recovered
with probability at least 1 − α is of the order ( log�2/α	

n

)1/m(log�n/ log�2/α		)7/2
(which can be shown to be an optimal bound up to a logarithmic factor). In
the case of large noise (say, for σ = 1) the same quantity is of the order( log�2/α	

n

)1/5m(log�n/ log�2/α		)7/10 Despite the fact that the constants in the
above bounds can be written explicitly, they are currently very far from being
best possible and the bounds are rather conservative. Computations based on
the bounds show that the sample sizes needed to achieve reasonable level of
“resolution” in dimension estimation and cluster analysis problems can be very
large. The development of efficient adaptive estimates of geometric character-
istics in convolution models would require substantial improvements of the
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inequalities (based on the combination of the methods of probability and com-
binatorial geometry, e.g., sharper bounds on the covering numbers) and the
study of asypmtotic behavior of the statistics estimating geometric structure
of the support, which could be accomplished only for much more specialized
models than the ones considered in the current paper.
We now turn to the deconvolution problems in the case of unknown distri-

bution of the noise. We first assume that the probability distribution µ of the
random noise ξj is unknown, but there is an estimator µ̂ �= µ̂n of µ� based
on the data �Y1� � � � �Yn	� We use this estimator instead of µ in the deconvo-
lution procedures of Section 2 and show (under some assumptions) that the
exponential rates of convergence for dimension estimates and cluster struc-
ture estimates are preserved. In the next section, we define an estimate µ̂ in
the case when µ is N�0�K0	 with unknown covariance K0� We assume in both
sections that � · � is the standard Euclidean norm in R

m�
Denote -µ the set of all Borel probability measures λ on R

m such that
λ ∗ λ′ = µ for some Borel probability measure λ′ on R

m� Clearly, µ ∈ -µ� If
µ̃�t	 �= 0 for all t ∈ R

m (which is assumed throughout the paper), then the
measure λ′ defined by the relationship λ ∗ λ′ = µ is unique. Given λ ∈ -µ� we
set Tµλ = λ′� Clearly, Tµ�Tµλ	 ≡ λ�
We start with the problem of the dimension estimation in the setting of

Section 3 and under the assumption that the set � of all possible dimensions
is finite. Consider a class of probability measures � ⊂ � �� �(�C	�
We denote d̂n�ε�γ��� ν	 the dimension estimator of Section 3 with µ re-

placed by a probability distribution ν on R
m�

Theorem 5.1. Suppose that ε < ε�� �(�C	� γ < γ�� � ε�(	 and � satisfies
the condition

��x� �x� ≥ ε/2� ≤ γ/2�(5.1)

Suppose also that µ̂ �= µ̂n is an estimator of µ� based on the sample �Y1�
� � � �Yn	� such that for some - > 0 and q ∈ �0�1	,

sup
P∈�

P

{
µ̂ �∈ -µ or �Tµµ̂	�x� �x� ≥ ε/2� ≥ γ/2

}
≤ -qn�(5.2)

Let d̃n �= d̂n�ε�γ��� µ̂	� Then there exist - > 0 and q ∈ �0�1	 such that

sup
P∈�

P�d̃n �= dim�P	� ≤ -qn�(5.3)

Next we consider clustering problems in the context and under the notations
of Section 4. We assume that � ⊂ � τ� <� Given ε� γ and a probability distri-
bution ν on R

m� one can define an empirical cluster tree �̂n�ε�γ��� ν	 and the
height χ̂n�ε�γ��� ν	 on it as in Section 3, based on the distribution ν instead
of µ� Similarly, we define the estimates of the number of clusters ν̂n�ε�γ��� ν	
and of the number of connected components of the boundary υ̂n�ε�γ��� ν	�

Theorem 5.2. Suppose that ε < �</14	� γ < τ�ε/2	 and

��x� �x� ≥ ε/4� ≤ γ/2�(5.4)
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Suppose also that µ̂ �= µ̂n is an estimator of µ� based on the sample �Y1� � � � �Yn	�
such that for some - > 0 and q ∈ �0�1	,

sup
P∈�

P

{
µ̂ �∈ -µ or �Tµµ̂	�x� �x� ≥ ε/4� ≥ γ/2

}
≤ -qn�(5.5)

We set �̃n �= �̂n�ε�γ��� µ̂	 and χ̃n �= χ̂n�ε�γ��� µ̂	� Then there exist - > 0 and
q ∈ �0�1	 such that

sup
P∈�

P
{��̃n� χ̃n	 �∼= �� � χ	} ≤ -qn�(5.6)

Corollary 5.3. Under the conditions of Theorem 5.2, there exist - > 0 and
q ∈ �0�1	 such that

sup
P∈�

P
{
ν̃n �= ν�P	} ≤ -qn�(5.7)

where ν̃n �= ν̂n�ε�γ��� µ̂	�

6. The case of normal noise with unknown covariance. Assume now
that the random variables ξj� j = 1�2� � � � in the model (2.1) have normal
distribution in R

m with mean 0 and unknown covariance K0� Also assume
that the matrix K0 satisfies the condition (K0( ≤ M with a constantM> 0�
We suggest below an estimate K̂ �= K̂n�R of the covariance matrix K0 such

that the normal distribution µ̂ with parameters 0 and K̂ satisfies the condi-
tions of the theorems of the previous section and thus it can be used in the
procedures of recovery of unknown dimension and cluster structure of the sup-
port. It should be mentioned that a related problem of estimation of the order
of finite mixtures of distributions in the case of translation mixtures with un-
known scale parameter has been studied recently (using different methods) by
Dacunha-Castelle and Gassiat (1997).
We start with introducing some notations and imposing the conditions on

the unknown distribution P� GivenR > 0� λR denote the uniform distribution
on the ball B�0�R	 in R

m� Let p ∈ �1�+∞�� Denote
δp�P�R	 �= R−2( log �P̃�(Lp�B�0�R	�λR	� R > 0�(6.1)

In what follows, we assume that

δp�P�R	 → 0 as R → ∞�(6.2)

Let U be the uniform distribution on the unit sphere Sm−1� Note that in
the case of the normal distribution µ = N�0�K0	 we have, by a change to polar
coordinates, for p ∈ �1�∞	,

( log �µ̃�(pLp�B�0�R	�λR	 = 2−pλ�B�0�R		−1
∫
B�0�R	

�K0t� t	p dt

= 2−p m

2p+mR
2p

∫
Sm−1

�K0v� v	pU�dv	�
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which implies that

δp�µ�R	 = R−2( log �µ̃�(Lp�B�0�R	�λR	

= 2−1
(

m

2p+m

)1/p(∫
Sm−1

�K0v� v	pU�dv	
)1/p

�
(6.3)

For p = ∞ we get

δ∞�µ�R	 = R−2( log �µ̃�(L∞�B�0�R	�λR	 = 2−1(K0(�(6.4)

Thus for normal distributions the condition (6.2) does not hold. Note that if
P is normal, it becomes unidentifiable in the case of convolution model with
normal noise. This possibility is excluded due to the condition (6.2). On the
other hand, condition (6.2) holds for non-normal stable distributions and for
many distributions with compact support.
We denote in what follows the empirical measure based on the sample

�Y1� � � � �Yn	 by Qn� Given R > 0� define an estimate Ǩ �= Ǩn�R�M of K0 as a
nonnegatively definite matrix K with (K( ≤ M that minimizes the functional

K �→
∥∥∥log �Q̃n�·	�I�log �Q̃n�·	�≤2MR2� + 1

2�K·� ·	
∥∥∥
Lp�B�0�R	�λR	

�(6.5)

The idea behind this definition is that the theoretical version of this empir-
ical functional can be written as

K �→
∥∥∥log �Q̃�·	� + 1

2�K·� ·	
∥∥∥
Lp�B�0�R	�λR	

=
∥∥∥log �P̃�·	� + 1

2��K− K0	·� ·	
∥∥∥
Lp�B�0�R	�λR	

�
(6.6)

If R > 0 is large enough, then, under the condition (6.2), the term 1
2��K −

K0	·� ·	 in the functional will dominate the first term and the minimum will
be attained for K close to K0� To study the situation more precisely, we prove
the following theorem. Given S ⊂ R

m� let � �S	 denote the set of all Borel
probability measures P with supp�P	 ⊂ S�

Theorem 6.1. There exists a universal constant A = A�m�p	 such that for
some - ≥ 1 and q ∈ �0�1	,

sup
(K0(≤M

sup
P∈� �B�0�1		

P�(Ǩn�R�M − K0( ≥ Aδp�P�R	� ≤ -qn�(6.7)

Moreover, - and q can be choosen to satisfy, with some constant C > 0� the
conditions

log - ≤ CMR2 and

∣∣∣∣log log
1
q

∣∣∣∣ ≤ CMR2(6.8)

for all large enough R > 0 and M> 0�

The following statement easily follows from the bound (6.8).
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Corollary 6.2. Suppose that 0 < qn ↑ 1 as n → ∞� Suppose also that
Rn�Mn → ∞ as n → ∞ and

MnR
2
n = o�� log log�q−1

n 	� ∧ log n	 as n → ∞�
Then, for all M> 0�

sup
(K0(≤M

sup
P∈� �B�0�1		

P�(Ǩn�Rn�Mn
−K0( ≥ Aδp�P�Rn	� = o�qnn	 as n → ∞�(6.9)

We show now how to construct an estimate K̂ such that the normal distri-
bution µ̂ �= N�0� K̂	 satisfies condition (5.2) or (5.5).
We assume, in addition, that K0 is positively definite, so that, for some β > 0

and for all v ∈ Sm−1�

�K0v� v	 > β�(6.10)

Define, for a sufficiently small number δ > 0� the estimate K̂ �= K̂n�R�M�δ �=
�1 − δ	Ǩn�R�M� Let � be a set of Borel probability measures on R

m and let
δp�� �R	 �= supP∈� δp�P�R	� Let B denote the maximal positive number
such that P��Z� ≥ u� ≤ exp�−Bu2	� u ≥ 0� Z being the standard normal
vector in R

m (B = Bm is a constant, depending only on m).

Proposition 6.3. Suppose that δp�� �R	 → 0 as R → ∞� Let ε > 0 and
γ > 0� Suppose that δ is sufficiently small (specifically,

δ ≤ δ�γ�M�β� ε	 �= 2 ∧ B

log�γ−1	�M+ β/4	−1ε
)
�(6.11)

Choose R > 0 such that δp�� �R	 ≤ �β/�4A		δ� Then there exists - > 0 and

q �= q ∈ �0�1	 such that for µ̂ �= N�0� K̂	,

sup
P∈�

P

{
µ̂ �∈ -µ or �Tµµ̂	�x � �x� ≥ ε� ≥ γ

}
≤ -qn�(6.12)

Moreover, - and q satisfy the condition (6.8).

Proposition 6.4. Suppose that for some α > 0� δp�� �R	 = O�R−α	 as R
→ ∞� Let 0 < qn ↑ 1 as n → ∞ and qn ≤ e−1/n for all n ≥ 1� Choose sequences
�εn� and �γn� such that εn → 0� γn → 0�

log�ε−1
n 	 + log log�γ−1

n 	 = o�log � log log�q−1
n 	�	 as n → ∞�

Choose also sequences �Rn�� �Mn� and �δn� such that Rn�Mn → ∞� δn → 0
as n → ∞ and

log Rn = o�log � log log�q−1
n 	�	� log�δ−1

n 	 = o�log Rn	�

log Mn + log�ε−1
n 	 + log log�γ−1

n 	 = o�log�δ−1
n 		 as n → ∞�
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Let K̂ �= K̂n�Rn�Mn� δn
and µ̂ �= µ̂n �= N�0� K̂	� Then

sup
P∈�

P

{
µ̂ �∈ -µ or �Tµµ̂	�x� �x� ≥ εn� ≥ γn

}
= o�qnn	�

Propositions 6.3 and 6.4 along with Theorems 5.1 and 5.2 allow one to get
versions of the results of Sections 3 and 4 in the case of normal noise with
unknown covariance. For instance, the statement of Theorem 3.2 takes in this
case the following form.

Theorem 6.5. Let ( > 0� C > 0 and � ⊂ �0�m� be a finite subset. Suppose
that � ⊂ � �� �(�C	 and for some α > 0� δp�� �R	 = O�R−α	 as R → ∞� Let

0 < qn ↑ 1 as n → ∞ and qn ≤ e−1/n for all n ≥ 1� Choose a sequence �εn�
such that εn → 0 and

log�ε−1
n 	 = o�log � log log�q−1

n 	�	 as n → ∞�
Let γn �= εmn /�log ε−1

n 	� Define the estimate µ̂n as in Proposition 6.4. Define

�n as in Theorem 3.2. Then, the estimate d̃n �= d̂n�εn� γn��n� µ̂n	 satisfies the
following bound:

sup
P∈�

P�d̃n �= dim�P	� = O�qnn	 as n → ∞�

Note that the estimate d̃n depends neither on unknown parameters of the
class � (such as (�C�α > 0� � ) nor on the numbers M�β related to the
unknown covariance K0� it depends only on the sequence �qn�.

7. Proofs of the main results. We give below an exponential bound for
large deviations of the deconvolving empirical measures, which is frequently
used in what follows. Denote

βm��	 �= βm���µ	 �= �2π	−m
∫
R
m

∣∣∣∣∣�̃�t	
µ̃�t	

∣∣∣∣∣ dt�
We will denote by “mes” the Lebesgue measure.

Lemma 7.1. Suppose that � is a class of bounded Borel subsets in R
m� Then

for all δ > 0 and for all Borel probability measures P on R
m the following

bound holds:

P

{
supλ∈-µ supC∈�

∣∣P̂n��� λ�C	 − EP̂n��� λ�C	∣∣ ≥ δ
}

≤ 4 exp
{

− nδ2

32β2m���µ	 supC∈� mes2�C	
}
�

(7.1)

Proof. Introduce the notation

ϕ�t	 �= Eei�t�Y	 and ϕn�t	 �= n−1
n∑
j=1

exp�i�t�Yj		�
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For a bounded Borel set C ⊂ R
m and for λ ∈ -µ� we have (with λ′ �= Tµλ)

K��λ�C	 = �2π	−m
∫
R
m

∫
C
exp�−i�t� x		 dx�̃�t	

λ̃�t	 dt

= �2π	−m
∫
R
m

∫
C
exp�−i�t� x		 dx�̃�t	

µ̃�t	 λ̃
′�t	 dt

and we get

P̂n��� λ�C	 = n−1
n∑
j=1
Kλ�C−Yj	

= �2π	−m
∫
R
m
n−1

n∑
j=1

∫
C−Yj

exp�−i�t� x		 dx�̃�t	
µ̃�t	 λ̃

′�t	 dt

= �2π	−m
∫
R
m
n−1

n∑
j=1

exp�i�t�Yj		
∫
C
exp�−i�t� x		 dx�̃�t	

µ̃�t	 λ̃
′�t	 dt

= �2π	−m
∫
R
m
ϕn�t	

∫
C
exp�−i�t� x		 dx�̃�t	

µ̃�t	 λ̃
′�t	 dt�

We also have

EP̂n��� λ�C	 = �2π	−m
∫
R
m
ϕ�t	

∫
C
exp�−i�t� x		 dx�̃�t	

µ̃�t	 λ̃
′�t	 dt�

Therefore

P̂n��� λ�C	 − EP̂n��� λ�C	

= �2π	−m
∫
R
m

�ϕn�t	 − ϕ�t	�
∫
C
exp�−i�t� x		 dx�̃�t	

µ̃�t	 λ̃
′�t	 dt�

which implies

sup
λ∈-µ

sup
C∈�

∣∣P̂n��� λ�C	 − EP̂n��� λ�C	∣∣
≤ βm���µ	 sup

C∈�
mes�C	

∫
R
m

�ϕn�t	 − ϕ�t	�ν�dt	�
(7.2)

where ν�dt	 �= β−1
m ���µ	��̃�t	/µ̃�t	�dt is a Borel probability measure on R

m�
Obviously, we have

n
∫
R
m

�ϕn�t	 − ϕ�t	�ν�dt	 ≤
∥∥∥ n∑
j=1
ξj

∥∥∥
L1�Rm�dν	

+
∥∥∥ n∑
j=1
ηj

∥∥∥
L1�Rm�dν	

�(7.3)

where

ξj�t	 = cos�t�Yj	 − E cos�t�Y	� ηj�t	 = sin�t�Yj	 − E sin�t�Y	�
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The rest of the proof is based on the standard Bernstein–Hoeffding-type
bounds. We get, using Jensen’s inequality,

E exp
{
θ
∥∥∥ n∑
j=1
ξj

∥∥∥
L1�Rm�dν	

}
= E exp

{
θ
∫
R
m

∣∣∣∣∣
n∑
j=1
ξj�t	

∣∣∣∣∣ ν�dt	
}

≤
∫
R
m

E exp
{
θ

∣∣∣∣∣
n∑
j=1
ξj�t	

∣∣∣∣∣
}
ν�dt	

≤
∫
R
m

E exp
{
θ

n∑
j=1
ξj�t	

}
ν�dt	

+
∫
R
m

E exp
{

−θ
n∑
j=1
ξj�t	

}
ν�dt	�

(7.4)

Next we use a standard approach [see Ledoux and Talagrand (1991), page 31]
to bound the expectation E exp�θξ�t		� Since �ξ�t	� ≤ 2 and Eξ�t	 = 0� we have
E exp�θξ�t	� ≤ exp�2θ2��
Note. More specifically, we used above an elementary inequality

eθx ≤ ch�2θ	 + x

2
sh�2θ	 ≤ exp�2θ2	 + x

2
sh�2θ	�

which follows from the convexity of the function x �→ eθx and from the identity

θx = 2θ
1+ x/2

2
− 2θ

1− x/2
2

�

Hence

E exp

{
θ

n∑
j=1
ξj�t	

}
=
(
E exp�θξ�t	�

)n
≤ exp�2θ2n��(7.5)

The similar bound holds with θ replaced with −θ� Thus, it easily follows from
(7.4) and (7.5) that

E exp

{
θ
∥∥∥ n∑
j=1
ξj

∥∥∥
L1�Rm�dν	

}
≤ 2 exp�2θ2n��

Therefore,

P

{∥∥∥ n∑
j=1
ξj

∥∥∥
L1�Rm�dν	

≥ x
}

≤ 2 exp�2θ2n− θx��

Plugging in the last bound x = nε and θ = ε/4� yields

P

{∥∥∥ n∑
j=1
ξj

∥∥∥
L1�Rm�dν	

≥ nε
}

≤ 2 exp
{

−ε
2n

8

}
�(7.6)

Since a similar bound holds for
∑n

1 ηj� we get from (7.3) and (7.6) that

P

{
(ϕn − ϕ(L1�Rm�dν	 ≥ nε

}
≤ 4 exp

{
−ε

2n

32

}
�

Now the last bound and (7.2) imply (7.1). ✷
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Remark 7.2. Note that Bernstein’s inequality implies the following bound
for any distribution of the noise µ with a density uniformly bounded by a
constant Cµ > 0 and for any ball B ⊂ R

m of radius ε > 0,

P

{∣∣P̂n���µ�B	 − EP̂n���µ�B	∣∣ ≥ δ
}

≤ 2 exp

{
− nδ

4cm2−mεm(K(∞

[
δ

cmCµε
m(K(L1

∧ 1

]}
�

whereK �= K��µ is defined by (2.5) and cm �= 2mvm� vm denoting the volume
of the unit ball in R

m with respect to a choosen norm [for instance, vm �=
2πm/2/�mG�m/2		 in the case of the Euclidean norm]. Indeed, since B − u ∩
B− v �= ∅ implies �u− v� ≤ 2ε� we have

E�� �B−Y	�2 = E

∫
R
m

∫
R
m
K�u	K�v	IB−Y�u	IB−Y�v	 du dv

=
∫
R
m

∫
R
m
K�u	K�v	P�Y ∈ �B− u	 ∩ �B− v		 du dv

=
∫
R
m

∫
R
m
K�u	K�v	Q��B− u	 ∩ �B− v		 du dv

≤
∫

��u−v�≤2ε�
�K�u	��K�v	�Q�B− u	 du dv

=
∫
R
m

�K�u	�Q�B− u	
∫

��v−u�≤2ε�
�K�v	� dv du

≤ (K(∞cmε
m
∫
R
m

�K�u	�Q�B− u	 du

= cmε
m(K(∞

∫
B

∫
R
m
q�x− u	�K�u	� du dx

≤ c2m2
−mε2m(q(∞(K(∞(K(L1

�

where q is the density of Q� Since also

�� �B−Y	� = �
∫
B−Y

K�u	 du� ≤
∫
B−Y

�K�u	� du ≤ (K(∞cm2
−mεm�

and (q(∞ ≤ Cµ� Bernstein’s inequality does imply the bound. Note that
(K(∞ ≤ βm���µ	�

Proof of Proposition 2.1. Indeed, by the assumption card�τ�� 		 ≥ 2�
there exist P1�P2 ∈ � such that P1 �= P2� This implies P̃1 �≡ P̃2� Since µ̃ �≡ 0�
we also have P̃1µ̃ �≡ P̃2µ̃� which yields P1 ∗µ �≡ P2 ∗µ� Both measures P1 ∗µ
andP2∗µ are absolutely continuous (since µ is). It follows that the information
deviation,

I�P1 ∗ µ�P2 ∗ µ� �=
∫
R
m
log

d�P1 ∗ µ	
d�P2 ∗ µ	d�P1 ∗ µ	 > 0�
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Let m be the density of µ� By the assumptions, there exists a constant C
such that m�x	 ≤ C� x ∈ R

m� Since
∫
m log m dx > −∞ and I�µθ�µ� < +∞

locally uniformly in θ and the sets supp�P1	� supp�P2	 are compact, we get

inf
y1∈supp�P1	

inf
y2∈supp�P2	

∫
R
m

[
log

m�x− y1	
C

]
m�x− y2	 dx > −∞�

Note. The condition I�µθ�µ� < +∞ locally uniformly in θ implies that

inf
y1∈supp�P1	

inf
y2∈supp�P2	

∫
R
m

[
log

m�x− y1	
C

− log
m�x− y2	

C

]
m�x− y2	 dx > −∞�

Since
∫
m log m dx > −∞� we also get∫

R
m

[
log

m�x− y2	
C

]
m�x− y2	 dx =

∫
R
m

[
log

m�x	
C

]
m�x	 dx > −∞�

which implies the bound.
By the Fubini theorem, it follows that∫

R
m

∫
R
m
log

m�x− y1	
C

P1�dy1	
∫
R
m
m�x− y2	P2�dy2	 dx > −∞

and by Jensen’s inequality,∫
R
m

[
log

∫
R
m

m�x− y	
C

P1�dy	
] ∫

R
m
m�x− y	P2�dy	 dx > −∞�

Since ∫
R
m
m�x− y	P1�dy	 ≤ C�

the last bound implies that for any P1�P2 with compact supports we have∫
R
m

∣∣∣log ∫
R
m
m�x− y	P1�dy	

∣∣∣ ∫
R
m
m�x− y	P2�dy	 dx < +∞�

Therefore I�P1 ∗ µ�P2 ∗ µ� < +∞�
Next we get

inf
τ̌n
sup
P∈�

P�τ̌n �= τ�P	� ≥ inf
Tn
αn�

where the last inf is taken over all the tests of the hypothesis P = P1 against
the alternative P = P2 and αn denotes the probability of the error of the
first kind. It is well known [see, e.g., Chencov (1972), page 138] that, for any
q < exp�−I�P1 ∗ µ�P2 ∗ µ�� and for large enough n� infTn αn ≥ qn� which
implies the statement. ✷

Proof of Theorem 3.1. In what follows � �= � �� �(�C	� Using Lemma
7.1, we get

sup
P∈�

P

{
sup
B

�P̂n���B	 −P��B	� ≥ γ
}

≤ 4qn�
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where the supremum inside the probability is taken over the set of all balls
of radius 2ε and

q �= exp

{
− 1
32
γ2/�c2mβ2m��	ε2m	

}
�

Consider the event

A �=
{
max
B∈� �ε	

�P̂n���B+	 −P��B+	� < γ
}
�

Then

sup
P∈�

P�Ac	 ≤ 4qn�(7.7)

Consider a measure P ∈ � and let d �= dim�P	� Given ω ∈ A� we claim
that, for all B ∈ ˆ�n� we have dist�B+� supp�P		 ≤ ε� Indeed, suppose that,
on the contrary, there exists a B ∈ ˆ�n such that dist�B+� supp�P		 > ε� Since
P̂n���B+	 ≥ 2γ and ω ∈ A� we get P��B+	 > γ� On the other hand, since
dist�B+� supp�P		 > ε� for all x ∈ supp�P	� we have B+ − x ⊂ �y � �y� ≥ ε��
and, by the condition (3.5),

��B+ − x	 ≤ ��y� �y� ≥ ε� = ��y� �y� ≥ ε� ≤ γ�
Thus, we also have

P��B+	 =
∫
supp�P	

��B+ − x	P�dx	 ≤ γ�

This contradiction shows that dist�B+� supp�P		 ≤ ε� By the condition (3.1),
ω ∈ A implies that N̂n ≤ (ε−d� which yields log N̂n/ log�ε−1	 ≤ d + �log (
/ log�ε−1		� Since we have ε < ε�� �(�C	 with ε�� �(�C	 defined by (3.4), it
follows that log (/ log�ε−1	 < δ/2� and we obtain that on the event A

log N̂n

log�ε−1	 ≤ d+ δ/2�(7.8)

Note now that if ω ∈ A and B �∈ ˆ�n� then P̂n���B+	 < 2γ and hence
P��B+	 < 3γ� On the other hand, since B is the ball of radius ε having the
same center as B+ has, we get

P��B+	 = �P ∗�	�B+	 = �P×�	��x�y	� x+ y ∈ B+�
≥ �P×�	��x�y	� x ∈ B� �y� ≤ ε� = P�B	��y� �y� ≤ ε��

which implies P�B	 ≤ 3���y� �y� ≤ ε�	−1γ ≤ 3γ�1− γ	−1 ≤ 6γ�
Note that the number of the balls from � � covering supp�P	� is less than

(ε−d [by the condition (3.1)]. Denote �P such a covering set. Since

supp�P	 ⊂ ⋃
B∈ ˆ�n∩�P

B ∪ ⋃
B∈�P�B �∈ ˆ�n

B
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and, for ω ∈ A and B �∈ ˆ�n� P�B	 ≤ 6γ� we can write, using (3.2),

1 = P�supp�P		 ≤ ∑
B∈ ˆ�n∩�P

P�B	 + ∑
B∈�P�B �∈ ˆ�n

P�B	

≤ N̂nCε
d + 6γ(ε−d�

which implies

N̂n ≥ 1− 6γ(ε−d

C
ε−d�

Therefore

log N̂n

log�ε−1	 ≥ d+ log C−1�1− 6γ(ε−d	
log�ε−1	 �

Under the conditions ε < ε�� �(�C	 and γ < γ�� � ε�C	 with ε�� �(�C	 and
γ�� � ε�C	 defined by (3.4), we get on the eventA �log N̂n/ log�ε−1		 ≥ d−δ/2�
which, in view of (7.7), (7.8), the definition of the estimate d̂n and the fact that
the set � is δ-separated, concludes the proof of (3.6). ✷

Remark 7.3. Using Remark 7.2, we get

sup
P∈�

P

{
sup

B∈� �ε	

∣∣∣P̂n���B+	 −P��B+	
∣∣∣ ≥ γ

}
≤ 2 card�� �ε		qn�

where

q �= exp

{
− γ

4cmεm(K(∞

[
γ

cm2mCµεm(K(L1

∧ 1

]}
�

This gives different values of - and q in (3.6).

Proof of Theorem 3.2. By the definition of the sequences �εn� and �γn��
we have εn → 0� γn → 0� γn = o�εmn 	 as n → ∞� Thus, if n is large enough,
the conditions ε < ε�� �(�C	 and γ < γ�� � ε�(	 hold for ε �= εn and γ �= γn�
The following easy bound for � �= �a� l × · · ·m×�a�l:

��x� �x� ≥ ε� ≤ m�a� l�u� �u� ≥ ε/m1/2� ≤ ca−�l−1	m�l+1	/2ε−�l−1	

implies that

�n�x� �x� ≥ εn� = O
(
ε−1
n a

−1
n

) = O

(
εmn

�log ε−1
n 	2

)
= o�γn	 as n → ∞�

Therefore, the condition (3.5) also holds for ε �= εn� γ �= γn and � �= �n with
large enough n� By the proof of Theorem 3.1, we can conclude that

sup
P∈�

P�d̂n �= d� ≤ 4 exp

{
− 1
32

γ2nn

c2mβ
2
m��n	ε2mn

}
�
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Note that �̃a�l = 2πac�l	U�−a� a� ∗ � � �l∗U�−a� a� =� 2πac�l	U∗l
�−a� a�� where U�−a�a�

denotes the uniform density on �−a� a� [see, e.g., Bhattacharya and Ranga Rao
(1976)]. Thus, �̃a� l is a finite function (supported in the interval �−la� la�).
Then �̃n�t	 = �̃a� l�t1	 · · · �̃a� l�tm	 is a finite function on R

m� Using the formu-
las for �n and �̃n� it’s easy to show that

βm��n	 = O

(
amn
ρ�an	

)
as n → ∞

and the definitions of εn� an allows one to represent ρ�an	 as
ρ�an	 �= σ1/2n ε

−m�m+1	
n �log�ε−1

n 		2m+1�

Combining the above results, one can get by a simple calculation that

sup
P∈�

P�d̂n �= d� ≤ 4 exp�−θnδn�

with some constants θ > 0� which implies that supP∈� P�d̂n �= d� = O�qnn	 as
n → ∞. ✷

Proof of Theorem 3.3. To prove (i), note that, under the condition that
the set � is ϕ-rich, there exist P1�P2 ∈ �n�� 	 with disjoint supports and such
that dim�P2	 = dim�P1	 + δ� where ϕ�β/ log n	 ≤ δ ≤ β/ log n� Denote d1 �=
dim�P1	� d2 �= dim�P2	� We can also assume that for all ε ≥ εn� P1�B	 ≤
�C/2	εd1 and P2�B	 ≤ �C/2	εd2 [since for large enough constants such classes
of measures as � �� �(�C/2	 are nonempty]. Consider a probability measure
P0 �= �1−n−1	P1+n−1P2� Obviously,P0 is supported inB�0�1	 and dim�P0	 =
d2� We also have for all the balls with radius ε ≥ εn,

P1�B	 ≤ �C/2	εd1 = �C/2	ε−δεd2

and, since

ε−δ = exp�δ log�1/ε	� ≤ exp�β�log n	−1 log�1/εn	� = exp�αβ��
we get (under the assumption that αβ < log 2) that P1�B	 ≤ Cεd2� and, hence,
P0�B	 ≤ Cεd2 � This means that P0 ∈ �n�� 	� For any estimate ďn� based on
the sample �Y1� � � � �Yn	� we have

sup
P∈�n�� 	

PP

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}

≥ max
j=0�1

PPj

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}
�

A sample �X1� � � � �Xn	 from the distribution P0 can be represented as

Xj �=
{
X′
j� if θj = 1�

X′′
j� if θj = 0� j = 1� � � � � n�

where the random variables X′
j� X

′′
j� θj� j = 1� � � � � n are independent, X′

j

has the distribution P1� X
′′
j has the distribution P2 and θj takes value 1 with
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probability 1− n−1 and 0 with probability n−1� Suppose that for some p with
0 < p < 1,

PP1

{∣∣ďn − d1
∣∣ ≥ 1

2
ϕ

(
β

log n

)}
< p�

Then, since d2 − d1 ≥ ϕ�β/ log n	� we get for all n ≥ 6,

PP0

{∣∣ďn − d2
∣∣ ≥ 1

2
ϕ

(
β

log n

)}

≥ PP0

{∣∣ďn − d2
∣∣ ≥ 1

2
ϕ

(
β

log n

)
�θ1 = 1� � � � � θn = 1

}

×PP0
�θ1 = 1� � � � � θn = 1�

≥ PP1

{∣∣ďn − d2
∣∣ ≥ 1

2
ϕ

(
β

log n

)}
�1− n−1	n

≥ 1
3

PP1

{∣∣ďn − d1
∣∣ ≤ 1

2
ϕ

(
β

log n

)}
≥ �1− p	/3�

Thus

max
j=0�1

PPj

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}
≥ min�p� �1− p	/3	�

which implies

sup
P∈�n�� 	

PP

{∣∣ďn − dim�P	∣∣ ≥ 1
2
ϕ

(
β

log n

)}
≥ 1/4�

and (i) follows.
To prove (ii), note that for our choice of � = �n and under the assumption

(3.10), we have, by a simple computation, βm��n	 = O�am+A
n 	 = O�nσ�m+A		

as n → ∞�
If α > 0 satisfies the condition α < α�D�m�A	� where α�D�m�A	 is defined

by (3.12), and σ > α�D + 1	� σ�m + 1	 − α�m −D	 < 1/2� then it is easy to
check that

βm��n	 = o�n1/2εD−m
n �log n	−1	�

Using the bound (7.7), we get for the set

A �= An �=
{
max

B∈� �εn	

∣∣P̂n���B	 −P��B	∣∣ < εDn /�log n	1/2
}
�

that supP∈�n �� 	P�Acn	 = o�n−<	 as n → ∞ for all < > 0� Let P ∈ �n�� 	 and
d �= dim�P	� On the event An� we still have the bounds log N̂n/ log�ε−1

n 	 ≤
d+ �log (/ log�ε−1

n 		 and
log N̂n

log�ε−1
n 	 ≥ d+ log C−1�1− 6(εD−d

n /�log n	1/2	
log�ε−1

n 	 �
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Since log�ε−1
n 	 = α log n� these bounds imply that for all large n,∣∣∣ log N̂n

log�ε−1
n 	 − d

∣∣∣ ≤ 1
3

β

log n
�

Since the set � is ϕ-poor, the definition of the estimator d̂n implies that on
the event An,

�d̂n − d� ≤ ϕ
(

β

log n

)
�

and (3.11) follows, proving (ii). ✷

Proof of Theorem 4.1. We use the notation


̂n �= 
̂n�ε	 �=
{
B ∈ � �ε	� P̂n�B	 ≥ 2γ

}
�

ˆ�n �= ˆ�n�ε	 =
{
B ∈ � �ε	� ∃ B′ ∈ 
̂n � dist�B�B′	 ≤ 2ε

}
and

�̂n �= ⋃{
B̄� B ∈ 
̂n

}
�

Clearly,

ˆ	n = ⋃�B̄� B ∈ ˆ�n��
As in the proof of Theorem 3.1, consider the event A �= {

maxB∈� �ε	 �P̂n�B	
−P��B	� < γ}� Then we have, similarly to (7.7),

sup
P∈� τ�<

P�Ac	 ≤ 4qn(7.9)

with

q �= exp
{

−γ2/�32c2m2−2mβ2m��	ε2m	
}
�(7.10)

Let us consider a measure P ∈ � τ�<�

Claim 1. For ω ∈ A and for a ball B ∈ � � the condition dist�B� supp�P		
≥ ε implies B �∈ 
̂n� Moreover, the condition dist�B� supp�P		 ≥ 5ε implies
B �∈ ˆ�n�

Indeed, consider B ∈ � such that dist�B� supp�P		 ≥ ε� Since for x ∈
supp�P	� B− x ⊂ �y� �y� ≥ ε�� we get [using (4.2)]

P��B	 =
∫
supp�P	

��B− x	P�dx	 ≤ ���y � �y� ≥ ε�	 ≤ γ�(7.11)

If ω ∈ A� this implies that P̂n�B	 ≤ 2γ� which means that B �∈ 
̂n� Quite
similarly, ifB ∈ � is such that dist�B� supp�P		 ≥ 5ε� then, for ω ∈ A� B �∈ ˆ�n
[otherwise, there would exist B′ ∈ 
̂n with dist�B′� supp�P		 ≥ ε� which has
been proved to be wrong].
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Claim 2. For ω ∈ A and for a cluster C ⊂ supp�P	� the conditions B ∈ �
and B−− ∩C �= " imply B ∈ 
̂n� As a consequence, we have C ⊂ �̂n�

Indeed, if, for some cluster C ⊂ supp�P	 and for a ball B ∈ � � we have
B−− ∩ C �= "� then, according to the definition of the class � τ�<� we have
P�B−	 ≥ τ�ε/2	 > 6γ� For all x ∈ B−� B− x ⊃ B�x� ε/2	 − x = �y � �y� ≤ ε/2��
and we get [again using (4.2)]

P��B	 =
∫
supp�P	

��B− x	P�dx	 ≥
∫
B−
��B− x	P�dx	

≥ �
(

�y� �y� ≤ ε/2�
)
P�B−	 ≥ 3γ�

(7.12)

Thus, if ω ∈ A and B−− ∩C �= "� then P̂n�B	 ≥ 2γ� which means that B ∈ 
̂n�
Since the balls from � −− cover the set C� we get C ⊂ �̂n�

Claim 3. On the event A� the random sets

D̂
�n	
j �= ⋃{

B̄� B ∈ ˆ�n� dist�B�Cj	 ≤ 5ε
}
� j = 1� � � � � ν

are connected. Moreover, they are disjoint and
⋃ν
j=1 D̂

�n	
j = ˆ	n�

Indeed, if ω ∈ A� then D̂�n	
j ⊃ Cj� j = 1� � � � � ν and the sets D̂�n	

j � j =
1� � � � � ν are disjoint [by Claims 1, 2 and the condition ε < </14 along with the
definition of the class � τ�< (see the condition δ�P	 > <)]. Thus, it is enough
to show that these sets are connected. Given C = Cj for some j = 1� � � � � ν�
consider the set �C of all balls B ∈ � such that there exists a ball B′ ∈
� � �B′	−− ∩C �= " and dist�B�B′	 ≤ 2ε� On the event A� any of these balls
belongs to ˆ�n� by Claim 2. Moreover, their union is a connected set. Indeed, let
B1�B2 ∈ �C� Then there exist B

′
1�B

′
2 ∈ � � �B′

1	−− ∩C �= "� �B′
2	−− ∩C �= "

and dist�B1�B
′
1	 ≤ 2ε� dist�B2�B

′
2	 ≤ 2ε� Since C is connected, there exist

points x1 ∈ B′
1 ∩ C� x2 ∈ B′

2 ∩ C and a continuous curve in C between these
points. The curve is covered by a set �−− of balls from � −−� Let � �= �B �
B−− ∈ �−−�� Then, obviously, � ⊂ �C� Now consider the balls from � �
covering the straight line between the centers of B1 and B

′
1� All of them are

within the distance 2ε from B′
1� so they are also in �C� A similar remark

applies to the balls from � � covering the straight line between B2 and B
′
2�

Thus, we constructed a ”connected chain” of balls from �C between any two
balls in this set, proving that their union is connected. Denote the union C̃
and let Ĉ be the connected component of D̂�n	

j � which contains C̃� Let B be

any ball such that B ∈ ˆ�n and B ⊂ D̂
�n	
j � By the definition of ˆ�n� there exists

a ball B′ ∈ 
̂n such that dist�B�B′	 ≤ 2ε� The straight line, connecting the
centers of the balls B and B′ is covered by balls from � � Clearly, the distance
from each of these balls to B′ is less than or equal to 2ε� Thus, all these balls
must be in the set ˆ�n� Moreover, each of them belongs to D̂�n	

j (since they are
within the distance 5ε from C = Cj). As to the ball B′� we have (by Claim 1)
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dist�B′�C	 ≤ ε� It follows that there exists a point x ∈ C within the distance
ε from the ball B′� This point is covered by a ball �B′′	−− ∈ � −−� which
means that dist�B′�B′′	 ≤ 2ε and at the same time �B′′	−− ∩C �= "� Therefore,
B′ ∈ �C� Thus, there exists a chain of the balls from ˆ�n� connecting the ball
B with the set Ĉ� This implies that D̂�n	

j is a connected set.
It follows from Claim 3 that ν̂n = ν on the event A� and there exists a

permutation π of the set of the numbers 1�2� � � � � ν such that Ĉ�n	
π�j	 = D̂

�n	
j � It

follows from Claim 1 that, for all ω ∈ A and for all B ∈ ˆ�n� dist�B� supp�P		 ≤
5ε� which implies that ˆ	n ⊂ ��supp�P		7ε�� On the other hand, by the Claim
2, for all clusters C ⊂ supp�P	� we have C ⊂ ˆ	n� which implies that, for
ω ∈ A� supp�P	 ⊂ ˆ	n� Therefore, on the event A� h

( ˆ	n� supp�P	) ≤ 7ε�
Next we use the following lemma, which can be easily proved by induction,

using the recursive definition of the cluster tree.

Lemma 7.4. Suppose that D�D′ ⊂ R
m are compact sets and

D =
ν⋃
j=1
Dj� D′ =

ν⋃
j=1
D′
j�

whereDj�D
′
j� 1 ≤ j ≤ ν are connected compact sets andDi∩Dj = D′

i∩D′
j = "

for all i �= j� Suppose also that

h�D�D′	 < ε < �1/2	 min
1≤j≤J

�δj − δj−1	�

where

δj �= δj�� 	� j = 1� � � � � J� J �= J�� 	� � �= �D1� � � � �Dν�
are the numbers recursively defined in Section 4. Then �� �D	�χ	 ∼= ��ε�D′	�χε	�

Under the conditions P ∈ � τ�< and ε < </14� one can apply Lemma 7.1 to
the sets Dj �= Cj and D

′
j = Ĉ

�n	
π�j	� which gives the isomorphism of the trees

��̂n� χ̂n	 and �� � χ	 on the event A� Now the bound (7.9) yields (4.3). ✷

Remark 7.5. Other values of constants -�q in Theorem 4.1 can be ob-
tained using Remark 7.2. Namely, we get

sup
P∈�

P

{
sup

B∈� �ε	
�P̂n���B	 −P��B	� ≥ γ

}
≤ 2 card�� �ε		qn�

where

q �= exp

{
− γ

4cm2−mεm(K(∞

[
γ

cmCµε
m(K(L1

∧ 1

]}
�

The proof of Theorem 4.2 is similar to the proof of Theorem 3.2 above. The
proof of Corollary 4.3 is obvious.
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Proof of Theorem 4.4. Consider a measure P ∈ � τ
<�δ� We use the follow-

ing notations:

∂−
̂n �= {
B ∈ � � ∃ B1�B2�B1 ∈ 
̂n� B2 /∈ 
̂n�

dist�B�B1	 ≤ 3ε� dist�B�B2	 ≤ 3ε
}
�

∂
̂n �= {
B ∈ � � ∃ B′ ∈ ∂−
̂n � dist�B�B′	 ≤ 6ε

}
�

Then ∂̂n�P̂n	 �= ⋃{
B̄� B ∈ ∂
̂n

}
� Note that, on the event A (see the notations

of the proof of Theorem 4.1), we have

�B ∈ � � B−− ∩ ∂�supp�P		 �= "� ⊂ ∂−
̂n�(7.13)

Indeed, the condition B−− ∩∂�supp�P		 �= " implies, by Claim 2 in the proof of
Theorem 4.1, that B ∈ 
̂n� On the other hand, property 4 in the definition of
the class� τ

<�δ implies that there exists a ballB
′ ∈ � such that dist�B�B′	 ≤ 3ε

and dist�B′� supp�P		 ≥ ε [indeed, first one can find a ball B̃ of radius 2ε
such that for a point x ∈ B−− ∩ ∂�supp�P		 we have dist�x� B̃	 ≤ 2ε and
dist�B̃� supp�P		 > ε� then one can find a ball B′ ∈ � covering the center of
B̃� B′ possesses the required properties]. By Claim 1 in proof of Theorem 4.1,
we conclude that, on the event A� B′ �∈ 
̂n� Thus, on the event A� B ∈ ∂−
̂n�
which implies (7.13).
Let G �= Gj be a cluster of supp�P	� Since G is connected, the set

⋃{
B̄ �

B−− ∩ G �= "}
is also connected. Also, note that if dist�B� ∂�supp�P			 > 6ε�

then, on the event A� the ball B /∈ ∂−
̂n� It follows again from Claims 1
and 2 of the proof of Theorem 4.1. Indeed, for all the balls B′ ∈ � � such that
dist�B�B′	 ≤ 3ε� we either have dist�B′� supp�P		 ≥ ε� orB′ ⊂ supp�P	� Given
that the event A occurs, we have in the first case, by Claim 1, that all the
balls B′ /∈ 
̂n� while in the second case, by Claim 2, all the balls B′ ∈ 
̂n� In
both cases, we get B /∈ ∂−
̂n� By the definition of the set ∂
̂n� it immediately
follows that if dist�B� ∂�supp�P			 > 14ε� then, on the event A� B /∈ ∂
̂n�
Suppose now that B ∈ ∂
̂n� We claim that, on the event A� there exists a

connected chain of the balls from ∂
̂n� starting with B and ending with a ball
B′ such that �B′	−− ∩supp�P	 �= "� Indeed, there exists a ball B1 ∈ ∂−
̂n such
that dist�B�B1	 ≤ 6ε� By the definition of ∂
̂n� all the balls from � � covering
the straight line between the centers of B and B1 are still in ∂
̂n� Since B1 ∈
∂−
̂n� we have dist�B1� ∂�supp�P			 ≤ 6ε� which implies that there exists a
ball B′ ∈ � such that �B′	−−⋂supp�P	 �= " and dist�B′�B1	 ≤ 6ε� Clearly,
B′ ∈ ∂−
̂n� and all the balls from � � covering the straight line between the
centers of B′ and B1 are in the set ∂
̂n�
Finally, we define

Ĝ
�n	
j �= ⋃{

B̄� B ∈ ∂
̂n� dist�B�Gj	 ≤ 14ε
}
� j = 1� � � � � υ�P	�

By condition (iii) of the definition of the class � τ
<� δ, the minimal distance be-

tween the sets Gj� j = 1� � � � � υ�P	 is at least 40ε� We also know that any
ball B ∈ � � such that dist�B� supp�P		 ≥ 14ε� does not belong to ∂
̂n� It
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follows that the sets Ĝ�n	
j � j = 1� � � � � υ�P	 are disjoint. Also, each ball from

Ĝ
�n	
j can be connected by a chain of balls from ∂
̂n to a ball B such that

B−−⋂Gj �= "� It follows that the sets Ĝ�n	
j � j = 1� � � � � υ�P	 are connected,

and since their union is equal to the set ∂
̂n� they are the clusters of this
set. It follows that, on the event A� υ̂n = υ�P	� Similarly to (7.9), we get the
bound supP∈� τ

<�δ
P�Ac	 ≤ 4qn� which immediately implies the proof. ✷

Proof of Theorem 5.1. Denote

A �=
{
µ̂ ∈ -µ� sup

B∈� �ε	

∣∣∣∣∣n−1
n∑
j=1

� �B+ −Yj	 − �P ∗� ∗Tµµ̂	�B+	
∣∣∣∣∣ ≤ γ�

�Tµµ̂	�x� �x� ≥ ε/2� ≤ γ/2
}
�

Then, by Lemma 7.1 and the condition (5.2), supP∈� P�Ac	 ≤ -qn with some
- > 0� q ∈ �0�1	� Next we follow the lines of the proof of Theorem 3.1. Given
ω ∈ A� we claim that, for all B ∈ ˆ�n� we have dist�B+� supp�P		 ≤ ε� To this
end, it is enough to show that P̂�B+	 �= �P ∗ � ∗ Tµµ̂	�B+	 ≤ γ� which (see
the proof of Theorem 3.1) would follow from the bound

�� ∗Tµµ̂	�B+ − x	 ≤ �� ∗Tµµ̂	�y� �y� ≥ ε� ≤ γ�(7.14)

To establish (7.14), note that

�� ∗Tµµ̂	�y� �y� ≥ ε� = ��×Tµµ̂	��y� z	� �y+ z� ≥ ε�
≤ ��y� �y� ≥ ε/2� + �Tµµ̂	�y� �y� ≥ ε/2��

which is ≤ γ on the event A� Similarly to the proof of Theorem 3.1, this yields
on the event A �log N̂n/ log�ε−1		 ≤ d+ δ/2�
It remains to show that if ω ∈ A and B �∈ ˆ�n� then P�B	 ≤ 6γ� This will

imply (again, as in Theorem 3.1) that on the event A �log N̂n/ log�ε−1		 ≥ d−
δ/2 and the result will follow. We have P̂n�B+	 < 2γ�which yields P̂�B+	 < 3γ�
On the other hand, since B is the ball of radius ε having the same center as
B+ has, we get

P̂�B+	 = �P ∗� ∗Tµµ̂	�B+	 = �P×�×Tµµ̂	��x�y� z	� x+ y+ z ∈ B+�
≥ 1�P×�×Tµµ̂	��x�y� z	� x ∈ B� �y� ≤ ε/2� �z� ≤ ε/2�
= P�B	��y� �y� ≤ ε/2��Tµµ̂	��z� �z� ≤ ε/2�	�

which implies

P�B	 ≤ 3���y� �y� ≤ ε/2�	−1�Tµµ̂	��z� �z� ≤ ε/2�	−1γ ≤ 3γ�1− γ/2	−2 ≤ 6γ�

Now the proof can be completed exactly as in the case of Theorem 3.1. ✷



EMPIRICAL GEOMETRY AND DECONVOLUTION 623

Proof of Theorem 5.2. First, as in the proof of Theorem 5.1, we define

A �=
{
µ̂ ∈ -µ� sup

B∈� �ε	

∣∣∣∣n−1
n∑
j=1

� �B−Yj	 − �P ∗� ∗Tµµ̂	�B	
∣∣∣∣ ≤ γ�

�Tµµ̂	�x� �x� ≥ ε/4� ≤ γ/2
}

and show that supP∈� P�Ac	 ≤ -qn with some - > 0� q ∈ �0�1	�
Next we follow the proof of Theorem 4.1. In order to prove Claim 1, it is

enough to show that

P̂�B	 �= �P ∗� ∗Tµµ̂	�B	 ≤ γ�(7.15)

Note that (under the assumptions of Claim 1), we have for all x ∈ supp�P	,
�� ∗Tµµ̂	�B− x	 ≤ �� ∗Tµµ̂	��y� �y� ≥ ε�	

= ��×Tµµ̂	���y� z	� �y+ z� ≥ ε�	
≤ ���y� �y� ≥ ε/2�	 + �Tµµ̂	��z� �z� ≥ ε/2�	�

which, under the condition (5.4) and on the event A� is less than or equal to
γ� Since

P̂�B	 =
∫
supp�P	

�� ∗Tµµ̂	�B− x	P�dx	�

we get (7.15), and Claim 1 follows.
Similarly, to establish Claim 2, it’s enough to show that P̂�B	 ≥ 3γ� To this

end, we write

P̂�B	 = �P ∗� ∗Tµµ̂	�B	 = �P×�×Tµµ̂	���x�y� z	� x+ y+ z ∈ B�	
≥ P�B−	���y� �y� ≤ ε/4�	�Tµµ̂	��z� �z� ≤ ε/4�	�

which, under the condition (5.4) and on the event A� is ≥ 3γ� The rest of the
proof of Theorem 4.1 goes through with no changes. ✷

The proof of Corollary 5.3 is rather straightforward. We proceed to the
results of Section 6.

Proof of Theorem 6.1. We have∥∥∥log �Q̃�·	� + 1
2�K·� ·	

∥∥∥
Lp�B�0�R	�λR	

=
∥∥∥log �P̃�·	� + 1

2��K− K0	·� ·	
∥∥∥
Lp�B�0�R	�λR	

≥ 1
2

∥∥∥��K− K0	·� ·	
∥∥∥
Lp�B�0�R	�λR	

−
∥∥∥log �P̃�·	�

∥∥∥
Lp�B�0�R	�λR	

= 1
2

∥∥∥��K− K0	·� ·	
∥∥∥
Lp�B�0�R	�λR	

− δp�P�R	R2�
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A simple computation (using polar coordinates) shows that

λ�B�0�R		−1
∫
B�0�R	

∣∣��K− K0	t� t	
∣∣p dt

= m

2p+mR
2p

∫
Sm−1

∣∣��K− K0	v� v	∣∣pU�dv	�

Therefore,

∥∥∥log �Q̃�·	� + 1
2

�K·� ·	
∥∥∥
Lp�B�0�R	�λR	

≥ 1
2

(
m

2p+m
)1/p

(K− K0(pR2 − δp�P�R	R2�

where (A(p �= (�A·� ·	(Lp�Sm−1�dU	� It is easy to check that for a symmetric non-
negatively definite A �1/cp	(A( ≤ (A(p ≤ (A( with some absolute constant
cp > 0� Hence

∥∥∥log �Q̃�·	� + 1
2

�K·� ·	
∥∥∥
Lp�B�0�R	�λR	

≥
[
1
2cp

(
m

2p+m
)1/p

(K− K0( − δp�P�R	
]
R2�

which implies

(K− K0( ≤ 2cp

(
2p+m
m

)1/p

×
[
δp�P�R	 +R−2

∥∥∥log �Q̃�·	� + 1
2�K·� ·	

∥∥∥
Lp�B�0�R	�λR	

]
�

(7.16)

Define

<n �=
∥∥∥log �Q̃n�·	�I�� log �Q̃n�·	��≤2MR2� − log �Q̃�·	�

∥∥∥
Lp�B�0�R	�λR	

�

Then

∥∥∥log �Q̃�·	� + 1
2�Ǩ·� ·	

∥∥∥
Lp�B�0�R	�λR	

≤
∥∥∥log �Q̃n�·	�I�� log �Q̃n�·	��≤2MR2� + 1

2�Ǩ·� ·	
∥∥∥
Lp�B�0�R	�λR	

+ <n�
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Since Ǩ minimizes the functional (6.5), we can further get∥∥∥log �Q̃�·	� + 1
2�Ǩ·� ·	

∥∥∥
Lp�B�0�R	�λR	

≤
∥∥∥log �Q̃n�·	�I�� log �Q̃n�·	��≤2MR2� + 1

2�K0·� ·	
∥∥∥
Lp�B�0�R	�λR	

+ <n

≤
∥∥∥log �Q̃�·	� + 1

2�K0·� ·	
∥∥∥
Lp�B�0�R	�λR	

+ 2<n

=
∥∥∥log �P̃�·	�

∥∥∥
Lp�B�0�R	�λR	

+ 2<n

= R2δp�P�R	 + 2<n�

(7.17)

It follows from (7.16) and (7.17) that

(Ǩ− K0( ≤ 4
(
2p+m
m

)1/p
cp
[
δp�P�R	 +R−2<n

]
�(7.18)

Now we get an exponential bound for the random variable <n� Define the
event

E �= E�R	 �=
{
sup
�t�≤R

�Q̃n�t	 − Q̃�t	� ≤ �exp�−MR2	 − exp�−2MR2		

∧ 1
2 exp�−2MR2	 ∧ 1

2R
2δp�P�R	 exp�−2MR2	

}
�

On the event E� the condition �Q̃n�t	� ≤ exp�−2MR2	 implies that for �t� ≤ R
�Q̃�t	� ≤ exp�−MR2	� Therefore, we have(

λ�B�0�R		−1
∫
B�0�R	

� log �Q̃�t	��pI�� log �Q̃n�t	��≥2MR2� dt
)1/p

≤
(
λ�B�0�R		−1

∫
B�0�R	

� log �Q̃�t	��pI�� log �Q̃�t	��≥MR2� dt
)1/p

�

Since log �Q̃�t	� = log �P̃�t	�− 1
2�K0t� t	 and (K0( ≤ M� the condition � log �Q̃�t	��

≥ MR2 implies � log �P̃�t	�� ≥ MR2/2� Hence, we get(
λ�B�0�R		−1

∫
B�0�R	

� log �Q̃�t	��pI�� log �Q̃n�t	��≥2MR2� dt
)1/p

≤
(
λ�B�0�R		−1

∫
B�0�R	

� log �P̃�t	��pI�� log �P̃�t	��≥MR2/2� dt
)1/p

+
(
λ�B�0�R		−1

∫
B�0�R	

∣∣ 1
2�K0t� t	

∣∣p I�� log �P̃�t	��≥MR2/2� dt
)1/p

≤ δp�P�R	R2(7.19)

+ 1
2(K0(

(
λ�B�0�R		−1

∫
B�0�R	

�t�2pI�� log �P̃�t	��≥MR2/2� dt
)1/p
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≤ δp�P�R	R2 + (K0(
2M

(
λ�B�0�R		−1

∫
B�0�R	

� log �P̃�t	��p dt
)1/p

≤ δp�P�R	
[
1+ (K0(

M

]
≤ 2δp�P�R	R2�

Also, on the event E� the condition � log �Q̃n�t	�� ≤ 2MR2 implies that �Q̃�t	�
≥ 1

2 exp�−2MR2	� and hence,∣∣∣log �Q̃n�t	�I�� log �Q̃n�t	��≤2MR2� − log �Q̃�t	�
∣∣∣

≤ �Q̃n�t	 − Q̃�t	�
�Q̃n�t	� ∧ �Q̃�t	�

≤ 2 exp�2MR2	�Q̃n�t	 − Q̃�t	� ≤ R2δp�P�R	�
(7.20)

It follows from (7.19) and (7.20) that, on the event E� <n ≤ 3R2δp�P�R	�
which implies

P�<n ≥ 3R2δp�P�R	� ≤ P�E�R	c	�(7.21)

The bounds (7.18) and (7.21) imply that

P

{
(Ǩ− K0( ≥ 16

(
2p+m
m

)1/p
cpδp�P�R	

}
≤ P�E�R	c	�(7.22)

To bound the probability P�E�R	c	� one can use standard exponential bounds
for empirical processes. We use basic definitions and notations of this theory
[see, e.g., van der Vaart and Wellner (1996)]. Consider the classes of functions
c �= {

cos�t� ·	 � �t� ≤ R
}
� s �= {

sin�t� ·	 � �t� ≤ R
}
� The bound � cos�t� y	 −

cos�s� y	� ≤ �t − s��y� for all t� s� y ∈ R
m and the fact that the number of the

balls of radius δ > 0 needed to cover the ball B�0�R	 is bounded by cmRmδ−m

(with a constant cm depending only on m) imply the following bound for the
minimal number of balls of radius δ with respect to the random metric dQn�1
of the space L1�Rm�dQn	� covering the class c �

NdQn�1
�c� δ	 ≤ cm

(
R

δ

)m (
n−1

n∑
j=1

�Yj�
)m

�

Given a sequence �εn� of i.i.d. Rademacher random variables (independent of
�Yn�n≥1), this allows one to get the bound

Pε

{∥∥∥ n∑
j=1
εjδYj

∥∥∥
c

≥ 2nδ

}
≤ 2NdQn�1

�c� δ	 exp�−2nδ2�

≤ 2cm

(
R

δ

)m(
n−1

n∑
j=1

�Yj�
)m

exp�−2nδ2��
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which implies

P

{∥∥∥ n∑
j=1
εjδYj

∥∥∥
c

≥ 2nδ

}
≤ 2cm

(
R

δ

)m
E�Y�m exp�−2nδ2��(7.23)

Using standard symmetrization inequalities [see, e.g., van der Vaart and Well-
ner (1996), Lemma 2.3.7], we get from (7.23) for all n > 1/�2δ2	,

P

{∥∥∥Qn −Q
∥∥∥
c

≥ 8δ
}

≤ 4cm

(
R

δ

)m
E�Y�m exp�−2nδ2��

A similar bound holds for the class s� which allows us to write

P

{
sup

t∈B�0�R	
�Q̃n�t	 − Q̃�t	� ≥ 16δ

}
≤ 8cm

(
R

δ

)m
E�Y�m exp�−2nδ2	��(7.24)

The bound P�E�R	c	 ≤ -qn with the conditions (6.8) on - and q now follows
by plugging in (7.24),

δ �= 16−1
[
�exp�−MR2	 − exp�−2MR2		

∧ 1
2 exp�−2MR2	 ∧ 1

2 R
2δp�P�R	 exp�−2MR2	

]
�

In view of (7.22), the proof is complete. ✷

Proof of Corollary 6.2 and Proposition 6.3. It follows from (6.8) that
with some constant C > 0 for all large n,

-qn = exp

{
−n log

1
q

+ log -

}
≤ exp�−n exp�−CMnR

2
n	 +CMnR

2
n�

≤ exp

{
−1
2
n exp�−CMnR

2
n	
}

= exp�−n log�q−1
n 	� = o�qnn	 as n → ∞�

To prove Proposition 6.3, note that under the assumption

(Ǩn�R − K0( ≤ �β/4	δ�(7.25)

we have

��K0 − K̂n�R� δ	v� v	 = ��K0 − Ǩn�R	v� v	 + δ�K0v� v	 + δ��Ǩn�R − K0	v� v	
≥ βδ− �β/4	δ

(
1+ δ

)
≥ �β/2	δ�

(7.26)

Under condition (7.25), we also have that

(K̂n�R − K0( ≤
(
M+ β/4

)
δ�(7.27)
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To see that (6.12) holds for µ̂ �= µ̂n �= N�0� K̂n�R	� note that under the
assumption (7.25) µ̂n ∈ -µ and Tµµ̂ = N�0� �K0 − K̂n�R		� Moreover, if (7.25)
holds, then (7.27) implies that

�x� ≤ (�K0 − K̂n�R	1/2( ∣∣�K0 − Kn�R	−1/2x
∣∣

≤ �M+ β/4	1/2δ1/2 ∣∣�K0 − Kn�R	−1/2x
∣∣

and we have

�Tµµ̂	{x� �x� ≥ ε} ≤ �Tµµ̂	
{
x� ��K0 − K̂n�R	−1/2x� ≥ ε

�M+ β/4	1/2δ1/2
}

≤ exp

{
−B ε2

�M+ β/4	δ

}
�

Since δ satisfies the condition (6.11), we get �Tµµ̂	{x � �x� ≥ ε
} ≤ γ� which,

along with Theorem 6.1, is enough to check (6.12). ✷

The proofs of Proposition 6.4 and Theorem 6.5 easily follow from previous
results.
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