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OPTIMAL DESIGN WITH MANY BLOCKING FACTORS

By J. P. Morgan1 and R. A. Bailey

Old Dominion University and Queen Mary and Westfield College

Designs for sets of experimental units with many blocking factors are
studied. It is shown that if the set of blocking factors satisfies a certain
simple condition then the information matrix for the design has a simple
form. In consequence, a design is optimal if it is optimal with respect to
one particular blocking factor and regular with respect to all the rest, in
a sense which is made precise in the paper. This encompasses several pre-
vious results for optimal designs with more than one blocking factor, and
applications to many other situations are given.

1. Introduction. This paper deals with the optimality problem in assign-
ing a set of treatments to experimental units that are subject to a multiplicity
of blocking factors. Over the past twenty years the area of optimal experimen-
tal design has grown rapidly, and during this time considerable effort has been
devoted to developing the theory for a single blocking factor. More complicated
blocking structures, while commonly encountered in practice, have received
comparatively little attention in the literature and consequently have seen
less progress.

In agricultural and related sciences, experimental units are frequently clas-
sified by three or more blocking factors, which are interrelated by both crossing
and nesting. Variety trials with small amounts of seed and small plots are laid
out in blocks with nested rows and columns [Patterson and Robinson (1989)].
In sugar-beet trials the route taken by the tractor at seeding can make distant
plots similar: this may result in either a row–column structure with nested
plots [Bailey (1992)] or a structure where columns are crossed with directions,
in which short rows are nested [Seeger (1986)]. The former is also often used
for glasshouse experiments [Darby and Gilbert (1958)], while the latter, after
renaming directions as long rows, is appropriate for experiments on irrigated
cotton [Williams (1986)]. Kachlicka and Mejza (1995) report a trial on irrigated
potatoes in which the plots of a nested row–column structure are themselves
split into row–column substructures. German agronomists deal with spatial
heterogeneity by using three blocking factors which are mutually orthogonal
but not fully crossed [Behrens (1956)]. All of these structures, and more, occur
in forestry experiments [Williams and Matheson (1994)].

As Bailey (1993) remarked, there appears to be no coherent theory of opti-
mal design for these complicated blocking structures. The structures are by no
means new or esoteric; see Yates’s (1935, 1937) discussion of factorial design
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and Nelder’s (1965a) list of block structures. Given the world-wide use of these
structures in experiments, guidance on constructing optimal designs for them
is badly needed.

There are a few instances where it has been possible to show optimality of a
design for many block factors by reducing the problem to that of the optimality
of the block design formed by just one of those factors. Cheng (1978) did this
for multiway crosses, as we describe in Section 3.3. Bagchi, Mukhopadhyay
and Sinha (1990) did it for nested row–column designs; we describe their
result in this section and in Section 3.2. Our purpose is not only to bring
these previous results under a common umbrella but also to expand the list
of blocking structures for which this is possible.

To get an idea of where we are headed, consider the nested row–column
setting consisting of b separate p × q cross classifications, that is, a nesting
of rows and columns in a third nuisance factor called blocks. The standard
model for the yield on the plot in row l, column m of block j is

Ydjlm = µ+ ρl + γm + βj + τd�jlm� + εjlm�
ρl, γm and βj being row, column and block effects, τd�jlm� the effect of the
treatment applied by design d to plot �j� l�m�, and the εjlm’s being uncorre-
lated random variables with mean zero and common variance. In matrix form
this is

Y = µ1+Adτ +Z1γ +Z2ρ+Z3β+ ε�
The information matrix for estimation of τ, also called the C-matrix, is

Cd = A′
d

(
I− 1

p
Z1Z

′
1 −

1
q
Z2Z

′
2 +

1
pq
Z3Z

′
3

)
Ad

and using ≥ in the sense of nonnegative definite, certainly Cd ≥ A′
d�I −

�1/p�Z1Z
′
1�Ad. Now A′

d�I− �1/p�Z1Z
′
1�Ad is the information matrix for the

column component design, so if there is some design d for which A′
d�Z2Z

′
2 −

�1/p�Z3Z
′
3�Ad = 0 and the column component design is optimal, then d is

optimal [Bagchi, Mukhopadhyay and Sinha (1990)]. For instance, an optimal
design for b = 6, v = 4, p = 2, q = 4 is

Example 1. A BNRC�6�4�2�4�.
1 1 2 2
2 2 1 1

1 2 3 4
3 4 2 1

3 3 4 4
4 4 3 3

1 2 3 4
3 4 2 1

1 2 3 4
3 4 2 1

1 2 3 4
3 4 2 1 .

The condition A′
d�Z2Z

′
2 − �1/p�Z3Z

′
3�Ad = 0 is termed row regularity. The

idea of regularity with respect to a blocking factor will be fully defined in
Section 2; in this example regularity with respect to rows says that rows within
blocks are permutations of one another. The other key property employed
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in this result is orthogonality of the three blocking factors. The reader may
wish to return to this example after reading the definition of orthogonality in
Section 2.

Section 2, then, contains the main results: an expression for the C-matrix,
and conditions for optimality, for any situation in which the set of blocking fac-
tors is orthogonal, and for which one factor has an additional nestedness prop-
erty. The optimality conditions say that the component block design defined by
that one factor should be optimal, and that treatments should be arranged in
the pattern called regularity with respect to each of the other blocking factors.

The literature contains at least three other special cases of the general
result to be proven here. Cheng (1978) establishes optimality of the regu-
lar generalized Youden hyperrectangles, which include the regular Youden
designs as treated by Kiefer (1975). Those designs are generalized yet fur-
ther in Mukhopadhyay and Mukhopadhyay (1984) to allow for empty cells in
the multicross of blocking factors. In Bagchi (1988), the family of optimum
nested row and column designs introduced in Bagchi, Mukhopadhyay and
Sinha (1990) is generalized to a nesting of multiway cross classifications. These
will be more fully explained, along with other examples and constructions, in
Section 3.

2. Main results. Statement and derivation of the main optimality result
require a notation for describing the structure we impose on the blocking
factors that also lends itself to computation of the corresponding C-matrix. An
excellent exposition of the notation to be used and accompanying concepts may
be found in Tjur (1984) and its discussions, which the reader can consult for a
fuller treatment. The notational conventions are those of Bailey (1984, 1985,
1996). As this approach has not been established in the optimality literature,
we begin with a brief introduction.

Denote by � the set of N experimental units at our disposal. A factor
φF:� → F is a mapping φF from � to another set F, the elements of F
being the levels of the factor. Typically one discusses F without reference to
the underlying mapping, it being understood. Any factor should be thought of
as a partitioning of the units into classes, or “blocks.” The number nF of levels
of F is the number of nonempty classes in this partition. Factor F is uniform
if each member of the partition contains N/nF units. [Some authors, includ-
ing Tjur (1984) and Searle, Casella and McCulloch (1992) called such a factor
“balanced.” In view of the usual meaning of “balance” for block designs, we
prefer to avoid confusion by calling them “uniform.” See also Preece (1982).]

Labelling the units 1�2� � � � �N and the levels of F 1�2� � � � � nF, then F may
also be represented by the N× nF incidence matrix XF where

�XF�ij =
{
1� if φF�i� = j,
0� otherwise.

As will be seen, it is through the matrix XF that F’s role in the linear model
is stated. The matrix PF which projects onto the range of XF, that is, which
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transforms the data vector to be constant on levels of F, is XF�X′
FXF�−X′

F,
which for any uniform factor is �nF/N�XFX

′
F.

It is useful to define two special factors U and E. The universal factor U,
which corresponds to our notion of fitting an overall mean, has φU�ω� = 1 for
all ω in �. The existential factor E, which identifies each and every unit, has
φE�ω� = ω for all ω in �.

Using the above, we can now discuss relationships among and operations
on factors. Factor F is said to nest factor G if every F-class is a union of
G-classes. Also said “F contains G” or “G is nested in F,” it is written F ≥ G,
and is the usual notation of nesting in ANOVA models. Likewise we need a
notion of crossing of factors. The cross of two factors F and G, written F∧G, is
the factor given by the Cartesian product of φF and φG; its classes are subsets
of � which are constant on both F and G, commonly called the “cells” induced
by the F, G cross. It can be shown that F ∧G, which some authors call the
infimum of F and G [Bailey (1996)] is the coarsest partition nested in both F
and G. There is also a finest partition that nests both F and G, written F∨G
and called the join (or supremum) of F and G. A class of F∨G contains units
which are either constant on F and G, or are connected by a chain of units
with the property that consecutive units in the chain differ in at most one of
F and G.

As indicated in Section 1, orthogonality of the blocking factors will play an
important role. Define factors F and G to be orthogonal if their projection
matrices commute: PFPG = PGPF. In an additive linear model, commuta-
tivity of the factor projection matrices is what allows for orthogonal lines in
the ANOVA table; this is the natural statistical definition of orthogonality.
Tjur (1984) shows that F and G are orthogonal if and only if PFPG = PF∨G
and provides the following description of orthogonality in terms of cell counts:
F and G are orthogonal if and only if the condition of proportional cell counts
holds for each F, G table formed by each class of F ∨G.

Denote by � the set of blocking factors on the experimental units �, with
incidence matrices XF for F ∈ � . Let Ad be the N × v incidence matrix for
the treatment allocation defined by design d ∈ � , the class of all allowable
designs. Our model is

Y = Adτ +
∑
F∈�

XFβF + ε�(1)

where τ is the v× 1 vector of treatment effects, βF the nF × 1 vector of fixed
effects of blocking factor F, and ε anN×1 random vector with mean zero and
var�ε� = σ2I. For the model (1), the information matrix Cd for design d is

Cd = A′
d�I−P� �Ad�(2)

where P� is the matrix that projects onto the range of X� , and X� is the
N × ∑

nF matrix of concatenation of the XF, F ∈ � . Our goal is to find
a d which minimizes an optimality criterion $�Cd�. Allowed for $ is any
nonincreasing criterion in the sense of preserving the nonnegative definite
ordering, that is, if C1−C2 is nonnegative definite then $�C1� ≤ $�C2�. When



OPTIMAL DESIGN WITH MANY BLOCKING FACTORS 557

not explicity stated, the term “optimal” in this paper implicity refers to one or
more such criteria $.

Main result A. For the model �1�, assume that every pair of factors in �
is orthogonal. Let F0 be a distinguished member of � . If � can be partitioned
as �0 ∪ �1 such that

F0 ∈ �0�(3)

for every F �= G in �0�F0 ≤ F ∨G and(4)

for every G ∈ �1 there exists at least one FG ∈ �0 such that FG ≤ G�(5)

then

P� = PF0
+ ∑
F∈�0�F �=F0

�PF −PF∨F0
��(6)

Main result B. Suppose the factors inducing model (1) satisfy the condi-
tions of Main Result A. Any design d for which

the F0-component block design is optimal and(7)

�PF −PF∨F0
�Ad = 0 for every F ∈ �0�(8)

is optimal.

The condition (8) is termed “d is F-regular in F ∨F0 for each F ∈ �0,” or,
shortly, “d is �� �F0�-regular.” For any F with F ∨F0 = U, it is simply “d is
F-regular”. Precisely what does this regularity condition say? Think of rows
of the matrix PFAd as corresponding to plots, and columns to treatments.
Rows of PFAd corresponding to plots at the same level of F are identical;
the ith entry of such a row is the proportion of plots with that level of F
receiving treatment i. Likewise the ith entry of a row of PF∨F0

Ad is the
proportion of times i occurs on plots with the corresponding level of F ∨F0.
So �PF − PF∨F0

�Ad = 0 if and only if, given any treatment, its replication
proportions at levels of F are constant for each fixed level of F ∨ F0. If the
factor F is uniform, then regularity says that any given treatment i occurs
the same number of times at each level of F within a level of F ∨ F0. That
number can vary with the treatment i, and can be zero.

This usage of the term “regular” differs from that of previous authors
whose work we generalize [e.g., Cheng (1978, 1979); Mukhopadhyay and
Mukhopadhyay (1984)]. Here it describes a property of the treatment assign-
ment, while in the cited papers it is used to describe a property of the
blocking factors, namely that for prescribed factors F, the number of levels
nF is divisible by v. The prior usage amounts to making it possible for every
treatment to be assigned with equal frequency to each level of said factors F,
resulting in special cases of the general optimality result above. The broader
perspective provided by the main results supports the alternative view that
this property should be thought of in terms of treatment assignment patterns.
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While it will always be possible to translate regularity in terms of necessary
conditions on functions of the nF’s, doing so will typically grow more tedious
with increasing complexity of the block structure, and will not offer any
particular insight into the optimality problem.

The next section will list numerous applications of the main results for
obtaining optimal designs. However, not to be overlooked is that their utility
extends well beyond providing a set of conditions for optimality. The simple,
compact expression for the C-matrix given by (2) and (6) is valuable regard-
less of whether conditions (7) and (8) can be met, a fact demonstrated by the
papers referenced in section 3 as special cases of this result, wherein con-
siderable effort is expended on calculation of C-matrices. Moreover, they also
provide a method for finding efficient (not necessarily optimal) designs. If the
$-efficiency of the F0-component design is at least some amount e, and the
regularity conditions are met, then the multifactor design also has efficiency
at least e.

This section closes with the proof of the main results. In establishing opti-
mality the nonnegative definite ordering is employed in a manner that seems
to have first been formalized by Magda (1980), though the approach appears
either implicitly or explicitly in many author’s work before and since; see espe-
cially Kunert (1983) and many of the papers referenced in Section 3.

Proof. Pairwise orthogonality of the factors implies that PFPG =
PGPF = PF∨G for every F�G ∈ � . Let V� be the column space of X� , and
write P = PF0

+∑F∈�0�F �=F0
�PF−PF∨F0

�. First it will be shown that P = P� .
If ω ∈ V⊥

� , then PFω = 0 for every F ∈ � and thus

Pω = PF0
ω+ ∑

F∈�0�F �=F0

PFω− ∑
F∈�0�F �=F0

PF∨F0
ω = − ∑

F∈�0�F �=F0

PFPF0
ω = 0�

So P = P� provided PPG = PG for every G ∈ � . Now for any G ∈ �0,

PPG = PF0∨G + ∑
F∈�0�F �=F0�F �=G

�PF∨GPF∨F0∨G� + �PG −PF0∨G�

= PG + ∑
F∈�0�F �=F0�F �=G

�PF∨G −PF∨G� = PG�

using (4) to equate F ∨F0 ∨G to F ∨G. For G ∈ �1, find FG ∈ �0 such that
FG ≤ G, so that G ∨FG = G. Then

PPG = PPG∨FG = PPFGPG = PFGPG = PG∨FG = PG�
Thus from (2), the C-matrix for estimation of τ is

Cd = A′
d�I−P� �Ad = A′

d�I−PF0
�Ad −

∑
F∈�0�F �=F0

A′
d�PF −PF∨F0

�Ad�

For each F in � \F0, we have PF −PF∨F0
= PF�I−PF0

� and so the matrix
PF − PF∨F0

is nonnegative definite. Thus $�Cd� ≥ $�A′
d�I − PF0

�Ad�. But
A′
d�I−PF0

�Ad is the information matrix for the F0-component block design,
and the result follows. ✷
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3. Applications. This section will show how a variety of results in the
literature fit into the common framework of Main Results A and B, and offer
extensions of these along with some new design constructions. A number of
specific applications will be given in the subsections below, but we first begin
with a circumstance that can be treated generally and then not again con-
sidered. We also remind the reader that in view of (1) the setting and model
are fully defined by the set of factors � , which may thus be done without
mention.

Suppose there is a factor F0 ∈ � with F0 ≤ F for every F ∈ � ; F0 is
said to be fully nested. Then PF − PF∨F0

= PF − PF = 0 for every F, and
so P� = PF0

, and optimal designs are just those with optimal F0-component
block designs. For instance, in a row–column setup, let F1 = rows, F2 =
columns, F0 = F1 ∧F2, �0 = �F0�F1�F2� and �1 = �U�, with k (say) units
per cell (level of F0). Inclusion of F1 ∧F2 in the model is fitting a cell effect.
Optimality is simply a matter of finding an optimal block design for nF0

blocks
of size k, the arrangement of treatments in rows and columns being otherwise
irrelevant. An example is Cheng and Bailey’s (1991) proof of the optimality
of Trojan semi-Latin squares within the equireplicate class, in which the row
and column regularity of the squares plays no role. [The issues are of course
quite different under different models; see Bailey (1992), concerning Trojan
and other semi-Latin squares under random effects models.]

Another instance of a fully nested factor can be found in the nested BIBDs of
Preece (1967). Consider a balanced incomplete block design, or BIBD �v� b� k�,
with v treatments in b blocks of size k. If the blocks of this BIBD can be
arranged into b1 “big blocks” of b/b1 blocks each, such that the resulting big
blocks are a BIBD with block size kb/b1, then the so-arranged design is called
a nested BIBD. With F0 = blocks, F1 = big blocks and � = �F0�F1�U�,
clearly F0 is fully nested, and any arrangement of the blocks of a BIBD into
equisized big blocks is an optimal design. The additional requirement that big
blocks form a BIBD is not needed for this analysis, important though it may
be for the analysis with recovery of interblock information [Morgan (1996),
pages 944–946].

Fully nested factors are not considered in the subsections that follow, and
in conjuction with this, neither are settings for which a fully nested factor
distinct from E would be plausible, such as cross-classifications with multiple
units per cell. So excluded is any setting with two or more experimental units
identical on every blocking factor. To avoid similar trivialities, factors nested
by the distinguished factor F0 are also not allowed.

3.1. Row–column designs. Within the framework of Section 2, the row–
column setting is identified by two orthogonal blocking factors, F0 = columns
and F1 = rows, neither of which is nested in the other, and model � =
�F0�F1�U�. Conditions (4) and (5) of the main result are trivially met, and one
need only ask, what is F0∨F1? If F0∨F1 = U, then the setting is structurally
complete, that is, every combination of a level of F0 with a level of F1 occurs
on exactly one experimental unit (this follows from the orthogonality and the
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restriction of at most one unit per cell imposed just before this subsection). For
structurally complete settings, PF0

−PF1∨F0
= PF0

−PU, giving the following
optimality conditions: (7) says the column component design is optimal, and (8)
says the rows are regular in U, that is, a given treatment occurs in the same
number of cells in each row. Included are Latin squares, Youden designs and all
other designs subsumed in the class of regular generalized Youden designs of
Kiefer (1975). Indeed, take any optimal block design with b blocks of size k. If
the design is equireplicate and the number of replicates is divisible by k, then
the blocks may be juxtaposed, and the treatments rearranged within blocks,
to give a k × b row–column design satisfying the optimality conditions. That
the rearrangement is always possible is a consequence of the theory of distinct
representatives; see Hartley, Shrikhande and Taylor (1953) and Corollary 3.4
below.

What if F0 ∨ F1 �= U? This implies that the row and column layout is
structurally incomplete; that is, some cells of the nF0

× nF1
layout contain

no experimental units. Since we are demanding that rows and columns be
orthogonal, the row–column layout is disconnected, connected subcomponents
are sets of cells identified by different levels of F0 ∨ F1, and each of these
sets is a structurally complete row–column layout with at least two rows and
columns (for estimability) and with one unit per cell. Regularity of rows is
now regularity within levels of F0 ∨F1, any one of which need not contain all
treatments. Here is an example for three treatments in a 4 × 6 layout using
only 12 cells (using x to denote an empty cell).

Example 2.

3 x 1 3 x 2
x 1 x x 2 x
1 x 3 2 x 3
x 2 x x 1 x .

The example is an instance of the following simple theorem, which character-
izes the construction of these designs.

Theorem 3.1. Let d0 be an optimal block design, possibly improper. Sup-
pose that the b blocks of d0 can be grouped into subsets Bj such that �a� every
block in Bj has the same size kj and �b� there are nonnegative integers mij
such that treatment i occurs mijkj times within the blocks of Bj. Arrange the
blocks of Bj as the columns of a rectangle with kj rows in such a way that
treatment i occurs mij times in each row. Put these rectangles on the diago-
nal of a p× b rectangle, where p = ∑

j kj, leaving the remaining cells empty.
Apply any permutation to the rows of this rectangle, and any permutation to
the columns. The resulting design is column-optimal and row regular with
respect to columns: hence it is an optimal row–column design.

Uses of this simple approach are far too numerous to list. Example 2 above
started with a BIBD�3�6�2�. Aside from BIBDs and other standard optimal
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block designs, another fertile class for the initial d0 is the nonproper, binary,
variance-balanced designs studied by such authors as Gupta and Jones (1983),
Pal and Pal (1988) and Gupta and Kageyama (1992).

Again, the row–column layouts of all Theorem 3.1 designs based on more
than one subset Bj are composed of smaller, disconnected layouts. If it is
intended to compare rows or columns, this will not be appropriate, but if rows
and columns are truly nuisance factors one wishes to eliminate from the analy-
sis, then restricting to connected row–column layouts is not only unneccessary,
but will typically be wasteful in the sense of requiring an excessive number
of experimental units.

There is no overlap between these designs and the structurally incomplete
row–column designs of Stewart and Bradley (1991). Though their designs are
optimal and, like those given here, have information matrix equal to that of
the column component design, their row and column blocking factors are not
orthogonal.

3.2. Nested row–column designs. The nested row–column setting is usu-
ally presented as having b structurally complete blocks, each of p rows crossed
with q columns, for a total of bp row effects and bq column effects in the model,
but we do not here demand that all pq cells in each block be used. For the
model fitting row, column and block effects, let F0 = columns, F1 = rows,
F2 = blocks, �0 = �F0�F1� and �1 = �F2�U�. If the cells used within each
block form a connected two-way layout, then F0 ∨F1 = F2 and the optimal-
ity conditions (7) and (8) are: (i) the column component design is optimal,
and (ii) rows within blocks are regular, that is, identical up to permutation.
This is Theorem 3.1.1 of Bagchi, Mukhopadhyay and Sinha (1990); also see
Chang and Notz (1990, 1994) and Morgan and Uddin (1993). If the column
component design is a BBD, they call the optimal designs balanced nested
row–column designs, or BNRC �b� v�p� q�’s, of which Example 1 is one such.
We will use their acronym but prefer the name bottom-stratum universally
optimum nested row and column designs suggested by Morgan and Uddin
(1996). Strictly speaking, these are exactly the designs which meet Kiefer’s
(1975) sufficient conditions for universal optimality under the bottom-stratum
analysis.

Why the change in terminology? The word “balanced” already has two estab-
lished and useful meanings in the context of nested row–column designs. Both
apply to designs in quite general block structures, not just nested rows and
columns. One refers to variance-balance for treatments under model (1): see
Singh and Dey (1979). BNRCs do have such balance, but they are not the
only variance-balanced designs in this context. The other meaning is that the
treatments form a BBD with respect to each blocking factor in � : see Preece
(1967) and Houtman and Speed (1983). This is appropriate when the factors
in � are random effects and the data are analysed by combining informa-
tion from two or more strata: see Nelder (1965b). As not all BNRCs meet this
second notion of balance, the class has failed on both counts to deserve the
appellation “balanced nested row–column designs.”
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The other interesting possibility in the nested row–column setup is F0 ∨
F1 �= F2, in which case (ii) becomes: (ii)′ rows within F0 ∨ F1 are regular.
This leads to structurally incomplete nested row–column designs, but no issue
essentially different from those which arose in Section 3.1. The connected
components of a Theorem 3.1 design, when considered as blocks, form an
optimal nested row–column design, but with possibly different numbers of
rows and columns per block (i.e., improper blocks, a situation that seems not
to have been previously treated in the literature); this is formally done by
including an F0 ∨F1 effect in the model.

To make clear a further aspect of the relationship between the settings of
this and the preceding subsection, we state the following theorem.

Theorem 3.2. LetF0 = rows andF1 = columns be as defined in Section 3.1.
Suppose that F0∨F1 �= U. Define a factor F2, called “blocks,” by F2 = F0∨F1.
Suppose further that the number of levels of F0 is n0�1� within each level of F2,
so that n0�1� = nF0

/nF2
. Then the n0�1� × nF1

row-column layout, constructed
by juxtaposing the blocks so formed from a design satisfying Theorem 3.1, is
row-regular, and hence is an optimal structurally complete row–column design.

The class of all designs identified as convertible to optimality by Theorem 3.2
for its row–column setting includes all designs optimal by Theorem 3.1.1 of
Bagchi, Mukhopadhyay and Sinha (1990). Theorem 3.2 says, for instance, that
the search for a BNRC is actually the search for a suitable partition of the
columns of a regular GYD (generalized Youden design): all BNRCs reduce to
regular GYDs when the blocks are juxtaposed row to row, but of course not
every regular GYD will be partitionable into a BNRC; compare Theorems 8
and 9 of Morgan and Uddin (1993). Similar statements apply to any design
optimal by Theorem 3.1.1 of Bagchi, Mukhopadhyay and Sinha (1990); juxta-
position of the blocks yields an optimal, structurally complete, regular row–
column design. Proof of Theorem 3.2 is simple, as regularity of F0 in F0 ∨F1
of the nested design implies regularity of F0 when those blocks are combined.

3.3. Multiway cross classifications. Generalizing from the row–column
designs of Section 3.1 to n-way cross-classifications requires n crossed factors
F0�F1� � � � �Fn−1 which, if an experimental unit is placed at each combination
of these factors, forms a structurally complete nF0

× nF1
× · · · × nFn−1 layout

with one observation per cell. While the structurally complete case is certainly
not the only structure of interest, it is most certainly the simplest starting
point. From there, a discussion of the possibilities for relaxation of structural
completeness can be eased into, all the while staying within the framework
of the main results.

Put �0 = �F0� � � � �Fn−1� and �1 = �U�. For the structurally complete case,
Fi ∨Fj = Fj ∨Fi = U for i �= j, so the main result gives

P� = PF0
+
n−1∑
i=1

�pFi −PU�
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[cf. Cheng (1978), Theorem 2.1]. A design with optimal F0-component, for
which the blocks of the Fi-component, i > 1, are complete blocks or multiples
thereof, is optimal. In particular, this is Corollary 3.1.1 of Cheng (1978) on
regular generalized Youden hyperrectangles. Cheng’s [(1979), Theorem 2.1]
technique for construction of regular Youden hyperrectangles actually solves
this case in its entirety when the optimal component block design for F0 is
equireplicate, though its consequences outside of the Youden setup seem not
to have been widely recognized [cf. Jacroux and Ray (1991), Theorem 3.2]. The
combinatorial result, applicable not just to BBDs but to any block design, is
stated as Lemma 3.3. It will be frequently used in the sequel.

Lemma 3.3 [Cheng (1979)]. Let d be a equireplicate block design for v treat-
ments in b blocks of size k. Suppose that k = k1×k2×· · ·×kt−1×ω and that v
divides bk/kj for each j. Then treatments may be rearranged in blocks to form
1× k1 × k2 × · · · × kt−1 hyperrectangles with ω treatments per cell, so that the
resulting b×k1×k2×· · ·×kt−1 hyperrectangle, when identified as a design for
t crossed factors F0�F1� � � � �Ft−1, contains each treatment the same number
of times at each of the ki levels of Fi, for i = 1� �1�� t− 1.

Corollary 3.4. Any equireplicate optimal block design for v treatments
with b blocks of size k = k1 × k2 × · · · × kn−1, for which v divides bk/kj for
each j, can be arranged into an optimal design for v treatments in a b× k1×
k2 × · · · × kn−1 complete cross of n blocking factors with one unit per cell.

Let p be a prime and t be an integer greater than 1. Bose, Shrikhande and
Bhattacharya (1953) constructed semiregular group divisible designs for kpt

treatments in p2t blocks of size k whenever k < pt+1; these designs have the
within-group concurrence equal to zero and the between-group concurrence
equal to 1. (These designs are just the duals of the square lattice designs [Yates
(1936)] and are also known as transversal designs [Beth, Jungnickel and Lenz
(1986).]) For any positive integers l1� � � � � ln−1 with

∑n−1
1 li = t, Corollary 3.4

gives a p2t×pl1 × · · · ×pln−1 design for p2t treatments that is optimal over all
equireplicate designs that are binary in at least the F0-component [cf. Cheng
and Bailey (1991), page 1670].

There are many other possibilities and we give one example (others will
become apparent below). Let b0, a subset of size k of some finite group H of
order v, be an initial block for an optimal block design d0: the blocks of d0 are
b0 + h for h ∈ H. If k = pq for integers p�q > 1, then b0 can be arranged in
a p× q cross, and thus the blocks b0 + h juxtaposed into a p× q× v design d
which is an optimal three-way crossed design. If there are t initial blocks of
size pq, the result is an optimal p× q× tv design.

For an n-way layout with some cells empty, pairwise orthogonality of the fac-
tors in � requires that collapsing to any two factors leaves a row–column lay-
out with structure as described in Section 3.1, connected components having
proportional cell counts. To simplify the discussion it is henceforth assumed
that cell counts are constant within connected components of each two-way
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layout, and hence, by an earlier assumption, are all equal to 1. Such a struc-
ture can be described as follows. Represent the n blocking factors on the N
experimental units as an n×N block structure array � :

�� �ij = l ⇐⇒ φFi�j� = l�
that is, in X′

Fi
the row for which column j has a 1 is row l. Then any two-

rowed subarray of � is either an orthogonal array of strength 2 and index
1 with possibly variable number of symbols [an OAVS of strength 2; see Rao
(1947, 1973); Mukhopadhyay (1981); Wang and Wu (1991) and Mukerjee and
Wu (1995)], or can be partitioned columnwise into a collection of strength-
two OAVSs on disjoint (in rows) sets of symbols. For instance, for the 4 × 6
row–column design of Example 2, the two-rowed array � is

F0 1 3 4 6 2 5 1 3 4 6 2 5
F1 1 1 1 1 2 2 3 3 3 3 4 4�

Columns 5, 6, 11 and 12 are on OAVS, as are the remaining columns.
With the structure set for pairwise orthogonality of the blocking factors,

what are the possibilities within the restrictions set by the nesting conditions
of the main results? In a two-way cross, application of Main Result A requires
checking only the orthogonality. But with more than two factors, pairwise
orthogonality alone is not sufficient, for it does not guarantee that one of
the factors must be nested in the join of every pair. This is demonstrated by
Example 3.

Example 3. This shows three pairwise orthogonal factors on eight units,
with joins also displayed. The join of any two of the factors is completely
crossed with the third:

F1 1 2 1 2 3 4 3 4
F2 1 1 2 2 3 3 4 4
F3 1 2 3 4 1 2 3 4

F1 ∨F2 1 1 1 1 2 2 2 2
F1 ∨F3 1 2 1 2 1 2 1 2
F2 ∨F3 1 1 2 2 1 1 2 2�

Again, the aim is to identify a class or classes of structures for n block-
ing factors that satisfy Main Result A, and which also properly fall within
the realm of structurally incomplete multiway cross-classifications. Short of a
characterization, which we do not currently have, it is reasonable to seek a
workable sufficient condition that may be placed on the factors, that will sat-
isfy Main Result A and still give a class of blocking structures rich enough to be
fruitful. One choice is Fi∨Fj = U for all i �= j, so that trivially F0 < Fi∨Fj.
We say that Fi and Fj are strictly orthogonal in this case. With this restric-
tion, the entirety of � is an OAVS of strength at least 2, and the optimal-
ity result is Theorem 3.1 of Mukhopadhyay and Mukhopadhyay (1984), of
which Cheng’s (1978) Corollary 3.1.1 is a special case. Mukhopadhyay and
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Mukhopadhyay (1984) do not address the existence question for such designs,
but, aside from the regular Youden hyperrectangles, there is an obvious pos-
sibility. For an OAVS with n + 1 rows, let n of the rows represent blocking
factors, the remaining row identifying the treatment to be placed on each
experimental unit. Then each component block design has blocks which are
multiples of complete blocks and are thus regular, and the design is optimal.

The next theorem offers a series of designs with OAVS structure for the
blocking factors, for which the F0-component is an optimal incomplete block
design.

Theorem 3.5. The existence of a complete set of mutually orthogonal Latin
squares (MOLS) of order s implies the existence of a design, optimal in several
senses, for s2 treatments in a cross of up to s blocking factors, one with s2 levels
and the remaining with s levels each, in which each pair of blocking factors is
strictly orthogonal.

Proof. Begin with an orthogonal array for s symbols in s + 1 rows and
s2 columns, implied by the set of MOLS. Take the symbols to be the integers
1�2� � � � � s. Permute the columns so that the last row is �1�2� � � � � s� ⊗ 1s, then
delete that row and denote the resulting array by B0. Each row of B0 is s
consecutive orderings of the s symbols.

The array B0 = ��b0ij�� defines a resolvable incomplete-block design for s2

treatments in s2 blocks of s treatments each as follows. The columns of B0
correspond to treatments, the rows to replicates, and the symbols in a row to
s blocks, so that treatment j appears in blocks �i − 1�s + b0ij for i = 1� �1�� s.
The block design so formed is a square lattice design [Yates (1936)] and so
is D-Optimal and A-optimal among binary equireplicate designs [Cheng and
Bailey (1991)] as well as E-optimal and MV-optimal [see Shah and Sinha
(1989), page 61]. The factor defining the blocks of the block design given by
B0 is called F0.

Next let Ll, for l = 1� �1�� s−1, be a set of MOLS of order s, and write Bl =
Ll ⊗ 1′s = ��blij��. The Bl define blocking factors Fl as follows. Superimposing
the Bl on B0, treatment j occurs on s units; these units are, for each i =
1� �1�� s, one unit with level �i − 1�s + b0ij of F0 and level blij of Fl for l =
1� �1�� s− 1.

Since each column of Bl contains each symbol 1�2� � � � � s once, each treat-
ment occurs once at each level of Fl, establishing regularity with respect to
those blocking factors.

Since each row of B0 is s consecutive orderings of 1�2� � � � � s, each level of
Bl occurs s times with each level of B0, establishing orthogonality of F0 with
Fl. Construction of the Bl shows that each level of Fl also occurs s times with
each level of Fl′ for l′ �= l, so the Fl are also pairwise orthogonal. ✷

Example 4. Putting s = 3 in Theorem 3.5 gives a 3 × 3 × 9 design for
nine treatments with only three replications. The collapsed 3× 9 components
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are optimal row–column arrangements of a square lattice design, and the
collapsed 3× 3 is a semi-Latin square. Using

B0
1 2 3 1 2 3 1 2 3
1 2 3 3 1 2 2 3 1
1 3 2 3 2 1 2 1 3




B1
1 1 1 3 3 3 2 2 2
2 2 2 1 1 1 3 3 3
3 3 3 2 2 2 1 1 1




B2
1 1 1 3 3 3 2 2 2
3 3 3 2 2 2 1 1 1
2 2 2 1 1 1 3 3 3




the nine 3× 3 layers are

1 x x 2 x x 3 x x
x 7 x x 8 x x 9 x
x x 4 x x 5 x x 6

x 5 x x 6 x x 4 x
x x 1 x x 2 x x 3
9 x x 7 x x 8 x x

x x 8 x x 7 x x 9
6 x x 5 x x 4 x x
x 1 x x 3 x x 2 x�

Relaxing the condition Fi∨Fj = U for all i �= j opens a myriad of possibil-
ities; the relationships seen in Sections 3.1 and 3.2 offer a bit of insight into
what can happen. As the number of factors increases, the wealth and complex-
ity of structures which lie between the extremes of structural completeness
and the pure nesting of multiway crosses grows rapidly, many of which would
not satisfy our sense of what should be called a multiway cross. Some of these
will be explored in Section 3.5, but first, nested multiway cross-classifications
will be covered in Section 3.4

3.4. Nested multiway crosses. Now there are n factors F0�F1� � � � �Fn−1
each nested within a factor Fn, and within each level of Fn, the nested factors
F0� � � � �Fn−1 form an n-way cross-classification. So within each level of Fn,
the incidence structure of F0� � � � �Fn−1 can be described by an array � as in
Section 3.3 that can be partitioned columnwise into a collection of strength-
two OAVSs, and we take � to be the same (aside from a change of symbols)
at each Fn level. Let this n-rowed subarray be denoted by � ∗. In Main Result
A, �0 = �F0� � � � �Fn−1� and �1 = �Fn�U�.

The structurally complete case is � ∗ being an OAVS of strength n. As in
Section 3.3, the immediate obvious generalization is to take � ∗ as an OAVS
of strength at least 2; regardless of the strength, the importance of the OAVS
property is that it forces Fi ∨ Fj = Fn for all i �= j ∈ �0�1� � � � � n − 1�.
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Thus the main result says that the F0 component block design should be opti-
mal, and that the Fi-component should be regular in F0 ∨ Fi = Fn. When
the F0-component design is a BBD, this is Theorem 3.1 of Bagchi (1988).
Bagchi (1988) calls these designs balanced nested multiway designs, abbre-
viated BNMW �b� n� v�p1� p2� � � � � pn� where b = nFn and pi = nFi−1/b. For
reasons elucidated earlier, we shall use the same acronym to mean bottom-
stratum universally optimal nested multiway design. A BNRC�b� v�p� q� is a
BNMW�b�2� v�q�p�.

Bagchi (1988) offers some constructions for three-way crosses based on � ∗

being an OAVS of strength 2. Here are given some general series for the nested
n-way setting, and some series of nested three-way crosses for the structurally
complete setting.

Theorem 3.6. Existence of a BIBD�v� b0� v1� and of a BNMW�b1� n� v1�
p1, p2� � � � � pn� implies the existence of a BNMW�b1b0� n� v�p1� � � � � pn�.

Included within the class of BNMWs are the regular in n − 1 directions
Youden hyperrectangles, Latin hypercubes, F-hyperrectangles, and the mul-
tiway crosses of Theorem 3.5, from which many new designs can be produced.
Theorem 3.6 generalizes Theorem 2 of Morgan and Uddin (1993).

Theorem 3.7. Existence of a BNMW�b� n� v�p1� p2� � � � � pn� for which b is
a multiple of the integer s implies the existence of a BNMW��b/s�� n� v� sp1,
p2� � � � � pn�.

Theorem 3.8. Existence of a BNMW�b� n� v�p1� p2� � � � � pn� and of a
BNMW�b� n� v�p′

1� p2� � � � � pn� implies the existence of a BNMW�b� n� v�p1 +
p′
1� p2� � � � � pn�.

Theorems 3.7 and 3.8 generalize Theorems 8 and 9 of Morgan and Uddin
(1993).

Theorem 3.9. Existence of a BNRC�b� v�p� q� with p = p2p3 implies the
existence of a BNMW�b�3� v�q�p2� p3�.

Proof. Each block of the BNRC is row-regular; consecutive sets of p2 rows
are the p2 × p1 layers of a block of the BNMW.

Theorem 3.9 says that BNRCs can be “folded” into optimum three-way
designs. The existence results for BNRCs in Bagchi, Mukhopadhyay and Sinha
(1990) and in Morgan and Uddin (1993), thus provide many nested three-way
designs. Here is one such result found by starting from Corollary 3.2.2 and
Theorem 7 of those two papers, respectively.

Corollary 3.10. For v = tq + 1 a prime power, there is a BNMW�b�3� v�
p1� p2� p3� with b = tv, p1 = q�p2 and p3 for any p2p3 ≤ q. For v = 2tq+ 1 a
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prime power, there is a BNMW�b�3� v�p1� p2� p3� with b = tv, p1 = q�p2 and
p3 for any p2p3 ≤ q.

The techniques of Theorem 3.9 and that of Theorem 3.7 are quite general,
being applicable whenever the starting designs have the same block structure
as BNMWs, have (not necessarily universally) optimal F0-component designs
and are regular in the other factors. For instance, if one starts with this opti-
mal nest of two 4 × 6’s for six treatments (rows are regular and the column
component design is an optimal group-divisible design):

1 3 5 2 4 6 6 5 1 2 3 4
3 5 1 6 2 4 3 4 5 1 6 2
5 1 3 4 6 2 5 2 4 6 1 3
6 2 4 3 5 1 4 3 6 5 2 1

then one can get an optimal design for six treatments in two 2× 2× 6 blocks
(compare Theorem 3.9) or in one 2× 2× 12 block (compare Theorem 3.7).

The final construction in this section, like the designs used to pro-
duce Corollary 3.10, employs the difference technique over the finite fields.
Theorem 3.10 combines BIBRCs [cf. Singh and Dey (1979)] to obtain three-way
BNMWs.

Theorem 3.11. Let v = smt+1 be a prime or prime power, withm = s/a+1
for some integer a. Then there exists a BNMW (tv, 3, v; s+ a� s/a� s).

Proof. Let x be a primitive element of GFv. Form the �s/a� × s array,

Bij = x�j−1��m−1�t+�i−1�




xt x�m+1�t · · · x��s−1�m+1�t

x2t x�m+2�t · · · x��s−1�m+2�t
���

���
� � �

���
x�m−1�t x�2m−1�t · · · x�sm−1�t


 �

j = 1� �1�� s + a� i = 1� �1�� t. For fixed i, stack Bi1�Bi2� � � � �Bi� s+a to form a
�s+ a� × �s/a� × s array �i. The �i’s are a set of initial arrays for the stated
design. Verification is a routine exercise in differences. ✷

Example 5. The four 3 × 3 layers of the initial block for a BNMW(13, 3,
13; 3, 3, 4) are

2 6 5 3 9 1 11 7 8 10 4 12
4 12 10 6 5 2 9 1 3 7 8 11
8 11 7 12 10 4 5 2 6 1 3 9�

3.5. Settings with a mixture of nested and crossed factors. Section 3.3
starts with n factorsF0� � � � �Fn−1 and goes on to study multiway crosses which
are either structurally complete or structurally incomplete with Fi ∨Fj = U
for all i �= j. Relaxing this pairwise condition while staying within the frame-
work of Main Result A opens the doors to a wide variety of structures. One such
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class, incorporating both nesting and crossing, is explored in Theorem 3.12
below.

With two crossed factors, F0∨F1 �= U was shown in Sections 3.1 and 3.2 to
be equivalent to a nesting of complete crossings. The designs of Theorem 3.12,
depending on the parameter t, generalize this relationship; they are stepping
stones between the structurally complete case and the full nesting of multidi-
mensional crosses discussed in Section 3.4. While a full nesting of crosses has
Fi ∨Fj �= U for all i �= j, this condition is not sufficient for such a nesting, as
shown by Example 3 above.

The block structure of Theorem 3.12 designs is described in the proof.
An equivalent description from a different perspective may be found in
Section 3.7.

Theorem 3.12. Let d0 be an r0-resolvable optimal block design for v treat-
ments in b blocks of size k = k1 × k2 × · · · × kn−1. Write r = bk/v and
b0 = r/r0. If v��b/b0�

∏t−1
j �=i kj for i = 1� � � � � t − 1 and v��bk/ki� for all i, then

d0 can be arranged to produce an optimal design in a structurally incomplete
b× b0k1 × · · · × b0kt−1 × kt × · · · × kn−1 cross-classification.

Proof. Divide the blocks of d0 into b0 groups so that each treatment occurs
r0 times in each group. Applying Lemma 3.3, the blocks of each group can be
arranged into a �b/b0�×k1×· · ·×kt−1 hyperrectangle with w = kt×· · ·×kn−1
treatments per cell. This is a nesting of t-dimensional crosses with regularity
in t − 1 of the dimensions of each cross, defining t crossed factors: F0 with b
levels and Fi with b0ki levels for i = 1� � � � � t− 1. Now thinking of the cells of
the crosses as b× k1 × · · · × kt−1 “blocks” of size w, Lemma 3.3 can be applied
again to form n− t additional crossed factors which cross all of F0� � � � �Ft−1.
Then Fi will have ki levels for i ≥ t, and the design will be Fi-regular for
i ≥ t. In the Main Results, �0 = �F0�F1� � � � �Fn−1�, �1 = �U�, Fi ∨Fj = U
if i ≥ t or j ≥ t, and F0 ≤ Fi ∨Fj �= U otherwise. ✷

For an application of Theorem 3.12, let v = 4t+ 1 be a prime power. Then
there is a BIBD with b = 2v� k = �v− 1�/2 that is k-resolvable [Bose (1939)],
and hence a universally optimal structurally incomplete b× 2k1 × 2k2 × · · · ×
2kt−1 × kt × · · · × kn−1 design for any factorization k = k1 × k2 × · · · × kn−1.

The relationship between Theorem 3.12 designs and a nested set of multi-
dimensional crosses is seen by fitting another blocking parameter G = F0 ∨
F1∨· · ·∨Ft−1. This gives a nested t-way design and an additional n−t factors
completely crossed with the t nested factors. Upon adding G to �1, the main
results still hold. Viewed relative to Corollary 3.4, the resolvability with the
stricter divisibility condition allows this partial nesting to be achieved.

Designs for this setting can also be found by separating blocks into sub-
sets, so that the first divisibility condition of Theorem 3.12 is satisfied for the
number of treatments within each subset. A method for doing this for three
crossed factors is given in Theorem 3.13, but first an explicit expression for
the structure array � when n = 3 and t = 2 will be given. Also included is
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the factor G = F0∨F1 described above. Let R0�R1�R2 be the three rows of an
OAVS of strength 3 and index 1, describing the three-way cross of F0�F1�F2
within a cell of G. Let ni be the number of symbols in Ri, which are taken to
be the integers 1�2� � � � � ni. Letting

�j =



1n0n1n2 + �j− 1�
R0 + �j− 1�n0
R1 + �j− 1�n1

R2


 �

the array is

� = ��1��2� � � � ��nG��(9)

Theorem 3.13. Let B1�B2� � � � �Bs be initial blocks for an optimal block
design with sv blocks, with each Bj containing k elements from some Abelian
group H or order v. Suppose k = k1k2 and the Bj’s may be arranged as a
s × k1 × k2 array such that the k1 × k2 layers are the Bj’s, and the s × k2
layers each contain the same number, say mi, of elements from the coset Hi of
a subgroup H0 of order v0. Then there is a set of v/v0 three-way crosses of size
v0s× k1 × k2 optimal for the block structure (9).

The routine proof is omitted, for the method can be seen in an example.

Example 6. The block �0�1�4�6� �mod 12� generates a group divis-
ible design with b = v = 12� λ1 = 2 = λ2 + 1 [R109 of Clatworthy
(1973)]. The subgroup of order 4 is generated by multiples of 3, and
�0�1�4�6� �mod 3� = �0�1�1�0�. With k1 = k2 = 2, the 2 × 2 layers of
the three 4× 2× 2 crosses are

G = 1
0 1
4 6

3 4
7 9

6 7
10 0

9 10
1 3�

G = 2
1 2
5 7

4 5
8 10

7 8
11 1

10 11
2 4�

G = 3
2 3
6 8

5 6
9 11

8 9
0 2

11 0
3 5�

The 2× 4 layers within a level of G are regular, and the 2× 2 layers are the
blocks of the optimal [Shah and Sinha (1989), page 61] F0 component. Here
F2 has only two levels; its blocks are the union of the three first rows in the
three G-components displayed above and the union of the three second rows.

Other settings with this mixing of nested and crossed factors that fit within
the framework of Main Result A can be generated by increasing the complexity
of the nesting. As an example, take two completely crossed factors G1 and
G2 (then G1 ∧ G2 has nG1

nG2
cells). In each cell nest a complete crossing of

three factors F0�F1�F2. Now further take the levels of F2 to have the same
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effects at each level of G1, and those of F0 and F1 to be the same at each
level of G2. That is, F2 is crossed with G1 and F0�F1 are crossed with G2.
Here �0 = �F0�F1�F2�� �1 = �G1�G2� and F1 ∨ F2 = U ≥ F0, so the
main result holds. Explicitly, the structure array, following the (9) notation, is
� = ��11��12� � � � ��nG1nG2

� where

�ij =




1n0n1n2 + �i− 1�
1n0n1n2 + �j− 1�
R0 + �i− 1�n0
R1 + �i− 1�n1
R2 + �j− 1�n2




(10)

(also see Section 3.7). An interesting characteristic of this setting is that F2∨
G2 = G2≯F0, so that G2 cannot be included in �0. Heretofore, all examples
have satisfied F ∈ �1 ⇒ F ≥ F0, so that their inclusion in �1 has been for the
convenience of avoiding null terms PF−PF∨F0

in the expression for P� . This
structure shows that �1 is a necessary part of Main Result B. Designs for this
structure can be constructed with methods similar to those of the preceding
two theorems.

3.6. Gerechte designs. Row and column designs in which there is an addi-
tional blocking factor corresponding to spatially compact regions are called
gerechte designs. Their development in the statistical literature has been spo-
radic and somewhat confused; for an overview with a rigorous treatment of
many of the issues involved in their use and analysis see the papers of Bailey,
Kunert and Martin (1990, 1991).

In this section we confine ourselves to gerechte designs with rectangu-
lar regions. For a p × q structurally complete row–column layout with one
experimental unit per cell, let p1 and q1 be integers satisfying p1�p and q1�q.
The additional blocking factor partitions the experimental units into smaller,
p1 × q1 row-column layouts (see Figure 1). In doing so, the model allows for
local additivity of rows and columns while also providing the ability to fit a
departure from additivity from one area to another. The structure array for

Fig. 1. A rectangular gerechte layout with p = 6� q = 12� p1 = 3 and q1 = 4.
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the three blocking factors F0 = areas, F1 = rows and F2 = columns is

F1 �1�2� � � � � p� ⊗ 1q�

F2 1p ⊗ �1�2� � � � � q��

F0 1p1
⊗ z⊗ 1q1� 1p1

⊗
(
z+ q

q1

)
⊗ 1q1� � � � �1p1

⊗
(
z+

(
p

p1
−1

)
q

q1

)
⊗ 1q1�

where z = �1�2� � � � � q/q1�. An alternative description is given in Section 3.7.
We allow the additional generalization that there may be b of these row–

column blocks with the same structure, that is, a nesting of gerechte blocks
with rectangular regions. Using F3 for the nesting factor “blocks,” put �0 =
�F0�F1�F2� and �1 = �F3�U�. Now F0 < F1 ∨F2 = F3, and Main Result B
says that an optimal design may be found by arranging treatments so that the
area-component block design is optimal, and so that each of rows and columns
is regular within blocks.

Optimal area-component designs will typically be equireplicate, so that for
an optimal design with a single (b = 1) block, the row and column regularity
will demand that block be a doubly regular Youden design. When p = q = v,
the block will be a Latin square. Thus do we arrive at the problem of partition-
ing doubly regular Youden designs into subrectangles so that those subrect-
angles form an optimal block design. The problem for areas being complete
blocks, or multiples thereof, is solved by Theorem 3.14.

Theorem 3.14. For v treatments and for any p, q both of which are mul-
tiples of v, there is a doubly regular p× q Youden design that is an optimum
gerechte design with rectangular areas of size p1×q1, for any p1� q1 satisfying
p1�p�q1�q, and v�p1q1.

Proof. Let p∗
1 = lcm�q1� v�/q1, so that p∗

1 divides p1. Form a p∗
1×q1 array

S by writing the integers (0�1� � � � � v− 1) row-wise until the array is filled:

S =




0 1 · · · q1 − 1
q1 q1 + 1 · · · 2q1 − 1
���

���
� � �

���
�p∗

1 − 1�q1 �p∗
1 − 1�q1 + 1 · · · p∗

1q1 − 1


 �

The design is the partitioned matrix L = Lij where Lij = S+ i+�j−1�q1−1
for i = 1� �1�� p/p∗

1 and j = 1� �1�� q/q1, and all entries are evaluated (mod v).
That the p1 × q1 areas are multiply complete blocks follows from S itself

being so.
Row regularity will follow from the first row being a multiply complete

block. But the first row is just q/v consecutive copies of (1�2� � � � � v). Likewise,
column regularity will follow from the first column being multiply complete.
The p∗

1 elements of the first column of S are (0� q1� � � � � �p∗
1 − 1�q1), which is

the additive subgroup of order p∗
1 generated by v/p∗

1. Adding i = 1� �1�� p/p∗
1

gives each treatment symbol �p/p∗
1�/�v/p∗

1� = p/v times. ✷
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Constructing a Theorem 3.14 design on each block of a BIBD will produce
an optimal nested gerechte design.

Example 7. The following is a nested gerechte design for five treatments
in five 4×4 blocks with 2×2 areas. The first block is an optimal 4×4 for four
treatments, and is Yates’ (1951) corner design,

1 2 3 4
3 4 1 2
2 1 4 3
4 3 2 1

2 3 4 5
4 5 2 3
3 2 5 4
5 4 3 2

3 4 5 1
5 1 3 4
4 3 1 5
1 5 4 3

4 5 1 2
1 2 4 5
5 4 2 1
2 1 5 4

5 1 2 3
2 3 5 1
1 5 3 2
3 2 1 5 .

Many other species of optimal Gerechte designs may be found by working
with the conditions outlined aboved, but the construction problem will be pur-
sued no further here. A final example shows that optimal partially balanced
designs can be accommodated in the areas.

Example 8. This is an optimal gerechte Latin square for 12 treatments
with areas of size 3 × 3. The area design is group-divisible with between-
group concurrence equal to one more than the within-group concurrence, so it
is optimal in several senses [see Shah and Sinha (1989), page 61, and Cheng
and Bailey (1991)].

6 B 2 7 C 3 8 9 4 5 A 1
C 3 7 9 4 8 A 1 5 B 2 6
4 8 9 1 5 A 2 6 B 3 7 C

8 C 1 5 B 4 6 A 3 7 9 2
B 4 5 A 3 6 9 2 7 C 1 8
3 6 A 2 7 9 1 8 C 4 5 B

7 A 4 6 9 1 5 C 2 8 B 3
9 1 6 C 2 5 B 3 8 A 4 7
2 5 C 3 8 B 4 7 A 1 6 9

5 9 3 8 A 2 7 B 1 6 C 4
A 2 8 B 1 7 C 4 6 9 3 5
1 7 B 4 6 C 3 5 9 2 8 A .
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3.7. Simple orthogonal block structure descriptions. This subsection offers
descriptions of the three most complicated block structures introduced in
Sections 3.5 and 3.6 in terms of the simple orthogonal block structures of
Nelder (1965a). Readers familiar with that work may find that this approach
adds clarity.

The structure studied in Theorems 3.12 and 3.13 is part of the simple
orthogonal block structure,[

b0 →
(
b

b0
∗ k1 ∗ · · · ∗ kt−1

)]
∗ �kt ∗ · · · ∗ kn−1��

Consider the complete cross of factors P1� � � � �Pn+1 with b0� b/b0� k1� � � � � kn−1
levels. Then G = P1; for 0 ≤ i ≤ t − 1, factor Fi is P1 ∧ Pi+2; while for
t ≤ i ≤ n− 1 we have Fi = Pi+2.

For the structure array generated by (10) the related simple orthogonal
block structure is

�nG1
→ �n0 ∗ n1�� ∗ �nG2

→ n2��
It may be defined by the complete cross of factors P1� � � � �P5, such that G1 =
P1� F0 = P1 ∧P2� F1 = P1 ∧P3� G2 = P4 and F2 = P4 ∧P5.

For the nested set of gerechte blocks studied in Section 3.6, the coordinate
version is

b→
[(
p

p1
→ p1

)
∗
(
q

q1
→ q1

)]
�

Given a complete cross of factors P1� � � � �P5, we have F3 = P1� F1 = P1 ∧
P2 ∧P3� F2 = P1 ∧P4 ∧P5 and F0 = P1 ∧P2 ∧P4.

4. Comments. Main Result B says that optimal designs for multiple
blocking factors may be found by starting with an optimal block design,
the blocks of which will represent the levels of the distinguished factor F0,
and arranging treatments within those blocks so that regularity is attained
with respect to each of the other blocking factors in �0. When an optimal
block design is not known, starting with an efficient component design and
arranging for regularity will produce an efficient design for the multifactor
setting.

Of course, the specific optimality conditions presented here, like those of
Cheng (1978), Bagchi, Mukhopadhyay and Sinha (1990), and others can be
satisfied only for certain sets of parameter values. This does not make the
results useless for other sizes of design. Leeming (1998) shows how to adapt
the result of Bagchi, Mukhopadhyay and Sinha (1990) to obtain a nested row–
column design which, while it cannot satisfy the optimality conditions exactly,
is far more efficient than competing designs which satisfy intuitive criteria of
optimality. And for the many parameter combinations that are covered, the
reach of Main Result B is extensive and suggests that closer combinatorial
study of known optimal block designs will be fruitful.



OPTIMAL DESIGN WITH MANY BLOCKING FACTORS 575

Acknowledgment. The authors thank Goldsmiths College for providing
the congenial environment in which this work began.

REFERENCES

Bagchi, S. (1988). On the optimality of nested multiway designs. In Probability, Statistics, and
Design of Experiments (R. R. Bahadur, ed.) 23–31. Wiley Eastern, New Delhi.

Bagchi, S., Mukhopadhyay, A. C. and Sinha, B. K. (1990). A search for optimal nested row-
column designs. Sankhya Ser. B 52 93–104.

Bailey, R. A. (1984). Discussion of “Analysis of variance models in orthogonal designs,” by T. Tjur.
Internat. Statist. Rev. 52 65–77.

Bailey, R. A. (1985). Factorial design and Abelian groups. Linear Algebra Appl. 70 349–368.
Bailey, R. A. (1992). Efficient semi-Latin squares. Statist. Sinica 2 413–437.
Bailey, R. A. (1993). Recent advances in experimental design in agriculture. Bull. Internat.

Statist. Inst. 55 179–193.
Bailey, R. A. (1996). Orthogonal partitions in designed experiments. Designs, Codes and Cryp-

tography 8 45–77.
Bailey, R. A., Kunert, J. and Martin, R. J. (1990). Some comments on gerechte designs I.

Analysis for uncorrelated errors. J. Agron. Crop Sci. 165 121–130.
Bailey, R. A., Kunert, J. and Martin, R. J. (1991). Some comments on gerechte desings II. Ran-

domization analysis, and other methods that allow for inter-plot dependence. J. Agron.
Crop Sci. 166 101–111.

Behrens, W. U. (1956). Die Eignung verschiedener Feldversuchsanordnungen zum Ausgleich der
Bodenunterschiede. Zeitschrift für Acker- und Pflanzenbau 101 243–278.

Beth, T., Jungnickel, D. and Lenz, H. (1986). Design Theory. Cambridge Univ. Press.
Bose, R. C. (1939). On the construction of balanced incomplete block designs. Ann. Eugen. 9

353–399.
Bose, R. C., Shrikande, S. S. and Bhattacharya, K. N. (1953). On the construction of group

divisible incomplete block designs. Ann. Math. Statist. 24 167–195.
Chang, J. Y. and Notz, W. I. (1990). A method for constructing universally optimal block designs

with nested rows and columns. Utilitas Math. 38 263–276.
Chang, J. Y. and Notz, W. I. (1994). Some optimal nested row-column designs. Statist. Sinica 4

249–263.
Cheng, C.-S. (1978). Optimal designs for the elimination of multi-way heterogeneity. Ann. Statist.

6 1262–1272.
Cheng, C.-S. (1979). Construction of Youden hyperrectangles. J. Statist. Plann. Inference 3

109–118.
Cheng, C.-S. and Bailey, R. A. (1991). Optimality of some two-associate class partially balanced

incomplete-block designs. Ann. Statist. 19 1667–1671.
Clatworthy, W. H. (1973). Tables of Two-Associate-Class Partially Balanced Designs. National

Bureau of Standards, Washington, D.C.
Darby, L. A. and Gilbert, N. (1958). The Trojan square. Euphytica 7 183–188.
Gupta, S. and Jones, B. (1983). Equireplicate balanced block deisgns with unequal block sizes.

Biometrika 70 433–440.
Gupta, S. and Kageyama, S. (1992). Variance balanced designs with unequal block sizes and

unequal replications. Utilitas Math. 42 15–24.
Hartley, H. O., Shrikhande, S. S. and Taylor, W. B. (1953). A note on incomplete block designs

with row balance. Ann. Math. Statist. 24 123–126.
Houtman, A. M. and Speed, T. P. (1983). Balance in designed experiments with orthogonal block

structure. Ann. Statist. 11 1069–1085.
Jacroux, M. and Ray, R. S. (1991). On the determination and construction of optimal row-

column designs having unequal row and column sizes. Ann. Inst. Statist. Math. 43
377–390.

Kachlicka, D. and Mejza, S. (1995). Cox’s design in repeated row-column design with split plots
and a control. Listy Biometryczne 32 81–92.



576 J. P. MORGAN AND R. A. BAILEY

Kiefer, J. (1975). Construction and optimality of generalized Youden designs. In A Survey of
Statistical Design and Linear Models (J. N. Srivastava, ed.) 333–353. North-Holland,
Amsterdam.

Kunert, J. (1983). Optimal designs and refinement of the linear model with applications to
repeated measures designs. Ann. Statist. 11 247–257.

Leeming, J. A. (1998). Comparing a resolvable 7/(2×4) nested row and column design with two
non-resolvable designs. Preprint.

Magda, C. G. (1980). Circular balanced repeated measurements designs. Comm. Statist. Theory
Methods 9 1901–1918.

Morgan, J. P. (1996). Nested designs. In Handbook of Statistics 13: Design and Analysis of
Experiments (S. Ghosh and C. R. Rao, eds.) 939–976. North-Holland, Amsterdam.

Morgan, J. P. and Uddin, N. (1993). Optimality and construction of nested row and column
designs. J. Statist. Plann. Inference 37 81–93.

Morgan, J. P. and Uddin, N. (1996). Optimal blocked main effects plans with nested rows and
columns and related designs. Ann. Statist. 24 1185–1208.

Mukerjee, R. andWu, C. F. J. (1995). On the existence of saturated and nearly saturated asym-
metrical orthogonal arrays. Ann. Statist. 23 2102–2115.

Mukhopadhyay, A. C. (1981). Orthogonal main effects plans with variable numbers of levels for
factors. In Combinatorics and Graph Theory. Lecture Notes in Statist. 885 347–357.
Springer, New York.

Mukhopadhyay, A. C. and Mukhopadhyay, S. (1984). Optimality in a balanced incomplete mul-
tiway heterogeneity set up. In Statistics: Applications and New Directions (J. K. Ghosh
and J. Roy, eds.) 466–477. Indian Statistical Institute, Calcutta.

Nelder, J. A. (1965a). The analysis of randomized experiments with orthogonal block structure.
I. Block structure and the null analysis of variance. Proc. Roy. Soc. London Ser. A 283
147–162.

Nelder, J. A. (1965b). The analysis of randomized experiments with orthogonal block structure.
II. Treatment structure and the general analysis of variance. Proc. Roy. Soc. London
Ser. A 283 163–178.

Pal, S. and Pal, S. (1988). Nonproper variance balanced designs and optimality. Comm. Statist.
Theory Methods 17 1685–1695.

Patterson, H. D. and Robinson, D. L. (1989). Row-and-column designs with two replicates.
J. Agric. Sci. 112 73–77.

Preece, D. A. (1967). Nested balanced incomplete block designs. Biometrika 43 479–486.
Preece, D. A. (1982). Balance and designs: another terminological tangle. Utilitas Mathematica

21C 85–186.
Rao, C. R. (1947). Factorial experiments derivable from combinatorial arrangements of arrays.

J. Roy. Statist. Soc. (Supp.) 9 128–139.
Rao, C. R. (1973). Some combinatorial problems of arrays and applications to design of exper-

iments. In A Survey of Combinatorial Theory (J. N. Srivastava, ed.) 349–359. North-
Holland, Amsterdam.

Searle, S. R., Casella, G. andMcCulloch, C. E. (1992). Variance Components.Wiley, New York.
Seeger, P. (1986). Design and analysis of experiments with sugar beet seeds. J. Roy. Statist. Soc.

Ser. C 35 262–268.
Shah, K. R. and Sinha, B. K. (1989). Theory of Optimal Designs. Springer, Berlin.
Singh, M. and Dey, A. (1979). Block designs with nested rows and columns. Biometrika 66

321–326.
Stewart, F. P. and Bradley, R. A. (1991). Some universally optimum row-column designs with

empty nodes. Biometrika 78 337–348.
Tjur, T. (1984). Analysis of variance models in orthogonal designs. Internat. Statist. Rev. 52

33–65.
Wang, J. C. andWu, C. F. J. (1991). An approach to the construction of asymmetrical orthogonal

arrays. J. Amer. Statist. Assoc. 86 450–456.
Williams, E. R. (1986). Row and column designs with contiguous replicates. Austral. J. Statist.

28 154–163.



OPTIMAL DESIGN WITH MANY BLOCKING FACTORS 577

Williams, E. R. and Matheson, A. C. (1994). Experimental Design and Analysis for Use in Tree
Improvement. CSIRO, Melbourne.

Yates, F. (1935). Complex experiments. J. Roy. Statist. Soc. (Supp.) 2 181–247.
Yates, F. (1936). A new method of arranging variety trials involving a large number of varieties.

J. Agric. Sci. 26 424–455.
Yates, F. (1937). The design and analysis of factorial experiments. Technical communication 35.

Imperial Bureau of Soil Science, Harpenden.
Yates, F. (1951). Bases logiques de la planification des expériences. Ann. Inst. H. Poincaré 12
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