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BROWNIAN PATHS AND CONES!

By KRzYSzTOF BURDZY
University of California, Berkeley?®

If cos(6/2) < 1/vn then a.s. there are times 0 < s; < g such that the
n-dimensional Brownian motion Z(t) stays for all ¢t € (sy, s,) in a cone with
vertex Z(s,) and angle 6. If cos(6/2) > 1/vn then the same event has
probability 0.

1. Introduction. Throughout this paper n will denote a fixed integer
greater or equal to 2 and will be suppressed in the notation. For every 0 < a <
/2, we will consider the family % (a) of all cones in the n-dimensional space
which may be obtained by means of arbitrary translations and rotations of the
following cone:

Wi = {(x1, %2, -+, xp) € R™: tan®(a) + xf> x3 + -+ + x2}.

The vertex of a cone W € 7 («a) will be denoted v(W). We will write Z, or Z(t)
to denote the standard n-dimensional Brownian motion. The main result of this
note is contained in the following

THEOREM 1. Consider the following event:

A(a) = {There exist times s; and s;, 0 < s, < 55, and a cone W € % (a) such
that v(W) = Z(s,) and Z(t) € W for all t € (sy, s3)}.

The probability of A(a) is equal to

(i) 0if cos(a) > 1/Vn,
(ii) 1 if cos(a) < 1/vn.

We will prove the above theorem in Sections 2 and 3. We will announce now
a related result, the proof of which will be given elsewhere. Let H C R" be a fixed
(n — 1)-dimensional hyperplane.

THEOREM 2. Consider the event

B(a) = {There exist times s, and s, 0 < s; < s, and a cone W € % («) such
that WNH=3,v(W)=Z(s;) EHand Z(t) € Wforallt €
(81, s2)}.

The probability of B(a) is zero for all 0 < a < /2.
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In other words, no Brownian excursion from a hyperplane stays locally (near
its starting point) in a cone. This is surprising in view of Theorem 1(ii), since
the time ¢t when an excursion from H starts may be thought of as exceptional in
the following sense: Brownian motion has a considerable drift in the direction
perpendicular to H just after t.

Theorem 2 has been proved in [1] in the case n = 2. The proof may be easily
generalized to higher dimensions. The methods used in [1] may be also applied
to excursions and sets other than cones.

2. Proof of Theorem 1(i). Our proof is based on ideas from [4] and [6]
which are related to [5].

First we introduce some more notation. | - | will denote the Euclidean norm in
the space R". The cone which has the vertex z and which is the image of W7 by
a suitable translation will be denoted W,(z). The totality of such cones will be
denoted 73 (a). The distribution of the n-dimensional Brownian motion starting
from 2z will be denoted by P? and E* will be the expectation corresponding to
P?. P(A) = c means that c is the common value of P*(A) for all z € R". The
vector (0, 0, ---, 0) € R" will be denoted 0. The boundary of the set A C R"
will be denoted as dA. The hitting time T4 of a set A is defined by T4 =
inf{t = 0: Z, € A}. The following lemma is derived from general results of
Burkholder [2].

LEMMA L. If0<a<p<w/2 cos(a)> 1/vn and cos(8) < 1/vn then there
exists an ¢ = ¢(a, B, n) > 0 such that

EX(Tsw,0)"* < and E*(Towyo)' ™ =, forall z€ W,(0).

PROOF. Let F be the hypergeometric function,
F(a, b, ¢, t) = Tieo (a)r(b)et*/((c)rk!),
where (a)o =1, (@), = a, (a): = a(a + 1), etc. Let n = 3 and
h (@) =F(=2,n,(n—1)/2, (1 — cos 0)/2).

A simplified formula for h is h(8) = 1 — (cos 6 + 1)(cos § — 1)n/(n — 1) and it
follows that the smallest zero of h in (0, 7) is equal to arc cos(1/ vn). Now we
use Theorem 3.1 of Burkholder [2] and its special case, formula (3.10). It says
that if n = 3 then E*(Tswao) < ® iff cos(a) > 1/vn. The remarks following
formula (3.10) [2] imply even more: if cos(a) > 1/vn and cos(8) < 1/vn then
there exists an ¢ = (e, 8) > 0 such that E*(Tsw )" < % and E*(Tow,0)' ™ =
0. The case n = 2 is settled by formula (3.8) [2]. O

We need some more definitions and notation. fa € Rand z = (z, -+, 2,) €
R", then z — a will denote (2; — a, 22, 23, * - *, 2,) € R If I is an interval, then

A;(a, I) = {There exist s € I, s = 0 and a cone W € #;(«) such that Z(s) =
v(W)and Z, € Wforall t € (s, s + 2)}.

Let r, denote the distance from (1, 0, - - -, 0) to dW,(0) U {] z| = 2}.
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If A (a, [a, b]) holds, b — a < 1, then, for geometric reasons, at least one of the
following events holds:

As(a, [a, B]) = {sUPieiani| Z: — Za| = ro(b — a)¥2~}
or

As(a, [a, b]) = {Z; € W.(Z, — (b — a)V/**) for all t € (a, a + 1)}.

¢ > 0 above denotes a constant. By Brownian scaling, the probability of
As(a, [a, b)) is equal to the probability of

{supco.n| Ze — Zo| = ra(b — @)™} =4 A((b — a)™).

It is easy to see that P(A4(u)) is exponentially decreasing as a function of u
when u — . In particular,

(1) k- P(As(a, [a, a + 1/R])) = k - P(A4(k*)) >0 when k— x.
The same technique of scaling shows that
P(A3(a, [a, b])) = P*(Tow,0 > (b — a)™'**)
= P*((Tow, @)™ > 1/(b - a)),

where z = (1, 0, -+, 0). We choose now ¢ = e(a) > 0 so small that
E*(Tow )" % < o0 (Lemma 1). With this choice of ¢ we have

@ k - P(As(a, [a, a + 1/k)]))
=k - PP((Tow,y0)/" > k) — 0 when k— o,
The event A; (e, [0, m]) is contained in the union of events
Ai(e, [j/k, (J+1/E]), j=0,1,--,m-k—1.
We have also
Ai(a, [0, m]) C UFZS™ (As(e, Li/k, (j — 1)/E]) U As(a, [j/k, (j + 1)/k]))
and
P(Ai(a, [0, m])) = 37287 P(Az(a, [i/k, (j + 1)/k])
+ X767 P(As(a, [k, (J + 1)/ED).

Thus for every fixed m we have P(A,(q, [0, m])) = 0, by (1) and (2). It follows
that P(A;(a, [0, ©))) = 0. The scaling property of Brownian motion implies that
the following event has probability 0:

As(a) = {There exist 0 < s; < s, and a cone W € %;(a) such that Z(s1) =
v(W)and Z, € Wfor all t € (sy, s,)}.

Let us fix now arbitrary 0 < a < 8 < x/2 with cos(8) > 1/vn. For every
k=0,1,2, ... we define #}(8) in the same way as %;(8) with the exception
that W} is replaced by a cone W% € #°(8) which is chosen as follows. We find
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such a family of cones W&, k=0, 1, - - -, m = m(a, 8), that for every W € 7 (a)
there exists £ < m and a cone W, € 7%(8) with W C Wy, v(W) = v(W;). Roughly
speaking such choice of W%’s is possible, since the (n — 1)-dimensional sphere is
compact. Let now A(8) have the same definition as A5(8) with %;(8) replaced
by #°%(8). For geometric reasons we have

A(a) C UR, AR(B).

Brownian motion is rotation invariant and we already know that P(A45(3)) = 0,
so P(A%(B)) = 0. Thus P(A(a)) = 0 and part (i) of Theorem 1 is proved.

3. Proof of Theorem 1(ii). We will follow Davis [4] very closely and we
refer interested readers to [4] for details.

Let k> 0 be a fixed integer. We define a sequence of stopping times T}, i = 0,
1,2 ---.

TO = 09
Ti=(Tiey + 1) ANinf{t = Ty + 1/k: Z, & W(Z(Tim1))} i=1,2, - .

Let U denote the random variable inf{t = 1: Z, ¢ W,(0)}. We have by Brownian
scaling

3) P(Tu1—Ti=1) =P (U= k)
and
4) E(Tu1— Ty) = E°(U A R)/E.

Let 0 < @ < /2 be fixed and such that cos(a) < 1/vn. By Lemma 1 there
exists ¢ > 0 such that E*(Tsw,)'™ = « for 2 € W,(0). The P°-probability
of {Z, € W,(0)} is greater than zero, so

(5) E°U'™* = .

Davis ([4], Lemma 2.1 and end of Section 2) has proved that (3), (4) and (5)
imply that

(6) P(Tyy; — T;=1 for some i < msuch that T; = 1) = ¢,

for infinitely many integers k& > 0. The number m = m(k) above is a suitable
integer and ¢ > 0 is a constant independent of k. Let

B..(a) = {There exists 0 < s <1such that Z, € W(Z,) forallt € (s + 1/k,s + 1)}.

We see that By, (a) C Bi(a) and it follows from (6) that P(N; Bi(a)) > ¢ > 0.
We also have M, Bi(a) C A(a) and so P(A(a)) > 0.

4. Remarks. i) Theorem 1 has been proved in the case of n = 2 in [1].

ii) Theorem 1(ii) would be obvious if we allowed for « = 7/2, and identified
halfspace with a degenerate cone W#,,. The following less trivial statement seems
to be true.
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CONJECTURE. Let n = 2 and let R? be identified with the complex plane. For
every /2 < a < o the following event has probability 1:

{There exist s = 0 and ¢ > 0 such that for all 0 < § < ¢ the range of every
continuous version of t — arg(Z, — Z,), t € (s, s + 8) is an interval of the
length «of.

The analogous result is true for n = 3 and cones with the angle 0, = < 6 < 2.0

A possible way to prove the conjecture would be to follow closely the proof of
Theorem 13 of Greenwood and Perkins [6]. The necessary information concern-
ing the tails of random variables, like Tsw_ ) above, might be found in Chapter
IT of [1] (n = 2) and in Burkholder [3] (n = 3).
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~ After submitting this paper for publication we have learned that Michio
Shimura [8] proved independently the two-dimensional version of Theorem 1,
extending the part (i) to the case cos(a) = 1/v2. His papers [7] and [8] contain
many interesting results on Brownian excursions.
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