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ON THE ROTATIONAL DIMENSION OF
STOCHASTIC MATRICES

By S. KaLrazibou

Aristotle University

Let (S;, i =1,2,...,n), n > 1, be a partition of the circle into sets
S; each consisting of union of 8(i) <« arcs A,,. Let f, be a rotation
of length ¢ of the circle and denote Lebesgue measure by A. Then
every recurrent stochastic matrix P on S = {1,..., n} is given accordmg
to a theorem of Cohen (n = 2), Alpern and Kalpamdou (n=2) by p;;
MS; N f;71(S,))/M8,) for some choice of rotation £, and partition & = {S }
The number 8(%) = max; 8(i) is called the length of description of the
partition .#. Then it tums out that the minimal value of §(%), when .
varies, characterizes the matrix P. We call this value the rotational
dimension of P. We prove that for certain recurrent n X n stochastic
matrices the rotational dimension is provided by the number of Betti
circuits of the graph of P. One preliminary result shows that there are
recurrent n X n stochastic matrices which admit minimal positive circuit
decompositions in terms of the Betti circuits of their graph. Finally, a
generalization of the rotational dimension for the transition matrix func-
tions is also given.

1. Background and notation. Let n > 1, S={1,...,n} and P = ( Dijs
i, j € S) be a stochastic matrix which defines an 1rredu01ble S-state Markov
chain ¢ =(£,), ... Consider ([0,1], B, A) the canonical probability space on
[0,1]; that is, B and A are the o-algebra of all Borel subsets of [0,1] and
Lebesgue measure, respectively. Then a theorem of Cohen [3] (n = 2), Alpern
and Kalpazidou (n > 2) asserts that there exist a shift transformation f, of
length ¢t =1 /M with M the least common multiple of (1,2,..., n) [for short
lem(1,2,..., n)] defined as

(1) fi(x) = (x +¢) (mod1), x€]0,1),

and a partition = (S;, i = 1,..., n) of [0, 1) into sets S; each consisting of a
finite union of subintervals such that

(2) p;j = A(Si nft_l(Sj))/A(Si)’ i,j=1,...,n

(see also Alpern [1]). Furthermore, if 7 = (;, i = 1,..., n) denotes the invari-
ant probability distribution of P, then =, = A(S,), i =1,...,n. When (2)
holds, the stochastic matrix P is said to have a rotational representation
symbolized by (¢, .%).
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The structure of each partitioning set S;, i =1,...,n, is described by a
finite union of circle arcs A,; whose indices (k,[) can be given by different
ways of labeling. One may find such labelings in Alpern [2], Haigh [4] and
Rodriguez del Tio and Valsero Blanco [10].

We shall now give a general labeling which reveals the intrinsic rotational
device occurring in representation (2). To this end, a preliminary step will be
to find a transformation of the edge distribution E = (m;p,;, i,j=1,...,n)
into a circuit distribution (w,, ¢ € ¥), where & denotes a collection of
directed circuits in S. A directed circuit in S is any ordered sequence
¢ =(iy,...,1,,i;), with p > 1, where i,,...,i, are all distinct when p > 1.
Each circuit ¢ is assigned to a sequence ¢ = (iy,...,i,) called a cycle. The
above positive integer p = p(c) is called the period of ¢ (for more details, see
[5D.

For a chosen ordering in &, say # = (c,,...,c,), the above transformation
is defined by

(3) '7Tipij= chchk(i’j)’ i,jGS,wck>0,k=1,...,S,
k=1

where

(4) C=(p(ck)wck,k= 1,...,3)

is a circuit distribution given either by deterministic algorithms as in [7] and
[2] or by a probabilistic algorithm as in [5] and [6], and J,(i,/) =1 or O
according as (i,j) is or is not an edge of c,. The probabilistic algorithm
uniquely determines both & and {w,,}. Let J,(i) = ¥; J, (i, /). When J, (i, j)
= 1[J (i) = 1], we say that c, passes through (i, j) (and i).

Notation. Throughout this paper the ingredients n, S, M, p and the
function J, will have the meanings above.

Once the circuit decomposition (3) and the starting points of the circuits
are chosen, we may find a transformation A: {#,C} - {{A,;},{A(A,)}} from
the weighted circuits of & onto the weighted circle arcs A,, defined as
follows:

(5)(1) A_I(Akl) = Cp»

that is, each index % of A, is assigned to a circuit ¢, which occurs in the
decomposition (3) and which passes a preassigned point ¢ of S, and

(5)(ii) MAy) = (1/M)p(c)w,,,
forall k=1,...,s,and all [ = 1,:..,M. Define the sets S; by

(6) Si= UAkl’ i=v1,.-.,n,
(k,0)



968 S. KALPAZIDOU

where the union is taken over all pairs (%, ) = (k;, ;) defined as follows:

(DGE) k; is the index of a circuit c,, k €{1,..., s}, which passes
through the preassigned point i and which occurs in the
decomposition (3);

(7)G1) l; denotes those ranks n € {(1,..., M} of all the points ¢é,(n)
which are identical to i in the M /p(c,) repetitions of the
cycle é, = (¢,(1),..., é,(p(c,)) associated with the circuit
¢, chosen at (i) above; that is, if for some s € {1,..., p(c,)}

we have é,(s) = é,(s + p(c,)) = - =é,(s + (M /p(c,) —
Dp(cy)) =i, then [, €{s,s+plc,),...,s +(M/p(c;) —
l)p(ck)}-

The lth repetition of the cycle é, above is given by the sequence

(61 + (= 1p(cr))s---»&(p(ct) + (I = 1)p(ci))).
Then = {S,,...,S,} is a rotational partition of [0, 1) associated to P with
respect to the shift f,, with ¢ = 1/M.

The transformation A can be viewed as a pair (A,, A,) of transformations:
The first component A;: € — {A,;} is a topological (geometrical) transforma-
tion of a circuit to circle arcs given by (7)(i) and (ii); that is, it depends only on
the connectivity relations of the graph G(P) of P. The second component
Ay: C - {MAy)} is an algebraic transformation between the weights as-
signed to the circuits and arcs given by (5)(ii) above.

Let 8(i) denote the number of the components A,, of S;,, i =1,...,n,
defined by (6). Then §(i) depends only on A,; that is, §(i) is a topological
feature of . (which depends neither on the ordering of # nor on the starting
points of the circuits).

For instance, if i belongs to a single circuit ¢ of period p(c), then
8(i) = M /p(c), but if there is more than one circuit ¢ containing i, then
8(i) = L, (M/p(c)). Hence 8(i) depends on the number s of the representa-
tive c1rcu1ts in the decomposition (8) and on the connectivity of #.

Let 6 = 8(s, %) = max; 8(j). Then the number of components A,, of each
S;, according to labeling (’Z), is less than or equal to 6. We call & the length of
description of the partition &= {S;, i = 1,...,n} associated with %. Then
there exists a pair (s,, %,) which provides the minimal value of § when
(%, C) varies in (3).

Let D = D(P) = 8(sy, %) = min, 8(s,%). We call D the rotational di-
mension of P. When either n or s is a large number, the corresponding
rotational partition . will comprise a vast number of components and the
construction (6) will become very complicated. This motivates our interest in
rotational partitions with a minimal length of description. An immediate
probabilistic implication of these investigations will then consist in improving
the solution (of Theorem 1 of [6]) to the well-known coding problem arising in
dynamlcal systems, which in our context has the following formulation: find a
one-to-one correspondence from the space of n X n irreducible stochastic
matrices into rotational n partitions.
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In the present paper we prove that for certain recurrent n X n stochastic
matrices P the number s, in the definition of D is equal to or less than the
Betti number B of the graph G(P) of P, while %, is a collection T c
{y1,...,vg} of Betti circuits of G(P). The Betti number B is the least number
of independent circuits of G(P); a rigorous presentation is given below.

A preliminary result (Theorem 1) shows that there exists a circuit distribu-
tion Cpy, = (p(v4)w,,, v, €T) of minimal length. Then, in Theorem 2 it is
proved that transformation A with labeling (7) on C,;, determines a rota-
tional partition of [0, 1) whose length is D and is given by 6(B, I') for some
B <B.

When the algorithm in the circuit decomposition (3) is chosen to be the
probabilistic one, the w, ’s are uniquely determined: w, is the mean number
of occurrences of c, on almost all the trajectories (£,(w)), of ¢ (see [5] and
[6]. The probabilistic algorithm is the only algorithm which allows us to
generalize the rotational dimension to continuous parameter Markov pro-
cesses. Namely, if SA(h) = {S;(h)} is a rotational partition of a recurrent
stochastic matrix function P(k) = (p;j(h), i,j € 8), h > 0, as given in [6],
then #(h) can be analogously characterized by a length of description for all
h, provided that the class of representative circuits does not depend on A.
This happens only when we choose the probabilistic algorithm in the decom-
position (38) (see [6]).

On the other hand, the sample-path description given by the probabilistic
algorithm gives a natural connection to Kolmogorov-type descriptions (see
Kolmogorov and Uspensky [8]) as follows. Let i, j be fixed states of S and let
@ be a fixed trajectory of ¢. Consider y =y ;) = (y(0), y(1),..., y(k),...) a
binary sequence whose coordinate y(k),k =0,1,..., is 1 or 0 according as
the pair (i, j) occurs or does not occur on ({,(w)),, at moment k. Then each
finite subsequence y, = (y(0),..., y(k — 1)) admits two descriptions. One
description is given in terms of the edges by the binary sequence x, =
(x(0),..., x(k — 1)), where x(I1)=y(l), I =0,...,k — 1, and the other in
terms of the circuits by 5, = (9(0),...,n(k — 1)), where (1), =0,...,k — 1,
is 1 or 0 according as a circuit passing (i, j) occurs or does not occur on
© (¢,(w)),, at time L. ‘

Furthermore, one may characterize an irreducible stochastic matrix P as
“chaotic” in the spirit of Kolmogorov if the connectivity relations of the graph
G(P) of P are complex enough. Then the Betti number of the graph G(P)
should be the maximal one. It turns out that for a given n > 1 the largest
Betti number of all connected oriented graphs on {1,...,n} is n?2 —n + 1.
Then there is an irreducible stochastic matrix on {1,..., n} whose graph has
the Betfi number n2 — n + 1. .

Let us now consider the maximal rotational dimension of P when P varies
in the set of all n X n recurrent stochastic matrices. Another way to approach
this concept was initiated by Alpern [2] and extended by the author [6] as
follows. We say that a rotational partition .= {S,,..., S,} has the type L if
the number of components of each S, is less than or equal to L, i = 1,..., n.
Let D(r) be the least integer such that every n X n recurrent matrix has a
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rotational representation of type D(n); that is, a representation (¢,.%), where
&% is of type D(n). Then D(n) may be connected with the maximal rotational
dimension over all n X n recurrent stochastic matrices. Alpern [2] proved
that D(n) can be estimated by an interval (exp(an'/2), exp(8n)) for some
positive constants « and B.

Let P =(p,j, i,j = 1,...,n) be an irreducible stochastic matrix. As is well
known, P may be assigned to a graph G = G(P) as follows: the set of points
is given by S = {(1,..., n} and the set of directed branches consists of all pairs
(i, j) for which p;; > 0. In general, one may dissociate the graph from any
matrix, in which case the concepts below are related to the graph alone.

We are concerned here with a circuit decomposition which holds in any
finite connected directed graph G = (%,, #,), where %, = {n,,...,n, } and
#, =1{b,,..., b, } denote, respectively, the set of nodes and the set of directed
branches. This approach comes from algebraic topology.

Let us consider that %, and %, are the bases of two real vector spaces C,,
and C,. Then any two elements ¢, € C, and c¢; € C; have the formal
expressions

]

Co= ) xn,=%Xmn, x, €R,
h=1
V1

c,= X yb,=y'b, Y. €R,
k=1

where by convention y,(-b,) = —y,b, for all (—5,) which do not belong to
%#,, and R denotes the set of reals.

The linear map A: C; — C, defined by Ab; = n;, — n, (where n, and n,
are the initial point and end point of b;) describes the orientation of G. Any
circuit ¢ in G can be written as ¢ = b, + --- + b, (say), and plainly Ac = 0,
that is, ¢ € ker(A). Conversely, if ¢, is any such sum, and ¢; € ker(A), then
either ¢, is a circuit or ¢, contains a subgraph that is a circuit. Let n be the
B, X B, matrix that defines A with respect to the given bases.

Let T be any spanning tree of G and let %(T) be its set of branches.
Although T may not be unique, the number B of branches not in &(T) is a
characteristic of G, called its Betti number (see [9). It is given by B = v; —
rank(n). Let B, be any branch not in 7. Since G is connected there exists a
sequence o;, of connected branches in #(T') such that B, + o, = v, belongs
to ker(A). We call B, and v,, 2 = 1,..., B, Betti branches and Betti one-cycles
of G, respectively.

Denote

I'={v,,k=1,...,B}.
Ti'len from algebraic topology we have the following (see Kalpazidou [7]).

LEMMA 1. The set T of Betti one-cycles in G is a base of él = ker A.
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When y,,..., yg are certain directed circuits in the graph G such that the
associated vectors y;,...,yp in C; form a base of Betti one-cycles, then we
call yy,...,yg the Betti circuits of G and {y,, ..., y5} a base of Betti circuits.

2. A minimal circuit decomposition. Consider P = (p; j»i,j €8), any
stochastic matrix defining an S-state homogeneous irreducible Markov chain

&E=(¢,, m>0).

We show in this section that there exists a circuit decomposition of P in
terms of a minimal number of directed circuits when the graph of P satisfies
some topological condition.

Notation. Let G = G(P) = (%,(P), #,(P)), n=n(P), B=B(P)and T =
I'(P) = {y,,..., vz} denote, respectively, the graph of P, the branch-point
incidence matrix of this graph, the Betti number of G and any base of Betti
circuits. Then we may prove the following theorem.

THEOREM 1. Let P =( Dijs b= 1,...,n) be an irreducible stochastic
matrix whose invariant probability distribution is w = (m,,...,m,). Assume
that the graph G(P) contains a base T = {y, ..., vg} of Betti circuits. Then P
has a circuit decomposition in terms of the circuits of T, that is,

B

(® > ™ Pijby. ;= P Wy Yy s bi, i €%,(P), w, € R,
@G, k=1

or, in term of the (i, j) coordinates,

B
(9) ﬂipij = Z w'yKJ'yK(i’j)’ l,J € S’
k=1

where the corresponding circuit weights are defined as
' &)YK= Y a(e,y)w,, a(e,v) €Z,w,> 0,
ce?
with & and w, given by random or nonrandom algorithms as in (3).

Proor. If p;; > 0, let b, ;, be the branch in %,(P) from i to j and write
w =1, ;™ Dby, j
From (8), there is a class @ of directed circuits so that
(10) W = Z Z chc(i’j)b(i,j)’
(i,j)ce?®
where each w, > 0. Then we have

w= ) wc( ) Jc(i’j)b(i,j)) ‘

ce Z G,5)
" =Y we
' ce®
since J,(i, j) is the (i, j) coordinate of ¢ with respect to the base %, of C,.
Therefore w € C,.
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On the other hand, any circuit ¢ can be written according to Lemma 1 as a
linear combination of the Betti circuits of I, that is,

B

c= Z a(c, i) Ve»
k=1

where a(c, ;) € {—1,0,1}. Then the vector w has the expression

w= T (L ate,mw)vi

k=1"‘ce®

Hence the (i, j) coordinates of w are given by

Z a(c’ 7k)wc)Jyk(i9j)

ce®

w(i,j) = m;Pij = % (

k=1

and the proof is complete. O

REMARKS. (i) Theorem 1 still remains valid if we consider any circuit to
be modulo the cyclic permutations, that is, instead of a single sequence, the
circuit ¢ is understood to be the equivalence class

é\={(i1’ 2igs11)5(Tgs-- is’il’i2) ves (Bgslgsenes is—l’is)}

where the eqmvalence relation is defined as follows: ¢ ~ ¢ iff ¢ € ¢ (see [5D.
That the class circuit ¢ can be viewed as a vector of C; follows from the fact
that all the representatives of ¢ are identical to the same vector 1-b ;,
+ - +1-b,, ;,1in Cy.

(ii) The coefficients w,, £ = 1,..., B, of decompositions (8) and (9) can be
negative numbers. When we can find a base I = {y,,..., yg} of Betti circuits
such that the circuit weights w, occurring in (3) are larger than or equal to
w, for all the circuits ¢ & I, then the corresponding weights w,, of (9) will be
nonnegatlve numbers.

For instance in Figure 1 the circuits ¢; = (1,2,3,1), ¢, = (1,3,4,5,1),
c; =(1,3,1) and ¢, = (1,2,3,4,5,1) have the positive weights w,, w,,, w,,
and w,,. If w, > w, , then we may choose the Betti circuits to be Y, = cl,
Y2 = C2 ‘and 'Ys = C3, ‘While cs=v1t+tv2—7Ys

Fic. 1.
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Note that for any branch (i, j) of ¢, we have
I (i,7) = J,(i,7) + I, (i,7) = I, (i, )
[0, i) €{(1,2),(2,3)),
Jy(i,0), if(i,j) €{(3,4),(4,5),(5,1)}.

Therefore, the circuit ¢, passes through a branch iff a single Betti circuit
does. Then the weights of decomposition (9) are as follows: w, =w, + w,,,
=w,, + W, and w, =W, — W, = 0. Hence decomposition (9) becomes

ch

7Tipij = (wcl + wc4)Jcl(i’j) + (wc2 + wc4)ch(i’j) + (wC3 - wc4)Jcs(i’j)‘

If w,, > Ww,,, we choose y; = ¢y, yp = Cg, V3 = C4, While €3 =v; + v, — V3,
and we may repeat the same reasoning above.

The class of n X n stochastic matrices which admit a circuit representa-
tion (9) with positive weights is large. For instance, we may obtain such
matrices by the following construction: Let & be any class of overlapping
circuits in S ={1,2,...,n} and let G be the graph (S, arcset %). If the
cardinal number of # is less than or equal to the Betti number of G, then the
circuits of # can be chosen as Betti circuits of G. Otherwise we may choose a
base I' C # of Betti circuits of G and assign a weight w, > 0 to each circuit ¢
of % such that w, > ¥,cg\rw, for all y€T. Then p;; =X o w,J (i, ))/
Yeegw,J (D), i,j=1,...,n, define a stochastic matrix which admits a de-
composition (9) with positive weights.

(iii) Let P be an irreducible n X n stochastic matrix as in Theorem 1,
whose graph G(P) is the complete graph on {1,2,..., n}). Since each circuit
matrix C, = (1/p(c))dJ, is defined by a circuit c, then the number of circuit
matrices equals the number of circuits of G(P). On the other hand, since each
circuit of G(P) is written in terms of n2 — n + 1 independent (Betti) circuits
Y:, the decomposition (9) will comprise n? — n + 1 terms, that is,

n?2-n+1

(11) 7P = k§1 (p(%)@,,)C,,.

Then the Betti dimension equals the Carathéodory-type dimension of the
convex hull on the circuit matrices. Namely, according to Alpern [2], the
latter follows when wP, as an equisummed matrix, is considered to be a
vector of an (n®? — n)-dimensional Euclidean space. [A matrix R = (r;;) is
called equisummed iff &, r,; = X, rj; and X;;r;; = 1]

3. The rotational dimension. In Remark (ii) of the preceding section
we have shown that there are connected oriented graphs where any B
‘circuits are Betti circuits (B = 3 in Figure 1). From this standpoint one may
obtain a method of construction of finite stochastic matrices admitting mini-
mal positive decomposition in terms of Betti circuits. Then we may prove the
following theorem.
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THEOREM 2. Let G be a connected oriented graph on S with Betti number
B, where any B circuits are Betti circuits. Then, if the stochastic matrix P has
G as its graph and decompositions (8) provide positive decompositions (9),
each of the lengths of description of the rotational partitions is greater than or
equal to the length of description on a collection {y,,...,yg} of Betti circuits
whose graph is G, where B < B.

Proor. Let P be an irreducible stochastic matrix on S which has G as its
graph and admits positive decompositions (9). Then we shall start labeling (7)
with a decomposition of the form

B
(12) 7P =} (p(w)e,)C*, ,20k=1,..,B,

where I' = {y,,..., ¥z} is a base of Betti circuits of the graph G = G(P) of P
and C* = (1/p(y Nd,,, k = ., B.

Consider the shift’ ft w1th t =1/M and all @, > 0. Then according to
Alpern’s procedure [2],let (A,, 2 = 1,2,..., B) be a partition of A = [0,1/M)
into B intervals A,,..., Ap such that the relatlve distribution [A( A k )/A(A),
k =1,2,..., B] is given by the circuit distribution [ p(y)e,,, k£ =1,2,..., B],
that is,

/\(Ak) =(1/M)p(7k)wyk’ k=1’~~~’B-

Define A,;, =f/"%(A,) for k =1,...,B; [ =1,..., M. Then for each choice of
the starting points of v,, £ =1,...,B, the sets S;=UA,,, i=1,...,n,
labeled by (7), provide a rotational partition (1/M, #(P)) of P.

On the other hand, each base I' of Betti circuits of G determines a
different length 8(B, I') of description of #(P). Then we may choose a base I’
of Betti circuits of G which provides a minimal length 8(B,T) of description
with B < B. We have B < B when certain w,, = 0 in equation (12). The proof
is complete. O

Let us now consider a standard transition matrix function P(%) = (p,;(h),
i,j€8), h >0, which defines a recurrent continuous parameter Markov
process £ =(&,),.,. Let w=(m;, i € S) be a positive invariant probability
distribution of P = (P(h), h > 0), that is, m; > 0, i € S, and wP(h) = =,
h > 0. Then according to Theorem 2 of [6], for each % > 0 there exists a
rotational representation (¢, #(h)) of P(h); that is,

pij(h) = ’\(Si n ft_l(sj))/)‘(si), i,j€S,h>0,

where ¢! =1lem(1,2,...,n) and FA(h) = (S;(h), i = 1,...,n) is an n-parti-
tion of [0, 1) with A(S;(R)) = m;, i = 1,..., n. Furthermore, the unique class
which provides the cycle distributions for all the matrices P(h), h > 0,
comprises all the directed cycles occurring along the sample paths of the
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discrete skeletons 2, = (£,,), > o (see [6]). Accordingly, the circuit decomposi-
tion of each P(%) is given on each recurrent class (except for a constant) by
equations

7Tipij(h) = Z (p(C)(:)c(h))Cc(l,J), l’.] GS’ h > 0,
ée®

where @,h), ¢ € , are uniquely determined by the probabilistic criterion
stated in Section 1.

Let o be the cardinal number of #. Then each partition A(h), h > 0, is
characterized by a unique length § = §(o, &) of description which is indepen-
dent of 4. We call 6(o, %) the rotational dimension of the transition matrix
function of P = (P(h), h = 0). Then we have the following theorem.

THEOREM 3. The rotational dimension 6(o,%) of all recurrent n X n
transition matrix functions with the same graph G is provided by the collec-
tion & of all directed circuits of G where o is the cardinal number of %.

PrOOF. Let & be the collection of all the circuits of a graph G on {1, ..., n}
and let o = card #. Then the rotational dimension 8(o,%) of a transition
matrix function P = (P(A), h > 0), whose graph is G, will remain invariant
to the change of P (on G). The proof is complete. O
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