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MAXIMAL INEQUALITIES FOR PARTIAL SUMS OF
p-MIXING SEQUENCES

BY QI-MAN SHAO
National University of Singapore and Hangzhou University

A Rosenthal-type inequality for maximum partial sums of p-mixing
sequences is obtained. Applications to the complete convergence and almost
sure summability of partial sums are also discussed.

1. Introduction. It is well known that the key step of various proofs in
limit theory is usually the estimate of moments and/or probabilities for partial
sums or for the maximum of partial sums. For independent random variables
a lot of sharp and elegant estimates are available, such as the Lévy inequality,
the Kolmogorov exponential inequality, the Marcinkiewicz—Zygmund inequal-
ity, the Burkholder-Davis—Gundy inequality and so forth. The main purpose
of this note is to establish a Rosenthal-type inequality for a special class of
dependent random variables, so-called p-mixing sequences, which was first
introduced by Kolmogorov and Rozanov (1960).

A sequence of random variables {X,, n > 1} on a probability space
(Q, F, P) is called p-mixing if the maximal correlation coefficient

p(n) = sup [ Cov(X, Y)I/II X|I2IY ]l — O
XeL2(F)
YeLX(F,)
as n — oo, where F7' is the o-field generated by the random variables
X, Xni1s. .. Xm. Here and throughout this paper || X||, = (E|X|?)V/>.

In what follows, we will always assume that {X,, n > 1} is a p-mixing
sequence of random variables. Put Si(n) = Zf:,::_l X, k>0,n>1; S(n)=
So(n). Moreover, [ x] denotes the integer part of x, log x stands for the loga-
rithm with base 2, I(.) is the indicator function and a A b = min(a, b).

Our main results are as follows:

THEOREM 1.1. Assume that EX; = 0 and || X||q < oo for some q > 2. Then
there exists a positive constant K = K(q, p(-)) depending only on q and p(-)
such that for any k>0, n > 1,

[logn]
E S.()2 < K(ne? K o X1
max |S,(2)I7 < (n exp( ; p( ))kg$n|| illy
(1.1)
[logn] 5 )
K 22Hy ) . X:109).
+nexp( ; P9 ))k3$n|| lllq)
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MOMENT INEQUALITY 949

Applying Theorem 1.1 to the truncated random variables, we obtain the
following probability inequality for the maximum of partial sums.

THEOREM 1.2. Assume that EX; = 0 for each i > 1. Then, for any q > 2,
there exists K = K(q, p(-)) depending only on q and p(-) such that

P(nlﬁlsa}lxlsk(i)l > x)

k+n
< Y P(XilzA4)
i=k+1
(1-2) [logn] .

+ Koo (nexp(K Y. p(2)) max IXI(1Xi1 < AN
i=0 <i<k+n
[logn] .

+nexp(K 3 p0(2)) max EIXWHIX: < 4))

= <i<k+n

for any 0 < A < oo and x > 0 with

(1.3) 2n max E|X;|I{|X;|> A} <=x.
k<i<k+n

.From Theorems 1.1 and 1.2, the next corollary follows immediately.

COROLLARY 1.1. Let q > 2. Assume that EX; =0, || X;||; < 00 and

(o]
(1.4) p?1(2") < oo.
=1

n

Then there exists a positive constant K = K(q, p(-)) depending only on q and
p(-) such that forany k>0, n > 1,

El?glxlsk(i)lqu((n max EX?)Q/2+n max EIXilq)

k<i<k+n k<i<k+n

and
k+n

P(max|Si(i)l 2 x) = 3 P(IXil > A)

i= i=k+1

+ }'{x“l(n‘z/2 maXn”XiI{IXiI = A}”g

k<i<k+
+n max E|X;|971{|X;| < A})
k<i<ktn
_provided that (1.3) is satisfied.

REMARK 1.1. A similar result to (1.1) for ¢-mixing sequences was obtained
by Shao (1988), Peligrad (1989) and Utev (1991), independently.
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REMARK 1.2. Under the condition of Theorem 1.1, it was proved in Shao
(1989a) that (1.1) holds for E|Sx(n)|? rather than E max;, |St(i)|?. Clearly,
Theorem 1.1 as well as Theorem 1.2 here is much more useful, especially in
the proof related to almost sure behaviour of partial sums, as we will see later
on.

We will give the proofs in the next section. In Sections 3 and 4, we con-
sider the complete convergence and almost sure summability of partial sums,
respectively.

2. Proofs. We first need the following lemmas.

LEMMA 2.1. Let p,q > 1 with 1/p+1/q = 1. Suppose X € L,(F%), Y ¢

L,(F32.,). Then we have

|EXY — EX EY| < 10p(n)?YPVQ)| X ||, ||V |l

PROOF. This is a theorem of Bradley and Bryc (1985) [see also Shao
(1989b)]. O

- LEMMA 2.2. Assume that EX; = 0 and EX? < oo. Then there exists an
absolute constant K such that for any k>0, n > 1,

llogn]
ElSk(n)Istnexp(2 Z p(2’)) max EX?.

izo k<i<k+n

PROOF. The proof is completely similar to that of Lemma 1 of Peligrad
(1987) and so is omitted here [see also Shao (1989¢c) or Utev (1991)]. O

LEMMA 2.3. Assume that EX; = 0 and E|X;|® < oo. Then there exists a
constant K = K(p(-)) such, that forany k>0, n > 1,

[logn] i
E|Si(n)B <K (n3/2exp(3 l; p(zz)) kz?:ﬁnnx,-ng

ez 2/3(oi 3
30 2! X;i2).
+n exp( l; pe( ))ki?fﬁ,.” z“a)

PrROOF. This is a special case of Lemma 2.3 of Shao (1989a) [cf. Shao
(1993)]. O

'Our next lemma shows that Theorem 1.1 holds for ¢ = 2, which, in turn,
enables us to prove Theorem 1.1 for general q > 2.
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LEMMA 2.4. Assume that EX; = 0 and EX? < 00. Then there exists K =
K(p(-)) such that forany k>0, n > 1,

[logn]
2.1) Emax|S,(i))? < Knexp(6 3 p(2‘)) max EX?Z
i<n pard k<i<k+n

PrOOF. For the sake of convenience of statement, we assume that
{X, X,,n > 1} is a strictly stationary sequence of p-mixing random variables.
Without loss of generality, we also assume that

(2.2) p(n) > 1/(4 log(2n)log®log(4n)).

Otherwise, just put p*(n) = max(p(n), 1/(4 log(2n)log? log(4n))).
We shall prove that

[logn] .
(2.3) Emax |S(i)? < Knexp(6 3 p(2‘))EX2.
i=n i=0
Let

[logn] .
T = exp(40 3 p2/3(2‘)),
i=0

Xi1= XiI{|X;| <n'?|X;|l2/T} — EX;I{|1X;| < n'2||X;|12/T},
Xis = XiI{|X;| > n'2|| X;|l2/T} — EX;I{|X;| > n%| X;|l2/T},

k k
Spi(k) =) Xi1,  Sna(k)=)_ X
i=1 i=1

It is easy to see that S(i) = S,1(i) + Sp2(i) and

(2.4) Emax |S(i)|? < 2E max |Sy1(i)[2 + 2E max | Spz(i) |2
i<n i<n i<n

From Lemma 2.3 it follows that for 0 <! < m < n,
E|Sp1(m) — Sn1(1)?

[logn]
< K((m—l)3/2exp(3 i p(2i))||X||g

i=0

(logn] .
+(m—1) exp(30 b p2/3(2‘))||XI{|X| < n1/2||X||z/T}||§)
i=0
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and hence, by Corollary 3 of Moricz (1982),
Emax [S,1 (i)
i<n

[logn]

<K (n3/2 exp(3 3 p(2i))HXHg + nlog®(2n)
|

[logn] .
xexp(3o 3 p2/3<2‘>)nXI{|X| sn”ZHXIIz/T}Hg)
=0

[lognr]

<K (n7exp(3 3. p(2))1X13

i=0
2.5) [logn]

+nlog3(2n)exp(30 3 p2/3(2i)) nl/zllelg/T)
iz0

[log n]

5K(n3/2exp(3 3 p(2"))||Xn§

i=0

[logn] .
+n3/2||X||glog3(2n)exp<-1o > p2/3(2‘)))
i=0

[logn]
sKn3/2exp(3 > p(zi))uXHZ.
i=0
Here the last inequality comes from the fact that (2.2) implies logn =
o(exp(ZEl;’g"] p?/3(2'))). Here and in the sequel, K denotes a constant de-
pending only on p(-), but whose value may be different at each appearance.
By (2.5) and the Hélder inequality, we have

[logn] )
(2.6) Emaxlsnl(mstnexp(z Y p(2‘>)an§.
=n i=0

To estimate the second term on the right-hand side of (2.4), let

[logn] .
p=exp(80 3 p2/3<2l)), r=ln/pl,  p1=[p/2),

i=0
2ir (2i-1)r
Ya= Y Xjp, Ye= ) X,
J=14@i-1)r j=142G-1)r

i i
T:G)=) Y, Ty(i) =) Y.
Jj=1 Jj=1

ot

Since exp(80 Z£1=°§ "] p2/3(2%)) is slowly varying as n — oo, there is ng such
that r > 1 for every n > ng. When n < nyg, (2.1) is trivial. When r > ng, noting
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that
max |S,1(Z)| < max |T'1(i)| + max |T2(i)|
i<n I<p1 1=p1

+max max [Spa(j) — Spe((i — 1)r)],
i<p+2 (i-1l)r<j<ir

we have

Emax|S,1(i)]* < 3Emax|T1(i)* + 3E max |T2(i)[?
i<n 1<p1 =P

+3Emax max [Sna(Jj) — Sn2((i — )r)?
i<p+2 (i-1)r<j<ir

< 3Emax|T1(i)|* + 3E max |T2(i)I?
1=p1 1<p1
@7 +3(p +2)Emax | Spz(i)*

< 3Emax|T1(i)|2 + 3E max |T2(i)|?
I=p1 1=p1

r 2
+3<p+2)E< leizl)
=1

=311 +313+315;.

Since
2

r 2 r
(Z EIXizl) < 4(2 E|X;|I{|X;| > n1/2”Xi”2/T})
i=1 i=1
- 2
< 4(2 TElXilz/(nl/zllxi”Z))
i=1
<4r’T?EX?/n < 4n T? EX?/p? = 4n EX?/p,
it follows from Lemma 2.2 that

[log r] )
Is<4n(p+2)EX?/p+K(p+2)r exp(2 > p(2’))EX2
i=0
(2.8) logn]
<Kn exp(2 Z p(2‘))EX2.
i=0

We now turn to estimate I;. Put
GO = (Qyz)y Gi =0'(XJ,J 5217'),

i
ui=E(Yu|Gi-1), U@E)=) u,,
Jj=1

@) =T10)-UG) = ZL:(le —E(Yj1|Gj-1)).

Jj=1
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Obviously,
(2.9) I, < 2Emax |T*(i)[> + 2E max |U(i) %
1=p1

i=p1

Noting that {T™(i),G;, i > 1} is a martingale sequence and applying the
maximum inequality [cf. Hall and Heyde (1980)] and Lemma 2.2 again, we
get

P1
Emax|T*()2 < KY EY%
=P i=1

[logr]

(2.10) <Kpir exp(2 > p(zi))EX2
i=0

llogn]
<Kn exp(Z Z p(2’))EX2.

i=0
From the definition of p-mixing it is easy to see that
Eu?=E(Y;11Gi-1)>=E(Y1E(Y;1|Giz1))

< p(MNY il IE(Y i1 | Gi—)ll2 = p(r)1Y ill2 u;ll2.

Hence, by Lemma 2.2,

[logn] .
Bt < p*(r )Y ally < Kr o (r)esp(2 3 p(2)) X2
i=0

By induction [cf. (2.14) in Shao (1989b)], one can obtain that there exists a
constant K such that for any 0 <! < m < py,

) [logn] .
E(U(m) - ‘U(l))z <K(@m-Urp“r) log2(2(m —-1)) exp(2 i p(2‘))EX2.

i=0

Therefore, by Corollary 4 of Moricz (1982),

: llogn]
Emax(UG)? < K prr o*(r) log(2py) exp(2 3 p(2) ) EX?

i<p -
2.11) ' =0
[logn] .
< Knp*(r)log*p- exp(2 Z p(2‘))EX2.
i=0

From the definition of r and p we get

[logn

gn] 1\ 4
log p = 804( 3 p2/3(‘2‘))
i=0 .

4
O<i<[logr] [logrl<i<[logn]
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[log r] ) 4
<80 (50) Y p(2') + p?*(r)([log n] ~[log )

i=0
[logn] . 4
<80 (pR0) 3 p(2) +072() (1 + Log(n/ )
i=0
[logn] ) 4
<804 (50) p(2) + )1+ l0g p))
i=0
Since p?/3(r) — 0 as n — oo, we have
[logn] S\ 4
log* p < K(p-1/3<r> 3 p<2’>)

i=0

and hence
[logn] 1\ ¢
P'r)tog' p < Ko ()3 p(2)
i=0

which together with (2.11) yields

[logn] .
(2.12) Emax|UG)?<Kn exp(6 > p(2’))EX2.
1<p1 i=0

From (2.9), (2.10) and (2.12) it follows that

[log n] )
(2.13) , I;<Kn exp<6 > p(2‘))EX2.
i=0
Similarly,
) [logn]
(2.14) Io<Kn exp<6 > p(2‘))EX2.
i=0

This completes the proof of (2.3), by (2.4), (2.6)—(2.8), (2.13) and (2.14). O

We are now ready to prove Theorem 1.1. We proceed with the proof along
the same line as that of Lemma 2.3 in Shao (1989a) [cf. Shao (1993)].

PROOF OF THEOREM 1.1. To simplify the statement, we assume again that
{X, X,,n > 1} is a strictly stationary sequence of p-mixing random variables.
Pat

Mk(n)=1?<a;tx|Sk(i)I, - M(n)= Moy(n).
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It suffices to show that

[logn]

EM(n)? < K (nexp(K Y p(2) )X
(2.15) =0

[logn]
+n exp(K > p2/4(2i>)||X||g).
i=0
We prove (2.15) by induction on q. When q¢ = 2, (2.15) follows from
Lemma 2.4 immediately.
When g (> 2) is not an integer, assuming that (2.15) holds for [ q], that is,
there is K; > 2 such that for every n > 1,

logn]
EM(n)l® sKI(n[qlfzexp(Kl 3 p(zl))nxug‘”

(2.16) =0
[logn] )
+n exp(K1 > pz/['”(z’))anB})

i=0
and

[logn]
(2.17) EM(n)? < K, nexp(K1 3 p(2i)>EX2,

i=0

we will show that (2.15) remains valid for q. Put
1 1) 1/24(g-1)/[q]

6==+(=
2t (2
It is easy to see that

q/2 (g—2)/2
2(1 +43q(p2/lI(n1/2q) + n—1/3q))(1 _ [nr/Lz]) N (%) as n — oo,

[n/2] ) 1/2+(q-1)/[q]

2(1 + 439(p?9(n1/29) 4 n=1/39)) (1 -

1\ @ D/lal-172
— (5) as n — oo,

and
— 1 -2
0<q_1__<€_~,

[qg] 27 2
Hence, we can take an mg such that for every n > my,

2
2(1 -+ 4%9(p29(n1/20) 4 n-1/3q>)(1 _ 2] 2])‘”
U - n
& st [
-+ —
2(1+ 43q(p2/q(n1/2q) + n—1/3q))(1 _ [n/Z]) q q
: n
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For n > 2, let
ni=[n/2], ng=n-n;, ng=[nY]41.
Applying an elementary inequality
Vx>0,Vqg>1, (1+x)? <1427 +49(x+x971)
and the fact that forany 2> 0,0 <m <n,
(2.19) Mp(n) < Mp(m) + Mpim(n —m),
we have
EM(n)? < E(M(n1) + My, (nz))?
(2.20) < EM(n1)? + EMp,(nz)?
+49(EM (n1) My, (n9)?" + EM ,, (n3) M(ny)?70).
By Lemma 2.1, (2.19) and the Hélder inequality, we obtain
EM(n1) My, (ng)?™!
< EM(ny — n3) My, (n2)*™" + EMp,_n,(n3) My, (ng)?™?
< EM(ny — n3) EM,,(ng)?"
+10p%9(n3)||M(ny — n3)|lql| M, (n2)]|2 7
+ 1My —ng(n3)llg | My, (n2)||37
< EM(n1) EM,,(n2)?™" + 10p%9(n3) || M (n1)|lg|| Mn, (n2)||3 7
+ 12/| M,y (n3)l1g || M n, (1) 1137
< 1M (n2)llz || M, ()|
+10p*%(n3).(EM(n1)? + EM,,(n2)?)
+12nY2H1BE X9 + 120" YCDEM,, (ng)A.

(2.21)

Here, in the last inequality, we have used the Minkowski inequality and an
elementary inequality a®*b® < a + b for nonnegatives a,b, @, 8 with a + 8 = 1.
Similarly,
EM(n,)?™" M, (ns)
< 1M, (r2)ll2 1M ()|
(2.22) ’
: +10p*%(n3)(EM(n1)? + EM,,(n2)?)

+12n%8E| X7 + 12~ VD EM (n,)q.
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Inserting (2.21) and (2.22) into (2.20) and noting that 24 - 49 < 439 for q > 2,
we have

EM(n)? < (1+4%9(p*(ng) + n"Y/60))(EM (n1)? + EMy,(n2)?)
2.23) +4%(n¥/E| X\ + | M(n1)llg 1| My (n2) 177}

+ 1My (2) 12 MmNy )-
Let
(2.24) Ky=2-4%.K%/(1-9).
Define J, = Jo :=m{ for 1 <n < mo and
(2.25)  Jp = Jny(1+43(p%9(n)/ CP) 4 0P 1 20718)) for n > my.

First we show below that for every n > 1,

[logn] )
EM(n)? < Ky n?? exp(2K1 3 p(2‘))||X||g + Ky nV/2+@-1/la]
i=0

[logn]

X exp(K1 > (p(2) + pzf[q](zi))) X1l 11X 11
i=0

- (2.26)

+J.n E|X|9.

By the Minkowski inequality, (2.26) obviously holds for 1 < n < my. When
n > my, assuming that (2.26) holds for any integer less than n, we will prove
that (2.26) remains valid for n itself.

From (2.23), (2.25), (2.18), (2.16), (2.17), the hypothesis of induction and
the fact that /, is nondecreasing it follows that

EM(n)? < (1 + 43q(p2/q§n3) + n—l/(3q)))
[logn] .
« Ka (g + 08 exp(2Ks 3. p(2))1X1
i=0

+ (1 + 43q(p2/q(n3) + n—l/(3q)))K2 (ni/2+(q—l)/[q] + n;/2+(q—1)/[q])

[logn]

X exp(Kl Z (p(2‘)+p2/[q](2‘))) 1 X112 11 XIIE

+ (14 4%9(p¥9(ng) + n"YBD)) (T, g + I, ng) E| X2

[logn]

+2. 43q( 5/6E|X|q+K1/2 1/2exp(K1 Zp(zt )||X||2 K(q—l)/[Q]
i=0
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[logn]

y (n[qyzexp(gl 3 p(zi))an%‘”

i=0

[logn] . (¢-1)/Lq]
+nexp(K1 Y pz/[Q](Z‘))Ele[Q]) )

i=0
< Iy (1+4%(p*(ng) + n~1/3D + 2n718))n E| X |

+2 Ks(1+4%(p*(ng) + n~V/E9))(1 - [n/2)/n) ¥ n9/

[logn] .
xexp(2K1 > 9(2‘))||X||g
i=0

[logn] .
+2.4% Kint® exp(2K1 3. p(2))IXI1
i=0

+2 K3(1+4%(p**(ng) + n/C0))

1/24+(q-1)/[q]
g (1 B [n/2]) R l/2+(@-1)/lq]
n

[logn]
X exp(K1 > (p@)+ pzf[q](z')))uxuz NXIE
=0

+2. 4349 K% n1/2+(q—1)/[q]

[logn]
X exp(K1 Y- (p(2) + pz/[q](zl)))HXllg nxne!
i=0

<J.nE|X|?+ (K260+2- 434K§)n1/2+(q—1)/[q]

[logn]
cep(Ks 3 (p(2)+ p10(2) )X LX)
—O

[logn] .
+(K260+2-4%K?2)ne? exp(2K1 > p(2'))||X||g
i=0

= J,nE|X|? + Kgnl/2+a-D/ld]

[logn]

xexp(K1 3 (p(2)+ o102 )Xl 11
i=0

[logn] .
+K2n‘I/2exp(2K1 Y p(2‘))I|X||g~

i=0

“r

This proves that (2.26) holds for n, too.
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We now estimate J,. By (2.25), we have, for 2" > my,
Jon < Jon1 (1 4 43¢ (p2/q (2(n—1)/(3q)) 4+ 2-(r-1)/Bg) 4 21—(n—1)/6))
< Jon1 exp(43q(p2/q(2(n—1)/(3q)) +2-(n=1)/3q) 21—(n—1)/6))'

Thus, by recurrence,

o < Jo exp(43q i( p?/4(2i/39) 4 9-i/(30) 21—i/6))
(2.27) i=0

< JoCy exp(C1 sz/"(Zi)),
i=0

where C; > 1 is a constant whose value depends only on q. Clearly, by the
definition of J,, (2.27) remains true when 2" < my. For any given m > 1, take
n such that 2" < m < 2"*1, Hence, by (2.27),

n+l .
Jm < J2n+1 < JO Cl exp(Cl Z p2/Q(2t))
i=0

(2.28)
[log m] .
< JoCqet exp(01 > p2/q(2‘)).
i=0

A combination of (2.28) with (2.26) yields that there is a K3 such that

[logn] )
EM(n)? < K3 (n"/2 exp(K3 > p(2‘))||X||g + nl/2+@-1)/lq]
i=0

[logn] ) ]
2.29) x eXP(Ks 2 (@) + p2/[q]<2’)))||xuz IX11E
' i=0

[logn] .
+n exp(K;; > p(2’))E|X|q).

i=0

If2 < g <3,then[q] = 2. In this case, (2.15) follows from (2.29) immediately.
If ¢ > 3, we put

_(g=1)([q]-2)
(¢ —2)[q]

It is easy to see that 0 < @ < 1 and

2(1 q-[q]l(g—1) o
5(§+ a-2 [q] )+a_1'

, In terms of the Lyapunov inequality, we have

E|X |19 < (E|X?)a-1aD/(a-2)( g x|9)(a]-2)/(a-2)
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and hence

[logn]

WiV exp(Ky 3 ((2) + p¥12) Ik X1
i=0

[logn]
< nl/2+(q—l)/[q] exp(K3 Z (p(zl) +p2/q(2i)))
i=0

% ||X||21)+<2(‘1—1>)/[‘1]'(q—[‘1])/(‘1—2> (Elqu)((q——l)([q]—2))/((q—2)[q])

- g (1 B ooy 11320
=n exp( K3 ) p(2") ) I1X1I3

(2.30) rar

[logn] )
xntexp(Ka Y. p792)) (BIXI)"

i=0

[logn]

K .
anfzexp(l—_"’—a )y p(z‘))uXug

i=0

K3 [logn] .
+n exp(7 Z (pz/q(zl))) E| X1
i=0

This proves (2.15) by (2.30) and (2.29).

. When ¢ > 3 is an integer, along the same lines as the above proof, but with
q — 1 instead of [¢], we can deduce that (2.15) remains true. Now the proof

of the theorem is complete. O
PrROOF OF THEOREM 1.2. Clearly, we have
P(max [S,(i)] 2 %)
i1<n

k+n k+i
< 3 PUX = A)+ P(max| Y XI0X,1< A} > %)
" i=k+1 i<n j=k+1
k+n
< Y P(Xi>A)
i=k+1 )
k+i
(2.31) +P(I?§1xj=§-1XJI{|XJ| < A} - EX;I{|X}]| <A}l
k+n
>x- 3 BIXIHIX)2 A))
Jj=k+1
k+n
< Y P(XizA)
i=k+1
k+i .
. +P(max Z XjI{lXj|<A}—EXjI{IXj|<A}lzx/2),
' ==kl

by (1.3).
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Now (1.2) follows from (2.31), Theorem 1.1 and the Chebychev inequal-
ity. O

REMARK 2.1. Along the same lines as the proofs of Theorem 1.1, one can
easily deduce the following result, which is rather useful in some cases. The
proof is left to the reader: Assume that EX; = 0 and ||X;|l; < oo for some
2 < q < 3 and that there is a slowly varying function h(n) satisfying h(n) >
exp(—Co Y18™ 5(21)) for some Cy such that for any k>0, n > 1,

S2(n) <nh(n) max EX?2

k<i<k+n
Then there exists a constant K such that for any k>0, n > 1,

E;n.ax IS4(D)1°
[logn]

((nh(n) max EXZ)/ +n exp(K Z pz/q(2‘)) max EIXin).

k<i<k+n !

3. Complete convergence. Applying Theorem 1.2, one can obtain the
following results on the complete convergence for p-mixing sequences, which
_is a kind of convergence rate with respect to the strong law of large numbers

[cf. Hsu and Robbins (1947) and Baum and Katz (1965)].

THEOREM 3.1. Let 1 > a > 1/2, pa > 1, {X,, n > 1} be a p-mixing
sequence of identically distributed random variables with EX, = 0 and
E|X,|P < oco. Assume that

3.1 , i p2m(2") < oo,

n=1

wheref:2if15p<2andr>pifpz2. Then

& pa—2 . a
38.2) Ve>0, . Z n P(r?;xlS(z)l > en ) < 00.

n=1

The proof is the same as that of Corollary 1 in Shao (1989a), by using
Theorem 1.2 instead of Lemma 2.4 there, so it is omitted here.

An immediate consequence of the above complete convergence is the follow-
ing Marcinkiewicz—Zygmund law of large numbers.

COROLLARY 3.1. Let 1 < p < 2, {X,, n > 1} be a p-mixing sequence of
identically distributed random variables with EX, = 0 and E|X,|? < oo.
<Assume that

Z p(2") < oo.
n=1 :
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Then

Jlim S(n)/nYP =0 a.s.

4. Almost sure summability of partial sums. Another way to describe
the convergence rate in the strong law of large numbers is by studying the
almost sure summability of partial sums [cf. Csérgd, Horvath and Shao (1991)].
Based on Theorem 1.2, we present the following result.

THEOREM 4.1. Let {X,, n > 1} be a p-mixing sequence of identically dis-
tributed random variables with EX, = 0 and E|X,|? < cc. Assume that p > 0
and

o0
(4.1) 3 pM@P)(2M) < o0,
n=1

Then, for any sequence {q(n),n > 1} of positive numbers satisfying

(4.2) > nP2/q(n) < oo,
n=1
we have
4.3) Zmax [S(@)|1P/q(n) <0 a.s.
n=1 =

COROLLARY 4.1. Let p > 0, {q(n),n > 1} be a sequence of positive numbers,
{X,, n > 1} i.i.d. random variables with EX; =0, 0 < EX% < 00. Then the

following statements are equivalent:

(4.4) Y 18(n)IP/q(n) < oo a.s.
n=1
4.5) imaxIS(i)Ip/q(n) <00 a.s.
n=l i=n
(4.6) i nP2/q(n) < oo.
n=1

REMARK 4.1. Corollary 4.1 was first obtained by Csérg6, Horvath and Shao
(1991), but there it was assumed that max;<2, q(i) < C q(n) for some C > 0
and for any n > 1. .

. PROOF OF THEOREM 4.1. When 0 < p < 2, it follows from (4.1) and Corol-
lary 1.1 used with g = 2 that

Emax |S(i)|? < KnP/2.
1<n
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Therefore, by (4.2),
o0
E( > max IS(i)I"/q(n)) < 00,
n=1 '=n

which yields (4.3) immediately.
If p > 2, we put

k
X=X I{|I X3 < B}, Sa1=) Xp1
i=1

Since EX?2 < oo implies P(X}, # X1, 1.0.) =0, it suffices to show that
[o]

4.7 E( > max ISi,ll"/q(n)) < o0.
n=1 =

Using Corollary 1.1 again, we have

Emax|S;1|P
t<n

n p
= K((Z |EXi,1|) +(n EX))P2? + n E| X1 |PI{| X1| < n1/2})

i=1

n p
< k(( L EXaHXn > 1)

i=1

(4.8)
+ (nEX2)P? 4 n B\ Xy PI{| X1 < n1/2})

n p
< K((Zi-mEX%) + (n EX3)P + n/? E|X1|2)

i=1

< KnP2,

This proves (4.7), by (4.8) and (4.2), as desired.

PROOF OF COROLLARY 4.1. In terms of Lemma 2.1 of Csorg6, Horvath and
Shao (1993), (4.4) implies

4.9) S (med|S(n)))?/q(n) < oo.
1

By the central limit theorem,
nY/2 = O(med|S(n)|), med|S(n)| = O(n'/?).

Therefore, (4.4) implies (4.6). On the other hand, from Theorem 4.1 it follows
that (4.6) = (4.5) = (4.4).
This proves the corollary. O
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