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A NOTE ON THE ASYMPTOTIC INDEPENDENCE OF THE
SUM AND MAXIMUM OF STRONGLY MIXING
STATIONARY RANDOM VARIABLES!

By TAILEN HsING

- Texas A & M University

It is shown that ¥}_; X, and max}_,X; are asymptotically indepen-
dent if {X;} is strongly mixing and L}_,X; is asymptotically Gaussian.
This generalizes a result of Anderson and Turkman.

1. Introduction. Let {X;} be a weakly dependent strictly stationary
sequence of random variables, where weak dependence is, for the time being,
loosely interpreted to mean that the dependence between the members of the
sequence weakens as time separation increases. It is well known that in the
infinite variance case, the asymptotic behavior of S, = L7_, X is dominated
by that of the extreme order statistics, so that S, and M, = max}_,X; are
asymptotically dependent. See Lévy (1953), Chow and Teugels (1978),
LePage, Woodroofe and Zinn (1981) and Davis and Hsing (1995). Chow and
Teugels (1978) also showed that if {X;} is iid and P[X; < x] is in both the
sum-domain of attraction of the normal distribution and the max-domain of
attraction of an extreme value distribution, then S, and M, are asymptoti-
cally independent. Anderson and Turkman (1991) extended Chow and Teugels’
result by showing that the asymptotic independence of S, and M,, still holds
true if (i) {X,} is a zero mean strictly stationary sequence which has a nonzero
extremal index and satisfies the strong mixing condition, (ii) for constants
a,,c,,d, with a, - «, S, /a, converges in distribution to Normal(0, 1) and
(M, — d,)/c, converges in distribution to a Gumbel distribution or a Pareto
distribution with tail index greater than 2 and (iii) {X} satisfies

[n/k]
lim lim supk Y. E[lexp(it(Sn, 5 — X;)/a0) — Ulgs exvay| =0, all .

n—-o J=1

The purpose of the present paper is to show that for a stationary sequence,
strong mixing and the asymptotic normality of S, are basically enough to
guarantee the asymptotic independence of the sum and maximum. In doing
so0, we also clarify that this is a special case of a more general result which
follows as a consequence of asymptotic normality but has little to do with
order statistics.
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The main result of this paper is stated as follows.

THEOREM 1.1. Let {X,} be a strictly stationary, strongly mixing sequence
of random variables with zero mean and finite variance. Assume that o’ =
ES2 - » and {S,/0,} satisfies the central limit theorem (i.e., S,/d, con-
verges in distribution to standard normal). Then for any sequence B, of Borel
sets in (— o, ®) such that

(1.1) limian[ N (X, €B,)| >0,

<] .
n- i=1

the conditional distribution F,(x) = P[S,/0, <xIN! (X, € B,)] converges
weakly to the standard normal distribution.

Clearly, if for some monotone increasing function u,(y), y € (—o,»), for
which

P[M, <u,(y)] =, G(¥),

where G is a probability distribution, then letting B, = (—%,u,(y)] in
Theorem 1.1 gives

P[S,/0, <x, M, <u,(y)] 2, ®(x)G(y),

generalizing Anderson and Turkman’s result.

The proof of Theorem 1.1 is given in Section 2. The intuitive explanation of
the asymptotic independence of the sum and maximum comes from the
following observation. If {X;} is weakly dependent and S, is asymptotically
normal, then the individual summands must be asymptotically negligible and
therefore the extreme terms should play no role in the limiting distribution.
In our proof, the asymptotic negligibility of the summands is described by a
Lindeberg-type condition, based on a central limit theorem for strongly
mixing random variables in Ibragimov and Linnik (1971).

2. Technical details. To be precise, we define the strong mixing condi-
tion as follows. For [ > 1, the mixing coefficient a(l) is defined by

a(l) = sup{lP[A N B] — P[A]P[B]: A€ ., BETp, 14100
for all m > 1},

where .7, i is the o-field generated by X,, i <k <j. The strong mixing
condition is said to hold for {X;} if a(l) » 0 as [ - ». The strong mixing
condition is one of a number of standard weak dependence conditions under
which limit theorems concerning S, are derived; see Peligrad (1986) and

Philipp (1986).
Before proving Theorem 1.1, we first cite the following fundamental theo-

rem, which is crucial for the proof.

THEOREM 2.1 [Ibragimov and Linnik (1971), Theorem 18.4.1]. Assume
that {X}} is a zero mean strictly stationary strongly mixing sequence with
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mixing coefficient a and finite second moments. In order for the central limit
theorem to hold for {S,/a,}, where o2 = E(S2) and lim, ., 0, = o, it is
necessary that:

(@) 0,2 = nh(n), where h is a slowly varying function defined on the positive
axis.

(ii) For any pair of sequences of integers p = p(n), q = q(n), such that (a)
p—>%°,q—>oandq =o0(p), p=o0(n)asn - »,(b)lim, ., n'"Pg**#/p? =0
for all B> 0 and (c) limn_,oo na(q)/p = 0, we have

(2.1) lim E[s Ijs,i> eop] =0 forall &> 0.

oopa'

Conversely, if condition (i) is fulfilled and (2.1) holds for some p, q satisfying
(a), (b) and (c), then the central limit theorem holds for {S, /).

For1 <i <j<n and n > 1, define the event
J
H® = ( (X, €B,),

where B, B,, ... are as in Theorem 1.1.

Proor oF THEOREM 1.1. Let p,q be chosen as in (a), (b) and (c¢) of
Theorem 2.1, which is always possible under strong mixing. Since the central
limit theorem holds for {S, /a,}, (2.1) holds. Let £ = k&, be the integer part of
n/(p + q). Clearly, & ~ n/p.

The notation P is reserved for the probability measure of the probability
space on which {X}} is defined and, as usual, the expectation with respect to
P is denoted by E. Consider the sequence of random variables { X} defined on
another probability space with probability measure P and with the distribu-
tion of {X,} determined by

n
P[X’l le,...,)ijxj] =P[X1 <x,...,X; <%l (X, €B,)
i=1

P[(X1 <xy,...,X;<x;) N H{"
P[H(”)

Also the expectation with respect to P is denoted by E. Define

(+Dp+iq .
£E= Y X, O0<i<k-1,
Jj=ilp+g)+1
! G+1(p+q)
7 = > X, O<i<k-1,

Jj=G+Dp+ig+1
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n o~
';'k = Z Xj9
j=k(p+g)+1
k-1 k
o-n_lgn = a',,_lS~; + a'n_1S~;: =g 1 Yy g,?, + o1 Z ;-
i=1 i=0

Clearly, we are to show that {S,/c,} satisfies the central limit theorem. By
the Schwarz inequality,

E[(0;1§Z)2] =a,;2( Y E(aw)
0<i,j<k-1
+2 X E‘(ﬁim)wi’(ﬁf))
(2'2) O<i<k-1
et T mnEne)
0<i,j<k-1
2 T B(R)E() + B().
O<i<k-1
By the definition of E,

. E(nﬁIHin;) E(n?)

where
G+ 1Xp+q)
n = Y X, O0<i<k-1,
Jj=G+Dp+ig+1
n
M = ) X;.
Jj=k(p+g)+1

Thus the right-hand side of (2.2) is bounded by
1
. P[H{"] (R*E(n) + 2kE/*(n)E*/*(nf) + E(n;))-

In view of (1.1), this tends to zero by (18.4.8) of Ibragimov and Linnik (1971).
Thus o, 'S, has the same limiting distribution, if any, as o;'S,. Using
arguments similar to those on page 338 of Ibragimov and Linnik (1971), and
by Lemma 2.2 below and the notation there, we obtain

JE[exp(ita,; 1$,)| - E*[exp(ito; %, )| | < 16ka,(q)

(2.3) P[(H™)| + a(q)
con UL
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By Lemma 2.3, the choice of p, ¢ and (1.1), the right-hand side of (2.3) tends
to zero. Thus, o, 1S, and hence o, 'S, have the same limiting distribution, if
any, as

k-1 _
Un_l Z 'fil’
i=0

where £/,0<i<k — 1, are independent random variables and £/ has the
same distribution as ¢;. By Lemmas 2.4 and 2.5 below,

E-1
E’(a{l.Zé’)AO and E’( 12§) - 1.

Thus, to show that {o;, -1§ .} satisfies the central limit theorem, it remains to
verify the L1ndeberg condition for o %,,..., 0 ¢ _,. However,

o E[ | < E[s2]
Z (If |> e0y) pa.n2P[H§:1')LI [ (S, > so-,.)] ’
which tends to zero for all £ > 0 by (1.1) and (2.1). This concludes the proof.
O

The following lemmas, which assume the conditions and notation of the
preceding proof, serve to fill the gaps therein.

LEMMA 2.2. Let & ; denote the o-field generated by X )ZJ Then for
0<l<n-1,

G,(1) = sup{rﬁ[A NB) - BlA]B[B]: Aes . BETy 11

(2.4) ' for all m satisfyingl <m <m +1 + 1_<_n}
- P[(H{M)] + a(t)
A plEp]
where (H{")" is the complement of H{") and «a is the strong mixing coefficient

of {Xi}-

PrOOF. Denote by 7 ;, i <j, the o-field generated by X,, , X;. For
convenience, if A is some event in Z ;, the corresponding event in 9’ W111 be
denoted by A and vice versa. For 1 s m<m+l+1<n,let A e9’1 » and
B e.97+l+1 .- Then
P[AnBnH™] P[AnH{] P[BnH®]

P[H(] P[H(]  P[H{"]

P|AnB| - P[A]B[B] =

C

[
Mo

n,i’

i=1
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where
c - P[ANBNH{ P[A NBNH®™ NHM, ]
~ T T PIHT] P[] |
c - P[ANBNH®™ NnHM,,, ] P[A nH®,|P[BNn Hm+,+1 o
P[A; P[] |
_ P[AnH|P[BNHY .1,.]
m P[H{")
P[ANH®, nH®M,, ,|P[BNH®M NHD 0]
- P[H{®,[P[H 1,.| P[H) ’
c - P[AnH® nHM, , .|P[BNH, NHM 1,0
P[H{",[P[H;. 1, . P[H)
P[AnH{]|P[B n H{"]
P[H?,[P[HY), o | P[H]”
o . PlANHDIP[BAHD]  P[ANHIL|PB nH{"]
e PHMTP[HY 1 | PIER]  PHM, 0 HY, 0 | PIH]Y
c - P[AnH®"|P[BnHM]  P[AnH{]|P[BN H(”)]
»¢ P[H®™, " HMy.1,, PLHT P [H®M]
Clearly,
H" (m)°© (n) ¢
By the strong mixing condition,
c, < 2 e gz2="Y _ nd 10, <D
S Mt S ) B S ()
Thus,

P[(HM)| + a(2)
P3[H{™]

\B[An B| - BLA1P[B]l <4
Since the right-hand side is independent of m, we Have shown (2.4). O

'LEMMA 2.3. Fork,q deﬁned in the proof,
(2.5) lim P[(H()] = 0.

n-oow
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Proor. First fix r to be a positive integer. For large n, let i, and j,,
1 < s < kr, be integers in {1,..., n} such that each of the intervals [i,, j,]
contains exactly g integers, and the intervals are separated from one another
by at least ¢ integers. This is possible if n is large enough since kg = o(n).
Now consider the quantity P[N*.;H™ ]. By the definition of the mixing
coefficient a and stationarity,

kr
p| 5| Py

which tends to 0 by (c) of Theorem 2.1. Thus

<kra(q),

kr n
liminfP* | H™ | = liminfP H®™. | > liminfP X. €eB)|>0
l.q n—-o -1 ts1Js n—-o ¢ n

n—e i=1
by (1.1). Since this holds for all positive integers r, the only possibility is that
P*[H{] — 1, which is equivalent to (2.5). O
LeMMA 2.4. Uniformly forall 0 <i <k — 1,

kB o .
—_— 2
0n2E(§)—>1 asn — .

PROOF. An ingredient of the proof of Theorem 2.1 is
(2.6) E(Sﬁ) ~al/k.

See the first equation on page 273 of Denker (1986). Thus it suffices to show
that uniformly for all 0 <i <%k — 1,

E(£?)~E(S?) asn— =

For convenience of notation we illustrate the proof for i = 0. The general
proof is basically the same. First fix £ > 0 and write

BE) | ElotSt] 4,
B(s5) PlEDIB(s ) A

where

C _ E[O‘,E_ZS}%IH{n’)L] 3 E[Un_zsgl((r;zsgse)IH{j‘,{]
' P[H("]E(q;%S?) P[H{"]E(o;282)

c _E [0 S3lersis o lum]  E[ 07 S Loios < oilug, ]
“* P[H{]E(e%s?)  P[HM]E(SE)

c - E[0* 8} Lozrsi< olug,.n,]  E[ % *Silrrsr< o)) P[H g1 1,0]
n,3 - ’

P[H{}]E(o;"S}) - P[H(]E(o; 7S7)
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_ E[07%SM 512 0| P[HYPav1,0]  E[ 07 *Sp o2y < | PLHIT

. P[H{]E(a;*S}) P[HM]E(c;%82)
C _ E[O'n_zsgl(g-;ngs8)]P[H{?,)l] B
~5 T P[HM]E(q, °S?)
Clearly,

0<C. .= E["rfzsgf(.,;zspe)lflm] - E[0;2S31¢;233>s)]
=T T P[HME(0%SE) T P[HM]E(o;?S7)

’

which, together with (1.1), (2.1) and (2.6), implies

lim Cn,l = O.
n—©
Next,
E[ 07282 o252 < ok, ]
0= =Co2 = = B[HME(q; 752
[ l.n] (Un P)
(2.7)

Pl ]

~ P[H{M]E(0;?SE)

By Lemma 2.3 of Hsing, Hiisler and Leadbetter (1988) and (1.1),
(28) P*H{7),,] - P[H{R] > 0.

Hence it follows from (1.1), (2.6) and (2.7) that

limsup|C, ,| < be,

n—o

where

. liminf, ., log( P[ H{"}])
(29) B liminf, _,, P|H{")
By the strong mixing condition and Lemma 1.1 of Peligrad (1986),

2mea(q)
P[H{?,{]E(a;zsg) ’

ICn,3| =

which tends to 0 by (1.1), (2.6) and (c) of Theorem 2.1. The quantities C, , and
C, 5 are taken care of in the same way as C, ; and C, . are, respectively, so
that

5
limsup ), |C, ;| < 2bs.

Since & > 0 is arbitrary, the result followé. O
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LEMMA 2.5. Uniformly forall 0 <i <k —1,
k E(§)-0
—_ L) - — 00,
o (&) asn
PrROOF. Again we illustrate the proof by taking i = 0. For fixed &> 0,
write

k. . E[O'n_ISpIH{:-;']
:nE(§o) = k_—T—P[H{"r), =C,1+C, 2,
where
c =l [0Sy Tugy] kE [ *80 sy < o ]
n1 P[H{) P[H{) ’
c - kE[“n-lSpI(lsplswn)IHiI‘r’.]
e P[H{7] '

By (1.1) and (2.1),
E[0;'S,Lis, > o
P[H{")
Now, using arguments similar to those in Lemma 2.4,
c
)
*T P[H{,

a(q)
P[H™]

-2Q2
1 E["n SpI(lsp|>san)]
q

PIE?] o

<ke

ICn,ll = k

ICn,gl <k

(2.10)

+27e +|E[o.n_1SpI(|Sp|.<_6'0'n)]

.

Since S, has mean zero, .
E [0{ 1SpIaS.pls e«m] =-E [UJ 'Sy Lis, 1> s«rn)]~
Using (2.10), it follows from (1.1), (2.8), the choice of p, g and (2.1) that
limsup|C, ;| < 2be¢,

n—wo

where b is defined in (2.9). Since £ > 0 is arbitrary, the proof is complete. O
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