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This paper contains some extension of Kolmogorov’s maximal in-
equality to dependent sequences. Next we derive dependent
Marcinkiewicz-Zygmund type strong laws of large numbers from this
inequality. In particular, for stationary strongly mixing sequences (X;); 7
with sequence of mixing coefficients («,,), » o, the Marcinkiewicz-Zygmund
SLLN of order p holds if [{[a~1(¢)]?~'Q?(¢)dt < », where a~! denotes
the inverse function of the mixing rate function ¢ — o, and Q denotes
the quantile function of | X;|. The condition is obtained by an interpolation
between the condition of Doukhan, Massart and Rio implying the CLT
(p = 2) and the integrability of |X,| implying the usual SLLN (p = 1).
Moreover, we prove that this condition cannot be improved for stationary
sequences and power-type rates of strong mixing.

0. Introduction. Among the most useful tools of probability theory are
the many devices used to bound in probability or in L,-norm the random
variable sup,_,|S,, where S, = Lf_;X;. When the X, are independent
random variables, many inequalities such as those of Kolmogorov, Ottaviani
and Bernstein are available. In the weakly dependent case, most of the
extensions of these inequalities are mainly based on Doob’s inequality for
martingales [see, e.g.,, McLeish (1975)]: the weakly dependent sequence is
approximated by some martingale difference sequence, and one can derive a
maximal inequality for the weakly dependent sequence from the available
inequalities for the approximating martingale [see Hall and Heyde (1980)].
Concerning the applications to strongly mixing sequences, this method leads
to some loss concerning the conditions of decay of the mixing coefficients. In
order to improve the previous results, we will prove in this paper a new
maximal inequality. The proof is performed via a Lindeberg-type method.
This method allows us to minimize the effect of long range interactions
between the random variables. So we will obtain rates of convergence in the
strong law under minimal conditions on the mixing coefficients and on the
tail distributions of the random variables.

We are interested in two different types of results. First, we want to obtain
some criteria on the mixing coefficients and on the tail distributions of the
random variables implying the almost sure convergence of n~!/78, to 0 (such
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a result will be called a Marcinkiewicz—Zygmund strong law of order p).
Second, we want to obtain some criteria implying the almost sure conver-
gence of the series L, ( X.

In order to give an outline of the results, we introduce the following
notations.

NoraTIONS. For any nonincreasing cadlag function H: R*— R*, let H -1
denote the cadlag inverse function of H, which is defined by

(0.0) H '(u) = sup{t € R*: H(t) > u},

with the convention that sup & = 0. For any real-valued random variable X
with distribution function F, we denote by Qx or @ the inverse function of
t > P(X|>t). We set @, = Qx..

If (a,),50 is a nonincreasing sequence of nonnegative real numbers, we
denote by a(-) the cadlag rate function which is defined by a(t) = o).
Throughout the sequel, a~! denotes the inverse function of this rate function
a(-).

We first give the conditions implying the almost sure convergence of the
series T;, o X;. Let us first explain the summability condition that we can
expect in the strong mixing case. It follows from Theorem 1.2 in Rio (1993)
that

i n-1 n n
(01) VarS,<4 YL ¥ [Q}t)dt<4 ¥ [‘a"i(t/2)QX¢t)dr.

k=0i=1"0 i=170
The above upper bound for the variance improves the previous upper bounds
based on Davydov’s covariance inequality [Davydov (1968)]. In fact (0.1) is
based on a more efficient covariance inequality than Davydov’s [see Theorem
1.1 in Rio (1993)]. Hence, (Var S,), . , is a bounded sequence as soon as

(0.2) ' i fla"l(t/Z)Qiz(t) dt < .
i=1"0

Assume now that E(X;) = 0. In this paper, we obtain the almost sure conver-
gence of the sequence X, ,X; under condition (0.2) (we will compare this
condition with the previous conditions in Section 1).

In the independent case, one can derive the Marcinkiewicz-Zygmund
strong law from the classical Kolomogorov three series theorem. However, in
the strong mixing case, such a method needs the mixing condition (0.2). Now,
if there exists some positive i such that the random variable X; is not a.s. a
constant, condition (0.2) needs the summability condition

(0.3) [ola-l(zf) du=Y a, <o

nx=0

Hence this method leads to the too restrictive summability condition X, , o,
< o, where (a,), >, denotes the strong mixing coefficients of the sequence

(Xi)iel'
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By contrast, using the slightly stronger notion of B-mixing and a coupling
method, Berbee (1987) proved that, for bounded mixing sequences, the
Marcinkiewicz—Zygmund strong law of order p holds under the summability
condition

(0.4) Y nP 3B, <,

n>0

He also established that (0.4) is a minimal condition. His counterexample is a
counterexample to Hipp’s results (1979) on the convergence rates in the
strong law [see Shao (1993) for a detailed discussion about the validity of
Hipp’s results]. Shao (1993) recently obtained some extensions of this result
to unbounded variables and strong mixing. However, the blocking technique
used by Shao [see the proof of Lemma 1 in Shao (1993)] does not lead to
optimal results, as we shall see in Section 1.

In this paper, we obtain the natural extension of (0.4) to strongly mixing
sequences of unbounded random variables. We prove that, for p in ]1,2[ and
sequences of identically distributed zero mean real-valued random variables,
the Marcinkiewicz—Zygmund strong law of order p holds if

(©5) fol[a“l(t/2)]p_1Q"(t) dt < o,

where @ = Q,. In the stationary case, this condition is the natural condition
obtained by an interpolation between the condition of Doukhan, Massart and
Rio (1994) implying the CLT [condition (0.5) with p = 2] for strong mixing
sequences and the integrability of |X,| implying the usual SLLN (p = 1)
[note that for bounded sequences, (0.5) holds if and only if ©,, , on? %, < ).
Since the proof cannot be done via a three series type theorem, we use both
our maximal inequality for maxima of partial sums and adequate truncations
of the random variables to prove this result. Moreover, we prove that this
condition cannot be improved for power-type rates of strong mixing. We also
apply this method to the strong law of large numbers. For example, we prove
that if (X;);., is a strongly mixing sequence of real-valued identically
distributed random variables such that

(0.6) E(1X,llog™*| X,l) < oo,

the strong law of large numbers holds as soon as «, = O(n~¢) for some
positive ¢. As far as we know, this result is new. Moreover, we prove that this
condition cannot be improved.

1. Definitions and results. Let (X;),., be a sequence of real-valued
random variables. In order to state our main inequality, we introduce the
following coefficients of dependence, which can easily be compared with the
strong mixing coefficients of Rosenblatt (1956) [see Lemma 1 in this section].



DEPENDENT STRONG LAWS 921

Measures of weak dependence. For any positive x, let Z,(x) denote the
family of functions from R” into [—1,1] such that, for any z = (z,,..., z,)
and any y = (yy,...,,) in R?,

1 »

(1.0) If(2) = f(¥)! < s Z |z, — 3.
Let #%(x) be the set of functions f in .%,(x) such that f(z,,...,2,_,,0) =
For any positive integer n, we set
(1.1a) Yon(%) = sup |Cov(f(Xy,...,X,), X,..)|,

feZ,(x)
(1.1b) 8, »(x) = sup x|Cov(f(X1, X,), p+n)|

FeZi(x)

Now we recall some basic definitions. For any two o-algebras & and & in
(Q,7,P), let

a(,8) = sup |P(ANB) - P(A)P(B)|
(A, B) ey xX#
= sup |Cov(1,, 1p)|
(A, B)eYXB

denote the strong mixing coefficient introduced by Rosenblatt (1956) [note
that a(«, #) < 1/4]. The strong mixing coefficients «, of the sequence
(X,); < 7 are defined by

(1.2) a, = sup a(F;_,, %)

kezZ
for any positive n, where & = o(X;: i <) and &, = 0(X,). We make the
convention that a, = 1/4. Let us also recall the definition of the B-mixing
coefficients of (X;); . ; [see Rozanov and Volkonskii (1959)]. Given two o-fields
& and & in (Q,7,P), the B-mixing coefficient B(«/, #) between .« and % is
defined by

B, @) = sup{ T T |P(4,0B)) - B(A)R(B)|),
iel jed

where the supremum is taken over finite partitions (A;);c; and (B));c s,

respectively, & and % measurable, and the B-mixing coefficients B, of the

sequence (X)), , are defined by B, = sup,.; B(F_,, &;). The following

inequalities between these coefficients hold:

(1.3) 1>8,22a,.
' Rates of convergence in the strong law for mixing sequences. In this

subsection, we state the extension of the Marcinkiewicz—Zygmund strong law
of large numbers to strongly mixing sequences.
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THEOREM 1. Let (X;);.; be a strongly mixing sequence of real-valued
integrable random variables. We set S, = L7?_(X; — E(X))). Let F denote the
unique distribution function of a nonnegative random variable X such that

P(X >t) = supP(1X;| >¢t) forallt €R.

i>0

() Let p €11,2[ and S, = L' ,X;. Assume that (0.5) holds with @ =
Qx = Qp. Then n~1/PS, converges a.s. to 0.
(ii) Assume that @ = Qx satisfies

(1.4) [l@(t)log(1 + a7 (¢/2)) dt < .
0
Then S, /n converges a.s. to 0.
CoMMENTS. Let U be a r.v. with uniform distribution over [0, 1]. Then

Q(U) has the same law as X. When the sequence (X)), ., is m-dependent,
a, = 0 for any n > m. Then a~'(¢/2) < m. Hence (0.5) holds as soon as

folQp(t) dt = E(XP) < .

Let us give another formulation of (0.5). Since a '(z) = n for any u in
[ a;; 9 an - 1[?

[a'(¢/2)]"  <c, & (n + 1)1, 4,

n>0
for any p in ]1,2]. It follows that (0.5) holds true if and only if
(1.5) T (n+ )P [*Qr(r) dt <.
: n>0 0
In the same way, one can prove that (1.4) holds true if
(1.6) T (n+1)7 [*UQ(t) dt < .
n>0 ' 0

We now compare Theorem 1 with earlier results. As we will see below, the
main advantages of conditions (0.5) and (1.4) is that they give an unified
approach of complete convergence for strongly mixing sequences. Further-
more these conditions cannot be improved, as shown by Theorems 2 and 3.

Applications of Theorem 1. Here we discuss the scope of conditions (0.5)
and (1.4). We first treat the case of uniformly bounded random variables.

1. Bounded random variables. Assume that || X|l. = M < «. Then @ takes
‘its values in [0, M], and (1.5) holds if and only

Y, nP %, < o,
n>0 .
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Consequently, Theorem 1(i) generalizes Theorem 1.1 of Berbee (1987) to
strongly mixing sequences.

Under the above assumption on the distribution of the random variables,
(1.4) is equivalent to the mixing condition ¥, ,n"la, < , which gives
another proof of Theorem 1.2 in Berbee (1987). However, in this case the
strong law of large numbers is a direct consequence of Theorems 3 and 7 of
Gal and Koksma (1950) via Ibragimov’s covariance inequality for bounded
random variables.

2. Tail conditions. Suppose that for some r in ] p, ],

(1.7) P(X>1t) = O(+") ast— .
Then Q(¢) = O(t™1/7) as u tends to 0. So (1.5) and (0.5) hold if

(1.8) Y nP2lor/T < o,

n>0

Let us compare this result with Theorem 1 in Shao (1993): (1.8) holds as
soon as a, = O(n™"(P~V/C=P)log n)~#) for some B > r/(r — p), while Shao’s
result (applied with ap = 1) needs B8 > rp/(r — p) [note that Shao’s moment
assumption sup,;, /| X;||I” < « implies (1.7)]. Moreover, it follows from Exam-
ple 1 in Shao (1993) that the strong law of order p does not remain valid if
B=r/(r —p).

Now, by Theorem 1(ii) and (1.6), the SLLN holds if

Y n a7 < oo,
n>0

For example, this condition holds if a, = O((log n(loglog n)?)~"/"~1) for
some 0 > 1, which improves on Corollary 1 in Shao (1993). Moreover, it
follows from Example 2 in Shao (1993) that the power of log n appearing here
cannot be improved.

3. Holder spaces. Assume now that E(X”") < «. Since this condition is
equivalent to the integrability condition

(1.9) le’(t) dt < «,
0
it follows from Hélder’s inequality that (0.5) holds as soon as
(1.10) Y Ere=D+p)/C-Py, < o,
k>0 .

For example, if (1.9) holds with » = p/(2 — p), (1.10) is equivalent to (0.3).
Let us compare this result with Theorem 1 in Shao (1993): (1.10) holds if
a, = O(n="P~1/-P)log n)~#) for some B > 1, while Shao’s result (applied
with ap = 1) needs B> rp/(r — p). However, his moment assumption
sup; , ol X;ll, < « is weaker than (1.9) in the nonstationary case.



924 E. RIO

Now, by the Hélder inequality, (1.4) holds if
[ (og(1 + a7(2/2)))"" P < .
0

This condition is equivalent to the summability condition

Y n l(log n)"" Pa, < .
n>0

For example the SLLN holds as soon as a, = O((log n)""/"~Y(loglog n)~?)
for some 6 > 1.

4. Exponential mixing rates. Assume now that a, = O(a") for some a in
10, 1[. Using the Young inequality in Orlicz spaces [see Dellacherie and Meyer
(1975) and Rio (1993), pages 596 and 593, for its application in the context of
this paper], we get that (0.5) holds if

(1.11) E(X?(log* X)"™ ') < o,
In the same way, one can prove that (1.4) holds as soon as
E(X log* log* X) < .

_ 5. Power-type mixing rates. Suppose that a, = O(n~*) for some positive
a. Then (0.5) holds if

(1.12) [lt0-p/oQr(t) dt < o,
0

This condition differs in a fundamental way from a moment condition on the
random variable X. So we believe that the integral conditions proposed in
this paper give a more intrinsic approach to limit theorems for weakly
dependent random variables than Ibragimov’s approach (1962).

By contrast, the Young inequality [see Rio (1993), pages 596 and 593, for
its application in this context] ensures that condition (1.4) implying the
strong law holds true if E(X log™ X) < «, as noted in the Introduction. Let us
compare this result with Theorems 2 and 3 of Birkel (1992) when the random
variables are identically distributed. Set G(s) = P(X > ¢). Then

|P(X;>s,X;>t) - G(s)G(t)|
<ay_jAG(s) AG(E) A (1-G(s)) A(1-G(t)).

Moreover, this inequality is optimal, up to some constant factor [see (b) of
Theorem 1.1. in Rio (1993)]. Hence Birkel’s results need the integrability of
the upper bound, which is equivalent to E(X?2) < « [see Fréchet (1951, 1957)
or'Rio (1993)]. However, under the stronger assumption of -mixing, Theo-
rem 2 of Birkel applied to the random variables X; = X, Lix,<; ylelds the
strong law of large under the minimal moment assumption E(X) < « [see
Example 3, page 360, in Birkel (1992)].
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6. Logarithmic mixing rates and the strong law. Suppose that
a, = O0(log™ n)
for some b > 1. Then (1.4) holds if

(1.13) [olt-l/bQ(t) dt < .

For example, (1.13) holds if
P(X>t) =0(t%/® Dlog™P¢t) ast >

for some B> b/(b — 1).

Now, using a counterexample introduced in Doukhan, Massart and Rio
(1994), we can prove the following partial converse of Theorem 1 (i) for
stationary sequences and power-type rates of mixing.

THEOREM 2. Let p be any real in 11,2[. Let a > 0 and b € R be given. Let
F be any continuous distribution function of a zero-mean real-valued random
variable such that

(a) fol/z(tlogb(l/t))“"”/ “QE(t) dt = +.

Then there exists a stationary Markov chain (X,); . of r.v.’s with d.f. F such
that
0 < liminfrn?(log n)%a, < limsupn®(log n)°B, <«

n— +o n— +o
and

Er- 1 Xl
(b) ‘ lims:rup—;T;Tt— =+ a.s.
n— +o

CoMMENTS. In Section 4, we will sketch the proof of Theorem 2 in the case
b = 0. The proof in the case b # 0 uses exactly the same arguments.

Let us apply Theorem 2 with @ = r(p — 1)/(r — p) and b = 1. In this case,
the function ¢ — (@ '(¢#))?"! does not belong to the Hélder space
L7/=p)([0, 1]). Hence, by the Fischer-Riesz theorem and a classical result of
Fréchet [see Fréchet (1957), page 691, lines 6-14] there exists some continu-
ous d.f. F satisfying (a) and such that [{|x|” dF(x) = 1, which gives a positive
answer to a conjecture of Shao (1993), page 287] and a counterexample to
Hipp’s result in the unbounded case.

Now we state a theorem, which proves that Theorem 1(ii) cannot be
improved in the case of moderate rates of mixing.

. THEOREM 3. Let (¢,),s o be a sequence of reals in 10,1] decreasing to 0
and let ¢~ be the cadlag inverse function of t = ¢,. Assume that n — n%,
is nondecreasing for some large enough 0. We set ¢, =1. Let F be any
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continuous distribution function of an integrable random variable with mean
zero such that

(2) j:QF(t)log(l + o 1(2)) dt = +oo,

Then there exists a sequence (X,);.; of random variables with d.f. F such
that

(b) 0< 11m1nf( a,/¢,) < limsup(a,/¢,) <
n—+©
and
7, X
(c) lim sup ! >0 a.s.
n— +o

CoMMENTS. (a) is equivalent to T, o(n + 1)7}[¢Q(¢) dt = +. Since @
is nonincreasing, it follows that (a) holds if and only if (1.6) and (1.4) are
violated. Hence Theorem 3 is a converse of Theorem 1(ii) for power-type
mixing rates or logarithmic mixing rates.

Maximal inequalities, convergence of series of dependent r.v’s. We start
with the key inequality of the paper, which is Theorem 4.

THEOREM 4. Let (X;);.; be a sequence of real-valued random variables
with finite variance. Let S, = L} (X, — K(X})) and Sy = sup,,I|S,|. For
any positive x,

2
%2

n 4 n-1
(a) P(S} > 2x) < ; E(X?) + < §1 ¥;,1(%).

Moreover, for any positive p and k,
() Y,1(%) < Ypi1-p2(x) + — Z p+1-1,i(%)
with the conventions that v, ,(x) = 0 and §, ,(x) = 0 for any l <O0.

N(;w we quote a lemma, which allows us to estimate the dependence
coefficients §, ,(x) and v, ,(x). The proof is mainly based on Theorem 1.1 in
Rio (1993) and "will be camed out in the Appendix.



DEPENDENT STRONG LAWS 927

LEMMA 1. Let (X,);.; be a sequence of square-integrable random vari-
ables. Then

(2) p,n(2) = 2" "Qy(1)Qpa(t) dt,

(b) Y, n(2) < 2[02'1"Qp+n(t) dt.

Next we can derive from Theorem 4 the following criterion implying the
almost sure convergence of the series L, ( X,.

COROLLARY 1. Let (X)), .z be a sequence of real-valued zero-mean random
variables with finite variance. Then the series L;_,X; converges if

(@) L [lei(t/2)Qk(e) dt <+
i=170

CoMMENT. If (X,);.; is an m-dependent sequence, (a) is equivalent to
Kolmogorov’s condition L, , (E(X?) < .

" Applications of Corollary 1. Let us discuss the scope of (a). If the random
variables X, are defined in such a way that X; = ¢;Z; for some stationary
sequence (Z,); .z and if ¥, , y¢? < =, (a) holds as soon as

(1.14) fola‘l(t/2)Q%O(t) dt < .

For example, when E(|Z,|") < «, (1.14) holds if

T n¥/C-2g, < o,
n>0

which is a weaker condition than condition (b) in Remark (2.6) of McLeish
(1975) (note also that this condition is weaker than the classical condition of
Ibragimov implying the CLT).

The organization of the paper is the following: in Section 2, we prove the
maximal inequality. Sections 3 and 4 are devoted to the strong laws for
strongly mixing sequences. In Section 5, we apply the maximal inequality to
series of dependent random variables. We prove Lemma 1 in the Appendix.

2. The maximal inequality. In this section, we prove Theorem 4. We
. start by the proof of (a). The guideline of the proof is Section 2 in Sakhanenko
(1986). Set

SO, x = 0, S

px=Sp/x and S; = supS, ,.

psn
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Let the function g be defined by g(y) =y — 1 for any y in [1,2], g(y) = 0 for
any y < 1 and g(y) = 1 otherwise:
(2.1) P(sups, = 2x) < E(g(S},.))-

psn
Let the nonnegative differentiable function f be defined by f(y) = 0if y <0,
fly)=y%ifye[0,1]1and f(y) =2y —1if y > 1. If g(S¥,) —g(S;, ) >0,
S, ; = 1, which implies that 2S; , — 1> 1. Hence

g(Sy.) = E(g(s ) —8(8F1,.))
< ¥ (25, ~ D(&(SL0) ~£(511.2))

2
Sf(‘sn,x) - ; Zg(S 1, x)(X - IE(X))
Now, by the Taylor formula,
f(sn,x) = Z (f(si,x) _f(Si—l,x))

i=1

z==1
Let K(X,,..., X;_ 1) =f'(8;_1,.)/2 - g(S, L x) Collecting the two above in-
equalities, We get that

1 n 2 2
(2.2) E(g(Sy.,)) < o > E(X?) + - Y Cov(h(X,,...,X;_1), X,).
i=1 i=1
Some elementary calculations show that A is in .%._,(x). Hence (2.2) together
with (2.1) yields Theorem 4(a). Theorem 4(b) follows from the elementary

equality
k-2

f(Xl"",Xp)=f(X1,~:~’Xp+l—k)+ O(f(Xl’ p 1’0’ ’O))

(f(Xl’ p i- 1’ ’* O))
which shows that Z(x) %, _ k(x) = (2/x)): ¢ (x).

3. Dependent strong laws. In this section, we prove Theorem 1. Theo-
rem 1 follows from the proposition below via the Borel-Cantelli lemma.

PROPOSITION 1:  Under the assumptions of Theorem 1(i), for any positive &,

(a) Y n7'P(SE > en'/?) < o,

4 " n>0 ’

Under the assumptions of Theorem 1(ii), for any positive &,
(b) Y nIP(S¥ > en) < .

n>0
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ProoF. Let p €[1,2[. By definition of the random variable X. s
(3.0) Q(2) = Qx(t) = sup@,(¢).
i>0
Since the random variables X; fail to have finite second moments, we need to
use truncation arguments.

For any real u in ]0, 1[, let the sequences (X,);., and (X,);., be defined
by

X, = (X, AQ(w) Vv (-Q(x)) and X, =X, - X,.

Let U be a random variable with uniform distribution over [0, 1]. Then | X,
has the same distribution as @,(U). Hence

Qx(t) = Qi(1) AQ(u) and Q(t) = (Qi(t) - Qv))",
where x" = max(0, x). Since @, < @, it follows that
(3.1) E(X,)l < E(IX)) < fou(Q(t) — Q(u)) dt.
Let S, = ©F_ (X, — E(X,)) and S* = sup, . ,IS, . Since
Sy <8+ ¥ (1%1+ E(X)),
i=1
it’follows from (3.1) that
— 2n .u
(3.2) P(S; = 5x) < P(S} > 4x) + —x—fo (Q(t) — Q(w)) du.

In order to apply Theorem 4(a) to S*, we need to estimate the coefficients
¥:,1(x). Let k be some positive integer. Theorem 4(b) and Lemma 1 yield

: k-1 5 .
33  wu(x) < ¥ [FUQ%¢ vu)dt+2[ Q¢ v u) at.
X =10 0
Combining inequality (3.3) with Theorem 4(a) and noting that
— 1. 2a
E(X?) = Ztvu)dt <2 °Q*tV u)dt
(X7) = [[Qt vy de <2["Q*(t v )

(recall that ay, = 1/4), we get that
4 k-1
Y f2 ‘Q(t Vv u)dt
0

n'llP(g,”,‘ >4x) < —
X" =0

(3.4) . ‘
2C¥k
+;f0 Q(t Vv u) dt.

‘The keystone of the proof is the choice of the parameters % and u. Let the
weighted quantile function H be defined by

(3.5) H(t) = o™ (t/2)Q(t).
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In fact, in the mixing case, H plays the role that @ plays in the independent
case. This remark leads to the following choice of &:

(3.6) E=a1l(u/2).
With the above choice of &, 2a;, < u. So noting that

k-1 2a; 2 _ 1 -1 2
ono Q (t\/u)dt—fo[a (t/2) A R]Q2(¢ V u) dt

< ['H(t v u)Q(¢) dt
0
and combining (3.2) and (3.4), we obtain
8.7 n7'P(S} >5x) < Equ(t) dt + i2f1H(t V u)Q(¢) dt.
x 70 X~ J0

Now we prove that the series appearing in Proposition 1 is bounded up by
the integrals of (0.5) or (1.4), up to some constant. Let x = x, = en'/?. We
take u = u, = H 1(n'/P) in (3.7). It follows from the “cadlaguity” of H that

(3.8) (H(t) <n'?) o (tzu,).
I:Ience

[ H(u)Q(t) de < 177 [7Q(¢) dt.

This implies that
n~'P(S} = 5en'/?)
3.9 u,
(39) < lOa‘Z(n"l/Pf Q(t)dt + n~%/P le(t)Q(t) dt).
0 u,
We now finish the proof of Proposition 1(a). Let p €]1,2[. We set c, =
£2/10. Summing on 7 in (3.9), we get

1 .
c, Y ;IP(S* > 5x,)

n>0

]]'t<u to ]]'tzu
sle(t)( Y nl/p» dt+f H(t)Q(t)( Y nz/p")dt’

where x, = en'/? and ¢, = sup{t > 0: H(¢) > 0}. Now, by (3.8), (¢ < u,) if
and only 1f (n < HP(t)). Hence

c. Y —lP’(S* >5x,) < j:Q(t)( Y n'l/") dt

n>0 0<n<HP(t)

' (310)
+["HOQW( T n)a.

n>HP(t)



DEPENDENT STRONG LAWS 931

If p belongs to ]1,2[,
Y nYP<c,HPY(t) and ) n7¥P <C,HP%(t),
0<n<HP(t) n>HP(t)
which together with (3.10), implies that
1

T —P(S} = 5en'/?) < C [ HP " (£)Q(t) dt <

n>o0 0
under assumption (0.5). Hence Proposition 1(a) holds.

If p = 1, we need some more truncation arguments. For any i € [1, n], let
Y,=(X;An)V(-n) and Y,=X,-Y,.
Let T;f = sup,_ , ZF.(Y; — E(Y;)). We may apply inequality (3.9) to the ran-
dom variables Y;. Since
Pl >t) <P(XAn>t),

we have
sup Qy, <Q A n.
i€ll,n]
Hence, by (3.9),
n IP(T} > 5¢n)
(3.11)

< cgl(n-lj“"(Q(t) An)dt+n? [TH(t)Q(2) dt).
0 U,
Let IT'= U’ (X; # Y).Forany w ¢ T,

n

(3.12) SH(w) <Ty(w) + L E(Y; - X)),
Clearly, -
P(T) < i P(1X;| > n) < nP(X > n)
and i
if;l E(Y; — X)) = z‘,l [ “P(IX,| > t) dt < nE(sup(0, X — n)).

Since E(sup(0, X — n)) < & for n large enough, it follows that there exists
some integer n, such that, for any n > n,,

n~'P(S} = 6en) < P(X >n)

(3.13) N czl(n'lfoun(Q(t) An)dt+ n‘2le(t)Q(t) dt)-

Let v, = @ '(n) = P(X > n). Since v, <t <u, if and only if Q) <n <
H(t),

n-t foun(Q(t) An)dt=P(X>n)+ n*lfolQ(t) Lowy<n<nedt-
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Hence there exists some ¢ > 0 such that

c 1 4
—P(S} = 6en) <P(X>n) + ;[0 Q(t) Loty < n < ey 42

(3.14)
1 4
+Ffo H(t)Q(¢) 1, pe dt.
Since
Y nl<1l+log(l+a'(t/2))
Q(t)<n<H®)
and

Y. n~%<2/H(t),

n>H(t)

Proposition 1(b) follows. O

4. On the optimality of the strong laws. In this section, we prove
Theorems 2 and 3. The proof of Theorem 2 is based on the counterexample
introduced in Doukhan, Massart and Rio (1994). As in Doukhan, Massart and
Rio, we start by proving a theorem which works for g-mixing sequences as
well.

. THEOREM 5. For any positive a, there exists a stationary Markov chain
U);cz of rw’s with uniform distribution over [0,1] and a sequence of
B-mixing coefficients ( B,), - o, such that:

(@ 0 < liminf, , , n%, < limsup, , ,.,n%B, < .
(ii) For any p > 1 and any Borel measurable and integrable function
f:10,1] - R with mean zero such that

(a) ' [ uPY ()P du =+,
0
we have

limsupn~1/?
n— 4o

if(v,»)] -+ as.
i=1

ProoF. The sequence (U));., will be defined by means of a strictly
stationary Markov chain (Z;);.,. Let A denote the Lebesgue measure on
[0, 1]. We define the probability laws u and v by

(4.1) p=(l+a)xA and v=ax" A
The conditional distribution II(x, -) of Z,, ,, given (Z, = x), is defined by
(4.2) O(x,) =1(8,,") = (1 —x)5, +xp.

"Thén v is the unique invariant probability of the chain with transition
probabilities II(x,-) [see Doukhan, Massart and Rio (1994)]. Let (Z,), .7 be
the stationary Markov chain with transition probabilities II(x, - ) and law »:
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we set U; = Z}. The random variables U, have uniform distribution over
[0, 1]. Moreover, by Lemma 2 in Doukhan, Massart and Rio (1994), Theorem
5(i) holds.

Let S,(f) = 7., f(U)). The stopping times (7}), . , are defined by

To=inf{i >0:Z,+Z,_}and T, =inf{i > T},_,: Z, # Z,_,}.

for k > 0. Let 7, = T}, ., — T,. The r.v’s (Zy,, 1), o are iid., Zp, has law p
and the conditional distribution of 7, for given Z; =z is the geometric
distribution £(1 — z). Hence 7, is integrable and lim, T, /n = E(7;) > 0 a.s.
[these assertions are proved in Doukhan, Massart and Rio (1994), page 78,
lines 13-23].

Suppose that assumption (a) holds. Then E(|r, f(Ur)I”) = ». Since the
random variables (7, f(Uy )), . o are i.i.d., we infer that

limsup T /7Sy ()| = (E(7,)) " limsupn~Y?|S, (f)| = +® a.s.
n n 1 Tn

n-— o n-—w

Hence Theorem 5 holds. O

ProoF OF THEOREM 2. Under the assumptions of Theorem 2, either

fl/zu(l'P)/“IF'l(u)lp du = +
0
or
fl/zu(l'P)/alF'l(l —uw)lf du = +o.
0
So setting X; = F~}(U,) in the first case and X; = F~'(1 — U,) otherwise, we
obtain the existence of a stationary Markov chain of real-valued random
variables satisfying Theorem 2(a) and (b) with 5 = 0.
It remains to prove that liminf, , |, n°, > 0. We do not detail the proof of

this assertion, since it is sufficient to adapt the arguments of the proof of
Corollary 1 in Doukhan, Massart and Rio (1994). O

PRrOOF OF THEOREM 3. Under assumption (a), either
/2 m1 -1 :
JAFTH(1 - t)llog(1 + ¢7(2)) dt = +»
0
or

fOI/ZIF_l(t)Ilog(l +¢71(t)) dt = +oo.

Hence there is no loss of generality in assuming that

¥

fol/2|F-1(t)|10g(1 + o N(t)) dt = +oo.



934 E. RIO

We first prove that (a) is equivalent to the divergence condition

4.3 #@M P10V dt = 4o
(4.3) Ngo'[r p(2V) (®)

ProoF. Let ¢(n) = n"p(n). Clearly

@N) - 1 _

NZ [;N o F 1(¢)| dt =[o N}: (Loavys e = Lyamys ) |F-1(2)l dt.
>0°27% >0

Let log,(x) = log x/log 2.

Y Loy, = max{N > 0: 2% < ¢ 1(¢) — 1} = [logy(¢71(2) - 1)],
N>0
where the square brackets designate the integer part. The same equality

holds for Ly, ol,e~y5,; Hence the convergence of the series in (4.3) is
equivalent to the convergence of the integral

1/2 1+ (p_l(t)
F~1(t)|log| —————=| dt.
fo F (@)l °g(1+ v (2)
Since n — n%, is nondecreasing, it can be proven that, for some 1 €]0, 1[
and some ¢, > 0,

1+ ¢ 4(t) < (1+ ¢ 1(2))" forall ¢ <t,.
Hence (4.3) is equivalent to condition (a). O

In order to prove Theorem 3, we need some more notation.

NoraTioNs. We set ¢(2V) = 6. Let the sequence (ky )y o be defined by

1 &
(44) kEy=1+|— Y |F1(¢t)ldt],
' On 5=,

where the square brackets designate the integer part. Let the increasing
sequence (Iy)y o be defined by I, = 0 and Iy, = Iy + 2Vky.

Exactly as in the proof of Theorem 2, we start by defining a sequence
(U); o of random variables with the uniform distribution over [0, 1].

Let (V}),, , be a sequence of independent random variables with uniform
distribution over [0, 1], and let (Wy ,)x 5 0,0 <% <, Pe an array of independent
random variables with uniform distribution over {0, 1], independent of (V;); , ¢.

The keystone of the proof is that we can choose the random variables U, in
such a way that the supremum of the partial sums on the subintervals of
length 2% included in lky, k. ;] will be strongly related to the integral
defining k. ‘

Let R(x) =x —[x]. For any N > 0, any %k €]0,ky] and any i €]l +
o (B —12% 1y + E2V], we set

U=(6y+(1- oN)Vi)]lW,,,k>oN

(4.5) ~N/» -1
+ OnR(27V(i — Iy) + 65" Wy 1) Ly, , <oy
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Then the random variables U, have uniform distribution over [0, 1]. More-
over, it is not difficult to check that there exists some positive constants c;
and c, such that
(4.6) c;0(2V) < a, <c,@(2V) forall n € [2V~1 2],
Hence Theorem 3(b) holds.
Now we prove (c). We set
X, =F 1 (U).

It follows from (4.3) that the series Ty . o0y &y is divergent. Since the random
variables Wy , are independent, we may apply the converse Borel-Cantelli
lemma, yielding

(4.7) P({3 & €]0, ky] such that Wy , < 6y}i.0. N) = 1.

Let (N, k) = (N(w), k(w)) be a bivariate integer such that Wy , < 6y. In
order to prove (c), we have to estimate

(4-8) AN,k = SzN+k2N - SzN+(k—1)2N-

Let us divide Wy , by 27%6y:

(4.9) Wy, =p2 9y +ry, forsome p € N and some ry , €[ 0,27yl .

It follows from (4.5) that
2N -1
AN,k = E F_l(rN,k +j2_N0N).
j=0

Since F~! is a nondecreasing function, we infer that

(4.10) Ay s < ——["N+2 "onp-1(t) de.

_No

Let us discuss the sign of F~1(¢). Since E(X,) = [¢F~(¢) dt = 0, there exists
some ¢, > 0 such that ¢ < ¢, implies F~(¢) < 0. Let N, be the first integer
such that 26y < t,. For any N > N,, F71(¢) < 0 for all ¢ €]0,26y], which
implies that

(4.11) Ay sl = —Ay s 2 — ["” |F-1(¢)| dt = 2VD,,.
N,

Taking (4.7) and (4.11) into account, it remains to prove that

2N

(4.12) liminf ——~ > 0.

Noo Iy
Since ¢ — |[F~(¢)| is a nonincreasing function on ]0,26y ], the sequence
(ky)y s n, is nondecreasing. Hence

- l
(4.13) lim sup —
N-ow kN
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Now, by (4.4), k), = 1 + [ Dy]. Hence
i nszD 1 lisning Dy . |[F~1(¢)l
> — —_— >
it = gliminfy—g > lim, 2(1 + [F1(2)))

which completes the proof of (c). O

>0,

5. Convergence of series of strongly mixing random variables. In
this section, we prove Corollary 1. By Theorem 4(a) and (b), applied with
p=iand k=n+1,

8§ n—-1 i
E(X?) + el Y X 8 -(%)

1 i=1 j=1

2
(50)  P(Siz2v) <

M=

i

Now, by Lemma 1(a),

8 iv1-5(x) < /()2ai+l—j( Foa(2) + Qz(t))

which, together with the above inequahty, yields

n n-1 24,
P(S* > 2x) <— Z Z f ‘Q2(t) dt

i=1j=

(5.1) 16 n 1 2
— - t) dt.
pp? /0 ( )Q (t)

Since the sequence (X, ), has the same strong mixing coefficients as
(X)), < 2, it follows from (5.1) that, for any positive x,

(5.2) IP( sup |S,,,; —S |>2x) <_ E/ (t) 2 (1) dt.

i€[1,n]
Corollary 1 follows then from (5.2) via some usual arguments [see Billingsley
(1985), page 298]. O

APPENDIX

PROOF OF LEMMA 1. Let [ be any element of £’(x). Let Y =
xf(Xy,..., X,). The strong mixing coefficient between o(Y) and o(X,,,) is
less than @, ¥ Since Y| <|X,l, @ < Q,. Hence it follows from Theorem 1.1 in
Rio (1993) that

Cov(3f(Xus-11 X,), X, )| < 2@y () @y (1) i,

which concludes the proof of (a).
Let f be some element of %,(x) and Z = f(X;,..., X,). The strong mixing
coefficient between o(Z) and o(X,,,) is less than a . Since |Z| < 1, it
follows from Theorem 1.1 in Rio (1993) that

N 2a,
Yo%) <2[7Q, 1 n(u) du,
therefore establishing (b). O
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