The Annals of Probability
1995, Vol. 23, No. 2, 852-878

LIMITING CURVES FOR LLD. RECORDS

BY JEAN-DOMINIQUE DEUSCHEL! AND OFER ZEITOUNIZ
ETH-Zentrum and Technion

We consider the concentration of measure for n i.i.d., two-dimensional
random variables under the conditioning that they form a record. Under
mild conditions, we show that all random variables tend to concentrate, as
n — oo, around limiting curves, which are the solutions of an appropri-
ate variational problem. We also show that the same phenomenon occurs,
without the records conditioning, for the longest increasing subsequence in
the sample.

1. Introduction. Let z, £ (X0, ¥a), a=1,2,...,n,be niid, R2-valued
random variables, each distributed according to the law P(x, y) on [0,1]%. For
¢ < n, we say that a subsequence {z;;: i1,is,...,i¢ € {1,2,...,n}} S {24}
forms an increasing subsequence, or a record sequence of length £, if

Xi; < Xijs Yij < Yijno Jj=1...,£-1

(Note that we do not require that i; < ij+1.) Let £nax(n) denote the length
of the longest increasing subsequence. We say that {(x., y4)} form a record
sequence (in short, form a record) if £max(n) = n. This is equivalent to the
existence of a permutation 7: {1,...,n} - {1,...,n} such that

Xr(a) < Xm(atl)s Ya(a) < Ym(a+l)s YVa=1,...,n—1.

We are interested in the concentration of the measure P” under the condition-
ing that a record exists. This question is motivated by the following result, due
to Goldie and Resnick [5]. Let Z; £ (X;,Y:),i=1,2,..., be a sequence of i.i.d.
R2-valued random variables, each distributed according to the law Z(x, y) on
[0,1]2. Let Lo = 0 and

0, if L,_1 =00,
W Ln=Vint{m > Lot} Xp > tax X, Y > ax Y;}, if Loy < oo.
Jj= Jj=
Let
_ (1,1), if L, = oo,
2 R, = {(XL,,, Y.,), ifL, <oo.
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Hence, L, is the sequence of simultaneous record times, while R;, denotes
the record (extreme) values. Define N = sup{n: L, < oo} and, with z = (x, y),
define the hazard measure

#(dz)
1- Q@((O,x] X (O’y]).

If H([0,1]%) < oo, then N < oo a.s. (see [4]). This is the case if & possesses an
atom in (1, 1) or, more generally, if & is obtained from a general distribution
on R? which charges ((0,1)2)c.

Suppose now that one conditions on N being large. One might ask what
form does the record sequence take under this conditioning. Let P(dz) =
H(dz)/H([0,1])2. A basic result in [5] (Proposition 2.2) states that if H pos-
sesses a bounded density on [0,1]? and if the measure P" concentrates, un-
der the conditioning that a record exists, around a deterministic curve as n
increases, then so do the values of R;, i = 1,2,..., N, conditioned on N = n.
Thus, the concentration of P" under the record conditioning, which is the main
object studied in this paper, plays a decisive role in understanding the struc-
ture of multidimensional extremal sequences. Also, [5] contains some results
related to those in this paper.

It should be noted that the case of P(x, y) uniform or, more generally, inde-
pendent x and y coordinates, is rather straightforward (see Remarks 2 and 3
following Theorem 1). The general case, however, does require some work.

A naturally related question, suggested by Cochand, is the following: Let
Imax(n) denote, as before, the length of the longest increasing subsequence.
One may ask about the asymptotics of £nax(n) and the shape of the longest
increasing subsequence. For the uniform case, this question is equivalent
to the one tackled by Vershik and Kerov in [9], where they prove that
Lmax(n)//I —p_s00 2 in probability, and it is not hard to see that in that
case the longest increasing subsequence concentrates along the diagonal. It
is of interest to extend their result to general densities. As we will show, the
solution to this problem is intimately related to the solution of the records
conditioning problem.

The organization of the paper is as follows: In the next section, we state
our main results and prove that under mild conditions, records concentrate
around limiting curves which form the solution of a variational problem. Sec-
tion 3 studies the properties of the latter variational problem. In particular, we
prove the existence of absolutely continuous optimizing curves and provide a
characterization for them. Section 4 is devoted to examples. Finally, Section 5
deals with the longest increasing subsequence problem.

H(dz) =

2. Main results. We will work here under the following hypotheses:

(AD). P(x, y) possesses a bounded density p(x, y) with respect to Lebesgue
measure in [0, 1]%.

(A2). p(x,y)is C} and bounded below in [0, 1]2.
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Before stating the last assumption we need some further notation: Let B~
be the set of nondecreasing, right continuous functions ¢: [0,1] — [0, 1]. For
¢ € B7, we have ¢(t) = fot &(s)ds+ ¢s(t), where ¢ is singular (and possesses
a zero derivative almost everywhere). Next define J: B” — R,

©) J(¢) = / Vé(x)p(x, $(x)) da,

and denote by K(J) C B” the set of solutions to the variational problem

4) T sup J(¢).
¢eB”

Our third assumption follows:
(A3). K(J) is a finite set {¢1,...,Pr}.
We claim the following theorem holds.

THEOREM 1. Under (A1)~(A3), for each 6 > 0,
(6) lim P( mlnk max |y,,, e(xa) < 8| {(%Xa, Ya)}oey form a record) = 1.

ke a=1,..

REMARKS.

1. We shall prove in the next section that under (Al) and (A2), K(J) is a
nonempty compact subset of C},. Actually we believe that (A3) follows from
(Al) and (A2), but we do not know how to prove it. We show in Theorem 3,
that each ¢ € K(J) solves the boundary value problem

Px(x, $(x)) .

Gy = Bt sy Py, 6(0)) 5 s
© =) = gt °® ™ pim ) °)

with boﬁndary conditions
¢(0) =0, ¢(1) =1.

Also any two different solutions ¢1, ¢2 of (4) can only intersect at x = 0 and
x =1.

2. Theorem 1 admits a rather elementary proof in the case that P is the
uniform law on [0, 1]2. Indeed, in that case, the coordinates are independent
and a record occurs if the two independent rearrangements of the {xa} and
{y.} coincide (we note that this event has probability 1/n!). Let Bk 5, de-
note the event that for all %, the kth smallest sample (out of n) of the x
coordinate is in [(k/n — 8) A0, (k/n + 6) v 1], let B}:&n denote the analogous
event in the y coordinate and let By s, = BX, hon N B}: P If one can show that
P(ﬂ,z Binsllmax(n) =n) > 1as n — oo, then one 1mmed1ately deduces that
the record must concentrate around the diagonal in the sense of Theorem 1.
Note that conditioning on the occurrence of a record amounts to conditioning
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on the ordering permutation being the same in both coordinates, an event
which is independent of all By s,. Thus,

P(U B; 5 | £max(n) = n)
k

(7
=P(UBi,n,8)SP(UBI}e{,nB)+P(UBkn8) 2P(UBkn8)
k k
Note that
(UBknsc) ( SE(I)PI] ZI[Ox](xa)— )-n:w’o

where the last limit follows from the Glivenko—Cantelli theorem (see, e.g.,
[7], page 7). Combining this with (7), one arrives at the desired conclusion.
As will be seen in Section 4, the diagonal is also the unique solution of the
optimization problem (4).

3. The case of p(x,y) = p(x)q(y) can also be easily settled by a monotone
change of coordinates which reduces the problem to the uniform case.

The following extension of the Vershik—Kerov theorem was conjectured by
Cochand.

THEOREM 2. (i) Assume (Al) and (A2). Then
(8 '}H& Emax(n)/*/_ = 2J_,

where the limit is in probability.
(ii) Further assume (A3). Then, for each 6 > 0 and each record sequence

{2i, 1™ of length £max(n),

9 ' lim P( min  max Iyia - ¢j(xi )l < 8) =1

n—>00 Jj=L,...k a=1,....fmax(n)

REMARKS.

1. Actually, the result of Vershik and Kerov is stated in terms of the longest
increasing subsequence of a random permutation. However, this is equivalent
to our problem since, the x and y coordinates being independent in the case
of uniform distribution, one may first rearrange the x coordinate and ask for
the longest increasing subsequence in the independent y coordinate, which is
equivalent to the random permutation problem. The same argument applies
to the general case of independent coordinates.

2. Theorem 2 extends naturally to the d-dimensional hypercube. Essen-
tially the same argument shows that then, £max/ nl/d — cqJ, where cq is the
limiting constant for the uniform case. It is, to the best of our knowledge, an
open and challenging problem to compute cg.
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As is often the case in limit theorems involving conditioning, the proof of
Theorem 1 is split into lower and upper bounds. We use below the notation

Q> Q, = {0 {(%a,ya)}’_; form a record}.

LEMMA 1. Assume (Al) and (A2). Let ¢: [0,1] — [0,1] be a monotone,
nondecreasing, Cg function. Then, for each 6 > 0, :

. .1 n
(10) lim inf - log[exp(n log(;))P(ﬂn,aﬂgfn Yo — (xa)| < 8)]

> 2log J(¢).

Before proving the lemma, let us recall a well known fact. Let K, K, be
integers and set Ax =1/K,, Ay=1/K,,

Ax; = [(i — 1)Ax,iAx),  Ay;=[(j—1)Ay, jAy),

i=1,...,K,, j=1,...,K,. Next denote by £,(i, j) the block empirical mea-
sure of (21,...,2,):

.. 1
L,(i, j) = -~ H{(%as Ya): 2o € Ax; x Ay},

where | - | denotes the cardinality of a set.

- In the sequel, we refer to any probability vector with weights which are
integer multiples of 1/n as a type. For a given type u on the above grid,
consider a partition {M;;(u)} of {1,...,n} into disjoint connected components
such that |M;;j(u)| = n;j(n) = nu;,j and set M;(u) = U; M;i(p), ni(p) =
|M;(w)|. Let us introduce a new family of random variables {z; = (X;, ¥;), i =
1,...,n} defined by the law

P(dzy,...,dZ,)= Y. P(tn=p)Pu(dz,...,dz,),

wis a type
where
P.(dz1,...,dz,) =[] [] Pi(dzr),  Pij(dz) = pij(zk) dza,
i;j keM;j(u)
with
p(2)

pij(z) B ./Axi fij p(x, y) dx dy lzeAxiXij.
Thus the random variables {z;} are obtained from two subsequent drawings:
first choose the block empirical measure £, according to the original law P and
then distribute the random variables z inside the boxes Ax; x Ay; according
to P ije .

JFinally define the two empirical measures L, and L,
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An important step in the proof of Lemma 1 is the following intuitive, well
known result which, for completeness, is proved in the Appendix.

LEMMA 2. For all measurable A C .#1([0,1]2) (the set of probability dis-
tributions on [0,1]%), we have

P(L,e A)=P(L, € A).
We can now proceed with the proof of Lemma 1.
PROOF OF LEMMA 1. Let 81 be such that 1/5; is an integer and let B(8;) =

B > 4 be a 8;—dependent integer whose value will be fixed below. Choose
K, = K,(61) large enough such that Ax < § and

sup p(x,y)
|x—x0|<Ax .
—Yo (1,8up, )A
(11) sup sup |97 yol<max = fon) $=)) & <(1+48)
%0€l0,1) 30€[0,1) inf p(x,y)

le—xo|<Ax
|y—9ol< max(1,5up,c(o,1] #(x)) Ax

[This is possible due to (A2).] Let now
A2 max  sup (Ig(s) - ()] V I$(s) - $(2)])

SI=K8x g teAx;
(A is finite and A —>4,_,¢ 0 since ¢ is C,ﬁ). Increase K, if necessary to make
12) A < min(8/8, 61/2).

Choose now K, = BK,. Recall that by the fact that the {(xq, y)}"_, forms
an i.i.d. sequence, for any type u,

~exp(—nH(u | P))

DK = Plta=p) sexp(-nH(u| P)),

(13)

where H(u | P) = >i,j mijlog(uij/ Pij) is the relative entropy of u with respect
to P and P;; = [y, [u,, P(%,¥)dxdy. (See [2], Lemma 2.1.9.) For a given
measure g on {1,..., K.} x{1,...,K,}, let

Bi(p) =min{j: p;; >0},  Ti(n) =max{j: u; >0},

with To(u) =0 and B;(n) = Ti(n) = Ti—1(w) if p;j =0V j. It is obvious that
when £, = u, then the support of {L,} belongs to the set J;(Ax; x [(B;(u) —

DAy, T:(n)Ay)).
Define the events

U re=rLp) 2{e: Vi=1,.., Ky —1,Bia(6:) > Ti(¢:) } ) D,
Ry=Ru(Ly) ={w: Vi=1,...,K;~1,Bi1(£) = Ti(t,) } ) O,
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where C? = {a: x, € [(i —1)Ax,iAx)} and
Q) = {w: {(%4, Ya)}acc: form a record}.

Clearly, r, € Q, C R,.

Finally, denote
= E%(L,) ={0: |ya — ¢(xa)| <8, Va=1,...,n},
and write E‘S E%(L,) and 7, = rn(L,). Now, by Lemma 2,
P(E°nQ,) > P(E®nr,)=P(E°NF,)
= Y P{tn=p)P(E°NF,)

(14) p is a type
> Z P, = M)P,u.(i'n),
neA(s)
where

A(8) ={u: p is a type Bi11(p) > Ti(p), and
wij = 0if |p(iAx) — jAy| > 8/2, j =
1,...,K,, i=1,...,K,}

(we used in the last inequality the fact that Ay + A < §/2). Let
Fi ={2: 2={Za}eeym, forms a record}.

Then for a type u € A(8), by construction we have from (11),

Pua) = Pu((V73) = T1PuG0) = (1557) TIRAGD),

where P% denotes the distribution corresponding to Pij being the uniform
distribution on each Ax; x Ay;.

LEMMA 3. For each i,

; 1
15 . PYF) = ———.
(15 w(Tn) ni(p)!

PROOF. Since u is fixed, let us drop the dependence of u in the formulae.
Without loss of generality, we may assume that M i=1{1,2,...,n;} and M;; =
{mj_1+1,...,m;}, where mo =0and m; = Y3_,na, j=1,...,J  =T; -
B; +1.

Let [T} = {permutations m: M; - M;: m(M;;) = M;j, j=1,...,J'}. Now

Pi(ri) =Y PuZn) < " < En(n)s Y1) <+ < Var(ns))
melll

! = Z PL(Zn) <+ < Xa(n)y Ym(1) <+ < Ym(ma)s

welli

Yami+1) <+ < Ym(ma)s+ - "yw(mJi_1+1) <:- < .;'ﬂ(m,,i))
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= |H;|P::(il <o < 5Cn,-,5’1 <o < 5’m1,5’m1+1 << 5’m2,~~,

Ymyu 41 << mei)

. J:
= |H;|PZ,(&1 <. < in;) l_llpz,(j'mj_1+l << S'Mj)
J=

1 L1
=IH§|2_—,H——,

1
=— O
i =1 nij. n;g:

Combining (13), (14) and (15), one arrives at

1 \"& 1 A 1
P(ES, 0, >(___) 1 ep(onH(p| B

for any u € A(8). Write u; = n;(u)/n. Now, by Stirling’s formula (n! < ((n +
1)/e)"*'e) one obtains, for n large enough,

1

1/ 1 \" K.
) < _ -
P(E ,Qn)z 2(1+61) (n+1)KxKy eXp( KxKy)(n+1)

X exp(—nlog(%)) exp(—n Z wijlog —g—”—)

ij ij

(16) x exp(—n > wilog p,,-)
i
2 g, exp(—n log(2>) exp(—n > wijlog ifl—J)
€ i P;j
X exp(—n Z Mi log Mi),
) :

where u satisfies the support constraint and for each B = B(81) independent
of n, lims, 0 lim, ,o(1/n)log g» = 0.

Our strategy in the sequel is to find appropriate w which, together with
(16), will yield the required lower bound. To this end, it is convenient to first
fix the support limits B;, T; and then look for a u such that B;(u) = B; and
Ti(u)=T;. Let

'uﬁ )
! ——Ti—‘—g;—, J € {Bi’-'-’Ti}’
- wij =1 Xl Pij

0, elsewhere.
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Then
Mi

an 3 pijlog B 43" pilog i =23 pilog ————.
i P 5 5 Yiip Pij

Choosing u; = cJZJT.'; B; pij, where ¢ is such that }°; u; = 1 yields

T;
i 5
(18) 2Z#ilog——n—t—“— =2logc = —2log Z Z P; .
g > j=B; p;; i \|Jj=B:
[Note that this choice of u;; and u; is optimal in that it maximizes the right-
hand side of the expression (16).] )
To conclude the proof of Lemma 1, assume first that y = inf,[9,1] ¢(x) > 0

and let
iAx
B; = |'¢(Ay )‘|, T;=Bi—-1
Note that for B; < j < T';, one has by (11) that

1 2
1461 ~ p(iAx,d(iAx))AxAy’
Let B = B(81) be large enough such that simultaneously ¢(iAx) € [AyB;,
AyT;) and

1 - T;—B;+1
1461 = $(idx)Ax/Ay
[This is possible since y > 0 by using (12).] Hence,

Ti .
Jim 2log (Z 3 Pi,-) > Aligozlog(zi:\/ p(iAx,¢(iAx))¢(iAx)Ax)

i J=B;
1 R
=21og( [ \/p(x,rb(x))qb(x)dx).

If u were a type for each 81, (19) together with (16), (17) and (18) would yield
Lemma 1. The general case follows by approximation using the continuity of
the rhs of (16) in u;; by noting that, for every large enough n, one may find
a type u, arbitrarily close to u with the same support limits B;, T;. Finally,
the case y = 0 follows by considering a sequence of ¢, such that ¢,(x) >0
for all x € [0,1] while qu converges uniformly to ¢ on [0,1]. O

(19)

We prove in the next section (cf. Corollary 1) that (A1)-(A3) imply (A4):
" (A4). Let||-|| denote thé supremum norm on [0, 1]. For every § > 0 there
exists an &(8) > 0 such that any piecewise linear, nondecreasing ¢: [0,1] —
[0,1] with ||¢p — ¢¢|| > 6 for £ =1,2,..., k satisfies J(¢) < J — &(§).
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LEMMA 4. Assume (A1)—(A4). Let 6 > 0, small enough, be given. Then

n—>oo

1 n
1- - - ny i a a
im sup — logexp(n log(e))P(Q egll,l..l.l,k arznlaxn |¥a — Pe(x5)] > 8)
< 2log(J —2£(8/4)),
where £(8) > 0.

PROOF. It follows from Theorem 4 below that we may, and will, consider
only ¢, € C; and, furthermore, that ¢,(x) > 0 for all x € (0,1). Fix 6; > 0
and let 82 = 62(61) < 1 be such that

(20) sup sup <(1+461),

{ Suplx—xo|<62,|y—ya|<82 p(x, y)
%0€[0,1) y,€[0,1)

inflx—xo|<8z,ly—ya|<8z p(x’ y)

let K, = [6; 8] and Ax = K;!. Reduce 8, if necessary to have also Ax <
8/(2max,eo,1) d,(x)), £ = 1,..., k. Fix B > 4 (eventually, a limit in B — oo
will be taken). Define next K, = BK, and Ay = K;l as in the proof of
Lemma 1.

Let

E~8 = E~8(Ln) = {w: gﬂink I_riax Iya - ¢e(xd)| > 6}

.........

and for fixed sequences t = (¢1,...,¢k,) and b = (by,...,bg,) which satisfy
biv1 > t;, set
Fo(t,b) = {w: Ti(£y) = t;, Bi(£,) =b;,

min max max |¢d.(iAx)— j.Ay| > 6/2}.
=1,..,k i  jee[b,t;

Then using R, instead of r,, (16) is replaced for every sequence (t,b) by

PR, F’(t,b)) < .Y p(e,,:,L)p,L(nr;)

u is a type: Ti(u)=t; i
B;(p)=b;

<(14+86)" exp(—n log %)

Wij Loy, Mk )

X > exp(—n > wijlog
w is a type: Ti(u)=t; ij . ij
B;(u)=b;
. [Note that n! > (n/e)" and use the upper bound in (13).] For each (K, K,)
let
F ={(t,b): foralle=1,...,k, 3 j, €[b;,t;],|Pe(iAx) — jeAy| > 6/2,
bi+12tiyi=1’-~-9Kx}' ‘
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Note that | F| < K%,K”. Note also that since Ax < 8/(2max,e[o,1] r])l(x)), one
has that R, N E® C Ugp)es Bn N F2(t,b). Thus,

P(Qs, B) < P(Ry, B) <8, exp(-nlog 2), aup sup
€/ (tb)eF {u: support peU;{i,[bit:]}

’

t.
Kij Xopp, Mik )
ij

X exp(—n > wijlog
ij

where lims, .o lim,,_,.(1/n)log g, = 0 uniformly in all other parameters.
Fixing (b;,¢;) and using Lagrange multipliers to optimize over u which
satisfies the constraints, one obtains

(21) P(Rn,Es) <&, exp(—nlog 2) sup eXp(2nlogZ /ﬁgbi,ti))’

€/ (th)eF i
where IA’EI""”") = Z;f:bi P;j. For each (t,b) € F, let

@1(b,t) = {i: K; (bir1 —b; +1) <82},
@(b,t) = {i: 1> K (biy1 —bi +1) = 82}

Note that

(b ti) \/Zx supx,ye[o,l] p(x, y)
VP < 5 < \/62 sup p(x,y),

i€@z(b,t) x,y€[0,1]

where we have in the first inequality used the fact that |®2(b,t)| <1/82. On
the other hand, for i € O1(b,t),

A

1 < Pij <1436
5.+ 1 - AxAy p(iAx, biAy) — !

for any j € {b;,b; +1,...,¢:}. Thus,

) /Pgbi,ti) <Ja+s Y Vp(iAx,b;Ay)(t; — b; + 1)AyAx
i

i€01(b,t)

+‘/82 sup p(x,)
x,y€[0,1]

1 ?
< (1480) [ Vp(r,8p(2))(§y(2) + B d
+‘/752 sup P(x,y),

x,y€[0,1]
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where ¢,(-) denotes the polygonal, monotone curve formed by (iAx,b;Ay).
Note that for each £ =1,..., &, ||¢pp — ¢¢|| > 6/4. It follows that

~ 1 N
Y VEM <1+ 81) sup [ Vpix d)dx) da

{¢, ¢ piecewise linear,
mine.y, . |l¢—dell>5/4}

+(1+81) [ sup p(x, y)(\/ 146 )
x,y€[0,1]
<(1+8)(T — £(8/4) + (1+81) | sup p(, N(VB 1 +52),
X,y€

where the last inequality is due to (A4). Using (21), taking first n — oo, then
B — oo, followed by 82 \( 0 and finally §; \| 0, yields Lemma 4. O

PROOF OF THEOREM 1. Theorem 1 follows from Lemmas 1 and 4 by noting
(see Corollary 1 below) that (A4) is implied by (A1)—(A3). O

REMARKS.

1. Let {Si; = [ai,ait1) x [bj,bj11), 1 < i,j < m} be a finite partition of
the unit square [0, 1) into rectangles. Then an inspection of the proof reveals
“that one could replace (A2) by the following assumption:

(A2). The density p(x, y) is Cé and bounded below on each S;;.

In this case, each ¢ € K(J) is continuous in [0,1)? and piecewise C,l, in
each S;;. Note that now, different solutions may intersect inside [0, 1]%.
2. We could also allow that p(x, y) vanishes on some S;;:

(A2").  On each square S;j, the density p(x,y) is either C}, and bounded
below, or p(x,y) =0

Of course in this case we have to restrict the variational problem (2) to S*,
the set of squares S;j, where p(x,y) > 0. The main difference with (A2'), is
the discontinuity of the solutions. Under both (A2') and (A2"), two different
solutions ¢1, ps € K(J) may share the same line segment on some S;; € S*
(cf. the checkerboard example in Section 4).

3. Note that by rewriting ¢ as a parameterized curve, that is, rewriting
the curve x — (x,¢(x)) as t — ¥(t) = (Y1(¢), l/lg(t)), J may be written more
symmetrically as

1 . .
J(p) = fo (P ()i (£irg (1)) 2 dt.

Based on this expression and the proof of Theorem 1, one can reasonably
expect that the results of this section extend to d-dimensional i.i.d. records
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with increasing curves ¢ — (¢) = ($1(2),...,¥a(t)) € [0,1]¢ maximizing

l .
TW) = [ (p@@)in(®) - pa(®))dt.

4. Based on the characterization of u;; as an empirical measure, one could
actually prove a slightly stronger statement. Namely, let 7 be the permuta-
tion which reorders {x,} and define the (random) piecewise constant function
g: [0,1] > [0,1] by g(¢) = ¥x(nst7)- Then, under (A1)~(A3),

(22) lim P( mink sup |g(t)—de(t)] < 8 | {(xa, ¥a)}iy form a record) = 1.
te[0,1]

n—o0 {=1,...,
3. The variational problem. Let us first derive an existence result for
the optimization problem under assumptions (Al) and (A2).

THEOREM 3. Assume (Al) and (A2). The optimization problem

(23) 72 sup ( [ Vo, ¢<x))dx)

$eB”

possesses a solution over the space B”.

PROOF. Let first {¢,} € B” be a minimizing sequence of —J. Identify each
¢ € B” with a (positive) measure u4 on [0,1], equipped with the Borel field,
by u1e([0,t]) = ¢(¢). Equip the space of signed measure on [0, 1], denoted M,
with the weak topology generated by C[0, 1], and note that both M = C[0,1]*
and C[0,1] = M*, where * denotes the topological dual. Next, note that by
Helly’s theorem, on a subsequence which is denoted again by {n}, ¢, > do €
B~ a.e. Thus,

| f Ve bn@da)dx — [ bl b)) () d

< C\// |¢n(x) — ¢oo(x)'dx n— 00

where ¢ is a positive constant independent of ¢,. It therefore only remains to
show that

n—>oo

1 B
timin[ - ["/p(r m(2)ba()da | = ~I(80),

In order to proceed, we represent the functional above as an appropriate
Legendre transform. This will yield the required lower semicontinuity. To this
end, let 2" = C[0,1], 2* = M and g(x) = p(x, doo(x)). As noted above,
Z** =% . For any ¢ € 2%, let

" G(¢) = [ _/ g(x)¢ac(x)dx if ¢ is a nonnegative measure,

othermse
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where ¢, denotes the absolutely continuous part of ¢. For any ¢ € 2, define

o0, if 1/ ¢ L([0,1]) or ¢ > 0
on a set of positive Lebesgue measure,
A(Y) = 1 g(x)
dx,
4 o ¥(x)

For ¢ € 2%, let

otherwise.

A*(¢) = sup[a (¢, D)2 — A(Y)],
YeZ'

where o (¥, d) g+ = fol ¥(x)p(dx) denotes the duality pairing between 2" and
Z*. Clearly, A*(¢) is lower semicontinuous. The existence theorem thus fol-
lows from the next lemma.

LEMMA 5.
A (@) = G(¢).

PROOF. Assume first that there exists a set A with ¢(A) < 0. Since ¢ is
regular, one may find a sequence of continuous functions 0 < ¢, < 1 such that

Lm o (Y, $a+ = #(A) < 0.
Let ¥, = —ny,, — 1. It follows that

We may thus assume that ¢ is nonnegative. Note that in this case, A*(¢ac) >
A* (). Let ¢, € 2 be a sequence such that

'}i_)nologl"(‘/fm bac)a — A(l//n) = A*(d’ac),

with ¢;! > ¢, > ¢, > 0. Let B be a Borel set such that ¢,.([0,1]\ B) =
¢ac([0,1]) and ¢5([0,1]) = ¢s(B), where ¢s = ¢ — pac > 0. For each ¢, let ¢,
denote the & continuous modification of ,1g, that is, ¢ = ¢,15. on a set
C with ¢(C°) < ¢ and u(C°) < £ (u denotes Lebesgue measure, and such a
modification may be found by Lusin’s theorem). Then, for some constant c,

Q"(‘/fm ¢ac).@"* - A(‘/’n) = Q"(‘/fnlB“, ¢)92”* - A(‘/’n]-B‘)
— £ 1 1 g d &
= (WS, Pha + 5/ o et aln = i bl

A2

: < n6)+ 24 L0 a0,

n

It follows that A*(¢) = A*(dac).
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It remains to compute A*(¢) for absolutely continuous, nondecreasing ¢.
In the sequel, we implicitly assume that ¢ is absolutely continuous and write

1 .
(¥, d)ar =/0 Yodx.

Note that, by a direct computation and [3] (Theorem 2, page 94),

1, 1
G(d) = sup[ /(; Yvoddx + % /0 % dx: ¢ bounded, measurable, nonpositive}

1 1 1
= sup{ / Yvoddx + 3 / %dx: ¢ measurable, nonpositive}.
0 0
To complete the proof it therefore remains to check that

1. 1
sup{ fo voddx + % /0 %dx: ¢ bounded, measurable, nonpositive}

1. 1 1
= sup[ /0 yodx + 2 /0 gdx: ¢ continuous, nonpositive}.

This is again a straightforward application of Lusin’s theorem. This completes
the proof of the lemma and of the theorem. O

REMARK. As pointed out by the referee, one may, by the change of coordi-
nates y = f; +/ &(¢) dt reduce the problem to the issue of lower semicontinuity
of G(¢) for g(-) = 1. Yuval Peres has shown us a direct proof of the latter fact,
based on a construction of a suitable subsequence whose derivative converges
almost everywhere.

While proving the existence of minimizers is somewhat involved, the char-
acterization of minimizers is actually a consequence of the classical calculus
of variations. Indeed, we have the following theorem.

THEOREM 4. Assume.(Al) and (A2). Then any optimizer ¢ € K(J) of (4)
is of class CI}, with absolutely continuous derivative, and satisfies the equation

 pel,8(0) 5 . py(x,d(x))
= 26 * T plx, 6(x)

with boundary conditions

(24) é(x) é(x)?

#(0)=0, #(1)=1

and qb > 0. Moreover, different solutions to the variational problem can only
intersect at x =0and x = 1. ~

b

" PROOF. We first show that it is enough to consider absolutely continuous
minimizers with fixed boundary conditions.
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LEMMA 6. Assume (Al) and (A2). Let ¢ € K(J). Then, ¢s = 0, $(0) =0
and ¢(1) =1, and ¢ cannot have an interval where it is constant.

PROOF. Assume first that ¢ # 0. Then, in particular, there exists a se-
quence of intervals [a,, b, ] such that

&(b,) — d(an)
bac(brn) — bac(a,) "7
Let ¢n(2) = ¢(2) if t & [an,b,] and ¢, (2) = ¢(an) + (t — an)(d(bs) — P(an))/

(bn — a,) otherwise. Denoting p = min, , /p(x,y) and P = max, ,+/ p(x,y),
it is easy to check that

Q.

b T
J(¢p) — J(¢n) S/a Py ¢(s)ds — py/(bn — an)($(br) — b(an))

= P\/(bn — an)(ac(bn) — dac(@n))
— pV(bn — an)($(bn) — b(az)) <0

for sufficiently large n, where the second inequality is a consequence of
Jensen’s inequality and the first of the definition of a,,b,. It follows that ¢
cannot possess a singular part, and hence must be absolutely continuous.
This argument immediately, when applied to a sequence of intervals [0, b, ]
and [a,, 1], leads to ¢(0) =0, ¢(1) = 1.

We turn finally to showing that there cannot exist an interval [a,b] with
b > a and ¢(b) = ¢(a). Assume otherwise, wlo.g. let a« = 0 and assume
¢(b+ €) > 0 for all £ > 0. Consider the curve (x,¢.(x)) which is linear
between (0,0) and (b + &,d(b + ¢€)): ¢.(x) = x¢8, 0 <x <b+ ¢ with ¢ =
(p(b+¢£))/(b+¢) and ¢p,(x) = ¢(x), b+ & < x < 1. Then

I8 -I9)= [ " Jo(e 2, ), da — [ " o bbda

> pp(b+£)2(b+ )2 — Ph(b+ &) /22,

Taking a small enough ¢ yields a contradiction and completes the proof of the
lemma. O

We return to the proof of the theorem. To see that the optimizing curve
must satisfy the differential equation (24), we make use of the Hamiltonian
form of the Pontryagin maximum principle. First, we check that all conditions
needed to apply Theorem 5.1.i in [1] apply. This will lead to a version of (24)
which holds almost everywhere. We then use the particular properties of the
. problem to guarantee that the optimizing path indeed satisfies (24).

To apply the above mentioned theorem of [1], let f,(¢,x,u) = —/p(t, x)u,
8 = 0: f(t’x’u) = u, B = {0’0’1,1}: A = [0:1] X [0’1]’ U= [0,00) and
M = A xU. Then f, and f,, are both continuous in M, conditions 4.1.a,
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4.1.b, 4.1.d are easily checked to be satisfied and condition 4.1.c¢’ is satisfied
since, for the optimizing path x*(¢),u*(¢) [with x*(¢) = u*(¢) a.e.],

|for(¢, &', u*(8))] < ev/ur(¢) € L'[0,1],

where the last inclusion is due to the fact that z* > 0 and fol u*(s)ds=1. A
similar computation holds for f,,. Thus, Theorem 5.1.i applies and, defining

H(t:x,u,A) =V p(t’x)u'l'Au

and
p(t, x)
Mtx,N)={""ar » 20
—00, A<0,

one concludes that, for some absolutely continuous A(¢) satisfying the equation

o Py(tx(8)Vur(t)
(25) Alt) = WrIOrE0)) a.e.,

it holds that

(26) — VP, 2 () (8) + Au(t) = _____P(i’/\x(*t()t))

These equations imply that

27 2V/A(t)ux(t) =/ p(t, x*(¢))/A(t) a.e.

Let ® = {¢: A(¢) = 0}. Since p(x, y) is bounded away from zero, the Lebesgue
measure of ® is null and the rhs of the last equation is continuous on [0,1]\
©. Hence, u*(-) is continuous there, and actually one may take /u*(¢) =
Vv p(t,x*(t))/2A(t) there. Moreover, the rhs of (27) is differentiable a.e., and
since [y (y/u*(¢))2dt = 1, one deduces that [} A(#)"2d¢ < oo. One concludes
that

2N(t) _ pa(t,2t(1) + & () py(t, x*(1)) _ AV P(E, 2*(2))
2/u*(t) 4A(8)y/p(t, x(2)) 222(e)

Recalling that u = X = d), and using (25), one obtains (24). )
Next, we show that ¢ is bounded and ¢(-) > 0. Indeed, let ¢ = log ¢ and
q = log p. Then, in terms of ¢ and ¢, the equation (24) is

d .
2qx — EEQ("’ d(x)) = ¢.
Thus, for any x, € (0, 1),

Vo) = ¥(x0) + 9(x, () — a(x0, $(x0) =2 [ " (s, (s)) ds;
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that is,
) = bleg B2l explz [ (s, g(s) s |

Now if sup, , p(x,y) = M,inf,,, p(x,y) = m and sup, , |p:|/p(x,y) = N, we
get the bound

bl PE2 BT et N7 < ) = ) PE2 LT ooy
Since fol d)(x) dx =1, we get

exp[-2N] < (0) < exp[2N].

M
(0 0) p(0,0)
Finally let us show the last statement of the theorem: Let ¢; and ¢ be
two solutions of the variational problem and suppose that ¢;(xo) = ¢2(x0)
for some xo € (0,1). Then ¢(x) = ¢p1(x), x < xp and @(x) = Pa(x) x > xo,
is again a solution and solves the Euler equation (24). However, this implies
d(x0) = ¢1(xo) ¢2(x0) and by uniqueness of the Euler equation, ¢;(x) =
da2(x),0<x<1. O

The following is an immediate corollary:
. COROLLARY 1. (A1)—(A3) imply (A4).

PrOOF. Use the lower semicontinuity of G(¢) together with the continuity
of the solutions of the variational problem which was proved in Theorem 4. O

4. Examples. In this section, we provide some examples of densities
p(x,y) which satisfy the assumptions (Al), (A3) and either (A2), (A2') or
( Az//). '

The uniform case. Let p(x,y) = 1. Obviously, p(x, y) satisfies (A1) and
(A2). Moreover, we claim that the optimization problem (3) possesses the
unique solution ¢;(x) = x. Indeed, suppose there exists a 1 > § > 0 such
that ¢(¢) = ¢+ 6 for some t € [0,1— &] [the symmetric case ¢(¢) = t — 6 works
in the same way]. Then Jensen’s inequality implies

f $(x)"*dzx = f t¢(x)1/2dx+———/ (1-t)p(x)"2dx

< (t /0 ¢(x)dx)1/2+<(1—t) [ d)(x)dx)l/z

=% = Y24 15— GO+ (1 - )V2((1) — ¢ = 5)2

N < t1/2(t + 5')1/2 +(1- t)1/2(1 ¢ 6)1/2

=< (1 - 62)1/2,
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where the maximum is achieved at ¢(0) =0, (1) = 1 and ¢ = (1—8)/2. Since
J(¢1) = 1, this proves the claim.

The piecewise constant case. Let {S;;} be a finite partition of [0,1]? into
squares and let p(x,y) be a positive constant on each square S;;. By the
same Jensen inequality argument as in the uniform case, it follows that the
minimizing curve(s) is piecewise linear, with constant slope on each square S;;.
Moreover, the optimization problem (3) becomes then an optimization problem
over the set of slopes. We shall prove that in this case (A3) is always satisfied.

More precisely let S;; = [i/N,(i + 1)/N) x [j/N,(j + 1)/N) and as-
sume that p(i, j) > 0. We choose first an increasing collection of squares
{Si.,js» B = 1,...,2N — 1} crossed by the trajectory: with i; = j; = 0,
igN-1 = Jon-1 = N — 1 and ir11 > ig, jrt1 = Jbo bks1 — b+ Je41 — Jo = L.
An optimal trajectory is an increasing line with constant slope on each S;, j,
passing through {(xz,yz): & = 0,...,2N — 1} with (xo, y0) = (0,0) and
(x2n-1, ¥2n-1) = (1,1). From Lemma 6, we know that w;, = x; — x3_1 > 0
and 2z, = y, — yr-1 > 0, £ = 1,...,2N — 1. (Note that when proving that
the number of optimizing curves is finite, we may assume that interior points
{(x#,y2): B=1,...,2N — 1} do not fall on the corners of squares S;, ;,, that
is, one, and only one, of x; or y; intersects the grid {(ix/N, jr/N)}, since al-
lowing for path crossing the corners only adds a finite number of possibilities.
See Figure 1.) Write

2N-1

1/2_ .1/2 1/2

J(w,2) = z : pk/ wk/ zk/ ’
k=1

where p;, is the value of p(is, ji) in the square S;, j,.

We are going to show that J(w, z) is strictly concave on admissible (w, z).
Thus for a given collection of squares {S;, j,}, there exists a unique nondegen-
erate maximizing curve. Since there are only finitely many possible choices,
we see that both (A3) and (A4) are satisfied in the piecewise constant case.

Z1+2Z
1772 /(xz.Yz)
21 __.__()il,_y_!'.) .

|
! Wy Wy +Wz 1

FIG. 1. Piecewise constant example, N = 2.
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To see the strict concavity of J(w, 2), note that if {(x, yz)} and {(x},, ¥}, } are
admissible (i.e., positive, in [0, 1]2, and such that the corresponding {(wg, z;)}
and {(w},z),)} are strictly positive), so is their convex combination, and the
latter leads to the same convex combination of the {(wp, 2;)} vectors. On the
other hand, note (by computing the Hessian) that the function ,/xy is concave
and strictly concave for pairs (x,y) and («’, y’) such that x/y # «x’/y’. Since
for some m € {1,...,2N — 1}, it holds that either w, # w), or z, # z,,, and
since for the smallest such m, 2z, /wn, # 2, /w,,, the strict concavity follows.

To see an example where the solution to (4) is not unique, consider the den-
sity p(x,y) = p1 for (x,y) € [0,1/2]2U[1/2,1]* and p(x,y) = p2 otherwise.
It is easy to check that the solution to (3) is the diagonal ¢(x) = x if p; > pa,
whereas if ps > p1, then the following curves are the only maximizing curves:

p2x/ p1, 0<x < p1/2p2,
$1(x) = { 3+ (x — p1/2p2), p1/2p2 < x <1/2,
where
D1
* =1 21
Y 2p2

-and, since by symmetry ¢o(x) =1 — ¢1(1 — x),

p1x/ p2, 0<x<1/2,
Pa(x) = {P1/2P2 + (x—1/2), 1/2 < x < y*,
Li(x—y)/(21-y%), y*<x<Ll

Note in this setup that although the density is symmetric, the maximizing
curve is not the diagonal.

Checkefboard. As another piecewise constant example, let 1 < i, j <7,
let S;; =[(i—-1)/7,i/7) x [(j—1)/7, j/7) and let

49/9’ (x’ y) € Sij’(i’ .]) € {(1’ 1)’ (2,3), (3,2), (3y5)’ (4’4)’
p(x: y) = (5: 3), (5, 6), (6’ 5)’ (7’ 7)}
0, otherwise

[note that p(x,y) > 0 on all possible increasing paths of a knight, starting at
(1,1) and progressing to (7,7), on a 7 x 7 checkerboard]. It is easy to check
that in this case, the optimal paths are all composed of diagonal segments
of the S;;’s, where p(x,y) > 0 and every nondecreasing arrangement of such
diagonal segments with ¢(0) = 0 and ¢(1) = 1 is optimal. [The value of the
path on squares with p(x, ¥) = 0 is of no importance since there are (a.s.) no
samples in these squares. For consistency, it should be chosen such that the
resulting path is in B”']. Refer to Figure 2 for a graphic representation of this
example. )
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1

0 1

FIG. 2. Checkerboard example.

Convex problems. Next, we consider the case of p,, < 0. It is straightfor-
ward to check that in this case, J(¢) is strictly concave. It follows that the
maximizing curve is unique. The problem being symmetric with respect to the
x and y coordinates, it is obvious that the same conclusion may be drawn if

DPxx < 0.

Independent coordinates. Although the case of independent coordinates,
characterized by p(x,y) = f(x)g(y) > 0, may be reduced to the uniform
case by a change of coordinate, it is interesting to note that in this case, the
unique solution of (24) is provided by the equation F(x) = G(¢(x)), where
F(x) = [y f(0)d6 and G(y) = f g(0)d6.

An explicit, continuous example. We describe below an example where
p(x, y) satisfies (A1)—-(A3), yet the optimal curves do not include the diag-
onal [although the diagonal is a solution of (24), it is not a maximizer]. This
example also illustrates the case of multiple maximizers.

Consider a density of the form

p(x,y) = kL exp[F((x — y)?)],

where F € C1 with F(0) = O and kr > 0 is a normalizing constant. In this
case (24) becomes

b =2F((x—)®)(x— )b+ )

with boundary condition ¢(0) = 0 and ¢(1) = 1. Note that ¢1(x) = x is a
solution to the equation.

In case F’ < 0, ¢, is the unique solution: namely, suppose that ¢(x) < x
for some x € (0,1). Then ¢( x) < 0, that is, the curve 1s concave and remains
below the diagonal, that is, ¢(1) # 1.

In case F' > 0, we have two other solutions ¢ and ¢>3 @2 is strictly concave

,w1th q‘>2(0) > 1, ¢p2(x) > x, x €(0,1), and ¢3 = ¢>2 is strictly convex with
3(0) = 1/¢2(0) <1 and ¢3(x) < x, x € (0,1).

Let us show that for F'(0) > 3, ¢; cannot be optimal. For 0 < & < oo

consider the piecewise linear curve (x, ¢.(x)) passing through (0,0), (¢(¢),1—
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t(e)) and (1,1) where t(g) = 1/(2 + ¢). Of course, ¢ = ¢; and
t(e)
J(be) = 2kp(1+ £)2 fo exp[ F(£%22)/2] dx.
This yields

L JWe) = 51+ )N I() + 2kr(1+ )2 () expl F(sU(e)") /2]

t(e)
+2ekr(1+ 8)1/2/0 exp[ F(£2x2)/2]1F (&2 x?)x? dx.

At £ =0 we get

d 1 kr
E;J(‘/’s) o= ‘Z‘J(llfo) -5 =0
Next
d? 1 kr kFp 172 ’ 2
T3 IW)| = —5W0) = F + 5 +2kr [ exp[ F(0)IF/(0)5dx
ke kro,

Thus for sufficiently small £ > 0, J(¢,) > J(d1).

We believe that the condition F’(0) > 3 for the existence of multiple solu-
tions is redundant: indeed, in the case F(z) = ¢4/z, ¢ > 0 [which unfortunately
does not satisfy the smoothness assumption in (A2)], one can show that

dJ(‘/’s)/dgl.s:O > 0.
It follows that the off-diagonal solutions of (24), namely,

x 1
¢2(x)é/() A7 e 1

b3(x) = 3" (x),

are optimal.

1
dt = p log((1+e e -1)+1—x,

5. Longest increasing subsequence. In this section, we consider the
length and location of the longest increasing subsequence of an i.i.d., two-
dimensional sample. We provide here the proof of Theorem 2.

PROOF OF THEOREM 2. We begin by fixing some notations. Let £yax(n)
denote the length of the longest increasing subsequence, and denote
the corresponding increasing subsequence (which may not be unique) by
D = ((%iy, ¥i1)s (Xigy ¥ig)s -+ o s (Xoran(n)> Yemae(n)))- A famous result of Vershik and
Kerov (see [8, 9]) states that if P(.,-) is the uniform measure on the unit
square, then Lmax(n)// =00 2 in probability.
~ As in the proof of Theorem 1, we will use upper and lower bounds on the
probability of the longest increasing subsequence being around a given path
¢(.). Before doing that, we need the following lemma.
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LEMMA 7. Assume (1 —8) < p(x,y) < (1+ 8). Then there exist cs > 0,
which depends on 6 only [and not on the specific law P(.,-)], such that

>cs)=0

PrROOF. Note that by a suitable change of coordinates in the x-axis, we
may and will assume that p(x) = [ p(x,y)dy = 1. We use a coupling ar-
gument and the result of Vershik and Kerov. Let 7 be the (random) permu-
tation such that x,1) < xz@2) < --+ < Xz(n), let P;(-) be the law on [0,1]
with density p(y|x.;;)) and note that, for 6 small enough, 1 — & < p(y |
Xri) < 1+ 8, with & = 26/(1 — 8). To see first the lower bound in the
statement of the lemma, note that P; may be written as a mixture of a
uniform law [with weight (1 — §’)] and another law on [0,1], denoted g¢;.
Thus, the sample ((x7(1), ¥=(1))s--->(Xa(n), ¥=(n))) Possesses the same law as
Zn = (xqr(l): (1m1=1U1+(1_‘1m1=1)Z1)), ey (xﬂ'(n): (lm,,=1Un+(1_1mn=1)Zn))a
where {U;}"_, is a sequence of i.i.d. uniform random variables, independent of

=1
the sequence {x;}? ;, {m;}}_; is a sequence of i.i.d. Bernoulli (1 — §’) random

variables, independent of the sequences {U;}}, and {x;}} ;, and {Z;}} , is
a sequence of random variables whose law depends on the sequence {x;}? ;
texplicitly, P(Z; € dx) = (P;(dx) — (1 — &)1[0,17(x) dx)/&']. Let I denote the
set of indices with m; = 1, and let N, = Y7 ; 1,;,=1 = |I| denote the number
of indices where a uniform random variable is chosen in the mixture. Note
that P(N,/n <1—28) =, 0 due to the law of large numbers. Let £may(n)
denote the length of the maximal increasing subsequence corresponding to
Z,. Then £,4(n) possesses the same law as £,.x(n) and, on the other hand,
is not smaller than the length of the maximal increasing subsequence when
one considers only those indices i € I. The latter is distributed precisely as
the length of the maximal increasing subsequence of a uniform sample of ran-
dom length N, which is independent of the uniform sequence. Hence, by the
result of Vershik and Kerov, lim,_,co P(max(n)//70 < 24/1—28&) = 0, which
concludes the proof of the lower bound.

The proof of the upper bound is similar. Indeed, let = be as before and
decompose now uniform random variables to a mixture of random variables
distributed according to P; [with weight 1/(1 + §’)] and auxiliary random
variables Z;. The argument used in the proof of the lower bound applies now
to this case with the obvious modifications. O

Lrmax(n)

Jh_—2

lim P(

n—oo

and lims_,gcs = 0.

We now return to the proof of the theorem. We begin with the following
lemma.

LEMMA 8. Let ¢ € B” be a-Cll, curve. For any 6 > 0, define the event

A, ={w: 3 increasing subsequence of length > 2(J(¢) — 8)/n
wholly contained in a & neighborhood of ¢(-)}.
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Then
lim P(A,) — 1.

n—oo
PROOF. Fix an integer K and let Ax = 1/K. Let Y; = ¢(iAx) and increase
K if necessary such that max;(Y;.1 — Y;) < 8. Define the rectangles R; =
[iAx,(i+1)Ax) x[Y;,Y;41),i =0,1,..., K — 1. Reduce K further if necessary
such that, for 6’ to be chosen below independently of K,
max max max(p(x,y)/p(idx,Y;), p(idx,Y;)/p(x, ¥)) < (1+8')

13 X, YEL;

and

K-1
Y- Vp(iAx,¢(iAx))($((i + 1)Ax) — $(iAx))Ax > (1 - &) ().

i=0
Let n; denote the number of points of the sample {z,}?_; in R; and note that
by the law of large numbers,
n;
np(idx,Y))[$((i + DAx) — ¢(iAx)JAx
Note that (cf. Lemma 2) the law of the sample conditioned on being in R; is

i.i.d. with the density (on R;) p(x,y)/ [z, p(%, y) dx dy. Hence, Lemma 7 may
be applied and leads to the conclusion that

1

> 26’) =0.

lim P(max

n—oo i

P (there exists an increasing subsequence of length
2(1-6")./n; in each of the rectangles R;) 5> 1,

where 6" = 8"(8') - g0 O independently of the value of K. Thus, choos-
ing & small enough, with probability converging to 1 with n, there exists an
increasing subsequence in a 8 neighborhood of ¢ whose length is at least

K-1 ,
Y- 2(1 = 8)v/ny/p(idx, $(idx))($((i + 1)Ax) — ¢(idx))Ax v/1 - 28
i=0

>2(1-8)(1-8")/nd($)/(1+28).
The lemma follows by noting that & is arbitrary. O

Much as in the proof of Theorem 1, we need also an upper bound on maxi-
mal increasing subsequences. To this end, we introduce some definitions. Fix
K a large integer as before, let B be a large integer and define Ax = 1/K,
Ay = Ax/B. Let the multiindices t = (¢1,...,¢x) and b = (b1,...,bk) be ad-
missible if by > 0, bx < 1/Ayand t; > 0,b; <t; <1/Ay-1,i=1,...,.K
and b; > tj_1, i = 2,..., K. Note that the number of admissible multiindices
is bounded above by (1/Ay)?4%. We say that a multiindex i = (i1, ..., itnu(n))
formé a (t,b) increasing subsequence if, for (x;,,...,x;, ) which is an in-
creasing subsequence, the inclusion x;, € [iAx, (i + 1)Ax) implies that y;, €
[b;Ay,(t; + 1)Ay). Note that being a (t,b) increasing subsequence depends
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on the sample {2,} and that every (t,b) increasing subsequence defines a
polygonal nondecreasing curve ¢(-): [0,1] — [0, 1].
Finally, let

K
Jbt) = ) v p(iAx,b;Ay)(t; — b; + 1)AxAy.
=1

1=
Note that limg_, 0 limas—0 Supg ¢y J bty < J.
LEMMA 9. For any & > 0 small enough, all Ax small enough, and all
admissible (b, t) (which depend on Ax),
P (3(b, t) increasing sequence of length greater than
2vn(J ) +8)) 555> 0.

PROOF. Let R; = [iAx, (i +1)Ax) x [b;Ay, (t; +1)Ay) and let £;(n) denote
the length of the maximal increasing subsequence wholly in R;. Fix 8; > 0
and define

01((b,t)) = {i: (t; —b; +1)Ay < &1},
O2((b,t)) ={i: 1> (¢; —b; + 1)Ay > 6;}.

Since, for any (b, t) increasing subsequence of length ¢, ¢ < Eilil £i(n), one
has

P(3 (b, t) increasing sequence of length greater than 2./7(¢J ) +98))
< P(EI i € ©1((b, t)) such that

(29) ti(n) > 2ﬁ(\/ p(iAx,b;Ay)(¢; — b; + 1)AxAy + 6Ax/2))

+P< > ei(n)>6ﬁ).

i€0z((b,t))

Note that, for Ay < 5%, [@2((b,t))| < 5;1 + 1. Hence,

P 3 um)>o/m) <67+ 1), max Pl(n) = s0usaf2)

ic®((b,t)) i€0@z((b,t))

Let ¢V, (n) denote the length of the maximal increasing subsequence in an
ii.d. sample of length n of uniformly distributed random variables (on [0, 1]2).
Since ¢! < p(-,-) < c for some ¢ > 1, we have, by the result of Vershik
and Kerov and an argument similar to the one in Lemma 7 , that, for any
i € O3((b,t)), and n large enough,

£ (30)  P(&(n) > 8613/n/2) < P(tY, (kAxn) > 8814/7/2) s 0

as soon as vV kcAx < 881 (here, k. depends on c only and is contributed by the
fact that for large n, the number of sample points in R; is certainly less than
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2cnAx, while the conditional law in R; is bounded above by c?). On the other
hand,

P(EI i € @;((b, t)) such that

6i(n) > 2¢ﬁ(ﬁ(iAx, biAy)(t; — b; + AxAy + an/z))

< (Ax)™! max P(e (n) > 2f(¢p(zAx b:Ay)(t; — b; + 1)AxAy

+ an/z)).

Note that the law of (x4, y.), conditioned on (x,, ¥.) € R;, is “almost uniform”
in the sense of Lemma 7. Hence, for 8, small enough (first) and then Ax small,
one has by applying Lemma 7 that

31 P(&:(n) > 2vn(v/p(idx,b;Ay)(% — b; + DAxAy + 8Ax/2) ) 5=> 0.
Combining (30) and (31) yields the lemma. O

The proof of both parts of Theorem 2 follows from Lemmas 8 and 9 in exactly
the same way that Theorem 1 followed from Lemmas 1 and 4. O

APPENDIX

PROOF OF LEMMA 2. By monotone class, it is clearly enough to show that
for any disjoint sets A; x By, I,m =1,..., K, with A;, B, closed intervals in

[0,1], it holds that
E(/den) - E(/fdfn>,

where f(x,y) = Y @imlaxB,(x,y). Without loss of generality, one may
assume A; x B,, to form a partition of [0,1]*> which refines the partition
generated by Ax; x Ayj. It follows that it is enough to show that, for any
vector a;, with integer entries satisfying 3, @im =1, P(im =aim VY I,m) =
P(fiym = aim Y I,m), where ny, = |{a: 2, € A; x Bp}| and 7y = {a: 2, €
A; x Bp,}|. Note, however, that by a simple combinatorial computation,

Pnyp,=am Vi,m)= P‘””‘—-——,
m m H im nl arm!

where Pj, = [4,,p, P(dz). On the other hand, let Mu ={(,m). A;x B, €
Ax; x Ay;}. Now,

P(Mim =am ¥V 1,m)= Z P(en = M)P,u(ﬁlm =amm Vi,m)
-« is a type

Let qij = X(mew, Gim and let I:’ij = fo,.xijP(dz), Pij(l,m) =
(fa,xB,, dP(dz))/Pij. Let Q(i,j,qij) denote the probability that out of
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ng;; independent drawings on Ax; x Ay;, each distributed according
to P;; on Ax; x Ayj, exactly na;, belong to each A; x B, (I,m) € ;.
It follows that

P(Rim = aim ¥ l,m) = P(aliy /) = gy ¥ i, j)(n Q. j, qi»)

ij
=07 (s a)

DL Pt )

(Lm)ess; (Lm)ess; Alm:

— pom " O
n m Mim alm‘
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