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A BORDERLINE RANDOM FOURIER SERIES!

By MicHEL TALAGRAND
Université Paris VI and Ohio State University

Consider a mean zero random variable X, and an independent se-
quence (X,,) distributed like X. We show that the random Fourier series
Y.>1 n X, exp(2imnt) converges uniformly almost surely if and only if
E(1X|log log(max(e®, | X)) < .

1. Introduction. The question considered in this paper was motivated
by the problem of exactly which integrability condition on a function f is
sufficient to insure the convergence a.e. of its (nonrandom) Fourier series. An
example going back to Kolmogorov shows that it does not suffice that
E(IfILL(f)) < = [where LL(x) = loglog(max(e®, x))]. On the other hand, the
work of Carelson and Sjélin [4] shows that the condition E(|fllog*| fILL|f] <
o suffices. Lacey [1] observed connections between this question and the
question of the uniform convergence of the random Fourier series

‘Xn

(1.1) Y. — exp(2imnt),

n=1 1
-where (X)) is an i.i.d. sequence. He showed in particular that if, for an Orlicz
function ¢, one could find a sequence (X,,) such that E¢(|X;]) < «, and such
that the series (1.1) does not converge a.s., one could find a function f with
¢(f) < = and such that the Fourier series of f does not converge a.e. As will
be demonstrated in the present paper, this approach fails to bring new
information, but it turns out that the study of the series (1.1) was in itself a
somewhat challenging question.

The modern theory of random Fourier series started with the work of
Marcus and Pisier [3] and was later developed further by Marcus [2] and by
the author [5], [6]. The point of view of Marcus and Pisier is, given an
independent identically distributed sequence (X,), to characterize the se-
quences of coefficients (a;) for which ¥, . ; a, X, exp(2imnt) converges. Much
greater generality is reached in [6], where series X, .Y, exp(2iwnt) are
studied, for independent sequences (Y,). (When specialized to the setting of
Marcus and Pisier, the results of [6] recover theirs.) Roughly speaking, it can
be said that the a.s. convergence of the series L, Y, exp(2iwnt) is com-
pletely understood in the case where the r.v. Y, are “away from L.” This is
not, however, the case in situations where the variables Y, resemble func-
tions in I!, and in that case there is a gap between the necessary and the
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sufficient conditions given in [6]. (There is indeed an intrinsically inefficient
step in the proof of the sufficiency conditions of [6].) In the present paper, in
the case where the variables Y, are specialized to Y, = X, /n, where X, are
identically distributed, we show how to close this gap.

THEOREM 1.1. Given an independent identically distributed mean zero
sequence (X,,), the random Fourier series

-2}

X
Y —exp(2imnt)
n

n=1

converges uniformly almost surely if and only if E(| X|LL(X)) < oo,

Previous work on random Fourier series is based on a few powerful and
simple ideas. These are unfortunately hidden under a mountain of technical
points which largely arise from the generality of the setting, and there is a
very real danger that these ideas would be lost forever. One of the motiva-
tions in writing the present paper is certainly that in the present case the
technicalities are fewer and thereby that the main ideas are easier to grasp.
For this reason, the presentation has been made essentially self-contained,
hoping that the present work could serve as an introduction to the more
complicated work of [6].

The paper is organized as follows. In Section 2, we recall some general
facts and we show how to deal with the integrability condition E(|X|LL(X))
< o, In Section 3, we prove the necessity of this integrability condition.
(While this could be deduced from [6], Theorem 1.4, it is as simple, and much
clearer to reproduce the argument in our special case.) In Section 4, we prove
the sufficiency of the integrability condition. The new ingredients in our
approach are better discussed there after the preliminaries have been set up.
It is natural to hope that these new ingredients would allow one to improve
the general sufficient conditions presented in [6], Theorems 1.3 and 1.6. This
line of research remains to be investigated. Another natural line of investiga-
tion is the study of the.uniform convergence of the series ¥, ., a,X,
exp(2imn), where a, is a decreasing sequence and (X,) is an i.i.d. sequence.
We believe however that the techniques presented here make this study little
more than a routine computation.

2. Preliminaries. The framework of our approach is standard. Con-
sider an independent sequence (¢,); ; of Bernoulli random variables [ P(¢; =
1) = P(g; = —1) = 1] that is independent of the sequence (X,). It follows
from general principles that the convergence of L., n™'X, exp(2iwnt) is
equivalent to the convergence of L,.; n"'¢, X, exp(2iwnt), where conver-
. gence means uniform convergence, almost surely. Since the sequences (¢, X,,)
and (¢,/X,|) have the same distribution, we can and do assume X; > 0. It
will be convenient to assume that the sequences X, ¢, are defined on a
product space Q X Q' (provided with a product probability @ = P ® P’) and
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that for o, 0') € Q X ', we have X, (0, o) =X, (), &0, o) = ¢,(w’).
Also, it will be notationally convenient to write vy,(¢) = exp(2imtn) and to
work on T = R/Z rather than R.

Let us observe that

(2.1) [%.(2) = %(8)| < min(27, 27|s — t|n),

where |s — ¢| is the distance of s and ¢ in T. Numerical values such as 27 are
distracting, so we prefer to write

(2.2) [%.(2) = 1,(s)| < K min(1, n|s — ¢]).

There, as well as in the rest of the paper, K denotes a universal constant, not
necessarily the same at each occurrence. The uniform convergence a.e. of
series

(2.3) Y a,&.7(t)

nx1

is understood through the work of Marcus and Pisier, and the problem is to
decide when the sequence a, = a,(w) = n7 !X, (w) is such that the series
(2.3) converges for almost all w.

After these generalities, we start the technical work. One should certainly
expect that Theorem 1.1 relies on a rather precise understanding of the
condition E(XLL(X)) < . The work required for this is not connected to
Fourier series and is of a classical probabilistic spirit. For simplicity, through-
out the paper we set e, = 2%”,

LEMMA 2.1. Consider a r.v. X > 0 such that E(X) < », X # 0. Then for
each p we can find a number A, such that

(2.4) Y E(;\—)z—{% A 1) = 2P

and we have

Y A2P <o e E(XLL(X)) <.

p=1

ProoF. It is standard to check that when E(X) < », we have %,
E(k72X?2 A 1) < », The function

XZ
fk(x) =E(k2—x2 A 1)

is continuous, decreasing and lim +»0fp(x) = P(X # 0) > . The existence of
A, follows easily. ‘
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We now compute the left-hand side of (2.4) as

z f2tP(X>tk)tp)dt— z [’“ A2k22tP(X2t)dt

- 2P(X > t) dt.
2h| L wfrreeen
kApzt

Using the lower bound £, , , k7% > 1/2n,, we get that

2t 1 1 t
Yy > mm(—, 1)
)‘12: kze, 2 Ap Avep

kA, zt

and we get from (2.4) that

g t
(2.5) x min( ,l)P(Xz t) dt < 2,27
kze,”0 Apep
and thus
(2.6) j0°°card{p; t> A, )P(X>t)dt < ¥ A,27.
p

If we have A, < 1 eventually, then for ¢ large we have
1
card{p;t > A,e,} > ELL(t).
Since the condition E(XLL(X)) = « implies
[IL()P(X 2 ¢) dt = =,
0

we have shown that when E(XLL(X)) = «, the series £, 1,27 diverges.
Using now the bound X, ,, ., k™% < K/n,, we obtain

o t
fomm(u,

p-p

1
1)P(X >t)dt > EAPZP.

Consider the set J = {p; A, > 2727}. Then

v

fmcard{pEJ;t> }P(X>t)dt>— Y A2%.
0 K,/ 7
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Now we have
card{p € J; ¢t > Ae,} < KLL(t),
so that ’
o 1
[LL()P(X 2 t)dt= — ¥ 27
0 KpEJ

and the divergence of the series LA,2% implies the divergence of the series
Y, 2,27 and that

E(XLL(X)) = . 0

COROLLARY 2.2. Assume that E(XLL{X)) < . Then we can find a se-
quence p,, such that:

(2.7) M, =272 and Y 27, <o

(2.8) The sequence ( ,u,p) i: decreasing.

(2.9) Foreach p, Y E m;- A 1) <27,
kxe, »

(2.10) %E(%ykﬂmﬂsk,) < oo;

where m(k) is the largest integer such that 272" > k=2,

Proor. To obtain (2.7)-(2.9), we set
Ky = 2727 + sup{A,, ¢ > p},

where (Aq),is the sequence constructed in Lemma 2.1.
To prove (2.10), we observe that 2™*® < K log & so that by (2.7) we have
My = (K log k)~% and we have

1 k,
(211) %zl(kum(k)s.’(sk} <K logk_l,
where k, = sup{k; ku,,;, < X} and &, = inflk; £ > X}. Now, for kg <X,
we have X > k(K log £)"2, so that £ < X(K log X)? and thus k,/k, <
(K log X)?. Thus the right-hand side of (2.11) is bounded by K(1 + LI(X))
and this proves (2.10). O

3. Necessity. In this section we assume the convergence of the random
Fourier series. Consider the random distance d,, on T given by

’ X (w
@i(s,0) = £ (0 - m(ol,
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As initiated by Marcus and Pisier, the approach is that the space (T, d,)
must satisfy the condition

(3.1) [ (1og N(T, d,,, £))"* do < =
0

for the series Lk ' X?(w)e,y, to converge uniformly P’ a.s. There N(T, d,,
€) denotes the smallest number of balls of radius & for the distance d,
needed to cover T.

Consider the set D, = {n272";,0 < n < 22"} and consider the sequence A,
of Lemma 2.1. We w111 show that with probability 1, for p large enough, we
have

2P
p/2 —
o g2 ) > 2.
Thus (3.1) implies the convergence for the series YA,27, and thereby that
E(XLL(X)) < .
To prove (3.2), consider s, t € D,, s # ¢. The key point is the inequality

(3.2) log N( D,,d

1 —-2°
— p/2
(3.3) P(dw(s, t) < K)tp2 ) < exp( K, )

Indeed, if A is a subset of D, of cardinality N, we have

1 -2P
P(EI s,t€A,d,(s,t) < E/\I,Z"/z) <N? exp( K, ),

so that taking N of order exp(2?/3K,), we get

P|N|D,, d,, ! 2,20/ 27 1 27
> > —_—
( 2K " )“e"p 3k, )| =~ P 3K, |’

and this implies (3.2). We turn to the proof of (3.3). We claim that

p

X? 2
(34) Z E( Azkzl')’k(s) W’k(’f)l2 A 1) N

k>e

First, we observe that

2

X X?
() = n(®=1 = Ellv(s) - vk(t)|2A1)>E i 1)-
14

Thus, to prove (3.4) it suffices by (2.4) to prove that for m > 27,
. (35) card{k;2" <k < 2™*1,ly,(s) — %(t)| = 1} = 2" /K.

Now |y,(s) — y,(8)| = lexp 2mik(s — t) — 1| and thus |y,(s) — y,(®) > 1
whenever k(s — ¢) ¢ [— %, +]mod 1. ~
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Now |s —¢t| = 272", m > 2P, so that (3.5) and hence (3.4) follows from
elementary considerations. Consider now the r.v.
2

Z, = “Xk—l‘)’k(s) - %(t)? AL
AZR? k

To prove (3.3), it suffices by (3.4) to know that
(3.6) P(X.Z, < 1 Y. EZ,) < exp(—; LEZ,).

To prove this, one observes that e™* <1 — x/2 for 0 < x < 1, so that

Z, 1 1
Eexp(—-Z,) < E(l - 3‘) <1- EEZk < exp(—EEZk)
and thus E exp(—XZ,) < exp(— ;X EZ,), from which (3.6) follows by Cheby-
shev inequality.

4. Sufficiency. Under the condition E(XLL(X)) < «, we will construct a
subset Q, of O, with P(Q,) = 1, such that if o € Q, the series R'(t) = L, .,
k71X, (0)e,(0")y,(t) converges uniformly P’ a.s. Since E(X) < », only in-
finitely many of the events {X,, > &} occur, so setting Y, = X, 1x, <1, We can
instead consider the series R(t) = L,.; k'Y, (w)e,(0")y,(2).

According to Theorem 1.1 of [3], a series ¥,.; a;&,7,(¢) converges uni-
formly a.s. as soon as it is a.s. bounded. Thus it suffices to prove that
(4.1) sup sup |R(¢)| <>~ a.s.

N teDy

The proof relies on a chaining argument. Given m > 1 and a point « in
D,,, we pick once and for all a point ¢, () in D,,_, such that |u — ¢, (u)| <
272""". Given t in Dy, we define the sequence (¢,),_y by ty=1¢ and
t,_1 = ¢,(t,) for n <N.Thus |t, — ¢t,,, < 272"

Consider now a number rn, = ny(w, »') that depends on w, o’ and that
will be constructed later. Since ¢, € D, can take only finitely many values,
it suffices to show that for w € Q,, we have P’ a.s. that

(4.2) sup sup |R(t) — R(t,, )| < .
N teDy
We write
(4.3) R(t) -R(t) = X N[R(tn+1) - R(t,)].

So far, this is routine. Now each term in the right of (4.3) is the sum of a
series. In this series we wish to separate the contributions of the “large” and
“small” terms. In the way this was done in previous work (and in [6] in
. particular), the contributions of some of the “large” terms were implicitly
counted many times. While in many situations this does not matter, in the
present situation we cannot afford to be crude and we have to use a more
precise decomposition (that is the new ingredient of the present paper).
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We recall the sequence (u,) of Corollary 2.2 and for each k, we define a
random sequence n(k) = n(k, w) as the smallest integer n > n, for which
Y,(w) > ku,. For 1 < n < N, we write

Y. (o)

U, =U,(¢) = kE 7 &Ly, 0)> ku ) (Ve(tns1) — Y(22)),
>1
Y, (o)
V. =V.(¢) = kE 7 el oy <k (Va(tns1) — ().
>1

(For the simplicity of notation, the dependence on # will be kept implicit.)
Thus (4.3) implies

R(t) -R(t,)= X (U,+V,)= X U+ Y V,

no<n<N no<n<N no<n<N

and thus

Y Vil

ng<n<N

X U+

ng<n<N

(44) IR(¢) — R(t,,)l <

Now comes the essential point. Since the sequence (u,) decreases for
n = ngy, we have 1y ()5 4,, = 1 if and only if n > n(k), so that

(4.5) Z 1(Y,,(w)> kp,,,)(’Yk(tn+1) - Yk(tn)) = Yk(tN) - Yk(tn(k))
nog<n<N

with the convention that the right-hand side is zero if n(k) > N. Thus, with
the same convention,

Y, (o
Y NU,, = kzl ki )8k(’Yk(tN) = Yi(taw)))
and thus
(46) s £ im0 - mltu).

nog<n<N

This bound is far superior to what we would get by using first the triangle
inequality [XU,| < X|U,|, which prevents the cancellation effects of (4.5).

Since |t,,, — t,| < 272", we see that |ty —t,,,| <2 2~ 2 and thus by
(2.2) we have

mln( 1, k272",

KZ

k>1

ng<n<N

We now recall the integer m(k) of Corollary 2.2, Dlstmgulshlng whether
n(k) > m(k), in which case k2~ 2" < p=1 or whether n(k) < m(k) and
- observing that in that case Y, (@) > ku,, ), we get

Yk( )
<K Z Z Yk( w)l(Y}z(“’)Z kbm)
k21 kzl

no<n<N
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Now since E(X) < =, we have L, ,  E(Y,/k?) < «, and since by (2.10) we
have

1
E Z ;Ykl(Ykal"m(k)) < ®,
k>1

we can assume that for each o € Q,, we have

Z _k—2_ < ®, Z zYk(w)I(Y,,(w)z k lomey} <,
kx>1 k>1

Thus, by (4.4), we see that

(4.7) |R(t) — R(tno)l <S(w) + Y v,

ng<n<N

where S(w) is finite on Q. Thus we are reduced to the control of £, ., »IV,|
and back to routine arguments. Given u € D, ,, consider the r.v.

Yk2( w)

Tn(u9 w) = Z —kz'—l(Y,,(w)skp,,)l’yk(u) - yk(¢n+1(u))lz'
k>1
Using (2.2) we get
Ykz(“’) . _ony2
T,(u,») <T,(0) =K}, Tl(yk(w)sk#n,mm(l, B27%2)".
k=1
Consider the r.v.
Y; X
Wp = Z ?I(Ykskup} < Z ?I(Xkﬁkl"p)'
ke, k=e,

Since u, > p, for p < n and since k272" < 22°7%" fore,_, <k <e,, we see
that

T S Z 22p+1_2n+le—l

n

l<p<n

and thus

(4.8) VI, < L 2" /W, ,.
1<p<n

Now by (2.9), we have EW, < 27u2, so that by (2.7),
P D

B T zp/Z,/_Wp) < Y 20/ JEW, <.

p=1 p=1

Thus we can assume that for @ € Q, we have L, ;27/%|/W,(w) <. It
"then follows from (4.8) and a routine computation that, for w € Q,

| (4.9) S'(w) =Y 2”{2 VI () <.

nx1
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We now fix w € Q,, and we prove that (4.2) holds P’ a.s. We recall the
subgaussian inequality
2

v
P(|Ya,e(w)| 2v) <exp| ——=—
(|Eare(w)] 2 v) NP
for all complex numbers (a,). Thus, for each n and each u in D, ,, we get
Al n Ye(@) oY
P ({w ; kZ g (') % Ly, <hung(7e (1) = 7(@ns1(w))) = vy Ty(w) })
>1
—p2
< .
< exp| —¢
We now define the event (1, ¢ Q' by
Vn>=q,VYuebD,,,,
, Y, (o) 1 2+n/2 [
kZI e (w )_k (Y,,skp,,,)(')'k(u) = %(en(u)))| <2 V(o).
=

Thus Q'\ Q, has probability at most £, ,27%". Thus, if we define O =
U, &, we have P'(Q}j) = 1. Moreover, for o’ € () let us define n, as the
smallest integer r for which v’ € (V,. Then, for n > n,, we have |V (0')| <

2%+n/2 /T (w) so that

L V()] < 485(w).

nzng

The proof is complete. O
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