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MEAN-VARIANCE HEDGING
FOR GENERAL CLAIMS

By PASCALE MONAT AND CHRISTOPHE STRICKER
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Let X be an R%valued special semimartingale on a probability space
(Q,%,(%)y < <1, P) with decomposition X=X,+M +A and © the
space of all predictable, X-integrable processes 6 such that [0 dX is in the
space #* of semimartingales. If H is a random variable in .#2, we prove,
under additional assumptions on the process X, that H can be written as
the sum of an %;-measurable random variable H,, a stochastic integral of
X and a martingale part orthogonal to M. Moreover, this decomposition is
unique and the function mapping H with its decomposition is continuous
with respect to the #2-norm. Finally, we deduce from this continuity that
the subspace of #? generated by [0 dX, where 6 € 0, is closed in %2, and
we give some applications of this result to financial mathematics.

1. Introduction. In this paper, we deal with a very important problem
which arises in financial mathematics: we look for a solution to the problem
.of hedging a contingent claim and since, in an incomplete market, such a
strategy does not always exist, we try to find a strategy which minimizes the
expected value of the squared difference of the contingent claim and the
portfolio value.

To express this problem in mathematical terms, consider an R%valued
special semimartingale X = (X,),_, . r in %2, defined on a filtered probabil-
ity space (Q,%,(%)y ;< 1, P). Suppose that X admits the decomposition

In the market, X represents the discounted price of d risky assets at time ¢.
The contingent claim is, a random variable H, J;-measurable, which we
assume to be in 2. For example, if d = 1 and the contingent claim is a
European call option on X with expiration date T and strike price K, then
H= (X, - K)*. ’

A trading strategy is described by an X-integrable process 6 such that
/0 dX is in the space .#? of semimartingales. Then 6, is the number of shares
of X that the agent holds at time ¢. We suppose that 6 is predictable, which
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606 P. MONAT AND C. STRICKER

squares with the obvious fact that the way of trading at ¢ only depends on the
past before ¢ and not on what happens at ¢. If we assume that there is a
riskless asset of price 1 at each time and that the agent’s initial capital is c,
then

c+j;)t08dXs

is the value of the agent’s portfolio at time ¢ if the strategy followed is 6. For
more details, we refer to Harrison and Kreps (1979) and Harrison and Pliska
(1981).

Let us call O® the set of all strategies. Our optimization problem is to define
a strategy ¢ such that

r 2 . r 2
E((H—c —fo 3 dXs) ) = %ISE((H—c —fo ) dXs) )
This problem has been previously studied in Duffie and Richardson (1991),
Schil (1994), Hipp (1993) and Schweizer (1992, 1993a, 1994).

In order to trade in a viable market, further assumptions must be added.
First of all, a usual hypothesis is a “no arbitrage” condition, which roughly
means that one cannot take a positive gain if one did not invest a positive
sum at the beginning. This means that A, the finite variation part of X, is
absolutely continuous with respect to (M) [Ansel and Stricker (1992)].

In a sense, this can also mean that there is a probability @, equivalent to
P, such that X is a local martingale under Q. These properties have been
previously studied in Harrison and Pliska (1981). It was then a conjecture
that the authors proved if () is finite. These problems have since been studied
in Dalang, Morton and Willinger (1990), Stricker (1990), Ansel and Stricker
(1992), Delbaen (1992) and Delbaen and Schachermayer (1994).

In a complete market, such an equivalent martingale measure always
exists and is unique, so every contingent claim is attainable. However, in
reality, we can rarely deal with a complete market, since the number of
causes for uncertainty is greater than the number of assets held by the agent.

In an incomplete market, such an equivalent martingale measure is not
unique. Hence, we need to look for a minimal martingale measure which was
introduced in Féllmer and Schweizer (1991). If X is continuous, a necessary
condition for the existence of such a probability is that, if B is an increasing
predictable integrable process null at 0 such that

Al=y"-B and {(M!,M/y=0¢"-B fori,j=1,...,d,
then there exists a predictable process A such that oA = y [Ansel and

Stricker (1992)]. ) X
So we assume that A exists and we assume moreover that the mean-vari-

ance tradeoff process of X, K defined by

K= [A+ydB,

where the asterisk (#) denotes the transposition, exists and is uniformly
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bounded in ¢ and w.

To solve our optimization problem, we can try to prove that the subspace
G1(0) of #2, generated by all the stochastic integrals [§ dX, where 0 € 0, is
closed. Then we only have to project H — ¢ on G1(®) to find the solution.

The closedness of G;(0) is an old problem. If X is a local martingale, then
G(0) is closed because in this case, the stochastic integral is an isometry. In
fact, there is a stronger result since Yor (1978) [a more convenient reference
is Protter (1990), page 153] proved that if Y” and Y are uniformly integrable
martingales such that Y, converges weakly to Y, in %', and if Y =
J¢el dX, then there exists a predictable process ¢ satisfying Y, = [{¢, dX,.
When X is only a semimartingale, Schal (1994) and Schweizer (1993a)
recently proved that, in discrete time, if X satisfies the previous conditions
and K is uniformly bounded, Gr(@) is closed. In continuous time, Schweizer
(1994) proved that, under the assumptions that K exists, is deterministic and
that the jumps of K are bounded by a constant & € (0, 1), G;(®) is closed. In
both cases, he has a better result for the optimization problem since he
manages to determine a stochastic differential equation satisfied by the
solution of the optimization problem. In this paper, we prove that G(®) is
closed under the assumption that K is uniformly bounded.

To prove that G(®) is closed, a natural idea is to introduce the
Follmer—Schweizer decomposition (denoted by F-S decomposition in what
follows) of a random variable H € #2(Q, %, P), that is, to write H as

H=H, +f0T§stXs + I8,

where H, is a random variable, ¢ is a strategy and L¥ is a martingale in
M}, strongly orthogonal to (6 dM for all processes 6 € L*(M).

When X is a square-integrable martingale, this decomposition always
exists and is known as the Galtchouk—Kunita—Watanabe decomposition
[Kunita and Watanabe (1967), Galtchouk (1975) and Jacod (1979)].

In the general case, this decomposition does not always exist. It was
introduced in Follmer and Schweizer (1991) and was studied in Schweizer
(1991) and in a slightly different way, in Ansel and Stricker (1992) in the case
d =1 and in the multidimensional case in Schweizer (1993a, c). Finally,
assuming that H, is only an &;-measurable random variable, we prove the
existence and the uniqueness of this decomposition, under the unique as-
sumption that K is uniformly bounded. Moreover, we show that the function
which associates H with its decomposition is continuous. A first version
without proofs was published in Monat and Stricker (1994a).

After we submitted this paper, Schweizer (1994b) gave a direct proof for
the closedness of G;(0®) when K is bounded and the jumps of K are less than
. 1. In Monat and Stricker (1994b), we extended his proof in the case where )¢
is bounded without further conditions on the jumps of K.

In the case where K is not uniformly bounded, G;(®) may not be closed
and the F-S decomposition does not always exist. For example, if d = 1, then
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at a jump of K, the F-S decomposition exists if and only if the jump of K is
uniformly bounded. For the closedness of G(®), we will give a counterexam-
ple in the last section of this paper.

This paper is organized as follows: Section 2 describes the model and
Section 3 contains all the results on the F-S decomposition, that is, some of
Schweizer’s results, the existence and the uniqueness when K is uniformly
bounded and the continuity of the corresponding function. Section 4 deals
with some applications to the properties of F-S decomposition: closedness of
Gr(0) and {Z*(F,) + G;(0)}, approximation of a random variable by a
stochastic integral, applications to financial mathematics and the case where
the martingale part of X has the predictable representation property. Section
5 deals with the case where K is no longer uniformly bounded.

2. Model. We use the same notations as Schweizer (1994a). We recall
them here. Let (Q,7, P) be a probability space and T > 0 a fixed finite
horizon. We suppose that we have a filtration (%), _, ., on (Q, %, P) satisfy-
ing the usual conditions, that is, (%)), ., . r is right-continuous and complete,
and we assume moreover that & =%;. Let X = (X,),.,;.r be an R%valued
semimartingale in .%2,. This means that if

X=X, +M+A
is the canonical decomposition of X, then M €.#7,,, and the variation | A’| of
" the predictable finite variation process of X'’ is locally square-integrable for
each i = 1,...,d. For all unexplained notations, we refer to Jacod (1979). If
(M') denotes the sharp bracket process of M for each i =1,...,d, we
suppose that

A’ < (M') with predictable density o’ = (o), .7
fori=1,...,d.

Let B be a fixed predictable integrable increasing RCLL process null at 0

such that (M') < B for each i =1,...,d (e.g., B =X,{M*)). Using the

Kunita—Watanabe inequality, this implies that

(M, M7y < B with predictable density o/ = (o-tij)OStsT

fori=1,...,d.
The process o’/ is therefore a symmetric, nonnegative definite d X d matrix

for each ¢t € [0, T].
From (2.1) and (2.2), we deduce that

(2.3) A’ < B with predictable density vy’ = a0 fori =1,...,d.
Using these notations, we get

(2.1)

(2.2)

(24) (M, M%), = [‘0}idB,, P-as.fori=1,...,dandte][0,T]
0 .
and '

(25) A= [ydB,, Pasfori=1,.,dand¢e[0,T].
A \
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We recall a definition introduced in Schweizer (1994a).

DEFINITION 2.1. We say that X satisfies the structure condition (SC) if
there exists a predictable R%valued process A= )o <¢ <7 such that

(2.6) oA, =7, P-as.forallte[0,T]
and
(2.7 E,: j Aty dB, < +®, P-as.forallt e [0,T].

We then choose an RCLL version of K and we call it the mean-variance
tradeoff (MVT) process of X.

REMARK 2.2. For the interpretation of the process K, we refer to Schweizer
(1994a).

DEFINITION 2.3. A predictable R%-valued process 6 = (6,), ., . belongs to
L?,c(M) if the process

( f t¢9s*a:q 0, st) is (locally) integrable.

0<t<T

A predictable R%-valued process 6 = (6,),.,.r belongs to L%, (A) if the
process

( f { 0y, dB, ) is (locally) square-integrable.
0 0<t<T

Finally, ® is the space defined by O = L2(M) N L?(A); 6 € O is called a
strategy.

REMARK 2.4. If 6 € O, we can define the stochastic integral process
G,(0) = ['6, dX,
: 0

for all ¢t € [0, T']. Then G(0) is a semimartingale in .#? if and only if § € ©®
and its canonical decomposition is given by G(0) = (6 dM + [0 dA.

DEFINITION 2.5. A random variable H € .2%(Q, %, P) admits a
Féllmer—Schweizer decomposition if it can be written as

(2.8) H=H,+ [ "¢ dX, +L,, P-as.,

where H, is an .Z,—measurable random variable, £ € ® and L = (L,)y, .7 is
a martlngale in .#72, strongly orthogonal to [6 dM for all 6 € L2(M ).

We now recall a lemma of Schweizer (1994a).
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LEMMA 2.6. Suppose that X satisfies (2.1) and (SC). If K is bounded, then
0 = L2 (M).

ProoF. If K is bounded, then the Cauchy-Schwarz inequality yields, for
every 9 € L2(M),

T T A
A |05*’YS| st = *0:9 A'Sl st

/
< [ (60,00 *(Ra,) " B,

1/2
o \1/2( (T
< (K 6Fa, 6, st) .
(),
Therefore, L*(M) c L?>( A), which completes the proof of Lemma 2.6. O

In what follows, unless otherwise noted, we assume that X satisfies 2.1
and (SC) and that the MVT process K is uniformly bounded in ¢ and w.

3. Follmer-Schweizer decomposition.

3.1. Existence and uniqueness. The beginning of this subsection is
strongly inspired by Schweizer (1994a). Nevertheless, we do not work under
the same hypothesis. Indeed, Schweizer has proved the existence of F-S
decomposition in the case where the jumps of K are uniformly bounded by a
constant less than 1. We assume only that K is uniformly bounded. That is
why we recall the proof of the first result.

DErFINITION 3.1. Let 0 < T, < T, < T be predictable stopping times and
suppose that H € #%(Q, %, _, P). The mapping ¥y: L*(M) — L*(M) is de-
fined by Y4(0) = 6:=1 Ir;1,f V> Where v is the integrand in the
Galtchouk—Kunita—Watanabe decomposition of the random variable H —
fo Lyr, 7,1 ()6 dA, with respect to the martingale M.

Hence, the definition of ¥y yields

T
H _./;) 1]]T1;Tz|I (8)03* dAs
(3.1) T, . T .
: =E(H—f 1y7.7,r (5)6F dASIZ)) + [y aM, + L,
0 0

where L is a martingale in M, strongly orthogonal to M.
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Since H — [{ 17, 1,p (86 dA, is an 7, -measurable variable, we can
rewrite (3.1) as

T
H _j(; l-:|]T1;T2ﬂ: (s)es* dAs
T T
@2)  =B(H- [Tineg (907 4415 ) + [Momg ()% 4,

T A
+j0 1901, (8) dE,.

If H is defined by

A T T
H:= E(H _/;) 1:|]T1;T2|]: (8)03* dAsI‘%) + /(; 1]]0;7'1] (S)Vs dM,

T A
# [Mons (9 d,
then H is r-measurable and

T
H —/;) l:ﬂTl;Tzl]: (s)6) dA,
(3.3) . r r
=H +/(; 1]]T1;T2|]: (3)08 dMs +'/(‘) 1:|]T1;T2|]: (8) dLs.

Now let us characterize the fixed points of ¥y. If § € O is a fixed point of ¥y,
then (8.3) yields

(34) H-H+ le 1rur,r L(s)6, dX, + jTl szt L(s) dL,.

Conversely, if § € @ satisfies (3.4), then the Galtchouk—Kunita—Watanabe
decomposition of H with respect to M implies that

H~ [yrnp (s)0r dA,
A T
(3.5) = B(HI%) + [ (L300 ()4 + Larur, (5)6,) dM

T A
+(NT1 +f0 17,71 (8) dLs).

From the uniqueness of the Galtchouk-Kunita—Watanabe decomposition, we
conclude that » = 1¢,7,7 £ + 177, 7,¢ 0 and therefore ¥;(6) = 6.

We need some auxiliary results to prove the existence and the uniqueness
of the F-S decomposition. Indeed, the idea of the proof is to deal with the
jumps of K which are greater than 3/4, on one hand, and, on the other hand,
to deal with what happens between two such jumps. On these intervals, we
can apply the same method as in Buckdahn (1993) and Schweizer (1994a),
that is, to consider subintervals on which the growth of K is less than or
equal to a constant § € (0; 1). For this proof, we need two lemmas.
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LeMMA 3.2. Let 0 < T, < T, < T be predictable stopping times and sup-
pose that H 632(0,%2-, P). If there exists a constant & € (0;1) such that
Ky, — Ky < 8 P-a.s., then Yy admits a unique fixed point.

PrOOF. If ||:|lz2(ar) denotes the norm defined by |101lz2ary = Il [0, dM,]l2,
then (L2(M), |- llz2ar)) is a Banach space. Hence, to prove that ¥, admits a
unique fixed point, it suffices to prove that ¥, is a contraction on L?(M). Let
6,0’ € L*(M). Then

A A 2
6 — 0'llz2cary =

+ |18 - H'|)?
2

’j(; 1:|]T1;Tz|]: (S) dLs _j(; 1:|]T1;T2|]: (S) dLs

(fOT(és - 8) dMS) +(H-H)

2
+

2

2

T o T AI
+ (j(; 1]T1§T2[[ (S) dLs - j;) 1:|]T1;T2|]: (8) dLs)

(since these three terms are orthogonal)
2

2

T !
j(; 1:|]T1;T2|]: (s)(os - Os)*dAs .

2

(from SC)

T a
[ Varar (5)(0 - @)*a, R, dB,|

< E( foTlm;Tz[[ (s)%0,4, dB, | “(6, - 6))*a,(6, — 6)) st)
(since o is a symmetric nonnegative matrix)
<Ry, — Ilelle( A "6, - 0)*a,(6, — 6)) st)
<86 - 0’”%2(M)~
Hence, ¥;; is a contraction, which completes the proof. O

LEMMA 3.3. Let T, be a predictable stopping time and suppose that H is a
random variable in Z*(Q,Fr , P). Then

’

" (3.6) H=H+ [1p7,9(5)§ dX, + Ly, Pas,
0 N
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where H e.‘Zz(Q,%o_, P), £ € O and L is a martingale in .#¢ that vanishes
on [0;T,[ and is strongly orthogonal to [0 dM for every 6 € L*(M). More-
over, this decomposition is unique in the following sense: If

H-H+ jOTl[[m] (s) dX, + L, = H' + foTl[[m] ()& dX, + Ly,
with (H, €, L) and (H', €', L') satisfying the previous conditions, then
H=H, P-a.s.,
1rp,g€=1¢g1 € inL*(M)

and

-
Ly =Lz, P-a.s.

ProOF. (E(H|%))y.,<r is a square-integrable martingale; hence, the
Galtchouk—Kunita—Watanabe decomposition yields

(3.7)  H=E(HI%) =E(HI%)+ [ &dM, +L;, Pas.
0

with £ € [3(M) and L €.#¢, strongly orthogonal to M. However, H is
Fr,-measurable; hence, £ vanishes on ] T,;T Jand Ly, =Ly P-as. On the
other hand,

T -
(3.8) E(H|%,)=E(H) + fo Ly0,r,p (8)& dM, + Ly, P-as.
Hence, subtracting (3.8) from (3.7) implies that

T ~
(3.9) H = E(H\%,) + fo 17,7 ()& dM, + Ly, — Ly, .

However, L*(M) = © and [{ 17,7 (s)éx dA, is 7,-measurable because A
is predictable. Therefore,

(3.10) H=H+ ["5,y ()& dX, + L,
0
with
~ T Sy
H = E(Hlsz, ) - fo 1rr,3 (8)&F dA,

and

LTO = LTO - LTO"

Let us show now the uniqueness of this decomposition. We can first assume
that H = 0. If e

~ T ~ ~
0=H+ fo 1pr,7 (8)E dX, + Ly,
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then, taking the conditional expectation with respect to 7, . and subtracting,
yields

T - -
0= fo 1rr,7 (s)€ dM, + Ly,
Now, the Galtchouk-Kunita—Watanabe decomposition is unique, so
/ "1ir,7(s)E, dM, =0 and L, =0, Pas.
0

Finally,

T - T .
0 Slj(; ll]:To]] (S)fs* dAs =’f0 1|[To]] (s)gs*,ys dB,

= |fT1 [To] (s) gs*qs Xs dB, (from SC)
0

T ~ _ 1/2 Ta R 1/2
< ([ers (VEwE a8 ([Tizad, as,)

= (<fol“°] ()&, dMs>T)l/2(I{'T)l/2

<0,

because K, is finite and ¢ ;1 [T,] (s)€, dM, )7 = 0; hence, the decomposition
is unique. O

THEOREM 3.4. Every random variable H € #*(Q,%, P) admits a F-S
decomposition. Moreover, this decomposition is unique in the following sense:

If |
H=Hy+ ['6# dX, + L =Hy + ['6" dX, + LT,

where (H,, ¢¥, L¥) and (H}, ¢'2, L'®) satisfy the conditions of the F-S
decomposition, then

H,=H,, P-a.s.,

¢ =¢" in*(M)
and

LE=LF,  Pas.

PrOOF. Since K is uniformly bounded in ¢ and , there exist a constant
8 € (0,1) and a finite sequence of predictable stopping times (T}), . ;. , such
that

0=Ty<Ty<  <T,=Tand K, —~K; <6, Pasfori=1,..,n.
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To construct such a sequence, we can take ¢ > 0 such that 3/4 + e <1
and set

To = O,
inf(T, <t < TR, - Ry, 2 8/4 + ¢},

T, = . . )
T, ifthe previous set is empty,

T, =T with n large enough to ensure that KT_— KTPI <3/4 + ¢ P-as.
All stopping times T; are predictable since they are “debuts” of right-closed,
predictable sets.

Let H €2%(Q,%, P). Remembering that & =5, =5, we can apply
Lemma 3.3 to the stopping times 7, to decompose H as

~ T ~ ~
H=H"+ [1r7,7(s)&" dX, + L.
0
Applying Lemma 3.2 between T,_, and T, allows us to write H" as
- A T A T N
H"=H 1+ jo Lyr_.rp (8)E2 1 dX, + /0 1y _.op (8)dlit,

Therefore,

A T ~ - ~n
H=H"1+ fo (197, or ()21 + 1177 (5)€) dX,

- T B
+ Ly + fo 1yr, 1, (8)dL™%

By induction, by using successively Lemmas 3.2 and 3.3, H is decomposable
as follows:

A T2 n. -
H=H"+ fo Y (L1r, ure ()& + 117 (8) &) dX,
i=1

A T A,
+ % (B [Myn, gor (5) a7,
i=1 0

Let
Ho =ﬁ0,
n
¢= X (1yz ymp 71+ 1p1 &)
i=1
and

U T kA._
L=Y (L‘Ti + [0 197, .70 (s)dE: 1).
i=1 .

Tl;,cen H, is F;-measurable, £ € ® and L €.#7 is strongly orthogonal to
/0 dM for @ € L*(M), which completes the proof of the existence of the F-S
decomposition. :
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Let us prove now the uniqueness of the decomposition. By subtracting, we
can assume that H = 0 P-a.s. If

Hy+ ['¢ dX, + Ly =0,
0
then
T T
(Ho + j;) 1 :I]o;Tn[[ (s)fs dXs + LTn") + j(; l[[Tn]] (S)gs dXs + LT - LTn'= 0.
Now (H, + [¢ 110,7,1 ()¢, dX, + Ly )is 7 -measurable so, by Lemma 3.3,

T
Hy+ [(1107, (s)& dX, + Ly, 0,

T
j;) 1|]:Tn]] (8)§s dMs =0

and
Ly =Ly, P-as.

Consequently,

T T
(HO + j(; 1]0;Tn_1:ﬂ (s)& dX, + LT,,_I) + '[0 ]'J]Tn-x;Tn[[ (s)& dX,

T
+ [ 1yr,_ynp (8)dL, = 0.
0
Using the uniqueness of decomposition (3.4) yields

T
H, + [0 1907, ,7(8)& dX, + Ly =0,

T
[0 1yr,_;7,1(8)§ dM, =0

and
Ly=Lg ..
By induction, we prove that
H, =0,

T
fo 197,77 (s)& dM, =0

and
LT = LTO = LO = 0, P'a.s.,

which completes the proof of the uniqueness of F-S decomposition. O

» 8.2. Continuity. To prove the continuity of F-S decomposition, we argue

‘as in the proof of Theorem 3.4. That is, we want to see what happens at a
high jump of K and outside a high jump. So again we need two auxiliary
results.
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LEMMA 3.5. Let 0<T, <T, <T be predictable stopping times such that
there exists a constant 6 € (0, 1) satzsfyzng KT — KT < 6 P-a.s. Suppose that
H? and H are random variables in #2(Q, 9’T ,P). Let

H? =H? + [y 00 ()82 dX, + [M1yg,pp (s) dL?
0 0
and
H-F+ [ dx, + [M1 df,
= j;) 17,75 (8)§; dX, + j(; 17, 7,0 (8) dLg
be the decompositions of H? and H deﬁned in (3.4). If
H? m H,
then

2 L2(M)
1]]T1;T2|[ § po® 1]]T1 T2|]: §

and

[ 1yp,m,r () dL? 2o f 197,77 (s) dL,.

‘ PROOF. Let £P (resp. £) be the unique fixed point of ¥y, (resp. ¥y ). Then
€7 — Ellzzary = 1y €P) — By (€)llz2qar)
< 1y ( €7) = Vo (€)llzzcary + 1¥o(€) — Oy (€)ll2cary
< VBIIEP — Ellzaary + 1Wgo( €) — Uy (€)llz2ar)

because V¥, is a contraction with parameter V5 for every p, and & does not
depend on p. Therefore,

167 — Ellgrry < ——11¥ (€) = Ty (é)ll
LX(M) = 1_‘/— HP H LA(M)-

However, for every 6 € L*(M), if 67 = ¥,,(0) and 6 = ¥, (0), we have, from
(3.3), using the orthogonality of the three terms,

IH? — Hll; >

‘jOT(ésP ~ 6,) am,

2
Since H? converges to H in .#2,

" So,"
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Using the fact that X satisfies (SC) and that Kn-— Ile < 8, we obtain

2

2
T A A
j(; (g;sp - §s)*73 st 9

[)T( ésp - és)*dAs
2

(§P—§)a,\ dB,

2

smw-m¢4g@w@hqg—@ﬂq

[(& - 4)

A A
< IBq,_— Ry k

Hence,
e an o 8 aa,

SO
2

po®

2

|2 - [eran) - (- [ aa)

’NOW, from (3.4),

H- ["&rdA,=H+ ["&aM, + [137,0,0 (s)dL,
0 0 0
and
p— ["érrda, = Hr + ['ér am, +[ 192,7,r (s) dLP.
0 0
Therefore,

”(HA'IJ + fTésp dMs + le 17y; T, (S) df’f)
0 0

_72
75= 0.

2
—(B+ [Té am, + [V yz,0,0 (s) dE,
0 0

However, the three terms H? — H, fo §" aM, — |, § dM, and []'1 ]T1;T2[[(s) X
dir — [I1 1T,; Tyr (8) dL, are orthogonal; hence, the previous convergence
implies that

B2, H and flm nt (s) dL? 2o f 1yr.nr (8) dL,,

p—»oo

which completes the proof of Lemma 3.5.-0
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REMARK 3.6. Since X satisfies (SC) and K is uniformly bounded, the

convergence of £ to ¢ in L?(M) always implies the convergence of [[¢P dX,
to [T¢, dX, in 22, Indeed

[ (&r - &) dx,| <lier = élan +| [ (& - &) dA
0 2 0

= l€P — Ellzan +| [ (& — &)™, dB,
0 2

T A
=17 = €llzany +| [ (&7 = &)*0, A, dB,

0 2
<(1+ ||I€||olo/2)||§p = &llzzary.

LEMMA 3.7. Let T, be a predictable stopping time. Suppose that H? and H
are random variables in 5/2(0,.9}0, P). Let

~ T ~ ~
HP=HP+f01[[T0]](s)§sP dX, + Lp,
and
~ T ~ ~
H=H+f01[[T0]](s)§s dX, + Ly,

be the decomposition defined in (3.6). If

then

and

ProoF. HP ——-—» H, so E(H?\Fp ) ;‘% E(H|%7,). Hence, by subtract-
ing,
1P - E(H\%,,) 2o H - E(HI,).

po®

Replacing H? and H by their decompositions implies that
T - -
fo 17,1 (s)&P dM, + Lf, 552 f 1r7,3 ()£ dM, + Ly,

" However, [§ 17,7 (s)éEP dM, + I:f! is the Galtchouk-Kunita-Watanabe de-

composition of HP? — E(H?|7;,) and [{1prq (9 dM, + Ly, is the
Galtchouk—Kunita—Watanabe decompos1t10n of H - E(H L7T ). The
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Galtchouk—-Kunita—Watanabe decomposition is continuous with respect to
the #2-norm, since it is a projection on a closed subspace of .#2. Therefore

f lﬂ:To]] (s)gs s p—)oo f lﬂ:TO (s)gs dM and L; p—)oo fJTo'

By Remark 3.6, we also have the convergence of (17,7 (s)éP dX, to
[§1rr,7 ()€, dX, in Z2% Consequently, H? converges to H in .#2, which
completes the proof. O

THEOREM 3.8. Let H? and H be random variables in #?(Q,%, P). Sup-
pose that

H? —Hy + ['¢r dX, + Lf
0
and
H=Hy+ [t dX, + Ly
0
are the F-S decompositions of H? and H.
If

’ then

and

Proor. Using the notations of the proof of Theorem 3.4, we have the
equalities

H,=H°, Hp=H»"
n n. .. n -
- .Zl (1 17470 fl_l + 1[[Ti]] fl)’ Zl (l 17Tl gp Tt lﬂ:Ti]] gp,t)
i= i=
and
LA T A
L= % (B + [Myn, yox (5) a7
i=1
n
. LP=z(LP‘+fl]]T1T[[(s)dLP‘1)
=1

1

Hence, applying Lemma 3.7 to stopping times 7, and Lemma 3.5 between
T;_, and T;, we prove Theorem 3.8. O
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4. Applications.

4.1. Closedness of Gr(0®) and {Z*(Z,) + G;(0)}). As an application of the
existence, the uniqueness and the continuity of F-S decomposition, we have
the following result:

THEOREM 4.1. The subspaces Gp(0) and {F*(F,) + Gp(0)} are closed
subspaces of Z2.

PrOOF. Let (H?),, , be a sequence of G;(®) which converges to H in £,
For every p, H? is in G;(0®). Hence there exists a process 67 € © such that

H? = ["or X,
0

and since the F-S decomposition is unique, this is the F-S decomposition of
HP. The random variable H is in .#%. Hence, from the existence of the F-S
decomposition, we can write

H=H0+/OT§SHdXS+L’T’

-as in Theorem 3.4.

Now, H? converges to H in %2, so by Theorem 3.8, H, = 0 P-a.s. and
L¥ = 0 P-as. Hence, H is in G7(0), so G(0) is closed in #2.

Let (H?), ., o be a sequence of {#*(%)) + Gr(®)} which converges to H in
Z2. For every p, HP is in {Z%(F,;) + G;(0)}. Hence, there exist a random
variable Hf € 2%(%,) and a process 6” € © such that

T
HP = HP + f 0” dX,.
0
and since the F-S decomposition is unique, this is the F-S decomposition of

HP?. The random variable H is in .#%. Hence, from the existence of the F-S
decomposition, we can write

H=H,+ [ ¢ dX, + L}
0
as in Theorem 3.4.

Now, HP converges to H in #?, so by Theorem 3.8, the sequence (H{), . o
converges to H, and LZ =0 P-as. Hence, H € {Z%F) + G;(0)}, so
{Z%(F,) + Gr(®)} is closed. O

. We thank M. Schweizer for'the following remark.

REMARK 4.2. Since Gr(0®) is closed, so is any sum of G;(0®) and a
finite-dimensional subspace of .Z2. In particular, {c + G(®)lc € R} is closed.
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REMARK 4.3. When X is continuous, we only need the existence of the F-S
decomposition to prove that the previous subspaces are closed. In fact, in that
case, since K is bounded, the process Z defined by

Z, ==g(—deM)t

is a positive square-integrable martingale. Therefore, we can define a new
probability law P equivalent to P by setting

dP
dP
Then ZG(6) €.#(P) for every § € ©, so G(6) is a P-martingale and

E( sup IGt(0)I) =E(ZTOSI:pT|Gt(0)|)

< (E(z‘;))”“’(E(

A

=Zy.

Osup th( 0)|)2) 1/2

21\ 1/2
B s |

< C(E(

< +oo,
- Therefore, G(0) €.#3(P).

Let (G1(6™), <y be a sequence in G7(®) which converges to H in #?(P).
Then G,(6") converges to H in .#'(P). Under the probability law B, G(6™) is
a u.i. martingale, so by Yor’s lemma, there exists a predictable process ¢ such
that

H= fOTgs dx,.

Let H, + [J¢&7 dX, + LY be the F-S decomposition of H. Since [¢édX is a
P-martingale,

B(HI%) = ¢ ax,
- E‘(HO + [OTgsH dX, + L;ﬂgg)

= H, + jotgsH dX, + B(LE\%).
However, ZL e#}(P), so L e#}(P). Hence
ftfs dX,=H, + ftff dX,+ L, P-as.forallte[0;T].
0 o -

If t = 0, we conclude that H, = 0 P-a.s. Therefore, taking the sharp bracket
between L and [¢dX yields (L¥) = 0; that is;, L¥ = 0 P-as. for all ¢ €
[0; T'], which completes the proof, O '
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REMARK 4.4. Using the second part of Theorem 4.1, it is easy to prove that
if & c &, is a subfiltration of &, then {Z%(£) + G;(0)} is closed.

THEOREM 4.5. If K is uniformly bounded, the norms |- llz2ary, Gl
and ||G;()lls2 are equivalent.

ProOOF. It is obvious that [|G;()llz < IGr()lls2. On the other hand, for
00,

1G2(6)l5+ =" [To am,

+ ” [Ml62 aB,
2 0 2

T A
[ 1670,4, dB,
0 2

— 1602y +|

1/2
Ta ~
< 116ll2cary + (E(]OTOS*USOS st[O Mo A, st))

< (1 + IEI*) 6l 2car)-
Finally, if G;(6") — <" Gr(0), then by Theorem 4.1, there exists 6’ € ®

n-—o

such that G;(6") —» <’ .G,(6"). However, H" = G;(6") and H = G(6) are
the F-S deco;npositions of H" and H. So by the continuity of this decomposi-
tion, 0" — ,fﬁ.?o’. Therefore, there exists a positive constant a such that

I l2cary < allG7(llz, which completes the proof of Theorem 4.5. O

4.2. Approximation of random variables by stochastic integrals. By Theo-
rem 4.1, we can now project any random variable H €. 2% on G;(®) and
{Z%(F,) + Gr(B®)}. So we prove the existence and the uniqueness of a solu-
tion of the optimization problem.

THEOREM 4.6. For every H € #%(0,F, P) and every ¢ €Z%T,), there
exists a unique strategy ¢© € O such that

2 2
E((H-c- ["¢®dx,| | = mnE|(H-c- ["6,dx,] |.
0 0@ 0

Similarly, there exists a unique (c¥, ¢¥) € #%(Z,) X © such that

2 2
E((H—cH - ]TgsH dXs) ) = min E((H—c - fTOS dXs) )
0 (c, 0)eL*F)x0 0

4.3. Applications to financial mathematics. The two previous optimiza-
tion problems have a natural interpretation in financial mathematics. Indeed,
if H is interpreted as a contingent claim, the first optimization problem
amounts to finding the best strategy to minimize the expected net quadratic
16’ss at time T, given an initial capital c¢. As for the second optimization
problem, it amounts to finding an initial capital ¢ and a strategy £ so as to
minimize the expected net quadratic loss.at time T.
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4.4. A special case. If M, the martingale part of X, has the predictable
representation property (denoted by PRP in what follows), then we prove that
G;(0) is equal to .#? up to constants.

THEOREM 4.7. If M has the PRP and if Kis bounded, then
Gr(0) = {H e#*(0,5, P)|E(Z,H) = 0},
where the process Z is defined by
2,-#(- [iam) .

t

ProoF. Let H be a random variable in .#%(Q), #, P). From the existence
of the F-S decomposition, we can write H as

H=H,+ fngstXs +LH.

Since the martingale L¥ is strongly orthogonal to M and vanishes at 0, and
since M has the PRP, L¥ = 0 P-a.s. Hence, every random variable H €
Z%(Q,, P) can be written as

H=H,+ ngsH dX,.

However, from the uniqueness of the F-S decomposition, H belongs to G,(®)
if and only if H, = 0. If Z is the process defined by

2, - #(-[iam)

and if we assume that K is bounded, then Theorem II2 of Lepmgle and

Mémin (1978) implies that Z is in .#% and for every 0 € ®, ZG(9) is in
#J(P). Hence H, = E(Z, H), which completes the proof of Theorem 4.7. O

5. When K is no longer uniformly bounded. If K is no longer
uniformly bounded, the F-S decomposition does not always exist and G,(©)
may be closed or not, as we show in the three following examples.

5.1. Counterexample for the F-S decomposition. Suppose that d = 1 and
that we are at a jump of K. Let H = 63 AMg with 0 € L*(M) and let S be
the time when K j jumps. If H admits a F-S decomposition, then

H=H0+f & dX, + Ly
0

However, E(H|%;) = 0, so
H =65 AM;
= fs AXS + ALs.



FOLLMER-SCHWEIZER DECOMPOSITION 625

Now L is a martingale strongly orthogonal to [0 dM for every 6 € ©. Hence,
necessarily 0g = &g.
However,

E(62(AAg)?) = E(62 A(M)s AKy)

and 62 ACM )s spans L(F;) when 6 € 0, so E(65(AAg)?) < + if and only
if AK s is uniformly bounded. Consequently, H does not admit a F-S'decom-
position if AK is not uniformly bounded.

5.2. Counterexamples for the closedness of Gr(®). While the assumption
that K is bounded might seem excessively strong, there are counterexamples
when it is relaxed. In discrete time, there is a counterexample due to
Schachermayer which is explained in Schweizer (1993a).

We now give another counterexample in which we work in continuous time
and we assume, moreover, that the process X is continuous. More precisely,
consider a standard Brownian motion W and its natural filtration (%), . o. Let
a = (a,); ., ., be an R, X F -measurable process such that

E(exp(fzozs2 ds)) < +oo,
1
Vee (0;1), [*‘aldses”
- 1
and
[Palds &7,
1

The last assumption implies that there exists a nonnegative random variable
H € #Y(Q, %, P) such that

E(Hj2a3 ds) —
1

(W, if t € [0,1],

Define the process X by

X, = Wt+ftasds, ift e[1,2].
1

Finally, let us define the processes ¢, 6 and 6" by

H
¥, = E(I{’Z I }-Z) for all ¢ E [0,2],

] __{0, ift €[0,1],

U,a,, ifte[1,2],

i

and 6 =1 <m0 where K, = f a2 ds for all ¢t €[1,2]. Then 6" € ® and
the process 6 is in L*(W), but it is not in L(fa, ds).
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On the other hand, [%0/e, ds is F;-measurable, so using the predictable
representation property of the Brownian motion implies that there exists a
process ¥" € O such that

j; ll[fs" aw, = — j; 208”013 ds, P-as.

For every n € N, if ¢" is the strategy defined by
oo [V om0l
6", onl1,2],

then

[0 Zor dX, = [o Yor aw, + [l Zor dW, + [l %0, ds

- [20: dw,.

Hence, the sequence (Gz( ¢™)), <n converges to [0, dW, in &2
Now E(exp([2a2 ds)) is finite, so Novikov’s cntenon implies that we can
define a new probablhty law P equivalent to P by setting

b 2

— = = —_— — 2

7P Z, exp('/‘1 a, dW, f % ds)

" Assuming that there exists a process ¢ € 0 such that (Gz(go"))n <N converges

to G,(p) in #%(P) and noting that, under P, G(¢) is a martingale for all
£ € 0, yields

S npox

& 2—
Vee (0,1), [*erax, T [*7% ax,,
1 1
since Z, is square-integrable. However, the definition of ¢" implies that

[2-%" dX, = [27 0" dX,, 80
—e 1 p -
Vee (0,1), [12 or dX -Sf-‘-’-’-’»flz *0, dX,.

S npox
Now, for all ¢ € (0, 1),
[0 aw, 252 L) [7%6,aw, and [*‘a?ds ez
1 1

s n—)oo
1
Therefore, for all £ € (0, 1),
2-¢ 2 2-
f 0 a, ds Z1B, f eosas ds,
1 1

n—o
which implies that
2- B) ' r2-
Vee (0,1), [*ordx, T [, ax,.
RS 1

§ no®

Consequently, for all £ € (0,1), [, dX, = [2™ %, dX,, so
Vee (0,1), E((ﬁ (6.~ ) dx,) )
1
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Under P, X is a standard Brownian motion, so taking the sharp bracket
yields

Vee (0,1), E([lz‘s(os % ds) =0,

which proves that 6 = ¢. However, 6 & O, so the limit of the sequence
(G4(0™),, < n 18 not in G4(0®), which completes the counterexample.
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for helpful comments.
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