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THE RADIAL PART OF A I'-MARTINGALE AND A
NON-IMPLOSION THEOREM

By WILFRID S. KENDALL

University of Warwick

An upper bound is given for the behaviour of the radial part of a
I'martingale, generalizing previous work of the author on the radial part
of Riemannian Brownian motion. This upper bound is applied to establish
an integral curvature condition to determine when I'-martingales cannot
“implode” in finite intrinsic time, answering a question of Emery and
generalizing work of Hsu on the C-diffusion property of Brownian mo-
tion.

1. Introduction. This paper has a two-fold purpose. First, it shows how
to provide an upper bound on the behaviour of the radial part of a I-
martingale, generalizing the result of Kendall (1987), but using a new proof
which clarifies the relationship of the result to convexity. Second, it uses this
upper bound to answer a question of Emery about when I'-martingales are
prevented from “imploding” in from « in finite intrinsic time.

The importance of the class of manifold-valued random processes known as
I'-martingales arises from its use in the probabilistic approach to harmonic
maps [see Kendall (1988, 1990) and Picard (1991)] and from its close relation-
ship to the notion of convexity [see Emery (1985, 1989), Emery and Moko-
bodzki (1991) and Kendall (1991, 1992a, b)]. Recall that a (continuous
sample-path) random process X on a complete Riemannian manifold M (or
more generally a manifold with connection, but we will not deal with this
case here) is said to be a I'-martingale if its composition with a C2? map ¢
yields a submartingale at least when X belongs to regions of convexity of ¢.
Thus the class of I'-martingales generalizes the notion of Brownian motion on
a complete Riemannian manifold (in which “convexity” above is replaced by
“subharmonicity”).

Stochastic differential geometry shows how one may construct important
auxiliary processes from a I'-martingale (or more generally a manifold-valued
semimartingale). Here we give a very brief review of these constructions: see
Kendall (1988) [corrections in Huang and Kendall (1991)] for a full exposition
using the notation of this paper and Emery (1989) for an approach based on
convexity. Using the horizontal subspace H_ ., < T,0(M) at the frame ¢ of
the orthonormal frame bundle O(M) (supplied by the Levi—Civita connection),
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one defines the stochastic development M and the stochastic parallel trans-
port E for a I'-martingale X via

d¢E =HzdgX,
(11) S Ml:, S
dst"::dsM,

and M turns out to be a local martingale (motivating the terminology
“T-martingale”). In fact one may use (1.1) to define the notion of a I-
martingale. In particular the intrinsic time of X is defined by
[trace d[ X, X] = [trace d[M, M].

The theory of I'martingales generalizes linear martingale theory in an
interesting way. In Darling (1983) and Zheng (1983) there is proved a
I'martingale convergence theorem, while the notion of I'-martingale conver-
gence is used to characterize important domains in Kendall (1992a). In
Kendall (1990) and Picard (1991), I'-martingales are used to generalize the
classic probabilistic solution of the Dirichlet problem to an important class of
nonlinear elliptic systems, the Euler-Lagrange systems for harmonic maps,
thus fulfilling the promise implicit in the analogy between I'-martingales and
Brownian motion noted above.

Emery (1985) reviews various I'-martingale issues and propounds a num-
ber of conjectures. In particular, he raises the question: given a manifold M,
is it possible to build a I'-martingale X restricted to the time set (0, ) such

“that X(0 + ) = o with probability 1? (The Alexandrov compactification is
used to define «.) [Work in He and Zheng (1984) shows that X(0 + ) =
o is the only alternative to existence of the limit X(0 + ) in M.] What
curvature conditions on M ensure that P[X(0 + ) # ] = 1 if
P[ fotrace d[ X, X] < =] = 1? Since we are studying a phenomenon which in
some sense is the opposite of explosion, we describe the case X(0 + ) = « as
implosion. So Emery’s question is summarized as:

When is it possible for there to be a I'-martingale which “implodes”
from «© at time 0?

(Note that Emery also deals with the case of explosion—whether X can reach
o in finite intrinsic time—in the above paper.)

Apart from its intrinsic interest to the student of I'-martingale theory, the
possibility of implosion may turn out to be relevant to the probabilistic theory
of harmonic maps referred to above. These considerations motivate this
paper, which sets out to explore the circumstances in which implosion will
not occur.

The analogous question for Brownian motion on M (which is after all a
I'-martingale with d[ M, M] = 1 X dt) has been reeently dealt with in a very
full way by Hsu (1989), building on work of Azencott (1974), Dodziuk (1983)
and Yau (1978). Brownian motion in M cannot implode precisely when M
possesses the Feller or C,-diffusion property (which is to say, the heat
semigroup of M preserves the class of continuous functions vanishing at ).
This is an exercise in the path-space approach to diffusion theory, which we
leave to the interested reader. Hsu showed that Brownian motion in M
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possesses the C,-diffusion property when the Ricci curvatures of M are
bounded below by a radial function — «2(r) such that [k(r)~! dr = . Since
the class of I'-martingales is controlled by sectional curvatures rather than
averaged Ricci curvatures, it is natural to conjecture that I'-martingales in M
cannot implode when the sectional curvatures are bounded below by —«2(r)
with [*k(r)~! dr = . We prove this conjecture in this paper.

To prove his results for Brownian motion, Hsu used the full stochastlc
differential analysis of the radial part of Brownian motion which is to be
found in Kendall (1987). We see below that the I'-martingale non-implosion
result follows from an analogous result for I'-martingales, which we state and
prove as Theorem 2.3 in Section 2. Because the class of I'-martingales is very
wide, it is not possible to give as detailed an analysis of the I'-martingale
radial part as is given in the Brownian case. However, by way of compensa-
tion the method of proof given here is much simpler, being based on
Toponogov’s theorem from geometry [used to give a new proof of the prepara-
tory geometrical Lemma 2.1, originally proved by Wu (1979)] and a convexity
argument. Note also that Corollary 2.4 gives as full an analysis in a moder-
ately restricted I'-martingale case as is available in the Brownian case.
(Examples 2.2 and 2.5 use I'-martingales on the cylinder to show that a full
analysis of the general I'-martingale case would have to be more complicated.)

Given the radial part analysis of Section 2, the non-implosion proof is a
straightforward extension of Hsu’s approach. It is given in Section 3. The
basic step is to bound the rate of escape of I'-martingales from geodesic balls,
given in Lemma 3.1. The results of Section 2 are required because we cannot
assume that the geodesic balls are free of cut locus. The non-implosion
criterion is established in Theorem 3.2. For the sake of completeness we also
establish Theorem 3.3, a I-martingale version of a Brownian result, which
says that if the sectional curvatures are nonpositive and the manifold is
simply connected, then implosion can never happen regardless of whether or
not there exist lower bounds on the sectional curvatures.

The paper is concluded by three examples in Section 4. In particular, these
examples show that the presence of positive curvature makes implosion
possible only because of the resulting presence of cut locus and not because of
the intensity of positive curvature.

2. The radial part of a I''martingale. In this section we establish an
upper bound (Theorem 2.3) on the behaviour of the radial part of a I-
martingale in a general complete Riemannian manifold. We prepare for this
by proving Lemma 2.1, which implies that the study of the cut locus of a point
on a manifold may be viewed as part of the study of convex functions on that
manifold. In fact, all cut loci arise (at least locally) as the combined disconti-
nuity sets of the first and second derivatives of certain convex functions. The
" furiction y — —dist(y, x) may be transformed into a convex function in the
néighborhood of a point z # x simply by adding a large enough multiple of
y — % dist(y, 2)%. (Note that a convex function which arises in this manner is
of a special form, because its first- and second-derivative discontinuity set
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must be closed. I do not know if there are other special features of such
convex functions.)

Using this lemma we are able, in Theorem 2.3, to bound the behaviour of
the radial part of a I''martingale X, even when X visits the cut locus of the
reference point from which the radial part is computed. Since Brownian
motion is an example of a I'-martingale, it follows that Theorem 2.3 general-
izes the main part of Theorem 1.1 of Kendall (1987). [In fact, as shown in
Corollary 2.4, the whole of that theorem follows rapidly from the present
Theorem 2.3, and so this paper provides an alternative and more general
approach to Kendall (1987).] Note that Lemma 2.1 is due to Wu [(1979),
Theorem 3]. We include a new short proof based on Toponogov’s theorem for
the sake of completeness of exposition [see Greene and Wu (1974) for similar
geometrical applications of Toponogov’s theorem].

LEMMA 2.1. Suppose that M is a complete Riemannian manifold with
sectional curvatures bounded from below by a constant strictly greater than
—K?2 < 0. Then the function

K
(2.1) y— —dist(y, x) + Ecoth(Kdist(z, x))dist(y, z)*

is convex in a neighborhood of z. Furthermore, if M is compact, then there is
&> 0, such that the neighborhood may be chosen to be a geodesic ball of
radius e and centered at z for all z with dist(z, x) > 3 inf{dist(u, C(w)):
u € M}.

PROOF. Suppose —K?2 is the infimum of zero and the sectional curvatures
of M, so that —K2 > —K? (recall that —K %2 is a strict lower bound). Let
v:[—&, €] > M be a geodesic with y(0) =

We use Toponogov’s theorem [an exposmon of this result is given in
Cheeger and Ebin (1975), Theorem 2-2B]. Let M be the two- dimensional
simply connected Rlemanman manifold of constant curvature —K2, with
Riemannian distance dist. (Thus M is the hyperbolic plane of negatlve
curvature —K?2) Let %, ¥, ¥ € M correspond to x, y, y € M in the sense that:

() %,y € M and dlst(i ) = dist(x, y),

() y:[—e, €]l - M is a geodesic with 7(0) % and is such that the angle
in M between % and the geodesic from # to # is the same as the angle in M
between y and the geodesic from y to x.

Then Toponogov’s theorem asserts that for all ¢,
dist(y(t), x) < dist(7(t), %) forall ¢.

Note that Toponogov’s theorem requires no conditions on the cut locus in
M In its full generality it does require conditions on the cut locus in M, but
this cut locus is empty and so these conditions are satisfied vacuously.
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Since dist(y, x) = dist( ¥, %), it follows that for positive s,t<e,

. o [t s dist(y(t), x) — dist(y, x) + dist( y(—s), x)]
. 1 . ~
<= [t dlSt(’}’(t) %) — dist( 7, %) + sdist(?( —s),X)]_

Now because s, ¢ € (0, £], it follows that as & — 0, the right-hand side of (2.2)
converges to

Ifcoth(I{'Ei‘sT(Y’, aE))cos2 a= Ifcoth(If dist(y, x))cos® a,

where « is the angle between ¥ and the geodesic from ¥ to % (equivalently,
between y and the geodesic from y to x). This follows from the computation
on the hyperbolic plane M of

d? . —
[d — dist(7(¢), x)} = K coth( K dis*( §, £) )cos® a.
t=0
Since the Hessian at y = z of y — 1 dist(y, 2)? is the identity tensor (recall
that the Hessian is the second covariant derivative), it therefore follows from
(2.2), from continuity arguments and from the choice of —K?2? < —K?2, that

dist(y(t), x) — dist(y, x) + dist('y( —s), %)

t+s

< gcoth(Kdlst(z x)) S dist(v(2), 2 z)" - dist(y, 2)"

¢ 2
S dist(y(—s), 2)

for sufficiently small ¢ and for y sufficiently close to z.

Furthermore, if M is compact, then uniform continuity arguments apply to
show the above inequality will hold for some fixed ¢ > 0, for all y such that
dist(y, z) < &, for all z with dist(z, x) > % inf{dist(xz, C(w)): u € M}. O

We note a corollary of this proof: It suffices to set —K? to be a strict lower
bound on only the sectional curvatures within an open set containing one of
the minimal geodesics from x to z. Indeed it may be possible to further
reduce the multiplying constant K coth(K dist(z, x)) by building a special-
purpose generalization of Toponogov’s theorem to allow comparison with a
manifold of nonconstant negatlve radial curvatures. However, we do not
_ pursue this here.

We now turn to consider the radial part of a I'-martingale. Note that in
complete contrast to the Brownian case of Theorem 1.1 of Kendall (1987), it is
possible for a I'-martingale to spend all its time on the cut locus of a
reference point. (Because the cut locus is of measure zero, a Brownian motion
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is almost sure to spend only a Lebesgue-null set of time on it.) There follows
the simplest nontrivial example of this phenomenon.

ExaMPLE 2.2. Consider a I'martingale X which moves according to a
real-valued Brownian motion along an axis {n} X R of an intrinsically flat
cylinder S! X R. This axis is precisely the cut locus of the point (—n,0).
Hence the I''martingale X spends all its time on the cut locus of (—n, 0).

It is also necessary to take account of the ability of I'-martingales to visit
prescribed points, again in contrast to the Brownian motion case. Example
2.2 shows this also [ X visits the point (n,0)]. Thus a stochastic differential
equation for the radial part of a general I''martingale must contain a term
corresponding to possible visits to the reference point.

THEOREM 2.3. Suppose that M is a complete Riemannian manifold with
sectional curvatures bounded from below by —K?2, and that X is a T-
martingale in M. Let R = dist(X, x) denote the radial part of X, computed
using a fixed reference point x in M. Then R is a semimartingale and its
Doob—Meyer decomposition is given in stochastic differential form by

(2.3) dIR = dIN + dA,
where N is a real-valued continuous local martingale and A is a predictable
process of locally bounded variation. Furthermore, N, A satisfy

d[N,N] < traced[ X, X],

(2.4) K
Lgso dA < Ecoth(KR)trace d[ X, X].

REMARK. The stochastic differential inequalities of (2.4) are interpreted
using integration against nonnegative bounded predictable functions.

REMARK. As may be seen from the proof below, the inequalities of (2.4)
correspond to a comparison with the hyperbolic plane of curvature —K?2.

REMARK. It follows from Azema and Yor (1978) that [1_, dA is the
local time of R at 0.

PrOOF OF THEOREM 2.3. By a stopping time argument we may reduce the
problem to two cases:

(i) X never hits the cut locus C(x) of the reference point x.
(i) X stays at least 3 dist(x, C(x)) away from x.

Case (i): This is standard apart from the behavior at R = 0. We sketch the
details here. ’

First note that y — dist(y, x) is smooth off C(x) N {x} and C(x) is not hit
in this case. Hence from It6’s lemma it follows that R is a semimartingale
except perhaps in an arbitrarily small neighborhood of x.
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However, y — dist(y, x) is convex in a sufficiently small neighborhood of
x, since dist(y(¢), x) is a convex function [¢| of ¢ if y(0) = x and has positive
second derivative at ¢ = 0 if y(0) is close to, but not equal to x [this follows,
e.g., from Kendall (1988), (3.13)]. Hence R = dist(X, x) is a submartingale
and hence a semimartingale in a small neighborhood of «x.

Hence in this case a pasting argument shows R is a semimartingale for all
time and so the decomposition (2.3) holds.

The first bound of (2.4) follows from Emerys characterization of
Jtrace d[ X, X] as a limiting quadratic variation, since the triangle inequality
shows that

Y (R(t,41) — R(2,))" < Ldist(X(¢,,,), X(t,))’

and the left-hand side converges in probability to [R, R] = [ N, N] while the
right-hand side converges in probability to [trace d[ X, X] [see Emery (1989),
Proposition 3.23]. The second bound of (2.4) follows from standard comparison
arguments in stochastic differential geometry, as described, for example, in
Kendall [(1988), Theorem 2 (geometric form of Itd’s lemma); estimates in
Section 3].

Case (ii): All follows once we establish a local supermartingale property for

K
(2.5) R - E/coth(KR)trace d[ X, X],

for then R is a semimartingale and so the decomposition (2.3) holds. The first
bound of (2.4) follows as in case (i), and the second bound is immediate from
the local supermartingale property of (2.5).

So the proof is completed by establishing that (2.5) is a local supermartin-
gale. Note that a limiting argument allows us to suppose that —K? is a strict
lower bound on the curvatures, while a localization argument allows us to
suppose that M is compact. Let ¢ € (0, 3infldist(z, C(x)): u € M}) also satisfy
the requirements of Lemma 2.1. Then

K
y = —dist(y, x) + Ecoth(Kdist(z, x))dist(y, z)*
is convex in ball (z, &) for all z with dist(z, x) > £ dist(x, C(x)).
Now define stopping times 0 = T, < T; < - by
T,., = inf{t > T,: dist(X(¢), X(T,)) = &}.
Then the convexity noted above means that the following is a supermartin-
gale:
K . . 2
R - Efcoth(K dist(X(1,), x))d, (dist( X, X(1,))’),
where )
) (¢) =T, forte(T,,T,, ]
and
7,(0) = 0.
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Using localization, we may suppose that
f traced[ X, X] <A
0

for some fixed constant A.
To conclude the proof it suffices to show that as £ — 0, so

K 2
[E[E Jcoth(K dist(X(r,), x))d(dist(X, X(r,)) )]
(2.6) X
- [E[Efcoth(KR)trace d[ X, X]],

but as £ = 0, so
K K
Ecoth(Kdist(X(Tn, x))) - Ecoth(KR)
uniformly. Set
K
(2.7) h, = E[coth(K dist(X(r,), x)) — coth( KR)]

so that ||, |l. = esssup, sup,l|2,()|| > 0 as n — .
An Itd analysis of R2 = dist(X, X(7,))? over the predictable intervals of
-constancy of 7, shows

(2.8) d;(R%) =2R,d;M, +d[M,, M,] + dH,,
where M, is a local martingale given by
d;M, = [grad, dist(X, X(7,)) - E] d;M

for E the stochastic parallel transport and M the stochastic development of
X, and where H, is a predictable process of locally bounded variation
satisfying
K*R, cot(K*R,)(traced[ X, X] —d[M,, M,])

<dH, < KR, coth(KR,)(traced[ X, X] — d[M,, M,]),

where +(K*)? is an upper bound on the sectional curvatures of M and the
corresponding lower bound (left-hand inequality) holds at least when & <
wK*. (Note that traced[X, X] > d[M,, M,] > 0) These estimates follow
from Kendall [(1988), Theorem 2 (geometric form of It6’s lemma); estimates in
Section 3].

Hence,

(2.9)

K . K :
Efcoth(K dist(X(r,), x))d(R2) — Efcoth(KR)trace d[ X, X]

K g
. = 5 Jeoth(K dist(X(r,), x))(2R,d; M, + d[ M,, M,] + dH,)

K
-5 [ coth( KR)trace d[ X, X].
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The left-hand side is bounded [as dist(X, x) > 3 dist(x,C(x)) > 0, the first
integrand on the left-hand side is piecewise time constant, and [trace d[ X, X]
is bounded by localization] and so a localization argument may be employed
to show that the local martingale term has zero expectation. Hence

[E[gf coth( K dist(X(r,), %))ds(B2) - 7 [eoth( KR)trace d[ X; X]”

K
=IIE[§fcoth(K dist(X(r,), ))(d[ M,, M,] + dH,)
K
_Efcoth(KR)trace d[X,X]”
(2.10) < Ilh,,llw-[E[f(d[Mn,Mn] + dHn)]
K
+ 'E[Efmth(KR) ‘|d[M,, M,] + dH,, — trace d[X,X]I]

<Al - [E[f(l + KR, coth( KR,,))trace d[ X, X]]

K
+ [E[—fcoth(KR) ‘|d[M,, M,] +dH, — traced[X,X]I}.

2
The first term on the right converges to zero since
A, ll. — 0,
R, < diam(M),

fmtraced[X,X] <A<,
0

The second term converges to zero because R > 3 dist(x,C(x)) > 0 and be-
cause of the estimates on dH, together with the bound R, < ¢. This estab-
lishes the convergence required in (2.6) and so concludes the proof. O

We now consider a special case of Theorem 2.3 from which Theorem 1.1 of
Kendall (1987) follows as a direct consequence.

COROLLARY 2.4. Suppose in the situation of Theorem 2.3 that the T-
martingale X spends almost no time in C(x) [in the sense that {¢: X(¢) € C(x)}
is almost surely a Lebesgue null set] and that the underlying filtration is such
that all continuous martingales M have bracket processes [ M, M| which are
absolutely continuous as (random) measures on the time set [0,%). Then the
system (2.3) and (2.4) of stochastic differential equations and inequalities may
be further improved to

d;R = [grad, dist( X, x) - E] ;M

2.11 :
(2.10) + L[Hess, dist( X, x) - (2, E)|d[ M, M] + dLE - dL,
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where:

(1) The gradient grad,dist and the Hessian Hess, dist of the function
y — dist(y, x) are set to zero for y € C(x).
(ii) E is the stochastic parallel transport of X and M is its stochastic
development.
(iii) LE is the local time of R at 0.
(iv) L is a nondecreasing process which increases only on the time set {t:
X(t) € C(x)}.

REMARK. Since X is a Imartingale, its stochastic development M is a
local martingale.

REMARK. The notation L is chosen to suggest the notion of “local time on
the cut locus.” However it should be noted that a true local time on C(x)
should be defined in terms only of X and intrinsic geometric properties of
C(x), and that heuristics suggest L will then be an integral of a predictable
“averaged gradient” with respect to this local time. (The same point applies to
the Brownian motion case.) Cranston, March and I now have results which
make rigorous sense of these heuristics.

PrOOF OF COROLLARY 2.4. By Itd’s formula in a geometric guise [see, e.g.,
Kendall (1988), Theorem 2 (geometric form of Itd’s lemma)], the difference

R — [[grad, dist(X, x) - E] d;M — } [[Hess, dist(X, x) - (5, E)|d[ M, M ]

must be constant off the set {¢: X(¢) =x or X(¢) € C(x)}. The difference
integrated over the set {¢: X(¢) = x} yields L¥ by definition of local time of a
nonnegative semimartingale; see Azema and Yor (1978). Consider the differ-
ence integrated over {¢: X(¢) € C(x)}. This must have zero martingale part,
since its bracket increases only on the Lebesgue-null time set {¢: X(¢) € C(x)}
and yet by hypothesis is absolutely continuous as a (random) measure.
However, by Theorem 2.3, if

L= (dR — [grad, dist(X, x) - §] d;M
X(t)eC(x)
— 3 [Hess, dist( X, x) - (E, E)]d[ M, M])

f dR = dA,
X(t)eC(x) X(#)eC(x)

then

K
—dL = 1 xyc ey AN < Lixiyeciy Ecoth(KR)trace d[ X, X]

K
= Lixsyecwy Ecoth(KR)trace d[M,M] =0
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as {¢: X(¢) € C(x)} is null and [trace d[ M, M] is an absolutely continuous
measure. Hence L is nondecreasing, as required in (iv) above. O

To see that some restriction is required on the underlying filtration,
consider the following example.

ExaMPLE 2.5. Let x = (n,0) € S! X R be a point on a cylinder with cut
locus C(x) = {n} X R. Consider (two-dimensional) Brownian motion X on
S! X R perturbed whenever it crosses C(x) by a real Brownian motion
increment along C(x) = {n} X R run according to the clock supplied by

¢ X local time of X on C( x).

In this case the radial part has a decomposition according to (2.11) except
that L is no longer a process of locally bounded variation, but has a nonzero
martingale part with bracket process absolutely continuous with respect to
the local time of X on C(x). Moreover, calculation using It6’s formula, using
the planar process obtained by the map

S'x R - [-2,2] XR,
(x,y) = (((signed dist(x,n) + 2)mod 4) — 2, y),

shows that the part of L which is of locally bounded variation will only be
nondecreasing when c is sufficiently small.

REMARK. It would be very useful to have an extension of the more explicit
formula (2.11) to the general context of Theorem 2.3. However, Example 2.5
indicates that such an extension would require a careful and deep analysis of
the relationship between d[ X, X] and the geometry of the cut locus. Fortu-
nately such depth is not required for the purposes of this paper, and further
investigation of this relationship is left as an open problem.

3. Non-implosion conditions for I'rmartingales. It is shown in this
section that if M has sectional curvatures which are bounded below by a
radial bound which does not decay too rapidly to —, then I'-martingales on
M cannot “implode” from infinity. That is to say, if X is a I'-martingale over
time set (0, ®) on such a manifold M and if [,trace d[ X, X] < o, then X(0 + )
must exist in M. The condition on the sectional curvatures of M is an integral
condition which directly generalizes the integral condition on Ricci curva-
tures shown by Hsu (1989) to be sufficient for the Feller or C-diffusion
property for Brownian motion on M. The Feller or C,-diffusion property is
equivalent to non-implosion for Brownian motion ‘and indeed the methods
and results of this section are a direct extension of Hsu (1989), bearing the
same relationship to Section 2 above as is borne by Hsu (1989) to Kendall
(1987).

First note that He and Zheng (1984) show that the condition
Jotrace d[ X, X] < = forces the existence of X(0 + ) in the Alexandrov com-
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pactification of M, for a I'martingale X. Thus it suffices to show that if
lim, |, dist(X(¢), x) = o, then [jtrace d[ X, X] = .

We commence by proving a preparatory lemma concerning the rate at
which a I'-martingale escapes from a unit ball in a Riemannian manifold.
This lemma is a direct generalization of Hsu and March [(1985), Lemma 4],
which concerns the Brownian case and whose general form can itself be
traced back to a result in Prat (1971). The Hsu-March lemma is central to
Hsu’s treatment of the Feller or C-diffusion property of Brownian motion on
M in Hsu (1989), which as we have observed forms the basis for this section.
Note that Darling (1992) provides estimates on escape of I'-martingales
which in a sense are much more general than those given below, but which
require as a condition that the unit ball in question should not intersect the
cut locus of its center. [The Brownian results of Prat (1971) and Hsu and
March (1985) are subject to a similar limitation, but extend immediately
using the results of Kendall (1987).]

Incidentally, it is reasonable to conjecture that the results of Darling
(1992) should remain correct in the presence of cut locus, since the results of
Section 2 above imply the cut locus should only reduce the rate of escape of a
I'martingale. This intuition might be sustained either by proving a T-
martingale radial part comparison theorem (based on a successful investiga-
tion following up the remark at the end of Section 2 above) or by suitable
- modification of the method of proof in Darling (1992). However, this is not
pursued here.

LEMMA 3.1. Suppose that M is a complete Riemannian manifold which
has sectional curvatures bounded from below by —K? < 1. Suppose further
that X is a T-martingale in M. Let

T = inf{¢ > 0: dist( X(¢), X(0)) = 1}.

Then the probability that T is small relative to the intrinsic time of X can be
bounded above: There are universal positive constants C,,C, such that

1
(3.1) P[/(;Ttrace d[X,X]<C,/Kand T < »| < -Eexp(—CzK).

REMARK. The method of proof used below exploits coupling ideas as an
alternative to the shift-operator approach used in the Brownian case by Hsu
and March (1985). The basic idea is to compare first a process of constant
drift reflected at a level ¢ > 0, then to the sum of a reflected martingale and a
.semideterministic increasing process and then to reflected real-valued
. Brownian motion. These crude comparisons suffice for the purposes of this
lemma.
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REMARK. In the Brownian case [{trace d[X, X] = mt for m = dimM, so
that the lemma does indeed generalize Hsu and March [(1985), Lemma 4].

PrOOF OF LEMMA 3.1. From Theorem 2.3, if R = dist(X, X(0)), then

for N a real-valued local martingale begun at 0 and A a real-valued process
with paths of locally bounded variation. Moreover

d[N,N] <do = trace d[ X, X],
(3.3) K

and R(0)=0 and [1_jdA is the local time of R at 0. We seek a
distributional lower bound on

(3.4) o(T) = [trace d[ X, X].
0
Consider first the comparison of R with R, where

K
d;R = d;N + S coth(Ks) do + dLF,
(3.5)

R(0) = &,
for fixed & € (0,1) and LE the local time of R at level & [thus LE is the
smallest nondecreasing predictable process such that the solution to (3.5) is

never less than ¢]. The difference R — R is a process of locally bounded
variation:

i K ]
(3.6) di(R - R) = | 5coth(Ks) do — dA | + dLE.

By the bound on dA in (3.3) the term in large brackets integrates to a process
which is nondecreasing on the time set {¢: R(¢) > ¢}, while LR is nondecreas-
ing by definition. Consequently the difference R-Ris nondecreasmg on the
time set {¢: R(¢) > ¢}. However, by construction R > ¢ and so K — R > 0 on
the time set {¢: R(¢) > 0}. From these two facts and from R(O) —R0)=¢>0,
it follows that R > R always up to time 7. Hence, if T = inf{t: R(¢) = 1},
then

T<T, o(T)<o(T)

and it suffices to provide a lower bound for o (T).
Now consider the process R defined by

d,R d(N+LN)+K th(Ke) d
= . —CO g)ao,
(3.7 I I 0 9

R(0) = &,
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where LY is the local time at 0 of the local martingale N, so that R is driven
by the nonnegative process N + LY. Note that the system (3.7) can be
integrated:

- K
R=N+L§+ Ecoth(Ke)0'+ €.

Then the difference B — R satisfies
d;(R - R) = dLY - dLE,

(3.8) -
(B - R)(0) =o.

Again the difference is a process of locally bounded variation, since dL¥ is
the differential of the local time of the martingale N at 0. The difference is
nondecreasing except perhaps when R = ¢, but since R is bounded below by

N K
R(t) > Ecoth(Ke)a-(t) + &,
it follows that B > R always. Hence if 7' = inf{¢: R(¢) = 1}, then

T < T, O'(T) < a'(ff)

and it suffices to provide a lower bound for o (1).

The proof is completed by considering the following sequence of identities
and inequalities, of which the last two correspond to a comparison (via
random time change) with reflected real-valued Brownian motion. Fix 6 > 0
and set

1—-¢-96
(K/2)coth(Ke) -

a(K,e,8) =

Then
P[U(T) <a(K,e,6)and T < 00]
< P[I?(t) = 1 for some ¢ such that o(t) < a(K, ¢, 8)]
< P[N(¢) + LY (t) = 6 for some ¢ such that o (¢) < a(K, &, 8)]

because if R(¢) = 1 and o(¢) < a(K, &, 8), then 1 < N(¢) + LYW+ e+ 1 -
& — 8). Hence :
[F"[a'(f’) <a(K,e,8)and T' < 00]
< P[N(t) + LY (¢) = 5 for some ¢ such that [ N, N](¢) < a(K, ¢, 6)]
< P[IB(u)| = & for some u such that u < a(K, ¢, 8)]
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since d[ N, N] < 80 and the random time change based on [ N, N] defines a
real-valued Brownian motion reflected at 0, namely, |IB(N, ND| =N + LY.
Consequently, we may use the reflection principle to obtain the estimate

—w?

fs/m p( 2

P[a(T)<a(Ke 8)andT<OO]<2><\/7 )dw.

We may now use the standard estimate

o —w? 1 —v?
f exp dw < —exp for v > 0,
2 v 2

v

to deduce the following [with a = 4(1 — & — §)/coth(K¢) = 2a(K, &, §)K]:

P|o(T ® and 7 2 1 Ko*
[”( )<2Kan ]S % 82 VK P\ T

1 K 52 0 11 4o

R — —_ \/ — —_—

- I 2 8 752
since K > 1.

For fixed 6 € (0,1) and for all positive a < max{4(1 — u — d)tanh(u): 0 <
# <1~ 8}, we can solve for e € (0,1 — §) in

a=4(1- - 8)tanh(Ke¢),
for all K > 1. Moreover, for all sufficiently small «, we have

83 4a

——(Ov—log )>0.

o w62

Fixing such a 8 and such a sufficiently small «, we deduce the result with

82

o
-, D
2. o

1 4o
c, - )

“log ——
RGTY

We turn now to the equation of I'-martingale implosion, which is a matter
of modifying the argument of Hsu (1989) to apply to the I'-martingale
situation and the results proved above.

THEOREM 3.2. Suppose that M is a complete Riemannian manifold which
has sectional curvatures bounded below as follows: For a fixed reference
point z € M, the sectional curvatures at any y € M are bounded below by
— k2(dist(y, x)) where «%(r) Ls an increasing function of r, k2 > 1 every-
where and

w dr
(3.9) f D) =
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Suppose further that X is a T-martingale in M over the time interval (0, ). If
X(0 +) = o, then [ytrace d[ X, X] = +.

REMARK. If for any I'-martingales X in M over the time interval (0, )
there is the implication “X(0 + ) = « implies [ytrace d[X, X] = +,” then
we say no I'-martingales in M may implode. This is the I'-martingale
generalization of the Feller or C,-diffusion property for Riemannian Brown-
ian motion. Note the strong resemblance between (3.9) and the Ricci curva-
ture integral condition for Brownian motion [Hsu (1989)].

ReEMARK. Without loss of generality, we may suppose that lim, _, (r) =

mn
PrROOF OF THEOREM 3.2. Let X be a I'-martingale in M over the time set
(0, ) with X(0 + ) = «. Consider the following stopping times:
T, = inf{¢ > 0: dist( X(t), x) = n},
S, = inf{t > T,: dist(X(¢), X(T,)) = 1},

under the usual convention that infima of empty sets are equal to . Since
X(0 + ) = o, we have

- T1,<8,<T, <8, < <T,<8,.
By Lemma 3.1, for all n,

C
P[fs"trace d[X,X] < L and S, < |F,T, is finite
T, K "

(n+1)
< exp(—Cyk(n)).

We shall show P[ f[ytrace d[ X, X] < ¢] = 0, for all ¢ Fix ¢ and for given m
define n = n(m) by

(3.10)

m+n-1 1 t m+n 1

Sy e A A i ey

r=m r=m

(this is possible because T7_;1/(k(r)) > [§dr/(k(r)) = ©).
Hence

[P’[fs"'traced[X,X] <tand S, < 00]
0

m+n s C, .
) .<_rgP[Lrtraced[X,X]sm,srﬁmte]
m+n
< Y exp(—Cyk(r+1)).

r=m
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Now choose m large enough so that x(m + 1) > C;!. Since « is increas-
ing, k > 1 and ae™® > be~?, for 1 < a < b, we have

k(m + 1)

—W—Tl)exp(—Czk(m + 1))

exp(—Cyk(r + 1)) <
and hence for large enough m,

P[/S"'traced[X,X] <tandS,, < OO]
0

m+n 1

< k(m + L)exp(—=Cyk(m + 1)) ), K(r+ 1)

r=m

1
< k(m + 1)exp(—Cyk(m + 1))(C,L1 + m)

Since k(r) — © as r - © we see

lim P[fs'"traced[X,X] <tand S, < oo] =0.
0

m— oo

It follows that X(0 + ) = » implies
P[ftrace d[X,X] = 00]1,
0

as required. O

For the sake of completeness, we note the following I'-martingale version
of a result due to Azencott (1974), Dodziuk (1983) and Yau (1978).

THEOREM 3.3. If M is a complete simply connected Riemannian manifold
which has sectional curvatures everywhere nonpositive and if X is a T-
martingale in M over the time interval (0,©) with X(0 + ) = o, then
fotrace d[ X, X] = .

Proor (Sketch). Consider R = dist(X, x), which is a nonnegative local
submartingale on every time interval [ £, ®) € (0, ©). Apply a reverse martin-
gale convergence argument to deduce R(0 +) < » if [,d[R, R] <
Jotrace d[ X, X] is finite. O ‘

4. Examples. In this section we give examples of a negatively curved
(but not simply connected) complete Riemannian manifold supporting an
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imploding I'-martingale (Example 4.1), a simply connected (but not entirely
negatively curved) complete Riemannian manifold supporting an imploding
I'-martingale (Example 4.2) and a complete Riemannian manifold supporting
an imploding I'-martingale, but on which Brownian motion does not implode
(Example 4.3). These examples delimit to some extent the range of possibili-
ties, but still leave some questions open. For instance, Example 4.3 is
three-dimensional: Is there a two-dimensional example? Additionally, can one
construct a Riemannian manifold for which the Ricci curvatures have a
constant lower bound, but which support an imploding I'-martingale?

The basic construction used in these examples is that of a surface of
revolution. Given f: R — (0, %), define M’ to be the surface of revolution

y2+22=F%(x).
The metric for M/ viewed as a surface embedded in R? is given by
(4.1) ds? = dx® + f?(x) d6?,
where y = x cos 6, z = x sin 0. The curvature is
(4.2) =" (x)/f(x).

- It is convenient in the following text to consider the stochastic process (X, ®)
[in (x, 6)-coordinates] given by

fl
d,X =~
(4.3) = of

d (@) = f(X)" d,W,

(X) dt,

for W a real-valued Brownian motion, with initial conditions to be specified
below. This process is actually a I'-martingale under the metric (4.1) with a
deterministic radial part. To see it is a I'-martingale, note that

J = (0, f(x))
defines a Jacobi vector field along the radial geodesic {(x, 0): x > 0}. Hence if
v is a geodesic starting at (x, 0), normal to this radial geodesic, then
d? f'(x)
. —dist(0 = .
(4 4) [du2 8 ( ’y(u))]u=0 f(x)

However, it then follows that with (X, ®) given by (4.3) above and for any
smooth ¢: M’ — R, the process

d2
#(%,0) - 3| [zm.(v"“"”(u))} dt

u=0
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is a local martingale, where y(*? is a geodesic at (x, #) normal to the radial
geodesic. It follows that (X, ®) is a I'-martingale [use, for example, Kendall
(1988), Theorem 2 (geometric form of It6’s lemma)].

EXAMPLE 4.1. This example is due to Emery (personal communication).
Consider M/ where

exp(—2x3/3), forx>1,
(8—2x)e"?/%, forx <1.

(4.5) f(x) = {
This defines a C? surface (modification of this example to the C* smooth case
is straightforward).

The curvature is given by

—4x(x3-1), ifx>1,

(46) r@e - | ifaz1

and so this example is a likely candidate for support of an imploding
I'-martingale (compare Theorem 3.2). That this is indeed the case follows by
consideration of the limiting I'-martingale given by (4.3) as X(0) — . For
t € (0,1], the equations (4.3) yield

g 1
(4.7 X() = 5.

while O is given by a time-inhomogeneous diffusion on S* with zero drift and
infinitesimal variance given by exp(4¢~2/3).

In fact, Brownian motion on M’ can implode as well. This is most easily
seen by using an unpublished observation due to T. K. Carne, that if M is a
complete Riemannian manifold, if N = M X S* and if N is given the metric

(4.8) ds? = dm? + g?(m) d6?

for a C?2 function g: M — (0, »), then Brownian motion on N projects down to
a process which is Brownian motion on M plus a superimposed drift
(k/2)gradlog g. (This is proved by computation of infinitesimal generators.)
In application to M/ above it shows that the x-coordinate of Brownian motion
on M is real-valued Brownian motion with a superimposed drift —x2(d/dx)
solving the stochastic differential equation

dX=dB — X?dt

for a real-valued Brownian motion B. This permits implosive solutions as is
easily seen by considering Y = X!, since

dY = “Y?dB + (3 + Y?®) dt

has a nonnegative (possibly explosive) solution with Y(0) =0, Yo « > 0
[nonnegativity and positivity following by using the time change dr = Y*d¢
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and comparing with dZ = dA + $Z *dt > dA + 3Z~'dt if Z € (0,1), dA =
-Y?2dB].

It is left as an exercise for the reader to decide why it is no paradox for the
universal cover of M’ to support no imploding I'-martingales.

The above example gives implosion when the lower curvature ‘integral
condition of Theorem 4.2 is contravened. A simple modification shows that
the nonpositive curvature condition of Theorem 4.3 is necessary:

ExaMPLE 4.2. Consider the modification M* of M/ which is the surface of
revolution of

— 3
(4.9) fay = | P2/, for a2,

1—x°, for -1 <x<0.

Again this defines a C? surface, but modification to the C* smooth case is
straightforward.

Since M* agrees with M/ over x > 1, implosion of a I'-martingale (or
indeed of Brownian motion) can be arranged. Clearly M* is simply connected
and clearly the region of positive curvature permits explosion NOT through
-any intensity of positive curvature, but simply by permitting sufficient influ-
ence from the cut locus.

One might require an example in which a I'-martingale imploded, but
Brownian motion did not. This is provided by a simple modification of
Example 4.1:

ExampLE 4.3. Consider M/ as in Example 4.1. Construct a manifold N
based on M’ using Carne’s prescription (4.8) with

243
exp e B for x > 1,
4.10 =
(4.10) S I T
— < 1.
3_2xexp(3), or x

Successive projections N - M’ — R using Carne’s idea will project Brownian
motion on N to ordinary real-valued Brownian motion on R with no drift.
Hence Brownian motion on N cannot implode. (Note that we are applying
Carne’s idea to the projection M/ — R of a Riemannian Brownian motion plus
drift; however, a Girsanov argument deals with the drift.) Hence Brownian
motion on N has the Feller or C,-diffusion property. On the other hand, M/ is
embedded in N as a connected component of a fixed-point set of an isometry
and so is a totally geodesic subset. Hence the implosive I'-martingale of
Example 4.1 is carried over into an implosive I'-martingale on N.
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Note added in proof: Since this paper was accepted for publication there
have been further advances in the study of the radial part of Brownian
motion and semimartingales. See, for example, Cranston, Kendall and March
(1993), Probab. Theory Related Fields 96 353-368; and Le and Barden
(1995), Probab. Theory Related Fields 101 133—-146.
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