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THE EXISTENCE OF FIXED POINTS FOR THE ·/GI/1 QUEUE
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CNRS-Université Paris 7 and Stanford University

A celebrated theorem of Burke’s asserts that the Poisson process is a
fixed point for a stable exponential single server queue; that is, when the
arrival process is Poisson, the equilibrium departure process is Poisson of
the same rate. This paper considers the following question: Do fixed points
exist for queues which dispense i.i.d. services of finite mean, but otherwise of
arbitrary distribution (i.e., the so-called ·/GI/1/∞/FCFS queues)? We show
that if the service time S is nonconstant and satisfies

∫
P {S ≥ u}1/2 du < ∞,

then there is an unbounded set S ⊂ (E[S],∞) such that for each α ∈ S there
exists a unique ergodic fixed point with mean inter-arrival time equal to α.
We conjecture that in fact S = (E[S],∞).

1. Introduction. Consider a single server First-Come-First-Served queue
with infinite waiting room, at which the service times are i.i.d. (a ·/GI/1/∞/FCFS
queue). We are interested in the question of whether such queues possess
fixed points: an inter-arrival process which has the same distribution as the
corresponding inter-departure process.

The question of the existence of fixed points is intimately related to the
limiting behavior of the distribution of departure processes from a tandem of
queues. Specifically, consider an infinite tandem of ·/GI/1/∞/FCFS queues.
The queues are indexed by k ∈ N and the customers are indexed by n ∈ Z. The
numbering of each customer is fixed at the first queue and remains the same as
he/she passes through the tandem. Each customer leaving queue k immediately
enters queue k + 1. At queue k, write S(n, k) for the service time of customer n

and A(n, k) for the inter-arrival time between customers n and n + 1. We
assume that the initial inter-arrival process, A0 = (A(n,0), n ∈ Z), is ergodic
and independent of (S(n, k), n ∈ Z, k ∈ N). We also assume that the service
variables (S(n, k), n, k) are i.i.d. and that E[S(0,0)] < E[A(0,0)] < ∞. To avoid
trivialities we assume that the service times are nonconstant, that is, P {S(0,0) �=
E[S(0,0)]} > 0.

By Loynes’ results [15], each of the equilibrium departure processes Ak =
(A(n, k), n ∈ Z) for k ≥ 1 is ergodic of mean E[A(0,0)]. The following are natural
fixed point problems:
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Existence. For a given service distribution, does there exist a mean α ergodic
inter-arrival process such that the corresponding inter-departure process has the
same distribution? If yes, call such a distribution an ergodic fixed point of mean α.

Uniqueness. If an ergodic fixed point of mean α exists, is it unique?

Convergence. Assume there is a unique ergodic fixed point of mean α. If the
inter-arrival process to the first queue, A0, is ergodic of mean α, then does the law
of Ak converge weakly to the ergodic fixed point of mean α as k → ∞? If yes, call
the fixed point an attractor.

A strand of research in stochastic network theory has pursued these questions
for some time. Perhaps the earliest and best-known result is Burke’s theorem [7],
which shows that the Poisson process of rate 1/α is a fixed point for exponential
server queues with mean service time β < α. Anantharam [1] established its
uniqueness, and Mountford and Prabhakar [18] established that it is an attractor.

For ·/GI/1/∞/FCFS queues, the subject of this paper, Chang [8] established
the uniqueness of an ergodic fixed point, should it exist, assuming that the services
have a finite mean and an unbounded support. Prabhakar [19] provides a complete
solution to the problems of uniqueness and convergence assuming only a finite
mean for the service time and the existence of an ergodic fixed point. However,
the existence of such fixed points was only known for exponential and geometric
service times.

This paper establishes the existence of fixed points for a large class of service
time distributions. We obtain the following result: if the service time S has
mean β and if

∫
P {S ≥ u}1/2 du < ∞, then there is a set S closed in (β,∞),

with inf{u ∈ S} = β , sup{u ∈ S} = ∞ and such that:
(a) For α ∈ S, there exists a mean α ergodic fixed point for the queue. Given

this, [19] implies the attractiveness of the fixed point.
(b) For α /∈ S, consider the stationary (but not ergodic) process F of mean α

obtained as the convex combination of the ergodic fixed points of means α and α

where α = sup{u ∈ S, u ≤ α} and α = inf{u ∈ S, α ≤ u}. (Since S is closed,
α and α belong to S and F is a fixed point for the queue.) If the inter-arrival
times of the input process have a mean α, then the Cesaro average of the laws of
the first k inter-departure processes converges weakly to F as k → ∞.

These results rely heavily on a strong law of large numbers for the total time
spent by a customer in a tandem of queues proved in [2]. We conjecture that our
results are suboptimal and that in fact S = (β,∞).

2. Preliminaries. The presence of an underlying probability space (�,F ,P )

on which all the r.v.’s are defined is assumed all along. Given a measurable
space (K,K), we denote by L(K) the set of K-valued random variables, and
by M(K) the set of probability measures on (K,K). Throughout the paper, we
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consider random variables valued in R
Z+. Equipped with the product topology, or

topology of coordinate-wise convergence, R
Z+ is a Polish space. We shall work

on the measurable space (RZ+,B) where B is the corresponding Borel σ -algebra.
With the topology of weak convergence, the space M(RZ+) is a Polish space. For
details see, for instance, [3], [10] or [11]. The weak convergence of (µn)n to µ is
denoted by µn

w→µ. Furthermore, for Xn,X ∈ L(RZ+), we say that Xn converges

weakly to X (and we write Xn
w→X) if the law of Xn converges weakly to the law

of X. A process X ∈ L(RZ+) is constant if X = (c)Z a.s. for some c ∈ R+.
We write Ms(R

Z+) for the set of stationary probability measures with finite one-
dimensional mean, and Me(R

Z+) for the set of ergodic probability measures with
finite one-dimensional mean. For α ∈ R+, we denote by Mα

s (RZ+) and Mα
e (RZ+)

the sets of stationary and ergodic probability measures with one-dimensional
mean α.

The strong order on M(RZ+), or L(RZ+), is defined as follows (see [21] for more
on strong orders). Consider A,B ∈ L(RZ+) with respective distributions µ and ν.
We say that A (resp. µ) is strongly dominated by B (resp. ν), denoted A ≤st B

(resp. µ ≤st ν), if

E[f (A)] ≤ E[f (B)]
(

resp.
∫

f dµ ≤
∫

f dν

)
,

for any measurable f : RZ+ → R which is increasing and such that the expectations
are well defined. Here we consider the usual component-wise ordering of R

Z+.

PROPOSITION 2.1 ([22]). For µ and ν belonging to M(RZ+), µ ≤st ν iff∫
f dµ ≤ ∫

f dν for any increasing and continuous real function f such that the
expectations are well defined. For µn, νn, n ∈ N,µ and ν belonging to M(RZ+),

suppose that µn
w→µ, νn

w→ν and that µn ≤st νn. Then µ ≤st ν.

We shall use the following fact a couple of times. Consider two random
processes on R

Z+ :A which is ergodic and B which is stationary. Assume
that A ≤st B . Let B be compatible with a P -stationary shift θ :� → � and denote
by T the invariant σ -algebra. Then we have

E[A(0)] ≤ E[B(0)|T ] a.s.(1)

Furthermore, if A is independent of B then the conditional law of B on the event
{E[B(0)|T ] = E[A(0)]} is equal to the law of A. To prove this, the two ingredients
are a representation theorem such as Theorem 1 in [14] and Birkhoff’s ergodic
theorem.

The symbols ∼ and |= stand for “is distributed as” and “is independent
of,” respectively. We use the notation N

∗ = N \ {0}, R
∗ = R \ {0}, and x+ =

max(x,0) = x ∨ 0. For u, v in R
N or R

Z, u ≤ v denotes u(n) ≤ v(n) for all n.
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3. The model. We introduce successively the ·/ · /1/∞/FCFS queue
(Section 3.1), the G/G/1/∞/FCFS queue (Section 3.2), and the infinite tan-
dem G/GI/1/∞/FCFS → ·/GI/1/∞/FCFS → ·· · (Section 3.3). The presenta-
tion is made in an abstract and functional way. However, to help intuition, we use
the queueing terminology and notation.

3.1. The single queue. Define the mapping

� : RZ+ × R
Z+ → R

Z+ ∪ {(+∞)Z},
(2)

(a, s) �→ w = �(a, s),

with

w(n) = �(a, s)(n)
(3)

=
[

sup
j≤n−1

n−1∑
i=j

s(i) − a(i)

]+
.

A priori, � is valued in [0,∞]Z, but it is easily checked using (5) below
that � actually takes values in R

Z+ ∪ {(+∞)Z}. The map � computes the
workloads (w) from the the inter-arrivals (a) and the services (s). Observe that
we have, for m < n (Lindley’s equations),

w(n) = [w(n − 1) + s(n − 1) − a(n − 1)]+,(4)

w(n) =
[

max
m<j≤n−1

n−1∑
i=j

s(i) − a(i)

]
∨

[
w(m) +

n−1∑
i=m

s(i) − a(i)

]
∨ 0.(5)

Define the mapping

� : RZ+ × R
Z+ → R

Z+,
(6)

(a, s) �→ d = �(a, s),

with

d(n) = �(a, s)(n) = [a(n) − s(n) − �(a, s)(n)]+ + s(n + 1).(7)

Let L : RZ+ → R
Z+ denote the translation shift: Lu(n) = u(n + 1). Equation (7)

can be rewritten as d = [a − s − �(a, s)]+ + Ls. Observe that d = Ls when
�(a, s) = (+∞)Z. In particular, d is always finite. The function � maps the
ordered pair formed by the inter-arrival and service processes into the inter-
departure process.

When w ∈ R
Z+, the above equations yield

∀n, d(n) = a(n) + w(n + 1) − w(n) + s(n + 1) − s(n)(8)

or equivalently: �(a, s) = a + L�(a, s) − �(a, s) + Ls − s.
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The functions � and � are, respectively, decreasing and increasing with respect
to the first variable:

∀a, b ∈ R
Z+,∀ s ∈ R

Z+,
(9)

a ≤ b �⇒ �(a, s) ≥ �(b, s),�(a, s) ≤ �(b, s).

In words, increasing the inter-arrival times increases the inter-departure times and
decreases the workloads.

3.2. The stationary queue and Loynes’ results. Consider a measurable and
P -stationary shift θ :� → � and denote by T the invariant σ -algebra. Consider
the random processes A :� → R

Z+ and S :� → R
Z+. Assume that A and S

are compatible with θ (hence stationary), and have a finite and nonzero (one-
dimensional) mean. Set W = �(A,S) and D = �(A,S).

This model is called a stationary queue. When the shift θ is ergodic, the model
is an ergodic queue. At last, when the service process S is i.i.d. and nonconstant,
the model is called an i.i.d. queue. The case of a queue with a constant service
process is left out since the fixed point problems are trivial in this case.

The following results are standard and due to Loynes [15]. The processes
W and D are clearly compatible with θ , hence stationary. We distinguish three
cases.

The stable case. On the event {E[S(0)|T ] < E[A(0)|T ]}, we have W ∈ R
Z+

and E[D(0)|T ] = E[A(0)|T ]. On this event, the queue preserves pathwise means.

The unstable case. On the event {E[S(0)|T ] > E[A(0)|T ]}, we have W =
(∞)Z and D = LS [i.e., ∀n,D(n) = S(n + 1)].

The critical case. On the event {E[S(0)|T ] = E[A(0)|T ]}, we have D = LS

and anything may happen for W . For instance, if A = S = (c)Z for c ∈ R+, then
W = (0)Z. If S is i.i.d. and nonconstant and A |= S, then W = (∞)Z.

Observe that a consequence of the above is that{
E[D(0)|T ] = E[A(0)|T ]} = {

E[S(0)|T ] ≤ E[A(0)|T ]}
(more rigorously, the symmetric difference of the two events has 0 probability).

When the shift θ is ergodic, we are a.s. in the stable case when E[S(0)] <

E[A(0)], respectively, in the unstable case when E[S(0)] > E[A(0)], and in the
critical case when E[S(0)] = E[A(0)].

Let σ be the law of S. Define

�σ :Ms(R
Z+) → Ms(R

Z+),
(10)

µ �→ �σ(µ),



EXISTENCE OF FIXED POINTS FOR THE ·/GI/1 QUEUE 2221

where �σ(µ) is the law of �(A,S) where A ∼ µ, S ∼ σ and A |= S. The map �σ

is called the queueing map. A distribution µ such that �σ(µ) = µ is called a fixed
point for the queue. If the inter-arrival process is distributed as a fixed point µ,
then so is the inter-departure process. Consider now an ergodic queue. Rephrasing
Loynes’ results, we get

∀α > β, �σ :Mα
e (RZ+) → Mα

e (RZ+),

∀α ≤ β, �σ :Mα
e (RZ+) → {σ }.

In particular, we have �σ(σ ) = σ . We say that σ is a trivial fixed point for the
ergodic queue.

Below the main objective is to get nontrivial fixed points for �σ in the special
case of an i.i.d. queue. More precisely, we want to address the following question:
for any α > β , does there exist a fixed point which is ergodic and of mean α?

3.3. Stable i.i.d. queues in tandem. Consider a family {S(n, k), n ∈ Z, k ∈ N}
of i.i.d. random variables valued in R+ with E[S(0,0)] = β ∈ R

∗+. Assume
that S(0,0) is nonconstant, that is, P {S(0,0) = β} < 1. For k in N, define
Sk :� → R

Z+ by Sk = (S(n, k))n∈Z. Let σ be the distribution of Sk . Consider
A0 = (A(n,0))n∈Z :� → R

Z+ and assume that A0 is stationary, independent of Sk

for all k, and satisfies E[A(0,0)] = α ∈ R
∗+. Let θ be a P -stationary shift such that

A0 and Sk for all k are compatible with θ . Let T be the corresponding invariant
σ -algebra. We assume that the stability condition β < E[A(0,0)|T ] holds a.s.

Define recursively for all k ∈ N

Wk = (
W(n, k)

)
n∈Z

= �(Ak,Sk),(11)

Ak+1 = (
A(n, k + 1)

)
n∈Z

= �(Ak,Sk).(12)

The random processes Ak,Sk and Wk are, respectively, the inter-arrival, service
and workload processes at queue k. The random process Ak+1 is the inter-
departure process at queue k and the inter-arrival process at queue k + 1.
Each (Ak, Sk) defines a stable i.i.d. queue according to the terminology of
Section 3.2. Globally, this model is called a tandem of stable i.i.d. queues.

The sequence (Ak)k is a Markov chain on the state space R
Z+. Clearly, µ is a

stationary distribution of (Ak)k if and only if µ is a fixed point for the queue, that
is, iff �σ(µ) = µ. Hence, the problem to be solved can be rephrased as: does the
Markov chain (Ak)k admit nontrivial stationary distributions?

4. Uniqueness of fixed points and convergence. In this section, we recall
several results about the uniqueness of fixed points as well as convergence results.
Associated with the existence results to be proved in Section 5, the results recalled
here complete the picture about fixed point theorems. More importantly, they will
be instrumental in several of the later proofs.



2222 J. MAIRESSE AND B. PRABHAKAR

THEOREM 4.1 ([2, 17]). Consider the stable i.i.d. tandem model defined in
Section 3.3 with an ergodic inter-arrival process of mean α > β . Assume that∫

R+
P {S(0,0) ≥ u}1/2 du < ∞.(13)

Then there exists M(α) ∈ R+ such that almost surely limn→+∞ n−1 ×∑n−1
i=0 W(0, i) = M(α), where M(α) = supx≥0(γ (x) − αx) and the function

γ : R+ → R+ depends only on the service process. If we further assume that the
initial inter-arrival process satisfies

∃ c, E [S(0,0)] < c < E[A(0,0)],
(14)

E

[
sup
n∈N∗

[ −1∑
i=−n

c − A(i,0)

]+]
< ∞,

then the convergence to M(α) also holds in L1.

Observe that M(α) depends on the inter-arrival process only via its mean.
The function γ in Theorem 4.1 is continuous, strictly increasing, concave and
satisfies γ (0) = 0. For details on γ , refer to [2, 12].

Theorem 4.1 is proved in [2] under the condition: E[S(0,0)3+a] < ∞ for
some a > 0. The above version is proved in [17] (using similar methods as in [2])
and is better since we have[∃a > 0,E[S(0,0)2+a] < ∞] �⇒

∫
P {S(0,0) ≥ u}1/2 du < ∞

�⇒ E[S(0,0)2] < ∞.

Condition (14) is slightly stronger than E[W(0,0)] < ∞. Indeed, recall the
following results from [9]. If E[S(0,0)2] < ∞, then, setting β = E[S(0,0)],

∃ c > β, E

[
sup
n≥1

[ −1∑
i=−n

c − A(i,0)

]+]
< ∞

�⇒ E[W(0,0)] < ∞,
(15)

E[W(0,0)] < ∞

�⇒ E

[
sup
n≥1

[ −1∑
i=−n

β − A(i,0)

]+]
< ∞.

Condition (14) is satisfied, for example, by the deterministic process P {A0 =
(α)Z} = 1.

The next result requires some preparation. Let Ls(R
Z+ × R

Z+) be the set of
random processes ((X(n),Y (n))n∈Z which are stationary in n. Consider µ and ν
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in Ms(R
Z+) and let D(µ, ν) = {(X,Y ) ∈ Ls(R

Z+ × R
Z+) | X ∼ µ,Y ∼ ν}. That is,

D(µ, ν) is the set of jointly stationary processes whose marginals are distributed
as µ and ν. The ρ̄ distance between µ and ν is given by

ρ̄(µ, ν) = inf
(X,Y )∈D(µ,ν)

E[|X(0) − Y (0)|].(16)

See Gray [13], Chapter 8, for a proof that ρ̄ is indeed a distance. Given two
r.v.’s A and B with respective laws µ and ν, set ρ̄(A,B) = ρ̄(µ, ν). We recall a
well-known fact (see also Section 7): convergence in the ρ̄ distance implies weak
convergence, but not conversely.

THEOREM 4.2 ([8, 19]). Consider a stationary queue as in Section 3.2 with
service process S and two inter-arrival processes A and B , possibly of different
means. Assume that A |= S and B |= S. Then,

ρ̄
(
�(A,S),�(B,S)

) ≤ ρ̄(A,B).(17)

Consider now a stable i.i.d. tandem model as in Section 3.3 with inter-
arrival processes A0 and B0 with different laws but such that E[A(0,0)|T ] =
E[B(0,0)|T ] a.s. Recall that (An)n and (Bn)n are defined recursively by
An+1 = �(An,Sn) and Bn+1 = �(Bn,Sn). Then there exists k ∈ N

∗ such that

ρ̄(Ak,Bk) < ρ̄(A0,B0).(18)

If we further assume that B1 = �(B0, S0) ∼ B0, then

lim
n→+∞ ρ̄(An,B0) = 0 and hence An w→B0.(19)

Chang [8] gives an elegant proof of (17). He also proves (18) for unbounded
services. Prabhakar [19] removes this restriction and also establishes (19). As
opposed to Theorem 4.1, observe that the convergence result in (19) is proved
under the a priori assumption of existence of a fixed point.

Define (“p :α” stands for “pathwise means are equal to α”)

Mp : α
s (RZ+) =

{
µ ∈ Mα

s (RZ+) | X ∼ µ ⇒ lim
n→∞

1

n

n−1∑
i=0

X(i) = α a.s.

}
.(20)

Obviously, Mα
e (RZ+) ⊂ M

p : α
s (RZ+) ⊂ Mα

s (RZ+). The ergodic components of χ ∈
M

p : α
s (RZ+) all have one-dimensional mean α. An important consequence of (18)

is the following uniqueness result.

COROLLARY 4.3. Consider an i.i.d. queue as in Section 3.2. The correspond-
ing queueing map �σ has at most one fixed point in M

p : α
s (RZ+) for α > E[S(0)].

In particular, there is at most one fixed point in Mα
e (RZ+). In fact, we have the

following stronger result.
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PROPOSITION 4.4. Consider an i.i.d. queue as in Section 3.2 and α >

E[S(0)]. If ζ ∈ M
p : α
s (RZ+) is a fixed point, then it is necessarily ergodic; that

is, ζ ∈ Mα
e (RZ+).

PROOF. Suppose that the ergodic decomposition of ζ is given by ζ =∫
µ
(dµ), where 
 is a probability measure on Mα

e (RZ+). Denote the support
of 
 by supp(
) ⊂ Mα

e (RZ+). Assume that ζ is nonergodic, meaning that supp(
)

is not a singleton. Let S be a subset of supp(
) such that 0 < 
{S} < 1.
Consider a stable i.i.d. tandem model as in Section 3.3. Let A0 and B0 be two

inter-arrival processes, independent of the services, and such that A0 ∼ ζ , B0 ∼ ζ ,
A0 |= B0. Define (Ak)k and (Bk)k as in (12). Let Cb(R

Z+) be the set of continous
and bounded functions from R

Z+ to R. Recall that L is the left translation shift

of R
Z+ and define recursively Li+1 = L ◦ Li . Define the θ -invariant events

A =
{
∃µ ∈ S,∀f ∈ Cb(R

Z+), lim
n

1

n

n−1∑
i=0

f (LiA0) =
∫

f dµ

}
,

B =
{
∃µ ∈ supp(
) \ S,∀f ∈ Cb(R

Z+), lim
n

1

n

n−1∑
i=0

f (LiB0) =
∫

f dµ

}
.

Roughly speaking, on the event A ∩ B , the processes A0 and B0 are distributed
according to different components of the ergodic decomposition of ζ . Using the
independence of A0 and B0, we have

P {A ∩ B} = P {A}P {B} = 
{S}(1 − 
{S}) > 0.

Define the processes

Ã0 = A01A∩B + (α)Z1(A∩B)c , B̃0 = B01A∩B + (α)Z1(A∩B)c .

By construction, the laws of Ã0 and B̃0 are different and we have E[Ã(0,0)|T ] =
E[B̃(0,0)|T ] = α almost surely. Hence we can apply (18) in Theorem 4.2:
there exists k ∈ N

∗ such that ρ̄(Ãk, B̃k) < ρ̄(Ã0, B̃0). We deduce easily that
ρ̄(Ak,Bk) < ρ̄(A0,B0). This is in obvious contradiction with ρ̄(A0,B0) = 0
which follows from A0 ∼ B0. We conclude that the support of 
 is a singleton.

�

5. Existence of fixed points. Consider the stable i.i.d. tandem model of
Section 3.3. The objective is to prove Theorem 5.1, that is, to obtain nontrivial
stationary distributions for (Ak)k , or equivalently nontrivial fixed points for �σ .

The first step is classical and consists of considering Cesaro averages of the
laws of Ak. Consider the quadruple (Ak, Sk,Wk,Ak+1) and denote its law by
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νk ∈ M(RZ+ × R
Z+ × [0,∞]Z × R

Z+). For n ∈ N
∗, define µn ∈ M(RZ+ × R

Z+ ×
[0,∞]Z × R

Z+) by

µn = 1

n

n−1∑
k=0

νk.

The following interpretation may be useful: µn is the law of (AN,SN ,WN,AN+1)

where N is a r.v. uniformly distributed over {0, . . . , n − 1} and independent of all
the other r.v.’s of the problem.

For all n ∈ N
∗, consider a quadruple of random processes (Ân, Ŝn, Ŵ n, D̂n)

distributed according to µn. We have

Ŝ n ∼ σ, Ŝ n |= Â n, Ŵ n = �(Â n, Ŝ n), D̂ n = �(Â n, Ŝ n).(21)

First of all, we argue that the sequence (µn)n is tight. Denote by µ
(1)
n ,µ

(2)
n ,µ

(3)
n

and µ
(4)
n the marginals of µn corresponding respectively to the laws of Ân, Ŝn, Ŵ n

and D̂n. Since µ
(3)
n is defined on the compact space [0,∞]Z and since µ

(2)
n = σ ,

the only point to be argued is that (µ
(1)
n )n and (µ

(4)
n )n are tight. According

to Loynes’ results, we have µ
(1)
n ,µ

(4)
n ∈ Mα

s (RZ+) [we even have µ
(1)
n ,µ

(4)
n ∈

M
p : α
s (RZ+)]. For ε > 0, the set K = ∏

i∈Z[0,2|i|+2/ε] is compact in the product
topology according to Tychonoff’s theorem. It is immediate to check that for
µ ∈ Mα

s (RZ+), we have µ{K} ≥ 1 − αε. We conclude that (µ
(1)
n )n and (µ

(4)
n )n

are tight.
Consequently, by Prohorov’s theorem, (µn)n admits weakly converging subse-

quences. Let µ be a subsequential limit of (µn)n. Consider a quadruple of random
processes

(Â, Ŝ, W̃ , D̃) ∼ µ.(22)

It follows immediately from (21) that

Ŝ ∼ σ, Ŝ |= Â.(23)

Recall that we have D̂n = [Ân − Ŝn − Ŵn]+ + LŜn. By the continuous mapping
theorem, we deduce that

D̃ = [Â − Ŝ − W̃ ]+ + LŜ.(24)

On the other hand, it is not a priori true that W̃ = �(Â, Ŝ) and D̃ = �(Â, Ŝ)

(which is the reason for the notation Â, Ŝ on the one side and W̃ , D̃ on the other).
Using (5) we have, for all k < l − 1,[

max
k<j≤l−1

l−1∑
i=j

Ŝ n(i) − Â n(i)

]+

≤ Ŵn(l) =
[

max
k<j≤l−1

l−1∑
i=j

Ŝ n(i) − Â n(i)

]+
∨

[
Ŵn(k) +

l−1∑
i=k

Ŝ n(i) −Â n(i)

]
.
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By the continuous mapping theorem, we get[
max

k<j≤l−1

l−1∑
i=j

Ŝ(i) − Â(i)

]+

(25)

≤ W̃ (l) =
[

max
k<j≤l−1

l−1∑
i=j

Ŝ(i) − Â(i)

]+
∨

[
W̃ (k) +

l−1∑
i=k

Ŝ(i) − Â(i)

]
.

By letting k go to −∞, and using (24), we conclude that

�(Â, Ŝ) ≤ W̃ , LŜ ≤ D̃ ≤ �(Â, Ŝ).(26)

The right-hand side equality in (25) also shows that W̃ ∈ R
Z+ ∪ {(∞)Z} (a priori

the definition only implied W̃ ∈ [0,∞]Z).
The next argument which uses properties of Cesaro averages to show that Â ∼ D̃

is standard. Let ζ be the distribution of A0. We have by definition An ∼ �n
σ(ζ ) and

Ân ∼ n−1 ∑n−1
i=0 �i

σ (ζ ) = ζn. We have

D̂n = �(Ân, Ŝ n) ∼ �σ(ζn) = ζn + 1

n

(
�n

σ (ζ ) − ζ
)
,

where the left-hand side equality makes sense as an equality between signed
measures. We deduce that �σ(ζn) − ζn converges in total variation, hence
also weakly, to the zero measure (here we consider weak and total variation
convergence of signed measures). There is a subsequence along which ζn,
respectively �σ(ζn), converges to the law of Â, respectively D̃. We conclude that

Â ∼ D̃.(27)

Now if we manage to prove that D̃ = �(Â, Ŝ ), we can conclude that the law
of Â is a fixed point for the queue. We now turn our attention to proving this last
and tricky point.

Stationarity is preserved by weak convergence. Hence the law of (Â(n), Ŝ(n),

W̃ (n), D̃(n))n is stationary in n. Let θ be a stationary shift on the underlying
probability space such that (Â, Ŝ, W̃ , D̃) is compatible with θ . Let T be the
corresponding invariant σ -algebra.

Using (26) and (27), we deduce that Â ≥st Ŝ . In particular, E[Â(0)|T ] ≥ β a.s.
using (1). Define the events

A = {
E[Â(0)|T ] = β

}
, Ac = {

E[Â(0)|T ] > β
}
.

Using Loynes’ results for the critical case, we have �(Â, Ŝ) = LŜ on the event A.
Now using (26), we deduce that D̃ = �(Â, Ŝ) = LŜ on the event A.

Since Â ≥st Ŝ and Â |= Ŝ , we have, according to (1),

Â = S1A + Â1Ac ,
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where S ∼ Ŝ . Furthermore, we have just proved that

D̃ = LŜ1A + D̃1Ac .

Since Â ∼ D̃, we deduce readily that Â1Ac ∼ D̃1Ac . On the event Ac, we have,
using Birkhoff’s ergodic theorem,

lim
n→∞

1

n

−1∑
i=−n

Â(i) = E[Â(0)|T ] > β �⇒ lim
n→∞

1

n

−1∑
i=−n

D̃(i) > β.

In view of D̃ = [Â + Ŝ − W̃ ]+ + LŜ, we deduce that on Ac, we have W̃ ∈ R
Z+

a.s. For k < l − 1, set Zk = [W̃ (k) + ∑l−1
i=k Ŝ(i) − Â(i)]. Using Birkhoff’s ergodic

theorem, on the event Ac, Zk converges in probability to −∞ as k goes to −∞.
Going back to the inequalities in (25), it follows that on the event Ac,

W̃ (l) =
[

sup
j≤l−1

l−1∑
i=j

Ŝ(i) − Â(i)

]+
= �(Â, Ŝ).

It implies that on the event Ac, we have D̃ = �(Â, Ŝ). Summarizing all of the
above, we have proved that

D̃ = �(Â, Ŝ) a.s.(28)

Let ζ be the law of Â and D̃. We have just proved that �σ(ζ ) = ζ . The only point
left out is to find conditions ensuring that ζ is not equal to the trivial fixed point σ .

REMARK (Ergodic queues in tandem). Up to this point in the proof, the
assumption that the service processes are i.i.d. has not been used. All of the above
remains valid if we assume only that σ ∈ M

β
e (RZ+) (still assuming that the service

processes Sk ∼ σ are independent of one another and independent of A0). From
now on, the i.i.d. assumption becomes central.

First, we need to show that

W̃ = �(Â, Ŝ) a.s.(29)

We have just proved the equality on Ac, it remains to prove it on A. Denote by TÂ

and TŜ the σ -algebras generated respectively by Â and Ŝ. Clearly A ∈ TÂ which
implies that Â1A = S1A is measurable with respect to TÂ. We conclude that we
have: Â |= Ŝ ⇒ TÂ |= TŜ ⇒ S1A |= Ŝ. On the event A, we have for all n,

W̃ (n) ≥ �(Â, Ŝ)(n) =
[

sup
j≤n−1

n−1∑
i=j

Ŝ(i) − S(i)

]+
.
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Using that the services are i.i.d. and nonconstant and that S and Ŝ are independent,
we have on the event A : W̃ = �(Â, Ŝ) = (∞)Z. In addition to (29), we have
proved the following:

W̃ = (∞)Z on {E[Â(0)|T ] = β},
(30)

W̃ ∈ R
Z+ on {E[Â(0)|T ] > β}.

Consequently, if W̃ = (∞)Z a.s. then ζ = σ , and if P {W̃ ∈ R
Z+} > 0 then ζ is a

nontrivial fixed point for the queue.
Assume now that the moment condition

∫
P {S(0,0) ≥ u}1/2 du < ∞ is

satisfied. This is the condition needed in Theorem 4.1 to obtain that limn n−1 ×∑n−1
i=0 W(0, i) = M(α) a.s. for a finite constant M(α). Let us prove that

lim
n→+∞

1

n

n−1∑
i=0

W(0, i) = M(α) a.s. �⇒ W̃ (0) ∈ R+ a.s.(31)

We argue by contradiction; hence, suppose that P {W̃(0) = +∞} = a > 0.
Fix K > 0. Let f be a strictly increasing function of N such that µf(n)

w→µ. We

have Ŵf (n)(0)
w→ W̃ (0). Recall that P {Ŵn(0) ≥ K} = n−1∑n−1

i=0 P {W(0, i) ≥ K}.
We deduce that

∀b ∈ (0, a),∃N,∀n = f (k) ≥ N,
1

n

n−1∑
i=0

P {W(0, i) ≥ K} ≥ b.

Fix b ∈ (0, a), c ∈ (0, b) and n = f (k) ≥ N . Define the event E = {n−1 ×∑n−1
i=0 1{W(0,i)≥K} ≥ c} and set q = P {E}. We have

n−1∑
i=0

1{W(0,i)≥K}

=
(

n−1∑
i=0

1{W(0,i)≥K}
)
1E +

(
n−1∑
i=0

1{W(0,i)≥K}
)
1Ec ≤ n1E + nc1Ec .

Taking expectations, we get

nb ≤
n−1∑
i=0

P {W(0, i) ≥ K} ≤ nq + n(1 − q)c.

We conclude that q ≥ (b − c)/(1 − c) > 0. Since this last inequality is
valid for any K , we clearly have a contradiction with the a.s. convergence
of n−1 ∑n−1

i=0 W(0, i) to a finite constant.
We conclude that under the assumptions of Theorem 4.1, the fixed point ζ is

nontrivial. Summarizing all of the above, we obtain the following result.
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THEOREM 5.1. Consider a single server infinite buffer FCFS queue with
an i.i.d. service process S satisfying: E[S(0)] ∈ R

∗+, P {S(0) = E[S(0)]} < 1
and

∫
P {S(0) ≥ u}1/2 du < ∞. Then there exists an ergodic inter-arrival process

A with A |= S and E[S(0)] < E[A(0)] < ∞, and such that the corresponding
inter-departure process D has the same distribution as A.

PROOF. Consider a tandem of queues as in Section 3.3 where the service
processes Sk are distributed as S with law σ . Consider the process Â with law ζ

as defined in (22). By the ergodic decomposition theorem and the linearity of �σ ,
we have

ζ =
∫
Me(R

Z+)
χ
(dχ), �σ(ζ ) =

∫
Me(R

Z+)
�σ (χ)
(dχ).

But ζ = �σ(ζ ). Therefore, the uniqueness of ergodic decompositions and the
mean preservation property of stable queues imply that

ζα =
∫
Mα

e (RZ+)
χ
(dχ) =

∫
Mα

e (RZ+)
�σ (χ)
(dχ) = �σ(ζα)

for every α in the support of E[Â(0)|T ]. By Proposition 4.4, the distributions ζα

are ergodic. According to (31), which holds since
∫

P {S(0) ≥ u}1/2 du < ∞, we
have P {W̃ ∈ R

Z+} = 1 and E[Â(0)|T ] > E[S(0)] according to (30). Hence any α

in the support of E[Â(0)|T ] is such that α > E[S(0)] and we conclude that the
corresponding distribution ζα ∈ Mα

e (RZ+) is such that �σ(ζα) = ζα . �

To the best of our knowledge, this provides the first positive answer (apart from
the cases of exponential and geometric service times) to the intriguing question of
the existence of nontrivial ergodic fixed points for a ·/GI/1/∞/FCFS queue.

6. Values of the means for which a fixed point exists. Consider a tandem
of stable i.i.d. queues as in Section 3.3 and let �σ be the corresponding queueing
operator. Assume also that the condition (13) holds. Define

S = {
α ∈ (β,+∞) | ∃µ ∈ Mα

e (RZ+),�σ (µ) = µ
}
.(32)

According to Theorem 5.1, the set S is nonempty. We establish in Theorem 6.4
that S is unbounded, and closed in (β,∞). We believe that S = (β,+∞) but we
have not been able to prove this last point (see Conjecture 6.6). Proposition 6.5
also describes the limiting behavior from inputing in the tandem an ergodic inter-
arrival process whose mean α does not belong to S (the case α ∈ S is settled by
Theorem 4.2).

From now on, for α ∈ S, denote by ζα the unique ergodic fixed point of mean α

and by Aα an inter-arrival process distributed as ζα . Let S be distributed as σ and
independent of all other r.v.’s. Also it is convenient to denote by L(A) the law of
a r.v. A, and by suppA its support.
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The following argument is used several times. Consider α ∈ S and let (An)n
be defined as in (12) starting from an ergodic process A0 of mean α. According
to (19), we have An w→Aα . It implies that n−1 ∑n−1

i=0 L(Ai)
w→L(Aα). According

to (28), we have

1

n

n−1∑
i=0

L
(
�(Ai, Si)

) w→L
(
�(Aα,S)

)
.(33)

We now prove a series of preliminary lemmas.

LEMMA 6.1. For any α > β , S ∩ (β,α) �= ∅.

PROOF. Fix α > β . Let (An)n be defined as in (12) starting from an ergodic
process A0 of mean α. Let Â be distributed as a weak subsequential limit of the
Cesaro averages of the laws of (Ak)k . Recall from the proof of Theorem 5.1 that

suppE[Â(0)|T ] ⊂ S ⊂ (β,∞).(34)

By Fatou’s lemma, E[Â(0)] ≤ α. Since E[Â(0)] = E[E[Â(0)|T ]], we conclude
that S ∩ (β,α] �= ∅. �

LEMMA 6.2. Consider an ergodic inter-arrival process A0 of mean α > β .
Let Â be distributed as a weak subsequential limit of the Cesaro averages
of the laws of (Ak)k . Consider δ ∈ S ∩ (β,α] (resp. δ ∈ S ∩ [α,∞), assum-
ing S ∩ [α,∞) �= ∅), then Aδ ≤st Â and �(Â,S) ≥st �(Aδ,S) [resp., Aδ ≥st Â

and �(Â,S) ≤st �(Aδ,S)]. Further, if S ∩ [α,∞) �= ∅, then E[Â(0)] = α.

PROOF. Consider the case δ ∈ S ∩ [α,∞). The other case can be treated
similarly. Define the process B0 = δα−1A0, that is,

∀n, B(n,0) = δ

α
A(n,0).

The process B0 is ergodic and of mean δ. At mean δ, �σ admits the fixed point ζδ .
By (19), we have Bk w→Aδ . By construction, we have A0 ≤ B0 almost surely.
Using the monotonicity property (9), we get that, for all k ∈ N,

Ak ≤ Bk and �(Ak,Sk) ≥ �(Bk,Sk).

It implies that for all k ∈ N
∗,

1

k

k−1∑
i=0

L(Ai) ≤st
1

k

k−1∑
i=0

L(Bi)
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and

1

k

k−1∑
i=0

L
(
�(Ak,Sk)

) ≥st
1

k

k−1∑
i=0

L
(
�(Bk,Sk)

)
.

Going to the limit along an appropriate subsequence and applying (33), we obtain

Â ≤st Aδ and �(Â,S) ≥st �(Aδ,S).

We are left with having to show that E[Â(0)] = α. Observe that k−1 ×∑k−1
i=0 L(Bk)

w→ ζδ , and that the one-dimensional marginals converge in expecta-
tion since k−1 ∑k−1

i=0 E[B(0, i)] = δ = E[Aδ(0)]. It follows by Theorem 5.4 of [3]
that the sequence (k−1 ∑k−1

i=0 L(Bk))k is uniformly integrable. It implies that the
dominated sequence (k−1 ∑k−1

i=0 L(Ai))k is also uniformly integrable. Along an
appropriate subsequence, this last sequence converges weakly to the law of Â

and we conclude (Theorem 5.4 of [3]) that it also converges in expectation. Since
k−1 ∑k−1

i=0 E[A(0, k)] = α for all k, we deduce that E[Â(0)] = α. �

LEMMA 6.3. The following statements are true:

(a) for α, δ ∈ S and α < δ, Aα ≤st Aδ and �(Aα,S) ≥st �(Aδ,S);
(b) for α ∈ S, E[�(Aα,S)(0)] = M(α), where M(α) is defined in Theorem 4.1.

PROOF. Part (a) is a direct consequence of Lemma 6.2. Consider part (b).
Fix α ∈ S. Consider A0 an ergodic inter-arrival process of mean α satisfying
condition (14). From Theorem 4.1, we have

lim
n

1

n
E[�(Ai, Si)(0)] = M(α).

Starting from (33) and applying Fatou’s lemma, we get

E[�(Aα,S)(0)] ≤ lim
n

1

n
E[�(Ai, Si)(0)] = M(α).

Now let us prove that M(α) ≤ E[�(Aα,S)(0)]. By Lemma 6.1, there exists
δ ∈ S ∩ (β,α). Define the process B0 = αδ−1Aδ and let (Bn)n be defined as
in (12). The process B0 is ergodic of mean α. We also have B0 ≥ Aδ a.s. Using (9),
this implies

1

n

n−1∑
i=0

L
(
�

(
Bi, Si(0)

)) ≤st L
(
�(Aδ,S)(0)

)
for all n.

Since E[�(Aδ,S)(0)] ≤ M(δ) < ∞, the sequence {n−1 ∑n−1
i=0 L(�(Bi,

Si)(0)), n ∈ N
∗} is uniformly integrable. Furthermore, we have from (33)
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that n−1 ∑n−1
i=0 L(�(Bi, Si)(0))

w→L(�(Aα,S)(0)). Applying Theorem 5.4 of [3],
weak convergence plus uniform integrability implies convergence in expectation:

lim
n

1

n

n−1∑
i=0

E[�(Bi, Si)(0)] = E[�(Aα,S)(0)].

Now recall from Theorem 4.1 that we have n−1 ∑n−1
i=0 �(Bi, Si)(0) → M(α)

almost surely. Applying Fatou’s lemma, we get

M(α) ≤ lim
n

1

n

n−1∑
i=0

E[�(Bi, Si)(0)].

Summarizing, we have M(α) ≤ E[�(Aα,S)(0)]. This completes the proof. �

THEOREM 6.4. The set S is closed in (β,∞) and inf{u ∈ S} = β ,
sup{u ∈ S} = +∞.

PROOF. A direct consequence of Lemma 6.1 is that inf{u ∈ S} = β . We prove
that sup{u ∈ S} = +∞ by contradiction. Thus, suppose sup{u ∈ S} < ∞ and
consider α > sup{u ∈ S}. Let A0 be an ergodic inter-arrival process of mean α

satisfying condition (14). Let Â be distributed as a weak subsequential limit of the
Cesaro averages of the laws of (Ak)k . By Lemma 6.2, Aδ ≤st Â for any δ ∈ S.
According to (1), this implies that δ ≤ E[Â(0)|T ] a.s. Since suppE[Â(0)|T ] ⊂ S,
see (34), we conclude that almost surely

E[Â(0)|T ] = sup{u ∈ S} ∈ S.

Set η = sup{u ∈ S}. Since Â is a fixed point, we must have Â ∼ Aη. In par-
ticular, along an appropriate subsequence, we have that n−1 ∑n−1

i=0 L(�(Ai, Si))

converges weakly to L(�(Aη,S)). Now, a sequential use of Lemma 6.3, Fatou’s
lemma and Theorem 4.1 gives us

M(η) = E[�(Aη,S)(0)] ≤ lim
n

1

n

n−1∑
i=0

E[�(Ai, Si)(0)] = M(α).

It follows from the properties of γ recalled after the statement of Theorem 4.1
that M(x) is a positive and decreasing function that is strictly decreasing on
the interval {x | M(x) > 0}. Since α < η and M(α) ≤ M(η), we conclude that
M(α) = M(η) = 0. Thus, E[�(Aη,S)(0)] = 0, that is, P {�(Aη,S) = (0)Z} = 1.
Let us input the process Aη into the tandem of queues. Using (8) recursively,
we obtain

Ak
η(0) = Aη(0) +

k−1∑
i=0

[S(1, i) − S(0, i)] +
k−1∑
i=0

[
�(Ai

η, S
i)(1) − �(Ai

η, S
i)(0)

]

= Aη(0) +
k−1∑
i=0

[S(1, i) − S(0, i)].
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Since the service times are i.i.d. and nonconstant, the partial sums
∑k−1

i=0 [S(1, i) −
S(0, i)] form a null-recurrent random walk. Thus there is a k for which
Ak

η(0) < 0 with strictly positive probability, which is impossible. Or, we cannot
have M(η) = 0. In turn, this implies sup{u ∈ S} = ∞, and via Lemma 6.2 we get
that E[Â(0)] = α.

We now prove that S is closed in (β,∞). Consider a sequence αk of elements
of S that increases to α ∈ (β,∞). Let A0 and Â be defined as above (for
the mean α). Using Lemma 6.2, we have Aαk

≤st Â and using (1), we have
αk ≤ E[Â(0)|T ] a.s. Passing to the limit, we get α ≤ E[Â(0)|T ] a.s. Since
E[Â(0)] = E[E[Â(0)|T ]] = α, we conclude that suppE[Â(0)|T ] = {α}. It
implies that α ∈ S. The proof works similarly when αk is a decreasing sequence.

�

PROPOSITION 6.5. Consider an ergodic inter-arrival process A0 of mean α.
There are two possibilities:

1. if α ∈ S, then ρ̄(Ak,Aα)
k→ 0 and hence Ak w→Aα ;

2. if α /∈ S, then k−1 ∑k−1
i=0 L(Ai)

w→pL(Aα) + (1 − p)L(Aα), where

α = sup{u ∈ S;u ≤ α}, α = inf{u ∈ S;α ≤ u} and p = α − α

α − α
.(35)

In words, the weak Cesaro limit is a linear combination of the largest ergodic fixed
point of mean less than α and of the smallest ergodic fixed point of mean more
than α. The weak Cesaro limit always has mean α.

PROOF. The case α ∈ S is a restatement of (19). Consider α /∈ S. Denote
by Â a process whose law is a weak subsequential limit of the Cesaro averages
of the laws of (Ak)k . By Lemma 6.2, we have Au ≤st Â ≤st Av for any u, v ∈ S
such that u < α < v. Therefore, using (1), we get that u ≤ E[Â(0)|T ] ≤ v a.s.
Since suppE[Â(0)|T ] ⊂ S [see (34)] and E[Â(0)] = α (Lemma 6.2) we conclude
that suppE[Â(0)|T ] = {α,α}, where α and α are defined as in (35).

We know from Section 5 that the law of Â is a fixed point. Given that
suppE[Â(0)|T ] = {α,α}, Proposition 4.4 tells us that Â ∼ pAα + (1 − p)Aα for
some p. Therefore E[Â(0)] = pα+ (1−p)α and from E[Â(0)] = α, we conclude
that p = (α − α)/(α − α ).

A consequence of the above argument is that any convergent subsequence
of k−1 ∑k−1

i=0 L(Ai) must converge weakly to pL(Aα)+ (1 −p)L(Aα). Recalling

an argument of Section 5, the sequence (k−1 ∑k−1
i=0 L(Ai), k ∈ N

∗) is tight,

hence sequentially compact. This implies that k−1 ∑k−1
i=0 L(Ai)

w→pL(Aα) +
(1 − p)L(Aα). �

The previous results characterize S to a certain extent. We believe that more is
true.
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CONJECTURE 6.6. For any α > β = E[S(0,0)], there exists an ergodic fixed
point of mean α. That is, S = (β,+∞).

It is possible to show that S is equal to the image of the derivative of γ defined
in Theorem 4.1. (Since γ is concave, its derivative γ ′ is continuous except at a
countable number of points. At the points of discontinuity, we consider that both
the left and the right-hand limits belong to the image.) Hence the conjecture is true
if the function γ has a continuous derivative. However, we have not been able to
prove this. The function γ defines the limit shape of an oriented last-passage time
percolation model on N

2 with weights (S(i, j))i,j on the lattice points; see [2,
12, 17]. Establishing the smoothness of the limit shape in percolation models is
usually a difficult question.

7. Complements. In proving Theorem 5.1, an essential step was to establish
the identity (28): D̃ = �(Â, Ŝ). This can be rephrased as the weak continuity of
the operator �σ of an i.i.d. queue on the converging subsequences of the Cesaro
averages of the laws of Ak . In fact a much stronger result holds:

THEOREM 7.1. For a stationary queue defined as in Section 3.2, the
operator �σ is weakly continuous on Ms(R

Z+).

Theorem 7.1 is a generalization of a result due to Borovkov ([4], Chapter 11
or [5], Chapter 4); see also [6]. Borovkov proves that for an ergodic queue, �σ is
weakly continuous on

⋃
β<xM

x
e (RZ+). The proof of Theorem 7.1, which follows

closely the arguments in [4, 5], appears in the preprint version [16] of the
present article.

We have quoted Theorem 7.1 since we believe it to be of independent interest.
However, we have not included the proof since Theorem 7.1 does not provide any
shortcut to the proof of Theorem 5.1. Let us explain this last point in more detail.

Considering Theorem 7.1, a natural approach to the existence of fixed points
for �σ is the following. Consider the R-vector space M of finite signed measures
on R

Z, and observe that Ms(R
Z+) is a convex subset of M. Equipped with the

topology of weak convergence, recall that M is a locally convex and Hausdorff
space, and that Ms(R

Z+) is closed in M. Now, find a convex and compact subset C

of Ms(R
Z+) such that �σ maps C into itself. Since �σ is continuous, the existence

of a fixed point in C then follows from the Schauder–Tychonoff fixed point
theorem ([20], Chapter 5).

A suitable candidate for the set C is dicted by Loynes’ results. Indeed, assume
that σ is ergodic and consider α > E[S(0)]. The set Mα

e (RZ+) is mapped into
itself by �σ . However, it is not convex. Its convexification is the set M

p : α
s (RZ+)

defined in (20). The set M
p : α
s (RZ+) is not weakly closed [as can be seen

by considering (ξn)n defined in (36)]. Its closure is the set
⋃

x≤α Mx
s (RZ+).
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Since �σ(µ) ≥st σ for all µ, we deduce the following natural and “minimal”
candidate for C:

C = ⋃
x≤α

Mx
s (RZ+) ∩ {µ | µ ≥st σ }.

It is easily checked that C is compact, convex, and mapped into itself by �σ . We
therefore conclude that there exists a fixed point in C. The problem is that C is
too large: it contains the trivial fixed point σ , and we have no way to assert the
existence of a nontrivial fixed point.

Building on the above idea, one could try the same approach with another
topology on Ms(R

Z+): the one induced by the ρ̄ distance defined in (16). According
to Theorem 4.2, the map �σ is 1-Lipschitz on Ms(R

Z+), hence continuous.
However, there is no clear way to build a compact and convex set on which to
work. Indeed, let ξn ∈ M1

e(R
Z+) be the distribution of the periodic process whose

period is given by

(0, . . . ,0︸ ︷︷ ︸
n

,2, . . . ,2︸ ︷︷ ︸
n

).(36)

It is easy to see that (ξn)n is not sequentially compact in Ms(R
Z+) for the ρ̄

topology. Indeed, we have ξn
w→ ξ , where ξ is defined by P {ξ = (0)Z} = P {ξ =

(2)Z} = 1/2. Since convergence in the ρ̄ topology implies weak convergence, if
(ξn)n admits a subsequential limit in the ρ̄ topology, then it has to be ξ . However,
it is easy to check that ρ̄(ξn, ξ) = 1 for all n.
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