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A NOTE ON BOUNDS FOR THE ODDS THEOREM OF
OPTIMAL STOPPING

BY F. THOMAS BRUSS

Université Libre de Bruxelles

The odds theorem gives a unified answer to a class of stopping problems
on sequences of independent indicator functions. The success probability of
the optimal rule is known to be larger than Re−R , where R defined in the
theorem satisfies R ≥ 1 in the more interesting case. The following findings
strengthen this result by showing that 1/e is then a lower bound. Knowing
that this is the best possible uniform lower bound motivates this addendum.

Let I1, I2, . . . , In be independent indicator functions on a probability space
(�,F ,P ). Consider the problem of stopping on the last success up to time n,
that is, on the last indicator Ik = 1 with k ≤ n. (If there is no such k or if we stop
too early, then we lose by definition.)

The optimal rule is given by the odds theorem; see Bruss (2000), Theorem 1.
Let pk = E(Ik), qk = 1 − pk and rk = pk/(1 − pk). The rk’s are called odds. It is
optimal to add up the odds backwards, rn + rn−1 + · · · , until this sum becomes
more than or equal to 1, at index s say (we put s = 1 if all odds add up to less
than 1), and to stop at the first index k ≥ s with Ik = 1. The optimal success
probability is obtained at the same time [see Bruss (2000), Section 2.1] by

V = V (pn,pn−1, . . . , p1) =
n∏

j=s

qj

n∑
k=s

rk.(1)

It is the elegance of simplicity which makes the odds theorem attractive. It can
be readily applied to natural stopping problems such as, for example, the secretary
problem [Bruss (2000)], the group-interview problem [Hsiau and Yang (2000)] and
the “last-peak” problem [Tamaki (2001)], but also to many other simple problems
of games, betting or investment. Hence easy bounds for V in (1) are of interest.

Theorem 2 of Bruss (2000) shows that V > Re−R, where R = rn + rn−1 +
· · ·+ rs . This makes 1/e what we called before a “typical” lower bound. However,
as we shall see now, this can be refined to yield the best possible uniform lower
bound.

THEOREM.

If
n∑

k=1

rk ≥ 1 then V >
1

e
.
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PROOF. Since we prove a statement about the value of the optimal strategy in-
dependently of its form, we can renumerate the pk’s, and hence the qk’s and rk’s, in
their natural order. To keep the same notation, we simply rename p1 := pn,p2 :=
pn−1, . . . , pn := p1 and, correspondingly, r1 := rn, r2 := rn−1, . . . , rn := r1. Let
now, in this new notation, Rk = r1 + r2 + · · · + rk and let t = inf{k :Rk ≥ 1}. We
then must show that

V := Rt

t∏
k=1

(1 − pk) >
1

e
.(2)

By definition of t , t = 1 implies r1 ≥ 1, that is, p1 ≥ 1/2, and hence V ≥ 1/2 >

1/e. Therefore, the statement is true for t = 1. Let thus t ≥ 2. Use 1/(1 − pj ) =
1 + rj and rewrite V in the form

V = Rt

t−1∏
j=1

(
1

(1 − pj)

)−1(
1

(1 − pt)

)−1

= Rt

(1 + rt )
∏t−1

j=1(1 + rj )
.(3)

Maximizing
∏t−1

j=1(1 + uj ) with respect to u1, u2, . . . , ut−1 subject to the
constraints uj ≥ 0 and u1 + u2 + · · · + ut−1 = Rt−1 shows that this maximum
is obtained by u1 = u2 = · · · = ut−1 = Rt−1/(t − 1). Recall that t ≥ 2. Therefore,
from (3),

V ≥ Rt

(1 + rt )(1 + (Rt−1/(t − 1)))t−1
≥ Rt−1 + rt

(1 + rt )e
Rt−1

,(4)

where we used (1 + a/k)k ↑ ea as k → ∞ and Rt = Rt−1 + rt in the second
inequality. Now let

g(x, y) = x + y

(1 + y)ex
for 0 ≤ x < 1, 1 − x ≤ y.(5)

On the specified domain of g we have ∂g/∂y ≥ 0 so that g increases in y for each
0 ≤ x < 1. Therefore, with (5),

g(x, y) ≥ g(x,1 − x) = 1

(2 − x)ex
.(6)

Since 0 ≤ Rt−1 < 1 ≤ Rt by definition of t we have that Rt−1 and rt satisfy
the domain specification of g for x and y, respectively. Thus, using (4) and (6),
V ≥ 1/((2−Rt−1)e

rt ). Therefore, to prove the uniform lower bound 1/e it suffices
to show that g(x, y) ≥ 1/e on the whole domain of g. This is now evident from (6)
because

log
(
g(x, y)

) ≥ −x − log(2 − x)

= −x − log
(
1 + (1 − x)

)
> −x − (1 − x) = −1,

where 0 ≤ x < 1 implies the strict inequality. Hence the proof. �
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A better bound depending on t is, of course, obvious from the middle expression
of (4), but it is the uniform bound which attracts our interest. As we know already
from the asymptotic value of some special best-choice problems [see, e.g., Samuels
(1992) for a review], this bound 1/e is the best possible. There is another special
case: If at least one pj is equal to one (implying that the sum of all odds is equal
to infinity), then the lower bound 1/e follows also from the prophet inequality of
Hill and Krengel (1992).

It is noteworthy that, as we have proved, this lower bound extends to the general
setting of the odds theorem.
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