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PAIRS OF ONE DIMENSIONAL RANDOM WALK PATHS

By C. H. RAIFAIZEN
Massachusetts Institute of Technology

We first show a way of constructing a path of length 2n from a pair of
paths of length n by means of which one may arrive at many results on
pairs of paths of length #, simply by examining properties of paths of length
2n. Secondly, for two random walk paths of length #, 4 and B, with ver-
tical coordinates A(i) and B(i) respectively, at times i = 0, 1, - - -, n, and such
that for some m A(m) > B(m) but A({) = B(i) when i < m, we define d4,p(i) =
1(A() — B(i). For obvious reasons A(i) — B(i) is always even, which inci-
dentally, implies that the intersection of two paths are points with integral
coordinates. We find that d4,5 can be graphed against time by a three-
valued random walk path, i.e. a path which may have horizontal steps.
Questions about the pair consisting of 4 and B may then be answered by
observing the path described by d4,5. Results in the theory of three-valued
random walk paths can thus be translated into results about pairs of random
walk paths of equal length.

1. Method 1. For a random walk path Z we let Z(i) be its vertical coordinate
atr = i. Given the paths 4 and B, of length n, we construct the key path of 4
and B, denoted by K, ,, thus: K, 4(2r) = A(r) — B(r), K, 5(2s + 1) = A(s + 1) —
B(s), for 0<r<n0<s<n—1. By the preceding construction, for each
pair of paths of length n there are two key paths, and for each path of length
2n such that not all of its points occurring at even times lie on the axis, the
inverse of this construction gives a unique pair of paths which have it as a key
path.

THEOREM 1. The number of pairs of paths of length n which meet for the rth time
att = n, r < n, is 277'r(2n — )77,

Proor. By the above construction we see that the number of pairs of paths
of length n which meet for the rth time at + = n is one half of the number of
paths of length 2n which have their rth return to the r-axis at ¢ = 2n,
2rr(2n — A)7I(77). (See [1], page 90.)

In the same manner we may obtain:

COROLLARY 2. There are L(*)(*2=%) pairs of paths of length n which meet for the
last time at t = s < n. (See [1], page 79.)

DEFINITION. Given two paths of length n, 4 and B, if A(m) = B(m) and
A(m + 1) = B(m + 1), then the union of the segments from (m, A(m)) to
(m + 1, A(m + 1))and (m, A(m))to (m + 1, B(m + 1)) is called a V-section of the
pair consisting of 4 and B. Similarly if A(m) = B(m) and A(m — 1) + B(m — 1).

THEOREM 3. The number of pairs of paths of length n which have 2r V-sections,
r> 0,2r < n, and begin and end with a V-section is 27" 'r(n — r)~'(*";*").
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Proor. In a random walk path, let a segment consisting of two steps of the
same slope and which either begins or ends on the axis be called a key-V-seg-
ment. For paths 4 and B, A(m) = B(m) and A(m + 1) = B(m + 1) iff K, ; has
a key-V-segment which begins at (2m, 0). Also A(m) = B(m) and A(m — 1) +
B(m — 1) iff K, , has a key-V-segment which ends at (2m, 0).

We shall consider the question (a): How many paths of length 2n are there
which have 2r key-V-segments, 2r < n, r > 0, one of which begins at + = 0 and
another ends at + = 2n? Given a path of the kind described in (a), we locate
all the sections in it which begin and end with a key-V-segment and do not
contain crossings of the axis. We shall call them key-V-sections, and the paths,
of the kind described in (a), in which the key-V-sections have no points above
the axis, characteristic. Given a characteristic path, we erase the r key-V-seg-
ments with negative slope, and piece the remainder together in the obvious way,
thus obtaining a path of length 2n — 2r with a first passage through 2r at ¢ =
2n — 2r. The construction is clearly invertible. The number of characteristic
paths is thus seen to be equal to the number of paths of length 2n — 2r making
their first passage through 2r at t = 2n — 2r, r(n — r)7'(*;*). (See [1], page
89.) Moreover by individual reflections of the key-V-sections of a characteristic
path across the r-axis we obtain 2" paths of the type described in (a). Any path
of the type required in (a) may be so obtained. Hence the answer to question
(a) is 27r(n — r)~'(**;*), and the number of pairs of paths satisfying the hypo-
theses of the theorem is one half of this number.

REMARK. Method 1 can be applied to answer questions on points of coinci-
dence of a pair of paths of arbitrary dimension.

2. Method 2. We shall use random walk paths which may differ from the
random walk paths of the coin-tossing type in having horizontal steps. Such a
path will be called an j path if it is of length n and has exactly k horizontal
steps. T, denotes the vertical coordinate of such a pathat¢ = m. The number
of , »_, paths with p steps of positive slope and ¢ steps of negative slope is
n!/(k! p! q!) as can be easily verified. If an 7 path ends at 7, = x, then p and ¢
are determined by p — ¢ = xand p 4+ ¢ + k = n. We will denote the number of
% paths whichend at T, = xby M, , .. If M, , . +# O, then M, , . = n!/(k!p! q").

x

LEMMA 4. There are (x/n)M, , . * paths which end at T, = x and for which
T;>O0whenl <i<n,ifx>0.

ProoOF. A straightforward generalization of the proof for the case k = 0; the
latter may be found in [1] page 73, (the ballot theorem).

DeriNITION. Given two § paths 4 and B for which d, , is defined as in the
Abstract, then the graph of d, , against ¢ is called the associated path of A
and B.

Properties of pairs of ¢ paths can be discovered by observing the behavior of
three-valued random walk paths whose first non-horizontal step is up, and then
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constructing the pairs of ; paths having them as associated paths. We illustrate
this in the following theorem.

THEOREM 5. The number of pairs of § paths which are such that if one of the
paths is at some point above the other it is never below it, and such that the paths
end at (n, x) and (n, x — 2z) respectively, is, letting p = }(n + x)and ¢ = 4(n — x):

@) (z4 )(n+ D)) (%) when x —z < 0andz > 0.
(b) (z + I)(n + 1)'("I*)( 1)) when x —z > 0andz > 0.
(©) (n+ 1))@ — (") when x < Oand z = 0 .

d (n+ D) — (%) whenx > 0and z = 0.

Proor oF (a). The associated path of a pair of 7 paths of the kind described in
the statement of part (a)is an ? path, for some k, which ends with T,, = z and never
goes below the axis. The number of such paths is the same as the number of ;!
paths which end with T,,, = z 4 1 and stay strictly above the axis, which is,
by Lemma 4, (z + 1)/(n + 1)M,,,, ,, ... Given an } path which ends with T, = ¢,
never going below the axis, we can construct all the pairs of » paths which have
it as associated path and fulfill the conditions of part (a). Since the associated
path ends at (n, z), z > 0, z units go toward the total number of vertical steps
gained by the upper ; path between t+ = 0 and ¢+ = n. Its other vertical gains
must be the number of times, u, such that if between t = iand ¢t = i + 1 the
associated path has a horizontal step then between t = i and t = i 4 1 the upper
» path has an up step. A similar argument applies for its vertical losses.

We see that u = 4(k + x — z). The number of ways u can be achieved is (¥).
Then the number of pairs of j paths satisfying the hypotheses of part (a) is

1 (O + DI+ DMy
= (z + D)j(n + 1)
X T+ DY@ (p—u— 2 (p—u+ D (1 = 2p + u + 2)1) .

The second sum represents the coefficient of =2y**'in (r + ty=' + y + 1)"*! =
(ty™ + 1"y + 1), which is (GX)(G1)-
Proor oF (b). We reflect every pair of paths satisfying the hypotheses of part

(b) across the t-axis. We then apply the result of part (a) with x replaced by
2z — x.

ProoF oF (c) AND (d). The proof of (c) is a slight modification of the proof
of (a) and the result (d) is obtainable from (c) in the same way that (b) was
derived from (a).
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