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ON A CLASS OF ALIGNED RANK ORDER TESTS
FOR THE IDENTITY OF THE INTERCEPTS
OF SEVERAL REGRESSION LINES!

By PraNnaAB KUMAR SEN

University of North Carolina, Chapel Hill

Based on k(=2) independent samples, a class of aligned rank order tests
for the hypothesis of homogeneity of intercepts of the k (simple) regression
lines is considered here. The alignment procedure is similar to the one in
Sen [Ann. Math. Statist. (1969) 19 1668-1683], and the theory is developed
with the aid of the fundamental results of JureCkova [Ann. Math. Statist.
(1969) 19 1889-1900] on the asymptotic linearity of rank statistics in regres-
sion parameters. Local asymptotic optimality of the proposed tests is also

studied.
1. Introduction. Consider a set of N(= Y%, n;) independent random variables
Y, 1<j<n,1=<i=<k, where
(1.1) PY;; < x} = Fiy(x) = F(x — a; — fi¢5)

¢, = (Cpp»+ v *» cm), i=1, ..., kareknown vectors of regression constants, 8, - - -,
B, are the slopes, and a;, - - -, a, are the intercepts of the k(= 2) regression lines.
F is assumed to be an absolutely continuous cumulative distribution function
(cdf). In an earlier paper [Sen (1969)], we considered a class of aligned rank
tests for the hypothesis of equality of §,, - - -, 8,, treating a,, - - -, &, as nuisance
parameters. In the present paper, we consider the null hypothesis

(1.2) H,: ¢y = ... = a;, = a, (unknown) ,

against the set of alternatives that not all a,, - -, a, are equal; here we treat
B -+, B, as nuisance parameters (not necessarily all equal). Such a problem
often arises in statistical inference; to mention an important area, we refer to
indirect quantitative slope-ratio bio-assays [cf. Finney (1952) Chapters 7 and 8],
where the equality of the intercepts constitutes the fundamental assumption of
the assay and the relative potency is provided by the ratio of the slopes. In
passing, we may add that in various situations, ¢,, - - -, ¢, may be quite different
from each other, and any assumption that the average c;; are all equal or are
all close to any specified value may not be very realistic.

Since B, - - -, B, are unknown, the usual several sample rank tests for location
do not work out here. Again, working with the aligned observations ¥,; =
Yy — fBey 1<j<m, 1 <i<k, (where §,, ---, f, are suitable estimates of
By - -+, B,) vitiates independence and invalidates the basic invariance structure
underlying the scope of the usual distribution-free rank tests. Moreover, for a
k sample rank statistic based on the ¥;;, in the resulting model, we introduce &
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random variables f,, - - -, §,, whose coefficient vectors ¢,, - - -, ¢, do not neces-
sarily satisfy the basic concordance-discordance condition inherent in the asymp-
totic linearity of rank statistics in the multiparameter case, as has been studied
by Jureckova (1969), (1971) and Hajek (1970), among others. Thus, excepting
in some particular cases, several sample (location) rank tests based on the aligned
Y,; are not even asymptotically distribution-free (ADF). We overcome this
difficulty by considering k one-sample rank statistics for the k sets of ¥;;, and
then, as in Sen (1969), aligning these statistics by a suitable pooled sample estimator
of the common (hypothetical) value of @,. It is in this setup we are able to use
results similar to those in JureCkova (1969), (1971) and Hajek (1970) and generate
a class of ADF tests for H, in (1.2). Asymptotically local optimal properties of
the tests are also studied.

Section 2 deals with the preliminary notions, Section 3 with the optimal
parametric tests, while the main results are presented in Section 4. The last
section presents the asymptotic relative efficiency results.

2. Preliminary notions and basic assumptions. We assume that Fe &% =
{F: f(x) = f(—x), Vx = 0, and I(F) < oo}, where

(2.1) I(Fy = \> (f'[f)* dF and f=F".
Define now
(2.2) Ay =n/N, 1<i<k (sothat 3t 2, =1),

and assume that as N — oo

(2.3) P =29, 0< AV <1, i=1,.--,k.
We may, without any loss of generality, assume that for every i,

(2.4) Cn S v S Gy with at least one strict inequality,
1 £ i< k. Let then

_ 1 ) ) - _
(2.5) ¢n = o 2 € s Ciy = Xha(c; — G n)s qix = 1€ y/Ciy s
4

and assume that lim,_., C? y = oo, for all 1 < i < k. Also, we assume that

(2.6) lim inf n,7*C? , = C* > 0,
(2.7) lim,_,., [max,g;g, [¢; — ¢ x|/C;n] = 0,
(2.8) limsupgi y < ¢ < oo, forall i=1,...,k.

[Note that we are not assuming that n,7'C? , — C.;* > 0 (as N — oo); in fact, it
may even tend to co (as in the case of ¢;; = a; + jb,,j = 1,2, .-.) with N— o00.]

Let now ¢(#), 0 < u < 1, be an absolutely continuous, non-decreasing and
square integrable function inside [0, 1]. We assume that

(2.9) o) + ¢(1 —u) =0, forall u: 0<u<1.
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For every positive integer n, let U,; < ... < U,, be the order statistics of a

nl =
sample of size n from the rectangular (0, 1) distribution, and we define a set of
n scores by

(2.10) E,(j) = $(EU,;) = (j/(n + 1)) or E()=E¢U,,), l=j=n.

In passing, we remark that the scores in (2.10) for ¢(u) = 2u — 1 and ¢(u) =
®-!(u), the inverse of the standard normal df, are termed the Wilcoxon and the
normal scores. We let

@) E=LlELEG).,  Al=- DlEG) - B

(2.12) é = §s ¢(u) du and A = (3 [p(u) — ¢ du.
For the estimation of g, - - -, f,, needed for the alignment of the observations,

we use the following statistics. Let R}; be the rank of Y,; among Yy, - -+, ¥y, ,
and define

(2.13) Tinv = [X7 (¢ — CwEn (RACIN] l=sisk,
We also denote by T; y(b), the (regression-) rank statistic in (2.13) based on the

observations Y;; — bc;;, 1 < j < n,. It follows from Theorem 6.1 of Sen (1969)
that

(2.14) T,y(b) is | in b, —co<b< o, forall 1<iZk.
Let us now define

(2.15) o) =d(1 +u)2), 0<u<1l, (4% = {[¢*@W)])du= 4,

and consider a set of scores

(2.16) EX(j) = E{¢*(U,;)}  or  ¢*(j/(n + 1)), l=j=n.

Then, for the construction of our test, we consider the following type of one-
sample statistics:

1 .
(2.17) Siw = - L3 E3(RS) Sgn (¥y) 1<i<k,

where Ry; is the rank of |Y;;| among |Y;)|, - - -, |V}, |. Also, if wereplace Y;; by
Y,; — a; — b,c;; in (2.17), the corresponding statistics are denoted by

(2.18) S;,w(a: b;) l<isk.
Our test statistic is a quadratic form in the S; y(a;, 6;), 1 < i < k, where the b,
are chosen as the estimators of the 3;derived from T ,(b,)in(2.13),anda, = ... =
a, = a is chosen as some pooled sample estimator of «,, the (hypothetical) com-
mon value of the «;. Note that for given b,,

(2.19) S;y(a,b) is | in a, —oco<a <o, 1<igk.
For later use, we let

(2.20) ¢(u) = —[f'(F@FE@)],  ¢*@) = ¢ +u)2), 0<u<l,
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so that ¢(u) = Oand §}¢*(u)du = §}[¢*(u)]*du = I(F) < co. Further, we assume
that

(2.21) B(F, §) = §i $()g(u) du = §; $*(u)p*(u)du > 0.
If F is strongly unimodal and ¢*(x) is not a constant, then (2.21) holds.

3. Optimal parametric tests. In practice, the commonly used test (under the
assumption that F is normal) is based on the variance-ratio criterion

(3-1) Zy = [ZDfan(@ — &'/(1 + g )]k = 1)s.7] 5

where & = n;7t 3%, Yy, — & y(0t, V(e — En)/Cin)y 1 Si Sk, @ =
(Zk na /(1 + @Dk n/(1 + 4% y)}, and s is the pooled sample mean
squares due to error carrying N — 2k degrees of fréedom (d.f.). Under H, in
(1.2), Z,, has the variance-ratio distribution with (k — 1, N — 2k) d.f., and the
test based on Z, is the most powerful invariant test.

When F is non-normal, the optimality of the Z-test is not retained. However,
if ¢*(F), the variance of F, is finite, some standard computations yield that
(i) 5.2 —, 0*(F), as N — oo, (ii) n}(@; — a;)(1 + ¢} y)~}/o(F) has asymptotically
the standard normal distribution, 1 < i < k, and hence, (k — 1)Z, has asymp-
totically, under H, in (1.2), chi-square distribution with k — 1 d.f. Thus, Z),
provides an ADF test for the entire class of F with ¢*(F) < co. If we consider
a sequence of (Pitman-) alternatives {Hy} specified by

(3.2) HN:a:(al,...,ak)zaN:aol+N-&0, l:(l,’l)’
where 8 = (6,, ---, 0,) # 0, and it is assumed that
(3.3) limy_. g, y = ¢; exists, 1<igk,

then it can be shown that under {H,}, Z, has asymptotically a noncentral chi-
square distribution with k — 1 d.f. and noncentrality parameter

(3.4) A, = [Th, 290, — 01 + ¢)7)/o*(F)
where
(3.5) 0 =[2k, 2901 + g7 Th 291 + ¢

Now, for the class of F with I(F) < oo, it follows from the results of Wald
(1943) that an asymptotically locally optimal (in the sense of being asymptotically
locally most stringent and having best average power over suitable ellipsoidal-
surfaces in the parameter space) test for H, in (1.2) is based on the likelihood
ratio (L, —) criterion, where —2 log L, has asymptotically, (i) under H, in (1.2),
chi-square distribution with & — 1 d.f., and (ii) under {H,} in (3.2), a noncentral
chi-square distribution with k — 1 d.f. and a noncentrality parameter

(3.6) A = [ D4, 290, — )1 + 47 I(F)
= A [I(F)o(F)] = A,
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by the classical Rao-Cramér inequality. Thus, in general, the Z,-test is not
asymptotically optimal. We shall compare both these tests with our proposed
one.

4. Aligned rank order tests. For alignment, we consider the following estimator
of = (B - B)- Let
4.1) ‘;}}v =sup{b: T; y(b) > 0}, ‘ég}v =inf{b: T; y(b) < 0};
(42) By =3B+ BB, 1=isk,  fy=Fuw b

Then ([1], [9]), ,éN is a translation-invariant robust and consistent estimator of
B. Consider then the aligned (one-sample) rank order statistics

(43) Sin(@ Biw) ‘ i=1, .k,
where for every real a (—oco < a < o0), we let

(4.4) Sy*(a) = Lk wnSin(@, Bi) -

(4-5) wiw = [m/(L+ G Zian/(+ gin], i=1,- k.

We now estimate the common (hypothetical) value of «, by &,, where

(4.6) @y =sup{a: S,%@) >0}, @, = inf{a: Sy*(a) < 0} ;

(4.7) ay = J(ay® + ay®).
Our proposed test is then based on the statistic
(4.8) Oy = [ n:S%u(@ys B )1 + g a)]A2,

and Theorem 4.1 establishes that Q, provides an ADF test for H, in (1.2).

THEOREM 4.1. Under (1.2) and the assumptions of Section 2, Q , has asymptotically
chi-square distribution with k — 1 d.f.

The proof follows directly from Lemmas 4.4, 4.5 and 4.6 (to follow).
LemMMA 4.2. Under the regularity conditions of Section 2, as N — oo,
4.9) |Ti(Bs) + BF, $)Cs,wlBi,y — )] Al —,0,  forall 1<i<k.

The proof follows directly from the definitions of T; , and §,  in (2.13) and
(4.1)-(4.2), asymptotic linearity (in regression parameter) of 7T, , [cf. Theorem
3.1 of Jureckova (1969)], Theorem 2.1 of Héjek (1970), and the Bonferroni
inequality. []

Since T; y(B;) is asymptotically .#7(0, 1) when §; holds, it follows from (4.9)
that

(4.10) ICi v(Biw — B = O,(1) forall 1 <i<k.

Consider now a finite interval I = {x: |x] < K}, where K(< o) is given. Then,
by an extension of Theorem 3.1 of Jureckova (1969) to signed rank statistics [viz.,
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van Eeden (1972)], it can be shown that
(4.11) limy_, {SUP, e/ |n:H{Ss w(a; + N7*a, B; + N7tb) — S, (s B))}
+ (Ay)[aB(F, ¢) + b¢; yB(F, )]} =0, in probability,

for all 1 < i< k. Hence, from (2.6), (2.8), (4.10), (4.11), Lemma 4.2 and
Theorem 2.1 of Hajek (1970), we have the following.

LemMA 4.3. Under the regularity conditions of Section 2, as N — oo,
(4.12) sup,.; {|n:}[Ss x(a; + N7*a, Bin) — Sin(as B)]
+ aB(F, §)[ Ay ) + Ew AT W(BI} —,0, 1 =isk;
(4.13) SUp, pe  {|M:[S; w(a; + N-taq, ‘éuv) — S vl + N-1b, Buv)]
+ [4y9]¥(a@ — b)B(F, ¢)|} —,0, 1<igk.

Now, S; y(a;, 8;) and T; y(B;) are mutually stochastically independent, and as

n; — oo,
(4.14)  L(n2S; y(@i B)|A) — A0, 1), LT w(B)) = A0, 1),

1 < i < k. Hence, from (4.12), we conclude that for every finite a, n;}S; y(a; +
N-ta, B, ) has asymptotically a normal distribution with mean —[2,'“*aB(F, $)
and variance 4* + g2 y A4* = A1 + ¢2 ), | < i < k. Thus, from (4.4)-(4.7) and
the above result, we readily obtain that

(4.15) INY@ — ay)| = OL(1),
under H, in (1.2) or under {H,} in (3.2). Let then
(4.16) @), =supfa: S; u(@, fiy) > 0}, & = inf{a: S, (@, Bi,x) < 0};
(4.17) @,y = $(ay + &), l<i<k.

Then, from (4.12), (4.13), (4.16) and (4.17), we obtain, by some standard com-
putations, the following.

LeMMA 4.4. Under the assumptions of Section 2, as N — oo,

(4.18) L (n}a; y — a]BF, )AL + gix)™) = A0, 1),
forall 1 <i<k.

We now use the above lemmas to prove the following basic lemmas.

LemMA 4.5. Under(1.2) or (3.2)~(3.3), and the regularity conditions of Section2,
as N — oo,

(4.19) IN¥ay — Dk win@x) —, 0.
Proofr. By (2.8) and (4.18), as N — oo,
(4.20) IN¥@; y — a;)] = O, (1) forall 1 i< k.

Now, by (4.4), S,*(a) is a monotone step-function of a for any fixed sample.
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Hence, by (4.6)—(4.7), (4.13) and (4.18), we obtain by some standard steps that
(4.21) [N S *(@y)| = o,(1) as N— oo,

and similarly, by (4.3), monotonicity of S, ,, (4.16)—(4.17), (4.13) and (4.18),
as N — oo,

(4.22) INES; w(@; x> Bin)] = 0,(1) forall 1<i<k.
Further, under (3.2)-(3.3) and (2.3),
(4.23) kowi w0, —0) >0 as N— oo,

where 4 is defined by (3.5). Hence from (4.4), (4.5), (4.13), (4.15), (4.20), (4.21),
(4.22) and (4.23), we have

a

(4'24) NQSN*(&,N) = Zi‘;l Wi,N{N%[Si,N(&N’ ‘éi,N) - Sz',N(a'i,N? ‘B'LN)]} =+ op(l)
= Dl win(@; y — @y)B(F, ¢) + 0,(1) .
Since, by (4.21), the left-hand side of (4.24) is o,(1), the lemma follows.

LeEmMA 4.6. Under H,in(1.2) or {H}in(3.2)-(3.3), and the regularity conditions
of Section 2, as N — oo

(4.25) Qn ~, [BYF, §)| A Dics wi vl y — @y’ (1 + g2 4)7"] -
Proor. By (4.13), (4.15), (4.20) and (4.22), as N — oo,
(4.26) ntS; v(ay, ‘éuv) = nt[S; y(@y, Buv) — 8 v (& x> Buv)] + o,(1)
= n}@a; y — ay)B(F, ¢) + 0,(1), 1<i<k,

and hence, the lemma follows from (4.8) and (4.26).
Now, under (3.2)—(3.3), it follows from Lemma 4.4 that as N — oo,

(4.27)  L(nda; y — a]| Hy) — A (296, A£(1 + q.°)/BXF, ¢)),
1 < i <k, and hence, from Lemmas 4.5 and 4.6, we obtain the following.

THEOREM 4.7. Under the regularity conditions of Section2and (3.2)—(3.3), Q has
asymptotically a noncentral chi-square distribution with k — 1 d.f. and noncentrality
parameter

(4.28) Ay = [B(F, §)/ AN Tk 29(0; — 0/(1 + ¢1)]-
5. Asymptotic relative efficiency (ARE) results. Let us define first
(5.1) p(¢, ¢) = [B(F, $)I[{AI(F)};

by definition in (2.21), 0 < p(¢, ¢) < 1, and p(¢, ¢) = 1 iff ¢(u) = ¢(u): 0 <
u < 1. It follows from (3.6) and (4.28) that the ARE of the Q,-test with respect
to the likelihood ratio test is equal to

(5.2) eqr = Do/A, = 0%(9, @),
and hence, if ¢(u) = ¢(u), we obtain that the Q,-test has the same asymptotically
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local optimal properties as of the likelihood ratio test. For related results on
P, ¢) for various (¢, ¢), we refer to Hajek (1962), who considered the simple
regression problem.

Again from (3.4) and (4.28), we obtain that the ARE of the Q ,-test with respect
to the variance-ratio test is equal to

(5.3) e, , = o*(F)BF, ¢)[A*,

which agrees with the ARE of the several sample rank test for location [cf. Puri
(1964)]. As such, we have that for the Q ,-test based on normal scores, e, , is
bounded below by 1, where the lower bound is attajned iff F is normal. Also,
for Wilcoxon scores, (5.3) is bounded below by 0.864 for all F, while for many
non-normal F, it is greater than one.

REMARK. We are able to claim asymptotic optirf)ality of Q, (when ¢ = ¢)
by using the same ¢(u) to generate the scores for the T; , and the S, ,. If the
¢* for the S, were not derived from ¢, say, we had ¢,(u) and ¢,*(u) =
é((1 + u)/2), where ¢, + ¢,, then writing 4,> and A4 as in (2.12) for ¢ = ¢,
and ¢,, we would have in (4.12) AT ,(B;) replaced by A[B(F, ¢,)/B(F, ¢,)1T; x(B8;)-
Since, B(F, ¢;), i = 1, 2 are unknown and not necessarily equal, in Lemma 4.4,
we require to change A4*(1 4 ¢: ,)/BXF, ¢) by A}/BNF, ¢,) + A’q: /B*F, ¢,),
and hence, Lemmas 4.5 and 4.6 do not hold. Hence, we are not in a position
to use Q, in (4.8). Of course, it is possible to estimate B(F, ¢,), i = 1, 2 [viz.,
Sen (1969) Section 4], and use an appropriate quadratic form in the &; 5. However,
the optimality, as claimed for ¢ = ¢, will not be retained.
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on the manuscript.

REFERENCES

[1]1 ApicHIg, J. N. (1967). Estimates of regression parameters based on rank tests. Ann. Math.
Statist. 38 894-904.

[2] FINNEY, D. J. (1952). Statistical Methods in Biological Assays. Griffin, London.

[31 HAsEk, J. (1962). Asymptotically most powerful rank order tests. Ann. Math. Statist. 33
1124-1147.

[4] HAjEk, J. (1968). Asymptotic normality of simple linear statistics under alternatives. Ann.
Math. Statist. 39 325-346.

[5] HAJEK, J. (1970). Miscellaneous problems of rank test theory. Nonparametric Techniques in
Statistical Inference, ed. M. L. Puri. Cambridge Univ. Press, 1-17.

[6] JURECKOVA, J. (1969). Asymptotic linearity of a rank statistic. 4nn. Math. Statist. 40 1889-
1900.

[71 Jure¢kova,J. (1971). Nonparametric estimate of regression coefficient. Ann. Math. Statist.
42 1328-1338.

[8]1 Puri, M. L. (1964). Asymptotic efficiency of a class of c-sample tests. Ann. Math. Statist.
35 102-121.

[9] SEN, P. K. (1969). On a class of rank order tests for the parallelism of several regression
lines. Ann. Math. Statist. 40 1668-1683.

[10] vAN EEDEN, C. (1972). An analogue, for signed rank statistics, of J ureCkovéd’s asymptotic

linearity theorem for rank statistics. Ann. Math. Statist. 43 791-802.



2012 PRANAB KUMAR SEN

[11] WALD, A. (1943). Tests of statistical hypotheses concerning several parameters when the
number of observations is large. Trans. Amer. Math. Soc. 54 426-482.

DEPARTMENT OF BIOSTATISTICS
UNIVERSITY OF NORTH CAROLINA
CuAPEL HiLL, NorTH CAROLINA 27514



