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BAYES ESTIMATION OF THE MIXING DISTRIBUTION,
THE DISCRETE CASE

By GLEN MEEDEN
Iowa State University

Let Xy, Xz, - - - be independent identically distributed random variables
taking on values in the positive integers with a family of possible probability
distributions indexed by G € &, the class of all probability distribution func-
tions on [0, +o0). Under the assumption that the family is identifiable we
wish to estimate the true but unknown Go. This is done by constructing a
prior probability distribution on ¥ and showing that the Bayes estimate
corresponding to the prior is consistent.

1. Introduction and summary. Let X be a random variable taking values in the
positive integers with &#= {P,: t €[0, 4 c0)}, a family of possible probability
distributions. ¢ is a realization of a random variable taking on values in [0, + co)
and

P(X = x) = q,(1) for x=1,2,...
is the conditional distribution of X given ¢. If G, a probability distribution func-
tion on [0, + o0), is the distribution of ¢ then the unconditional distribution of
X is a G-mixture over % and

Po(X = x) = {7 q.(1) dG(t) = 4.(G) .
We assume that the family .27 is identifiable, that is, if ¢,(G,) = ¢,(G,) for x =
1,2, ... then G, = G,. In this paper we define a prior distribution on <, the
class of all probability distribution functions on [0, + o) and show the posterior
distribution, based on independent observations of X, is consistent.

This was done in Rolph [3] for the case where the parameter set is [0, 1] and
9.(+) is a continuous function. Our approach is to define the prior in a way
suggested by Dubins and Freedman [1] and Kraft and Van Eeden [2] and then
use Theorem 2 of Rolph [3] to prove consistency of the posterior when ¢,(+) is
continuous on [0, + co0), of bounded variation on any finite sub-interval and
lim,_ ¢,(t) = 0. Finally, we use the posterior distribution to construct consist-
ent Bayes estimates for the mixing distribution G.

2. Defining a prior distribution. We begin by defining a prior probability dis-
tribution on &, the set of all probability distribution functions on [0, + o).
Let{r,:i=1,2, ...} be adense set in [0, + o). Since a distribution function
is uniquely determined by its values on a dense set there is a one to one cor-
respondence between & and D = ({G(r;,)}: G € &), a subset of the infinite di-
mensional unit cube [0, 1]~. Since given the values G(r,), - - -, G(ry) there exist
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unique numbers 0 < G, < G, < | such that G(ry,,) €[Gy, G,], a distribution
V will be defined on D via the coordinates and then mapped to &. Let k,, hy, - - -
be a sequence of everywhere positive densities with respect to Lebesgue measure
on [0,1]. On the first coordinate V), the density with respect to Lebesgue
measure, is

(1) (G(n) = m(G(r)) if 0=G(n =1
=0 elsewhere
and the density V, on the kth given (G(r,), - - -, G(r,_,)) is

(2) Vi(G(n)[G(ry), - -+, G(r—y))
= h(G(r)/Sizt by du if G(r) € [Goyy i)
=0 “elsewhere .

{G(r)} — (G(r), - -+, G(ry)) maps & onto D¥, the projection of D onto the first
N coordinates. Let £Z," be the Borel sigma field on D¥ in the product topology.
We derive the posterior distribution on (D", £%,") and appeal to the Kolmogorov
extension theorem to define it on (D, <%,) with <%, being the Borel sigma field
on D.

Now put the weak topology on D. Since the weak topology is contained in
the product topology <%,*, the Borel sigma field on D generated by the weak
open sets, is contained in 27,. Hence V induces a measure ¢ on (&, %7 %) where
&7°* is the sigma algebra generated by the weak open sets.

Since we are interested in only proper distributions on [0, + co) we desire
that the probability measure ¥ gives probability one to the G’s with G(4 o) = 1.
To see that this need not be the case consider the following example.

For the sequence {r;} we say that r;, is an upper point if r, < r,, for i < 7.
Let {r;,} be the strictly increasing subsequence of upper points of {r;}. Note that
the behavior of G at infinity depends only on the values {G(r;)}. Let {b;: ;=

0,1, ...} be a strictly increasing sequence of positive numbers bounded above
by 3. Leth;, h;,, - - - be chosen so that
Vi, b duz 1 — () for j=1,2, -,

then we have
P(G(r;)) = %) = P(b;_, = G(r;)) = b)) for j=1,.--,n
z I3 (1 = ().
Since )7, () < oo we have that J[5, (1 — (4)’) > 0 and so with positive
probability G(+ ) < 3.
In the rest of the paper we assume that {#;} is chosen so that the distribution
V assigns probability one to the class of proper distributions. It is easy to give
various conditions which imply that the previous assumption is true. One such

condition which would usually hold in any problem for which one wished to
compute the estimate is that {#;} contains only finitely many different densities.
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By different choices of {r;} and {#;} this procedure yields a large class of priors.
In particular, one may wish the prior to reflect his state of knowledge about the
true mixing distribution, G,. This can be done quite conveniently if one has
information about the quantiles of G,. For example, if it is known that the
median of G, is about 17 one can choose r, = 17 and for 4, a density concentrated
about 1. One may continue in this fashion. But the calculations necessary to
compute the posterior distribution and the estimates will be simplified if one
takes /4, to be the uniform density for i = i,

Let Xj, - - -, X, be independent random variables defined on a probability space
(Q, &) with Py(X; = x) = q,(G) for i=1,...,nand x=1,2, .... Given
X(w), - -+, X, (o) let n;(») be the number of X;(w) = j. The sample can be written
(ny, ny, - -+, n, 0, - ) where c is the largest of the n observations.

The joint frequency function of (n,, n,, ---) given n and G is

[l eyt oo |1, G) = (o, %,) T1221 (42(G))™ -
The posterior distribution of G given (n,, ---, n,, +-.) is
3) dp, (G) = 112=1(9(G)" dp(G)[I(my, - -+, s -+ )
where

I(ny, -+, n, - o) = §, I1i21 (4.(G))"= dﬂ(G) .

We wish to prove the consistency of the posterior distribution, that is, g, ,
converges to the probability measure which concentrates its mass at the true
mixing distribution G,.

3. Consistency. Before proving consistency we need some preliminaries. Fol-
lowing [3] we let S be the space functions from /, the positive integers, to [0, 1]
with the product topology. LetL = {A: 2¢ S, 22, < 1}with the relative topology
and A = {1: 1€ L, 24, = 1} with ¢ a probability measure on <7, the Borel sigma

field of L. Let X, X,, --. be a sequence of independent, / valued, random vari-
ables on (Q, %) with common distribution P{w: w € Q, X, (0) = i} = 4, iel.
Let o, , denote the posterior distribution 2 given X (), - - -, X, ().

We use the weak* topology on the space of probability measures on <% so
that x, — p means that {, f dy, — §, f dp for every continuous function fon L.
Let 4, be a point mass at 2. We say that the pair (4, ) is consistent if and only
if p,, , — 0, for P;-almost all @. That is, the z, , measure of every L neighborhood
of 2 converges to 1 for all but a P,-null set of . Theorem 1 is Theorem 2 of [3].

THEOREM 1. If ptisa probability on <& such that p{2: 2 € L, 3™, p,log (p./4;) <
& where py = Y2, p;and 2y = 32,14} > O forall m, then (p, p) is consistent.

The following Lemma will be used in the proof.

LemMMA. Let f be a continuous function on [0, + oo) with 0 < f < 1 and suppose
that f is of bounded variation on every finite interval. Let G be a probability function
on [0, +00). Given & > 0 there exist numbers 0 < 5, < - .. < syand d > 0 such
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that for each probability distribution function H on [0, + oo) with max,_, ... , |G(s;) —
H(s;)| < 0 it follows that |\ f dG — (¢ fdH| < &.

Proor. First suppose G is continuous. Given & > Ochoose 0 < 5, < -+ <
sy such that 1 — G(sy) < &/4 and max,_, ... y_, |G(s;;,) — G(s;)| < &/4c where
c is the total variation of f on [0, s,]. Without loss of generality we assume
s; = 0. For a given distribution function H let 6 = max,_, ... v |G(s;) — H(s;)|
then

§°fdG — ¢ fdH| < &4 + &4 + 0 + §¥ fd(G — H)
S &2 4 0+ 20 + [&4c + 26]c

<&
for ¢ sufficiently small, where the second inequality follows by integration by
parts.
For the general case choose s such that 1 — G(s) < &/10 and let ¢, -, ¢,

denote the points at which G jumps at least & = &/{10(total variation of f on
[0, s])}. Next we choose 0 = 5; < --- < sy = s to satisfy the following:

(i) The total variation of f on the k sub-intervals containing ¢, - - -, t, is less

than or equal to &/10.
(ii) If ¢; ¢ (s;, 8;44]) for j =1, ..., k then G(s,;,,) — G(s;) < &".

The result follows by noting that §i¥ fd(G — H) can be separated into two
integrals. The first integral is over the k intervals where G jumps at least &,
which is small by (i). The integral over the remaining intervals is small by (ii).

We are now ready to prove the consistency for the measure ¢ which was de-
fined on & in Section 2. Before stating the Theorem we briefly outline the proof.
For each G € & ¢,(G) = {7 q.(t) dG(¢) is a probability measure on I, say ¢(G).
The map Q: G — ¢(G) maps & into a subset of A, say W. The measure x induces
through the map Q a measure on W. It will be shown that the consistency of
the induced measure follows from Theorem 1 and the Lemma. Then the con-
sistency of ¢ will be demonstrated.

Consistency on (&, .o7*) is defined analogously to consistency on (L, 7).
The pair (G, p) is consistent if the y, , measure of every < neighborhood of G
converges to 1 for all but a Py ,-null set of .

THEOREM 2. If the family Fis identifiable and if for each x q,(t) is continuous on
[0, + o0), of bounded variation on [0, y] for every y > 0 and lim,_, ., q,(f) = O then
(Gy, p) is consistent.

Proor. The map Q of & into L is continuous since each ¢,(G) is a continuous
function. Let W = Range of Q with the relative topology <%),. Since the family
&7 is identifiable, Q is one to one, so Q~': W — & exists. Let pQ~* denote the
measure induced on W by Q. We will show using Theorem 1 that (Q(G,), Q%)
is consistent.
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For an arbitrary fixed m, we let
Ur ={G: GeZ, 31 9.(G) log (9.(G0)/9.(G)) < &7}

where ¢(G) = 332,41 ¢,(G). Since ¢,(G) sufficiently close to ¢,(G,) for x =
1, ..., m implies that G € U™ we have by the Lemma that there exist iy ooy Ty
such that

{G: Ge ¥ and max;, ., |G(r;) — Gy(r;))| <8} c U™

for ¢ sufficiently small. Set ™ = Q(U™), then pQ~*(V™) = w(U™) > 0 for each
m and (Q(G,), #Q™") is consistent by Theorem 1.

The next step is to show that Q' is a continuous function. It is enough to
show that if {G,} and G satisfy

§5 9.(1) dG, (1) — §7 9.(1) dG(2) for x=1,2,...

then {G,} converges weakly to G. Let {G, } be a subsequence which converges
weakly to a right continuous non-decreasing function G’ with 0 = G'(0—) <
G'(+o0) < 1. Since for each x, lim,_, ., ¢,(f) = 0 we have that

§5 9.(1) dG,, (1) — §7° 9.(1) dG'(1)
which implies that

§5 9.(1) dG(1) = § q.(1) dG'(1)

for x =1, 2, .... By interchanging the summation and the integral we have
that 1 = Y12, §59.(1) dG'(t) = G'(+ o) — G'(0—). Therefore G’(+oc0) = 1 and
by the identifiability assumption G = G’ and {G, ;} converges weakly to G. Since
every weakly convergent subsequence converges weakly to G it follows that {G,}
converges weakly to G.

Finally we show the consistency of (G,, ¢). Let U be a neighborhood of G, in
(&, &77*). By the continuity of Q~* there exists a neighborhood ¥V of Q(G,) in
(W, <5,,) so that Q-}(V) c U.

tnoU) Z 11,,(Q7H(V)) = pQ7 (V) — 1

as n — oo for a.e. [Py, ]Jo. But Py, is the distribution on (Q, .%7) correspond-
ing to G, which completes the proof.

4. Bayes estimates. For estimating the mixing distribution let L(G, G’) be the
loss incurred when G’ is the true parameter value and G is estimated. The Bayes

estimate, based on X = (X, - - -, X,), is the estimate which minimizes the Bayes
risk
) R(G(X)) = §, [Zx L(G(X), G')q(G") dp(G")

where y is the prior distribution on &. A convenient and perhaps not unrea-
sonable loss function is

L(G, 6') = ¥, 494G) — 4GP’
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where 4, > 0 and X4, is finite. By interchanging the integral and summation in
(4) it is easily seen that for X = x the Bayes estimate G, is a distribution function
with ¢,(G,) = ®(j) for j = 1,2, ... where

() Q()) = < 9:(G") dpn, o(G")

is the average probability of j under the posterior distribution. Since {®@(j)} € W,
the range of Q, G,, exists and is unique by the identifiability assumption.

Let G, denote the true but unknown mixing distribution and g, the probability
measure which concentrates all of its mass at G,. Sincea.e. [P ]o g, , — ¢, and
q,(G) is a continuous function of G we have that ¢,(G,) — ¢,(G,) for all j and as
in the proof of Theorem 2 we have that G, converges weakly to G, and our
estimates are consistent. .

It is not possible to calculate the preceding estimate since it is necessary to
compute an infinite number of integrals each of which is over an infinite dimen-
sional space. It is, however, possible to construct a sequence of approximate
Bayes estimates which are consistent and computable.

As a first step consider the posterior density dp, , given in (3), which is a
density on an infinite dimensional space. This density will be approximated by
considering just its first N coordinates. Let " denote the class of probability
distribution function which concentrate their mass on 7, ..., ry. The trans-
formation G — (G(r,), - - -, G(ry)) maps & onto a subset of D", say D,¥. Let-
ting 2, = G(ry), DY ={(4, -+, Ay): 0= 4, < -+ =4, =4, =1fori=
1, ..., N where ry <y < r;,} then as in (1) and (2) A, ---, ky define a
probability density y¥(4,, - - -, 4y) on D,~. If we consider the parameter G to
be restricted to the class &V then, given n and (n,, ---, n,, --.), the posterior
density of (4, .-+, 4y) on D" is

gN('lv R lenl’ ey My o ‘)
= TLea (B0 (A — A, )9a(r )" (Aes <+ A)[F¥(nyy <o ooy 1y <)
where
IN(nl, ey Mgy e e )
= SDaN ITi- (25 ('lij - Zij_l)‘lx(’ij))"”TN(lu sy Ay) dAg, e, dy

To show consistency of the approximate estimates that will be proposed it is
necessary to permit N to depend on n. Let {N(n)} be a sequence of positive
integers. The form of our Bayes estimates in (5) suggests that in constructing
our approximate Bayes estimates we use

QVM(x) = §p v (DY (Ai; — Ai;_)9(7:,)
% g”‘”)(ll, cee, ,{N(”)Inl, SRR ) d,{l, ceey dzN(n)
for x = 1,2, .... To accomplish this we choose a positive integer k(n) and a
distribution G € Z¥™ such that

g;(G) = @Y™(j) for j=1,2, .-, k(n).
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This is a system of k(n) liner equations in the unknowns 4,, - - ., 4, which has
at least one solution in D,”™. Denote one such solution by Gy,

We will show that the sequence {G,"™} of approximate Bayes estimates is
consistent provided that N(n) — oo sufficiently fast and lim, ., k(n) = co. The
only additional assumption necessary to ensure consistency is that g,(¢) is positive
on [0, oo) for all x.

For {r, - -+, ryy} let r, <r,, < -+- <1y, be the ordering of the r;’s. For
GeZlet

FYM(G) = G(ri)q.(ri) + LI [G(r) — G(ri;_)1g.(7:))

+ [1 - G(rizvm)—l)]qx(rimn)) :
Then

(6) ga,wm(j) = Vo F;7"(G) dpt, o(G)
forj=1,...,k(n). For & > Othereexistsa N, , such that |F,"™(G)/q,(G) —1]|<

& for all G € ¥ whenever N(n) = N, .. So for N(n) sufficiently large we have
by (5) and (6) that

(1 = &)1+ &) < 9,(G,"™)/g(G,) < (1 + E)y (1 — £y
forj =1, ..., k(n). If Z(n)ischosenso that[(1 + &(n))/(1 — &(n))]" approaches
one as n — +oo then ¢;(G,¥™) — ¢,(G,) for all j and the approximate Bayes
estimates are consistent.

REMARK. These results can be extended to the case with t e (—oo, + o0) if
for each x ¢,(¢) is continuous, of bounded variation on any finite interval, and

limt—»+°° qx(t) = 1imt—~—-°° q:c(t) = 0'
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