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Abstract

We study properties of the harmonic measure of balls in large critical Galton–Watson
trees whose offspring distribution is in the domain of attraction of a stable distribu-
tion with index α ∈ (1, 2]. Here the harmonic measure refers to the hitting distri-
bution of height n by simple random walk on the critical Galton–Watson tree condi-
tioned on non-extinction at generation n. For a ball of radius n centered at the root,

we prove that, although the size of the boundary is roughly of order n
1

α−1 , most of the
harmonic measure is supported on a boundary subset of size approximately equal to
nβα , where the constant βα ∈ (0, 1

α−1
) depends only on the index α. Using an explicit

expression of βα, we are able to show the uniform boundedness of (βα, 1 < α ≤ 2).
These are generalizations of results in a recent paper of Curien and Le Gall [5].
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1 Introduction

Recently, Curien and Le Gall have studied in [5] the properties of harmonic measure
on generation n of a critical Galton–Watson tree, whose offspring distribution has finite
variance and which is conditioned to have height greater than n. They have shown the
existence of a universal constant β < 1 such that, with high probability, most of the har-
monic measure on generation n of the tree is concentrated on a set of approximately nβ

vertices, although the number of vertices at generation n is of order n. Their approach
is based on the study of a similar continuous model, where it is established that the
Hausdorff dimension of the (continuous) harmonic measure is almost surely equal to β.

In this paper, we continue the above work by extending their results to the criti-
cal Galton–Watson trees whose offspring distribution has infinite variance. To be more
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Harmonic measure of balls in critical Galton–Watson trees

precise, let ρ be a non-degenerate probability measure on Z+ with mean one, and we as-
sume throughout this paper that ρ is in the domain of attraction of a stable distribution
of index α ∈ (1, 2], which means that

∑

k≥0

ρ(k)rk = r + (1− r)αL(1− r) for any r ∈ [0, 1), (1.1)

where the function L(x) is slowly varying as x → 0+. We point out that the finite
variance condition for ρ is sufficient for the previous statement to hold with α = 2.
When α ∈ (1, 2), by results of [8, Chapters XIII and XVII], the condition (1.1) is satisfied
if and only if the tail probability

∑

k≥x

ρ(k) = ρ([x,+∞))

varies regularly with exponent−α as x→ +∞. See e.g. [4] for the definition of regularly
varying functions.

Under the probability measure P, for every integer n ≥ 0, we let T(n) be a Galton–
Watson tree with offspring distribution ρ, conditioned on non-extinction at generation n.
Conditionally given the tree T(n), we consider simple random walk on T(n) starting from
the root. The probability distribution of the first hitting point of generation n by random
walk will be called the harmonic measure µn, which is supported on the set T(n)

n of all
vertices of T(n) at generation n.

Let qn > 0 be the probability that a critical Galton–Watson tree T(0) survives up
to generation n. It is shown in [16] that, as n → ∞, the probability qn decreases
as n−

1
α−1 up to multiplication by a slowly varying function, and qn#T

(n)
n converges in

distribution to a non-trivial limit distribution on R+, whose Laplace transform can be
written explicitly in terms of the parameter α. The following theorem generalizes the
result [5, Theorem 1] in the finite variance case (α = 2) to all α ∈ (1, 2].

Theorem 1.1. If the offspring distribution ρ has mean one and belongs to the domain
of attraction of a stable distribution of index α ∈ (1, 2], there exists a constant βα ∈
(0, 1

α−1 ), which only depends on α, such that for every δ > 0, we have the convergence
in P-probability

µn

({
v ∈ T(n)

n : n−βα−δ ≤ µn(v) ≤ n−βα+δ
}) (P)−−−−→

n→∞
1 . (1.2)

Consequently, for every ε ∈ (0, 1), there exists, with P-probability tending to 1 as n→∞,

a subset An,ε of T
(n)
n such that #An,ε ≤ nβα+δ and µn(An,ε) ≥ 1 − ε. Conversely, the

maximal µn-measure of a set of cardinality bounded by nβα−δ tends to 0 as n → ∞, in
P-probability.

The last two assertions of the preceding theorem are easy consequences of the con-
vergence (1.2), as explained in [5].

We observe that the hitting distribution µn of generation n by simple random walk
on T(n) is unaffected if we remove the branches of T(n) that do not reach height n. Thus
in order to establish the preceding result, we may consider simple random walk on T∗n,
the reduced tree associated with T(n), which consists of all vertices of T(n) that have at
least one descendant at generation n.

When the critical offspring distribution ρ has infinite variance, scaling limits of the
discrete reduced trees T∗n have been studied in [17] and [18]. If we scale the graph
distances by the factor n−1, the discrete reduced trees n−1T∗n converge to a random
compact rooted R-tree ∆(α) that we now describe. For every α ∈ (1, 2], we define the
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Harmonic measure of balls in critical Galton–Watson trees

α-offspring distribution θα as follows. For α = 2, we let θ2 = δ2 be the Dirac measure
at 2. If α < 2, θα is the probability measure on Z+ given by

θα(0) = θα(1) = 0,

θα(k) =
αΓ(k − α)

k! Γ(2− α)
=

α(2− α)(3− α) · · · (k − 1− α)

k!
, ∀k ≥ 2,

where Γ(·) is the Gamma function. We let U∅ be a random variable uniformly distributed
over [0, 1], and let K∅ be a random variable distributed according to θα, independent of
U∅. To construct ∆(α), one starts with an oriented line segment of length U∅, whose
origin will be the root of the tree. We call K∅ the offspring number of the root ∅.
Correspondingly, at the other end of the first line segment, we attach the origins of
K∅ oriented line segments with respective lengths U1, U2, . . . , UK∅ , such that, condi-
tionally given U∅ and K∅, the variables U1, U2, . . . , UK∅ are independent and uniformly
distributed over [0, 1−U∅]. This finishes the first step of the construction. In the second
step, for the first of these K∅ line segments, we independently sample a new offspring
number K1 distributed as θα, and attach K1 new line segments whose lengths are again
independent and uniformly distributed over [0, 1 − U∅ − U1], conditionally on all the
random variables appeared before. For the other K∅ − 1 line segments, we repeat this
procedure independently. We continue in this way and after an infinite number of steps
we get a random non-compact rooted R-tree, whose completion is the random compact
rooted R-tree ∆(α). See Fig. 1 in Section 2.1 for an illustration. We will call ∆(α) the
reduced stable tree of parameter α. Notice that all the offspring numbers involved in
the construction of ∆(2) are a.s. equal to 2, which correspond to the binary branching
mechanism. In contrast, this is no longer the case when 1 < α < 2.

We denote by d the intrinsic metric on ∆(α). By definition, the boundary ∂∆(α)

consists of all points of ∆(α) at height 1. As the continuous analogue of simple random
walk, we can define Brownian motion on ∆(α) starting from the root and up to the first
hitting time of ∂∆(α). It behaves like linear Brownian motion as long as it stays inside a
line segment of ∆(α). It is reflected at the root of ∆(α) and when it arrives at a branching
point, it chooses each of the adjacent line segments with equal probabilities. We define
the (continuous) harmonic measure µα as the (quenched) distribution of the first hitting
point of ∂∆(α) by Brownian motion.

Theorem 1.2. For every index α ∈ (1, 2], with the same constant βα as in Theorem 1.1,
we have P-a.s. µα(dx)-a.e.,

lim
r↓0

logµα(Bd(x, r))

log r
= βα , (1.3)

where Bd(x, r) stands for the closed ball of radius r centered at x in the metric space
(∆(α),d). Consequently, the Hausdorff dimension of µα is P-a.s. equal to βα.

According to Lemma 4.1 in [12], the last assertion of the preceding theorem follows
directly from (1.3). As another direct consequence of (1.3), we have that P-a.s. for
µα(dx)-a.e. x ∈ ∂∆(α), µα(Bd(x, r)) → 0 as r ↓ 0, which is equivalent to non-atomicity
of µα.

Since it has been proved in [7, Theorem 1.5] that the Hausdorff dimension of ∂∆(α)

with respect to d is a.s. equal to 1
α−1 , the previous theorem implies that the harmonic

measure has a.s. strictly smaller Hausdorff dimension than that of the whole boundary
of the reduced stable tree. This phenomenon of dimension drop has been shown in [5,
Theorem 2] for the special case of binary branching α = 2.

We prove Theorem 1.2 in Section 2.5, where our approach is different and shorter
than the one developed in [5] for the special case α = 2.
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Notice that the Hausdorff dimension of the boundary ∂∆(α) increases to infinity
when α ↓ 1. However, it is an interesting fact that the Hausdorff dimension of the
harmonic measure remains bounded when α ↓ 1.

Theorem 1.3. There exists a constant C > 0 such that for any α ∈ (1, 2], we have
βα < C.

Our proof of Theorem 1.3 relies on the fact that the constant βα in Theorems 1.1
and 1.2 can be expressed in terms of the conductance of ∆(α). Informally, if we think
of the random tree ∆(α) as a network of resistors with unit resistance per unit length,
the effective conductance between the root and the boundary ∂∆(α) is a random vari-
able which we denote by C(α). From a probabilistic point of view, it is the mass under
the Brownian excursion measure for the excursion paths away from the root that hit
height 1. Following the definition of ∆(α) and the above electric network interpretation,
the distribution of C(α) satisfies the recursive distributional equation

C(α) (d)
==

(
U +

1− U
C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα

)−1

, (1.4)

where (C(α)
i )i≥1 are i.i.d. copies of C(α), the integer-valued random variable Nα is dis-

tributed according to θα, and U is uniformly distributed over [0, 1]. All these random
variables are supposed to be independent.

Proposition 1.4. For any α ∈ (1, 2], the distribution γα of the conductance C(α) is char-
acterized in the class of all probability measures on [1,∞) by the distributional equa-
tion (1.4). The constant βα appearing in Theorems 1.1 and 1.2 is given by

βα =
1

2

( ( ∫
γα(ds)s

)2
∫∫

γα(ds)γα(dt) st
s+t−1

− 1

)
. (1.5)

Interestingly, formula (1.5) expresses the exponent βα as the same function of the
distribution γα, for all α ∈ (1, 2]. In the course of the proof, we obtain two other formulas
for βα (see (2.18) and (2.19) below), but they both depend on α in a more complicated
way, which also involves the distribution θα.

The paper is organized as follows. In Section 2 below, we study the continuous model
of Brownian motion on ∆(α). A formal definition of the reduced stable tree ∆(α) is given
in Section 2.1. In Section 2.2 we explain how to relate ∆(α) to an infinite supercritical
continuous-time Galton–Watson tree Γ(α), and we reformulate Theorem 1.2 in terms of
Brownian motion with drift 1/2 on Γ(α). Properties of the law of the random conductance
C(α), including the first assertion of Proposition 1.4, are discussed in Section 2.3, and
Section 2.4 gives the coupling argument that allows one to derive Theorem 1.3 from
formula (1.5). Section 2.5 is devoted to the proofs of Theorem 1.2 and of formula (1.5).
We emphasize that our approach to Theorem 1.2 is different from the one used in [5]
when α = 2. In fact we use an invariant measure for the environment seen by Brownian
motion on Γ(α) at the last passage time of a node of the n-th generation, instead of the
last passage time at a height h as in [5]. We then apply the ergodic theory on Galton–
Watson trees, which is a powerful tool initially developed in [12].

In Section 3 we proceed to the discrete setting concerning simple random walk on
the discrete reduced tree T∗n. Let us emphasize that, when the critical offspring distri-
bution ρ is in the domain of attraction of a stable distribution of index α ∈ (1, 2), the con-
vergence of discrete reduced trees is less simple than in the special case α = 2 where
we have a.s. a binary branching structure. See Proposition 3.2 for a precise statement
in our more general setting. Apart from this ingredient, we need several estimates for
the discrete reduced tree T∗n to derive Theorem 1.1 from Theorem 1.2. For example,
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Lemma 3.1 gives a bound for the size of level sets in T∗n, and Lemma 3.9 presents a
moment estimate for the (discrete) conductance Cn(T∗n) between generations 0 and n

in T∗n. Although the result analogous to Lemma 3.9 in [5] is a second moment estimate,
we only manage to give a moment estimate of order strictly smaller than α if the critical
offspring distribution ρ satisfies (1.1) with α ∈ (1, 2]. Nevertheless, this is sufficient for
our proof of Theorem 1.1, which is adapted from the one given in [5].

Comments and several open questions are gathered in Section 4. Following the work
of Aïdékon [1], we obtain a candidate for the speed of Brownian motion with drift 1/2

on the infinite tree Γ(α), expressed by (4.1) in terms of the continuous conductance C(α).
Nonetheless, the monotonicity properties of this quantity remains open. It would also
be of interest to know whether or not the Hausdorff dimension βα of the continuous
harmonic measure µα is monotone with respect to α ∈ (1, 2].

2 The continuous setting

2.1 The reduced stable tree

We set

V =

∞⋃

n=0

Nn

where by convention N = {1, 2, . . .} and N0 = {∅}. If v = (v1, . . . , vn) ∈ V, we set |v| = n

(in particular, |∅| = 0), and if n ≥ 1, we define the parent of v as v̂ = (v1, . . . , vn−1) and
then say that v is a child of v̂. For two elements v = (v1, . . . , vn) and v′ = (v′1, . . . , v

′
m)

belonging to V, their concatenation is vv′ := (v1, . . . , vn, v
′
1, . . . , v

′
m). The notions of a

descendant and an ancestor of an element of V are defined in the obvious way, with the
convention that every v ∈ V is both an ancestor and a descendant of itself. If v, w ∈ V,
v∧w is the unique element of V such that it is a common ancestor of v and w, and |v∧w|
is maximal.

An infinite subset Π of V is called an infinite discrete tree if there exists a collection
of positive integers kv = kv(Π) ∈ N for every v ∈ V such that

Π = {∅} ∪ {(v1, . . . , vn) ∈ V : vj ≤ k(v1,...,vj−1) for every 1 ≤ j ≤ n}.

Recall the definition of the α-offspring distribution θα for α ∈ (1, 2]. It will also be
convenient to consider the case α = 1, where we define θ1 as the probability measure
on Z+ given by

θ1(0) = θ1(1) = 0,

θ1(k) =
1

k(k − 1)
, ∀k ≥ 2.

If α ∈ (1, 2], the generating function of θα is given (see e.g. [6, p.74]) as

∑

k≥0

θα(k) rk =
(1− r)α − 1 + αr

α− 1
, ∀r ∈ (0, 1], (2.1)

while for α = 1, ∑

k≥0

θ1(k) rk = r + (1− r) log(1− r), ∀r ∈ (0, 1]. (2.2)

Notice that for α ∈ (1, 2], the mean of θα is given by

mα =
α

α− 1
∈ [2,∞),
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whereas θ1 has infinite mean.
For fixed α ∈ [1, 2], we introduce a collection (Kα(v))v∈V of independent random

variables distributed according to θα under the probability measure P, and define a
random infinite discrete tree

Π(α) := {∅} ∪ {(v1, . . . , vn) ∈ V : vj ≤ Kα((v1, . . . , vj−1)) for every 1 ≤ j ≤ n} .

We point out that Π(2) is an infinite binary tree.
Let (Uv)v∈V be another collection, independent of (Kα(v))v∈V , consisting of indepen-

dent real random variables uniformly distributed over [0, 1] under the same probability
measure P. We set now

Y∅ = U∅

and then by induction, for every v ∈ Π(α) \ {∅},

Yv = Yv̂ + Uv(1− Yv̂).

Note that a.s. 0 ≤ Yv < 1 for every v ∈ Π(α). Consider then the set

∆
(α)
0 :=

(
{∅} × [0, Y∅]

)
∪
( ⋃

v∈Π(α)\{∅}

{v} × (Yv̂, Yv]

)
.

There is a straightforward way to define a metric d on ∆
(α)
0 , so that (∆

(α)
0 ,d) is a (non-

compact) R-tree and, for every x = (v, r) ∈ ∆
(α)
0 , we have d((∅, 0), x) = r. To be specific,

let x = (v, r) ∈ ∆
(α)
0 and y = (w, r′) ∈ ∆

(α)
0 :

• If v is a descendant (or an ancestor) of w, we set d(x, y) = |r − r′|.
• Otherwise, d(x, y) = d((v∧w, Yv∧w), x)+d((v∧w, Yv∧w), y) = (r−Yv∧w)+(r′−Yv∧w).

See Fig. 1 for an illustration of the tree ∆
(α)
0 when α < 2.

Height 1

Height 0

Y∅

Y3Y1 Y2

∅

1 2 3

11 12

21 22 23
31 32

Figure 1: The random tree ∆
(α)
0 when 1 ≤ α < 2

We let ∆(α) be the completion of ∆
(α)
0 with respect to the metric d. Then

∆(α) = ∆
(α)
0 ∪ ∂∆(α)
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where by definition ∂∆(α) := {x ∈ ∆(α) : d((∅, 0), x) = 1}, which can be identified with
a random subset of NN. It is immediate to see that (∆(α),d) is an a.s. compact R-tree,
which we will call the reduced stable tree of index α.

The point (∅, 0) is called the root of ∆(α). For every x ∈ ∆(α), we set H(x) =

d((∅, 0), x) and call H(x) the height of x. We can define a (non-strict) genealogical
order on ∆(α) by setting x ≺ y if and only if x belongs to the geodesic path from the
root to y.

For every ε ∈ (0, 1), we set

∆(α)
ε := {x ∈ ∆(α) : H(x) ≤ 1− ε},

which is also an a.s. compact R-tree for the metric d. The leaves of ∆
(α)
ε are the points

of the form (v, 1 − ε) for all v ∈ V such that Yv̂ < 1 − ε ≤ Yv. The branching points of

∆
(α)
ε are the points of the form (v, Yv) for all v ∈ V such that Yv < 1− ε.

Now conditionally on ∆(α), we can define Brownian motion on ∆
(α)
ε starting from the

root. Informally, this process behaves like linear Brownian motion as long as it stays
on an “open interval” of the form {v} × (Yv̂, Yv ∧ (1 − ε)), and it is reflected at the root

(∅, 0) and at the leaves of ∆
(α)
ε . When it arrives at a branching point of the tree, it

chooses each of the possible line segments ending at this point with equal probabilities.
By taking a sequence εn = 2−n, n ≥ 1 and then letting n go to infinity, we can construct
under the same probability measure P a Brownian motion B on ∆(α) starting from the
root, which is defined up to its first hitting time T of ∂∆(α). We refer the reader to [5,
Section 2.1] for the details of this construction. The harmonic measure µα is then the
distribution of BT− under P , which is a (random) probability measure on ∂∆(α) ⊆ NN.

2.2 The continuous-time Galton–Watson tree

In this subsection, we introduce a new tree which shares the same branching struc-
ture as ∆(α), such that each point of ∆(α) at height s ∈ [0, 1) corresponds to a point of
the new tree at height − log(1 − s) ∈ [0,∞) in a bijective way. As it turns out, this new
random tree is a continuous-time Galton–Watson tree.

To define it, we take α ∈ [1, 2] and start with the same random infinite tree Π(α) in-
troduced in Section 2.1. Consider now a collection (Vv)v∈V of independent real random
variables exponentially distributed with mean 1 under the probability measure P. We
set

Z∅ = V∅

and then by induction, for every v ∈ Π(α) \ {∅},

Zv = Zv̂ + Vv.

The continuous-time Galton–Watson tree (hereafter to be called CTGW tree for short)
of stable index α is the set

Γ(α) :=
(
{∅} × [0, Z∅]

)
∪
( ⋃

v∈Π(α)\{∅}

{v} × (Zv̂, Zv]

)
,

which is equipped with the metric d defined in the same way as d in the preceding
subsection. For this metric, Γ(α) is a.s. a non-compact R-tree. For every x = (v, r) ∈
Γ(α), we keep the notation H(x) = r = d((∅, 0), x) for the height of the point x.

Observe that if U is uniformly distributed over [0, 1], the random variable − log(1−U)

is exponentially distributed with mean 1. Hence we may and will suppose that the
collection (Vv)v∈V is constructed from the collection (Uv)v∈V in the previous subsection
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via the formula Vv = − log(1−Uv) for every v ∈ V. Then, the mapping Ψ defined on ∆
(α)
0

by
Ψ(v, r) :=

(
v,− log(1− r)

)
for every (v, r) ∈ ∆

(α)
0 ,

is a homeomorphism from ∆
(α)
0 onto Γ(α).

By stochastic analysis, we can write for every t ∈ [0, T ),

Ψ(Bt) = W
(∫ t

0

(1−H(Bs))
−2 ds

)
(2.3)

where (W (t))t≥0 is Brownian motion with constant drift 1/2 towards infinity on the

CTGW tree Γ(α) (this process is defined in a similar way as Brownian motion on ∆
(α)
ε ,

except that it behaves like Brownian motion with drift 1/2 on every “open interval” of
the tree). Note that again W is defined under the probability measure P . Since all
the offspring numbers involved in the CTGW tree Γ(α) are a.s. larger than 2, it is easy
to see that the Brownian motion W is transient. From now on, when we speak about
Brownian motion on the CTGW tree or on other similar trees, we will always mean
Brownian motion with drift 1/2 towards infinity.

By definition, the boundary of Γ(α) is the set of all infinite geodesics in Γ(α) starting
from the root (∅, 0) (these are called geodesic rays), and it can be canonically embedded
into NN. Due to the transience of Brownian motion on Γ(α), there is an a.s. unique
geodesic ray denoted by W∞ that is visited by (W (t))t≥0 at arbitrarily large times. We
say that W∞ is the exit ray of Brownian motion on Γ(α). The distribution of W∞ under P
yields a probability measure να on NN. Thanks to (2.3), we have in fact να = µα,
provided we think of both µα and να as (random) probability measures on NN. The
statement of Theorem 1.2 is then reduced to checking that for every 1 < α ≤ 2, P-a.s.,
να(dy)-a.e.

lim
r→∞

1

r
log να(B(y, r)) = −βα , (2.4)

where B(y, r) denotes the set of all geodesic rays that coincide with y up to height r.

Infinite continuous trees. To prove (2.4), we will apply the tools of ergodic theory to
certain transformations on a space of finite-degree rooted infinite continuous trees that
we now describe. We let T be the set of all pairs (Π, (zv)v∈Π) that satisfy the following
conditions:

(1) Π is an infinite discrete tree, in the sense of Section 2.1.

(2) We have

(i) zv ∈ [0,∞) for all v ∈ Π ;
(ii) zv̂ < zv for every v ∈ Π\{∅} ;

(iii) for every v ∈ Π∞ := {(v1, v2, . . . , vn, . . .) ∈ NN : (v1, v2, . . . , vn) ∈ Π,∀n ≥ 1},

lim
n→∞

z(v1,...,vn) = +∞.

In the preceding definition, we allow the possibility that z∅ = 0. Notice that property
(iii) implies that #{v ∈ Π: zv ≤ r} <∞ for every r > 0.

We equip T with the σ-field generated by the coordinate mappings. If (Π, (zv)v∈Π) ∈
T, we can consider the associated “tree”

T :=
(
{∅} × [0, z∅]

)
∪
( ⋃

v∈Π\{∅}

{v} × (zv̂, zv]

)
,

equipped with the distance defined as above. The set Π∞ is identified with the collection
of all geodesic rays in Π, and will be viewed as the boundary of the tree T . We keep
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Harmonic measure of balls in critical Galton–Watson trees

the notation H(x) = r for the height of a point x = (v, r) ∈ T . The genealogical order
on T is defined as previously and again is denoted by ≺. If u = (u1, u2, . . .) ∈ Π∞, and
x = (v, r) ∈ T , we write x ≺ u if v = (u1, u2, . . . , uk) for some integer k ≥ 0.

We will often abuse notation and say that we consider a tree T ∈ T: This means
that we are given a pair (Π, (zv)v∈Π) satisfying the above properties, and we consider
the associated tree T . In particular, T has an order structure (in addition to the ge-
nealogical partial order) given by the lexicographical order on Π. Elements of T will be
called infinite continuous trees. Clearly, for every stable index α ∈ [1, 2], the CTGW tree
Γ(α) can be viewed as a random variable with values in T, and we write Θα(dT ) for its
distribution.

Let us fix T = (Π, (zv)v∈Π) ∈ T. Under our previous notation, k∅ is the number of
offspring at the first branching point of T . We denote by T(1), T(2), . . . , T(k∅) the subtrees
of T obtained at the first branching point. To be more precise, for every 1 ≤ i ≤ k∅, we
define the shifted discrete tree Π[i] = {v ∈ V : iv ∈ Π}, and T(i) is the infinite continuous
tree corresponding to the pair

(
Π[i], (ziv − z∅)v∈Π[i]

)
.

Under Θα(dT ), we know by definition that k∅ is distributed according to θα. Moreover,
conditionally on k∅, the branching property of the CTGW tree states that the subtrees
T(1), . . . , T(k∅) are i.i.d. following the same law Θα.

If r > 0, the level set of T ∈ T at height r is

Tr = {x ∈ T : H(x) = r}.

For α ∈ (1, 2], we have the classical result

E
[
#Γ(α)

r

]
= exp

( r

α− 1

)
= exp

(
(mα − 1)r

)
,

which can be derived from the following identity (see e.g. Theorem 2.7.1 in [6]) stating
that for every u > 0,

E
[

exp(−u#Γ(α)
r )

]
= 1−

[
1− e−r(1− (1− e−u)1−α)

] 1
1−α .

2.3 The continuous conductance

Recall that, for α ∈ [1, 2], the random variable C(α) is defined as the conductance
between the root and the set ∂∆(α) in the continuous tree ∆(α) viewed as an electric
network. One can also give a more probabilistic definition of the conductance. If T is a
(deterministic) infinite continuous tree, the conductance C(T ) between the root and the
boundary ∂T can be defined in terms of excursion measures of Brownian motion with
drift 1/2 on T . Under this definition, we can set C(α) = C(Γ(α)) ∈ [1,∞). For details, we
refer the reader to Section 2.3 in [5].

In this subsection, we will prove for α ∈ (1, 2] that the law of C(α) is characterized
by the distributional identity (1.4) in the class of all probability measures on [1,∞), and
discuss some of the properties of this law. For u ∈ (0, 1), n ∈ N and (xi)i≥1 ∈ [1,∞)N,
we define

G(u, n, (xi)i≥1) :=

(
u+

1− u
x1 + x2 + · · ·+ xn

)−1

,

so that (1.4) can be rewritten as

C(α) (d)
= G(U,Nα, (C(α)

i )i≥1) (2.5)

EJP 19 (2014), paper 98.
Page 9/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3498
http://ejp.ejpecp.org/


Harmonic measure of balls in critical Galton–Watson trees

where U,Nα, (C(α)
i )i≥1 are as in (1.4). Note that (2.5) also holds for α = 1. Let M be the

set of all probability measures on [1,∞] and let Φα : M →M map a distribution σ to

Φα(σ) = Law
(
G(U,Nα, (Xi)i≥1)

)

where (Xi)i≥1 are independent and identically distributed according to σ, while U,Nα
are as in (1.4). We suppose in addition that U,Nα and (Xi)i≥1 are independent.

We write γα for the distribution of C(α), and define for all ` ≥ 0 the Laplace transform

ϕα(`) := E
[

exp(−` C(α)/2)
]

=

∫ ∞

1

e−`r/2 γα(dr).

Proposition 2.1. Let us fix the stable index α ∈ (1, 2]. The law γα of C(α) is the unique
fixed point of the mapping Φα on M , and we have Φkα(σ) → γα weakly as k → ∞, for
every σ ∈M . Furthermore,

1. If α = 2, all moments of γ2 are finite, and γ2 has a continuous density over [1,∞).
The Laplace transform ϕ2 solves the differential equation

2` ϕ′′(`) + `ϕ′(`) + ϕ2(`)− ϕ(`) = 0.

2. If α ∈ (1, 2), only the first and the second moments of γα are finite. The distribution
γα has a continuous density over [1,∞), and the Laplace transform ϕα solves the
differential equation

2` ϕ′′(`) + `ϕ′(`) +
(1− ϕ(`))α + ϕ(`)− 1

α− 1
= 0. (2.6)

Proof. The case α = 2 has been derived in [5, Proposition 6] and is listed above for
the sake of completeness. We will prove the corresponding assertion for α ∈ (1, 2) by
similar methods.

Firstly, the stochastic partial order � on M is defined by saying that σ � σ′ if and
only if there exists a coupling (X,Y ) of σ and σ′ such that a.s. X ≤ Y . It is clear that
for any α ∈ [1, 2], the mapping Φα is increasing for the stochastic partial order.

We endow the set M1 of all probability measures on [1,∞] that have a finite first
moment with the 1-Wasserstein metric

d1(σ, σ′) := inf
{
E
[
|X − Y |

]
: (X,Y ) coupling of (σ, σ′)

}
.

The metric space (M1,d1) is Polish and its topology is finer than the weak topology
on M1. From the easy bound

G(u, n, (xi)i≥1) ≤ x1 + x2 + · · ·+ xn

and the fact that ENα <∞ when α 6= 1, we immediately see that Φα maps M1 into M1

when α > 1. We then observe that the mapping Φα is strictly contractant on (M1,d1). To
see this, let (Xi, Yi)i≥1 be independent copies of a coupling between σ, σ′ ∈ M1 under
the probability measure P. As in (2.5), let U be uniformly distributed over [0, 1] and
Nα be distributed according to θα. Assume that U,Nα and (Xi, Yi)i≥1 are independent
under P. Then the two variables G(U,Nα, (Xi)i≥1) and G(U,Nα, (Yi)i≥1) give a coupling
of Φα(σ) and Φα(σ′). Using the fact that Xi, Yi ≥ 1, we have

|G(U,Nα, (Xi)i≥1)−G(U,Nα, (Yi)i≥1)|

=
∣∣∣
(
U +

1− U
X1 +X2 + · · ·+XNα

)−1

−
(
U +

1− U
Y1 + Y2 + · · ·+ YNα

)−1∣∣∣

=
∣∣∣ (X1 +X2 + · · ·+XNα − Y1 − Y2 − · · · − YNα)(1− U)

(U(X1 +X2 + · · ·+XNα) + 1− U)(U(Y1 + Y2 + · · ·+ YNα) + 1− U)

∣∣∣

≤
(
|X1 − Y1|+ |X2 − Y2|+ · · ·+ |XNα − YNα |

) 1− U
(1 + (Nα − 1)U)2

.
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Notice that for any integer k ≥ 2,

E
[ k(1− U)

(1 + (k − 1)U)2

]
= 1 +

k − 1− k log k

(k − 1)2
.

Taking expected values and minimizing over the choice of the coupling between σ

and σ′, we get

d1(Φα(σ),Φα(σ′)) ≤ E
[ Nα(1− U)

(1 + (Nα − 1)U)2

]
d1(σ, σ′)

=

(
1 + E

[Nα − 1−Nα logNα
(Nα − 1)2

])
d1(σ, σ′) = cαd1(σ, σ′) ,

with cα < 1. So for α ∈ (1, 2], the mapping Φα is contractant on M1 and by completeness
it has a unique fixed point γ̃α in M1. Furthermore, for every σ ∈M1, we have Φkα(σ)→
γ̃α for the metric d1, hence also weakly, as k →∞.

Since we know from (2.5) that γα is also a fixed point of Φα, the equality γα = γ̃α will
follow if we can verify that γ̃α is the unique fixed point of Φα in M . To this end, it will
be enough to show that we have Φkα(σ)→ γ̃α as k →∞, for every σ ∈M .

For any α ∈ [1, 2], we apply Φα to the Dirac measure δ∞ at∞ to see

Φα(δ∞) = Law
(
U−1

)
,

Φ2
α(δ∞) = Law

((
U +

1− U
U−1

1 + U−1
2 + · · ·+ U−1

Nα

)−1)
,

where we introduce a new sequence (Ui)i≥1 consisting of i.i.d. copies of U , independent
of Nα and U under P. Thus the first moment of Φ2

α(δ∞) is given by

∑

k≥2

θα(k)

∫ 1

0

du

∫ 1

0

du1 · · ·
∫ 1

0

duk

(
u+

1− u
u−1

1 + u−1
2 + · · ·+ u−1

k

)−1

=
∑

k≥2

θα(k)

∫ 1

0

du1 · · ·
∫ 1

0

duk
1

1− (u−1
1 + u−1

2 + · · ·+ u−1
k )−1

log
( 1

u1
+

1

u2
+ · · ·+ 1

uk

)

≤ 2
∑

k≥2

θα(k)

∫ 1

0

du1 · · ·
∫ 1

0

duk log
( 1

u1
+

1

u2
+ · · ·+ 1

uk

)
,

in which the integrals can be bounded as follows,

∫ 1

0

du1 · · ·
∫ 1

0

duk log
( 1

u1
+

1

u2
+ · · ·+ 1

uk

)

= k!

∫

0<u1<u2<···<uk<1

du1du2 · · · duk log
( 1

u1
+

1

u2
+ · · ·+ 1

uk

)

= k!

∫

0<u2<u3<···<uk<1

du2du3 · · · duk
[
u2 log

( 2

u2
+

1

u3
+ · · ·+ 1

uk

)
+

log
(

2 + u2

u3
+ · · ·+ u2

uk

)

u−1
2 + u−1

3 + · · ·+ u−1
k

]

≤ k!

∫

0<u2<u3<···<uk<1

du2du3 · · · duk
[
u2 log

k

u2
+

log k

k − 1

]

= log k +
1

2
+ · · ·+ 1

k
+
k log k

k − 1
≤ (2 +

k

k − 1
) log k .

Using Stirling’s formula, we know that θα(k) = O(k−(1+α)) as k → +∞. As

∑

k≥2

(2 +
k

k − 1
)

log k

k1+α
< +∞
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for all α ∈ [1, 2], we get Φ2
α(δ∞) ∈ M1. By monotonicity, we have also Φ2

α(σ) ∈ M1 for
every σ ∈M , and from the preceding results we get Φkα(σ)→ γ̃α for every σ ∈M . This
implies that γα = γ̃α is the unique fixed point of Φα in M .

For every t ∈ R we set Fα(t) = γα([t,∞]). For every integer k ≥ 2, we write F (k)
α (t) =

P(C(α)
1 +C(α)

2 +· · ·+C(α)
k ≥ t), where (C(α)

k )k≥1 are independent and identically distributed
according to γα. Then we have, for every t > 1,

Fα(t) = P

(
U +

1− U
C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα

≤ t−1

)

= P

(
U < t−1 and

t− Ut
1− Ut ≤ C

(α)
1 + C(α)

2 + · · ·+ C(α)
Nα

)

= E

[ ∫ 1/t

0

duF (Nα)
α

(
t− ut
1− ut

)]

=
t− 1

t

∫ ∞

t

dx

(x− 1)2
E
[
F (Nα)
α (x)

]
. (2.7)

By definition, we have F (k)
α (t) = 1 for every t ∈ [1, 2] and k ≥ 2. It follows from (2.7) that

Fα(t) =
D(α)

t
+ 1−D(α), ∀t ∈ [1, 2], (2.8)

where

D(α) = 2−
∫ ∞

2

dx

(x− 1)2
E
[
F (Nα)
α (x)

]
∈ [1, 2].

We observe that the right-hand side of (2.7) is a continuous function of t ∈ (1,∞), so
that Fα is continuous on [1,∞) (the right-continuity at 1 is obvious from (2.8)). Thus

γα has no atom and it follows that all functions F (k)
α , k ≥ 2 are continuous on [1,∞).

By dominated convergence the function x 7→ E[F
(Nα)
α (x)] is also continuous on [1,∞).

Using (2.7) again we obtain that Fα is continuously differentiable on [1,∞) and conse-
quently γα has a continuous density fα = −F ′α with respect to the Lebesgue measure
on [1,∞).

Let us finally derive the differential equation (2.6). To this end, we first differentiate
(2.7) with respect to t to get that the linear differential equation

t(t− 1)F ′α(t)− Fα(t) = −E
[
F (Nα)
α (t)

]
(2.9)

holds for t ∈ [1,∞). Then let g : [1,∞)→ R+ be a monotone continuously differentiable
function. From the definition of Fα and Fubini’s theorem, we have

∫ ∞

1

dt g′(t)Fα(t) = E
[
g(C(α))

]
− g(1)

and similarly
∫ ∞

1

dt g′(t)E
[
F (Nα)
α (t)

]
= E

[
g(C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα
)
]
− g(1).

We then multiply both sides of (2.9) by g′(t) and integrate for t running from 1 to ∞ to
get

E
[
C(α)

1 (C(α)
1 − 1)g′(C(α)

1 )
]

+ E
[
g(C(α)

1 )
]

= E
[
g(C(α)

1 + C(α)
2 + · · ·+ C(α)

Nα
)
]
. (2.10)

When g(x) = exp(−x`/2) for ` > 0, we readily obtain (2.6) by using the generating
function of Nα given in (2.1). Finally, taking g(x) = x in (2.10), we get

E
[
(C(α))2

]
= E

[
Nα
]
E
[
C(α)

]
=

α

α− 1
E
[
C(α)

]
.
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Nevertheless, by taking g(x) = x2 in (2.10), we see that the third moment of C(α) is
infinite since E

[
(Nα)2

]
=∞.

The arguments of the preceding proof also yield the following lemma in the case
α = 1.

Lemma 2.2. The conductance C(1) of the tree ∆(1) satisfies the bound

E
[
C(1)

]
≤ 2

∑

k≥2

(2 +
k

k − 1
)

log k

k(k − 1)
< +∞. (2.11)

Additionally, the Laplace transform ϕ1 of the law of C(1) solves the differential equation

2` ϕ′′(`) + `ϕ′(`) + (1− ϕ(`)) log(1− ϕ(`)) = 0.

Proof. The law of C(1) is a fixed point of the mapping Φ1 defined via (2.5) with α = 1. By
the same monotonicity argument that we used above, it follows that the first moment
of C(1) is bounded above by the first moment of Φ2

1(δ∞), and the calculation of this first
moment in the previous proof leads to the right-hand side of (2.11).

As an analogue to (2.10), we have

E
[
C(1)

1 (C(1)
1 − 1)g′(C(1)

1 )
]

+ E
[
g(C(1)

1 )
]

= E
[
g(C(1)

1 + C(1)
2 + · · ·+ C(1)

N1
)
]
.

By taking g(x) = exp(−x`/2) and using (2.2), one can then derive the differential equa-
tion satisfied by ϕ1.

2.4 The reduced stable trees are nested

In this short subsection, we introduce a coupling argument to explain how Theo-
rem 1.3 follows from the identity (1.5) in Proposition 1.4.

Recall the definition of the α-offspring distribution θα. From the obvious fact

1−
k−1∑

i=2

α

i− α < 0, ∀α ∈ (1, 2), k ≥ 3,

one deduces that for all k ≥ 3,

d

dα
θα(k) < 0, ∀α ∈ (1, 2).

This implies that for every k ≥ 3, θα([2, k]) is a strictly increasing function of α ∈ (1, 2).
Using the inverse transform sampling, we can construct on a common probability space
a sequence of random variables (Nα, α ∈ [1, 2]) such that a.s.

Nα2
≥ Nα1

for all 1 ≤ α2 ≤ α1 ≤ 2.

Then following the same procedure explained in Section 2.1, we can construct simulta-
neously all reduced stable trees as a nested family. More precisely, there exists a family
of compact R-trees (∆̄(α), α ∈ [1, 2]) such that

∆̄(α) (d)
= ∆(α) for all 1 ≤ α ≤ 2 ;

∆̄(α1) ⊆ ∆̄(α2) for all 1 ≤ α2 ≤ α1 ≤ 2 .

Consequently, the family of conductances (C̄(α), α ∈ [1, 2]) associated with (∆̄(α), α ∈
[1, 2]) is decreasing with respect to α. In particular, the mean E[C(α)] is decreasing with
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respect to α, and it follows from (2.11) that (E[C(α)], α ∈ [1, 2]) is uniformly bounded by
the constant

C0 := 2
∑

k≥2

(2 +
k

k − 1
)

log k

k(k − 1)
< +∞.

Proof of Theorem 1.3. For any α ∈ (1, 2], γα is a probability measure on [1,∞) and
∫∫

γα(ds)γα(dt)
st

s+ t− 1
≥

∫∫
γα(ds)γα(dt)

st

s+ t

≥
∫∫

γα(ds)γα(dt)
st

2(s ∨ t)

=
1

2

∫∫
γα(ds)γα(dt)(s ∧ t) ≥ 1

2
.

So we derive from (1.5) that

βα ≤
1

2

(
2
(
E
[
C(α)

])2 − 1
)
≤ 1

2

(
2C2

0 − 1
)
<∞. �

2.5 Proof of Theorem 1.2

The proof of Theorem 1.2 given below will follow the approach sketched in [5, Sec-
tion 5.1]. We will first establish the flow property of harmonic measure (Lemma 2.3),
and then find an explicit invariant measure for the environment seen by Brownian mo-
tion on the CTGW tree Γ(α) at the last visit of a vertex of the n-th generation (Proposi-
tion 2.4). After that, we will rely on arguments of ergodic theory to complete the proof
of Theorem 1.2 and that of Proposition 1.4.

Throughout this subsection, we fix the stable index α ∈ (1, 2] once and for all.
For notational ease, we will omit the superscripts and subscripts concerning α in all
the proofs involved. Recall that P stands for the probability measure under which the
CTGW tree Γ(α) is defined, whereas Brownian motion with drift 1/2 on the CTGW tree
is defined under the probability measure P .

2.5.1 The flow property of harmonic measure

We fix an infinite continuous tree T ∈ T, and write as before T(1), T(2), . . . , T(k∅) for the
subtrees of T at the first branching point. Here we slightly abuse notation by writing
W = (W (t))t≥0 for Brownian motion with drift 1/2 on T started from the root. As
in Section 2.2, W∞ stands for the exit ray of W , and the distribution of W∞ on the
boundary of T is the harmonic measure of T , denoted as νT . Let K be the index such
that W∞ “belongs to” T(K) and we write W ′∞ for the ray of T(K) obtained by shifting W∞
at the first branching point of T .

Lemma 2.3. Let j ∈ {1, 2, . . . , k∅}. Conditionally on {K = j}, the law of W ′∞ is the
harmonic measure of T(j).

The proof is similar to that of [5, Lemma 7] and is therefore omitted.

2.5.2 The invariant measure and ergodicity

We introduce the set
T∗ ⊆ T×NN

of all pairs consisting of a tree T ∈ T and a distinguished geodesic ray v in T . Given a
distinguished geodesic ray v = (v1, v2, . . .) in T , we let S(T ,v) be obtained by shifting
(T ,v) at the first branching point of T , that is

S(T ,v) = (T(v1), ṽ),
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where ṽ = (v2, v3, . . .) and T(v1) is the subtree of T rooted at the first branching point
that is chosen by v.

Under the probability measure P⊗ P , we can view (Γ(α),W∞) as a random variable
with values in T∗. We write Θ∗α(dT dv) for the distribution of (Γ(α),W∞). The next
proposition gives an invariant measure absolutely continuous with respect to Θ∗α under
the shift S.

Proposition 2.4. For every r ≥ 1, set

κα(r) :=

∞∑

k=2

kθα(k)

∫
γα(dt1)

∫
γα(dt2) · · ·

∫
γα(dtk)

rt1
r + t1 + t2 + · · ·+ tk − 1

.

The finite measure κα(C(T ))Θ∗α(dT dv) is invariant under S.

Remark 2.5. The preceding formula for κα is suggested by the analogous formula in [5,
Proposition 25] for α = 2.

Proof. First notice that the function κ is bounded, since for every r ≥ 1,

κ(r) ≤
∞∑

k=2

kθ(k)

∫
t1γ(dt1) <∞.

Let us fix T ∈ T, then for any 1 ≤ i ≤ k∅ and any bounded measurable function g on
NN, the flow property of harmonic measure gives that

∫
νT (dv)1{v1=i} g(ṽ) =

C(T(i))

C(T(1)) + · · ·+ C(T(k∅))

∫
νT(i)(du) g(u).

Recall that Θ∗(dT dv) = Θ(dT )νT (dv) by construction. Let F be a bounded measurable
function on T∗. Using the preceding display, we have

∫
F ◦ S(T ,v)κ(C(T )) Θ∗(dT dv) (2.12)

=

∞∑

k=2

θ(k)

k∑

i=1

∫
F (T(i),u)κ(C(T ))

C(T(i))

C(T(1)) + · · ·+ C(T(k))
Θ(dT |k∅ = k) νT(i)(du).

Observe that under Θ(dT | k∅ = k), the subtrees T(1), T(2), . . . , T(k) are independent and
distributed according to Θ, and furthermore,

C(T ) =
(
U +

1− U
C(T(1)) + · · ·+ C(T(k))

)−1

,

where U is uniformly distributed over [0, 1] and independent of (T(1), T(2), . . . , T(k)). Us-
ing these observations, together with a simple symmetry argument, we get that the
integral (2.12) is given by

∞∑

k=2

kθ(k)

∫ 1

0

dx

∫
Θ(dT1) · · ·

∫
Θ(dTk)

∫
νT1(du)F (T1,u)

× C(T1)

C(T1) + · · ·+ C(Tk)
κ
((
x+

1− x
C(T1) + · · ·+ C(Tk)

)−1)

=

∫
Θ∗(dT1 du)F (T1,u)

[ ∞∑

k=2

kθ(k)

∫ 1

0

dx

∫
Θ(dT2) · · ·

∫
Θ(dTk)

× C(T1)

C(T1) + · · ·+ C(Tk)
κ
((
x+

1− x
C(T1) + · · ·+ C(Tk)

)−1)]
.
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The proof is thus reduced to checking that, for every r ≥ 1, κ(r) is equal to

∞∑

k=2

kθ(k)

∫ 1

0

dx

∫
Θ(dT2) · · ·

∫
Θ(dTk)

r

r + C(T2) + · · ·+ C(Tk)
κ
((
x+

1− x
r + C(T2) + · · ·+ C(Tk)

)−1
)
.

(2.13)
To this end, we will reformulate the last expression in the following way. Under the
probability measure P, we introduce an i.i.d. sequence (Ci)i≥0 distributed according
to γ, and a random variable N distributed according to θ. In addition, under the same
probability measure P, let U be uniformly distributed over [0, 1], (C̃i)i≥0 be an indepen-
dent copy of (Ci)i≥0, and Ñ be an independent copy of N . We assume that all these
random variables are independent. Note that by definition, for every r ≥ 1,

κ(r) = E
[ rÑ C̃1
r + C̃1 + C̃2 + · · ·+ C̃Ñ − 1

]
.

It follows that (2.13) can be written as

∞∑

k=2

kθ(k)E

[
r

r + C2 + · · ·+ Ck

(
U + 1−U

r+C2+···+Ck

)−1

Ñ C̃1
(
U + 1−U

r+C2+···+Ck

)−1

+ C̃1 + C̃2 + · · ·+ C̃Ñ − 1

]

= r

∞∑

k=2

kθ(k)E

[
Ñ C̃1

(r + C2 + · · ·+ Ck)
(
1 + (C̃1 + C̃2 + · · ·+ C̃Ñ − 1)(U + 1−U

r+C2+···+Ck )
)
]

= r

∞∑

k=2

kθ(k)E

[ C̃1 + C̃2 + · · ·+ C̃Ñ
(C̃1 + C̃2 + · · ·+ C̃Ñ − 1)(U(r + C2 + · · ·+ Ck) + 1− U) + r + C2 + · · ·+ Ck

]

= r

∞∑

k=2

kθ(k)E

[ C̃1 + C̃2 + · · ·+ C̃Ñ
(C̃1 + C̃2 + · · ·+ C̃Ñ )(U(r + C2 + · · ·+ Ck − 1) + 1) + (r + C2 + · · ·+ Ck − 1)(1− U)

]

= r

∞∑

k=2

kθ(k)E

[
1

(r + C2 + · · ·+ Ck − 1)
(
U + 1−U

C̃1+C̃2+···+C̃Ñ

)
+ 1

]

= r

∞∑

k=2

kθ(k)E

[ C̃
r + C̃ + C2 + · · ·+ Ck − 1

]
= E

[
rN C̃

r + C̃ + C2 + · · ·+ CN − 1

]
,

where

C̃ := (U +
1− U

C̃1 + · · ·+ C̃Ñ
)−1

is independent of (Ci)i≥0 and N . By (1.4), the random variable C̃ is also distributed
according to γ. So the right-hand side of the last long display is equal to κ(r), which
completes the proof of the proposition.

We normalize κα by setting

κ̂α(r) =
κα(r)∫

κα(C(T ))Θ∗α(dT dv)
=

κα(r)∫
κα(C(T ))Θα(dT )

for every r ≥ 1. Then κ̂α(C(T ))Θ∗α(dT dv) is a probability measure on T∗ invariant under
the shift S. To simplify notation, we set Υ∗α(dT dv) := κ̂α(C(T ))Θ∗α(dT dv). Let π1 be the
canonical projection from T∗ onto T. The image of Υ∗α under this projection is the
probability measure Υα(dT ) := κ̂α(C(T ))Θα(dT ).

Proposition 2.6. The shift S acting on the probability space (T∗,Υ∗α) is ergodic.
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Proof. Our arguments proceed in a similar way as in the proof of [5, Proposition 13].
We define a transition kernel p(T ,dT ′) on T by setting

p(T ,dT ′) =

k∅∑

i=1

C(T(i))

C(T(1)) + · · ·+ C(T(k∅))
δT(i)(dT ′).

Informally, under the probability measure p(T ,dT ′), we choose one of the subtrees of T
obtained at the first branching point, with probability equal to its harmonic measure.

For every integer n ≥ 1, we denote by Sn the mapping on T∗ obtained by iterating
n times the shift S, and then we consider the process (Zn)n≥0 on the probability space
(T∗,Υ∗) with values in T, defined by Z0(T ,v) = T and

Zn(T ,v) = π1

(
Sn(T ,v)

)

for every n ≥ 1. According to Proposition 2.4 and the flow property of harmonic mea-
sure, the process (Zn)n≥0 is a Markov chain with transition kernel p under its stationary
measure Υ(dT ).

We write T∞ for the set of all infinite sequences (T 0, T 1, . . .) of elements in T, and let
T̂∞ be the set of all infinite sequences (T 0, T 1, . . .) in T∞, such that, for every integer
j ≥ 1, T j is one of the subtrees of T j−1 above the first branching point of T j−1. Note
that T̂∞ is a measurable subset of T∞ and that (Zn(T ,v))n≥0 ∈ T̂∞ for every (T ,v) ∈
T∗. If (T 0, T 1, . . .) ∈ T̂∞, there exists a geodesic ray v in T 0 such that T j = Sj(T 0,v)

for every j ≥ 1, and we set φ(T 0, T 1, . . .) := (T 0,v). Notice that v is a priori not unique,
but to make the previous definition rigorous we can take the smallest possible v in
lexicographical ordering (of course for the random trees that we consider later this
uniqueness problem does not arise). In this way, we define a measurable mapping φ

from T̂∞ into T∗ such that

φ(Z0(T ,v), Z1(T ,v), . . .) = (T ,v), Υ∗-a.s. (2.14)

Now given a measurable subset A of T∗ such that S−1(A) = A, we aim at proving
that Υ∗(A) ∈ {0, 1}. To this end, we consider the pre-image B = φ−1(A), which is a
measurable subset of T̂∞ ⊂ T∞. Due to the previous constructions, B is shift-invariant
for the Markov chain Z in the sense that

{(Z0, Z1, . . .) ∈ B} = {(Z1, Z2, . . .) ∈ B}, a.s.

Using Proposition 16.2 in [14], we then obtain a measurable subset D of T, such that

1B(Z0, Z1, . . .) = 1D(Z0) a.s.,

and moreover p(T , D) = 1D(T ), Υ(dT )-a.s. It follows thus from (2.14) that Υ∗-a.s. we
have (T ,v) ∈ A if and only if T ∈ D.

However from the property p(T , D) = 1D(T ), Υ(dT )-a.s., one can verify that Υ(D) ∈
{0, 1}. First note that this property also implies that p(T , D) = 1D(T ), Θ(dT )-a.s.
Hence, Θ(dT )-a.s., the tree T belongs to D if and only if each of its subtrees above
the first branching point belongs to D (it is clear that that the measure p(T , ·) assigns
a positive mass to each of these subtrees). Then, the branching property of the CTGW
tree shows that

Θ(D) =

∞∑

k=2

θ(k) Θ(D)k

which is only possible if Θ(D) = 0 or 1, or equivalently if Υ(D) = 0 or 1. Therefore
Υ∗(A) is either 0 or 1, which completes the proof.
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2.5.3 Proof of Theorem 1.2

Having established Proposition 2.4 and Proposition 2.6, we can now apply the ergodic
theorem to the two functionals on T∗ defined as follows. First let Jn(T ,v) denote the
height of the n-th branching point on the geodesic ray v. One immediately verifies that,
for every n ≥ 1,

Jn =

n−1∑

i=0

J1 ◦ Si.

If M =
∫
κ(C(T ))Θ∗(dT dv), it follows from the ergodic theorem that Θ∗-a.s.,

1

n
Jn −→

n→∞
M−1

∫
J1(T,v)κ(C(T ))Θ∗(dT dv). (2.15)

Note that the limit can be written as

M−1E

[
| log(1− U)|κ

((
U +

1− U
C1 + · · ·+ CN

)−1)]

with the notation used in the proof of Proposition 2.4.
Secondly, let xn,v denote the n+1-st branching point on the geodesic ray v. If v =

(v1, v2, . . .), then xn,v = ((v1, . . . , vn), Jn+1(T ,v)) with the notation of Section 2.2. We set
for every n ≥ 1,

Fn(T ,v) := log νT ({u ∈ ∂T : xn,v ≺ u}).
By the flow property of harmonic measure (Lemma 2.3), we have

Fn =

n−1∑

i=0

F1 ◦ Si,

and by the ergodic theorem, Θ∗-a.s.,

1

n
Fn −→

n→∞
M−1

∫
F1(T ,v)κ(C(T ))Θ∗(dT dv), (2.16)

where the limit can be written as

M−1E

[
NC1

C1 + · · ·+ CN
log
( C1
C1 + · · ·+ CN

)
κ
((
U +

1− U
C1 + · · ·+ CN

)−1)]
.

By combining (2.15) and (2.16), we obtain that the convergence (2.4) holds with limit

−β =
E
[

NC1
C1+···+CN log

(
C1

C1+···+CN

)
κ
((
U + 1−U

C1+···+CN

)−1)]

E
[
| log(1− U)|κ

((
U + 1−U

C1+···+CN

)−1)] .

Proposition 2.7. We have β < 1
α−1 .

Proof. We use the notation
W(T ) = lim

r→∞
e−

r
α−1 #Tr ,

which exists Θ(dT )-a.s. by a martingale argument. Since
∑
θ(k)k log k <∞, the Kesten–

Stigum theorem (for CTGW trees, see e.g. [2, Theorem III.7.2]) implies that the previous
convergence holds in the L1-sense and

∫
W(T )Θ(dT ) = 1. Moreover, Θ(W(T ) = 0) = 0

and the Laplace transform
∫
e−uW(T )Θ(dT ) = 1− u

(1 + uα−1)
1

α−1

for any u ∈ (0,∞)
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can be obtained by applying Theorem III.8.3 in [2] together with (2.1). In particular, it
follows from a Tauberian theorem (cf. [8, Chapter XIII.5]) that

∫
| logW(T )|Θ(dT ) <∞.

Let T(1), . . . , T(k∅) be the subtrees of T at the first branching point, and let J(T ) =

J1(T ,v) be the height of the first branching point. Then, Θ(dT )-a.s.

W(T ) = e−
J(T )
α−1

(
W(T(1)) + · · ·+W(T(k∅))

)
,

so that we can define a probability measure wT on {1, 2, . . . , k∅} by setting

wT (i) =
e−

J(T )
α−1W(T(i))

W(T )
, 1 ≤ i ≤ k∅.

On the other hand, for 1 ≤ i ≤ k∅, let ν∗T (i) denote the mass assigned by the harmonic
measure νT to the rays “contained” in T(i), that is,

ν∗T (i) =

∫
1{v1=i}νT (dv) =

C(T(i))

C(T(1)) + · · ·+ C(T(k∅))
.

By a concavity argument,
k∅∑

i=1

ν∗T (i) log
wT (i)

ν∗T (i)
≤ 0, (2.17)

and the inequality is strict with positive Θ-probability.
Recall that Υ(dT ) = M−1κ(C(T ))Θ(dT ) is the image of the probability measure

Υ∗(dT dv) under the canonical projection π1 from T∗ to T. According to the discussion
before Proposition 2.7, we can write

β =
(∫

Υ(dT )J(T )
)−1

∫
Υ(dT )

k∅∑

i=1

ν∗T (i) log
1

ν∗T (i)
,

which by (2.17) is strictly smaller than

(∫
Υ(dT )J(T )

)−1
∫

Υ(dT )

k∅∑

i=1

ν∗T (i) log
1

wT (i)
.

However, it follows from the definition of wT that

∫
Υ(dT )

k∅∑

i=1

ν∗T (i) log
1

wT (i)
=

1

α− 1

∫
Υ(dT )J(T ) +

∫
Υ(dT )

k∅∑

i=1

ν∗T (i) log
W(T )

W(T(i))

=
1

α− 1

∫
Υ(dT )J(T ) +

∫
Υ∗(dT dv) log

W ◦ π1(T ,v)

W ◦ π1(S(T ,v))

=
1

α− 1

∫
Υ(dT )J(T ) ,

where in the last equality we used the fact that Υ∗ is invariant under the shift S, and that
logW(T ) is integrable under Θ(dT ) hence also under Υ∗. Therefore, we have shown
β < 1

α−1 and the proof of Theorem 1.2 is completed.

2.5.4 Proof of Proposition 1.4

We have seen above that

β =
E
[

NC1
C1+···+CN log

(
C1

C1+···+CN

)
κ
((
U + 1−U

C1+···+CN

)−1)]

E
[

log(1− U)κ
((
U + 1−U

C1+···+CN

)−1)] . (2.18)
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On account of Proposition 2.1, the proof of Proposition 1.4 will be completed if we
can verify that the preceding expression for β is consistent with formula (1.5). In the
following calculations, we will keep using the same notation introduced in the proof of
Proposition 2.4.

Firstly, the numerator of the right-hand side of (2.18) is equal to

E

[
NC1

C1 + · · ·+ CN
log
( C1
C1 + · · ·+ CN

) (
U + 1−U

C1+···+CN

)−1
(C̃1 + · · ·+ C̃Ñ )

(
U + 1−U

C1+···+CN

)−1
+ C̃1 + · · ·+ C̃Ñ − 1

]

= E

[
NC1(C̃1 + · · ·+ C̃Ñ ) log C1

C1+···+CN

C1 + · · ·+ CN + C̃1 + · · ·+ C̃Ñ − 1 + U(C1 + · · ·+ CN − 1)(C̃1 + · · ·+ C̃Ñ − 1)

]
.

For every integer k ≥ 2, we define for x ∈ (1,∞) the function

Gc1,...,ck,u(x) :=
xc1 log c1

c1+···+ck
c1 + · · ·+ ck + x− 1 + (c1 + · · ·+ ck − 1)(x− 1)u

,

where u ∈ (0, 1) and c1, . . . , ck ∈ (1,∞). We can apply (2.10) to get

E
[
GC1,...,Ck,U (C̃1 + · · ·+ C̃Ñ ) | C1, . . . , Ck, U

]

= E

[
C2

0C1(C1 + · · ·+ Ck) log C1
C1+···+Ck(

C0 + C1 + · · ·+ Ck − 1 + (C0 − 1)(C1 + · · ·+ Ck − 1)U
)2

∣∣∣∣∣ C1, . . . , Ck, U
]
.

With help of the last display, the numerator of the right-hand side of (2.18) becomes

E

[
NC2

0C1(C1 + · · ·+ CN ) log C1
C1+···+CN(

C0 + C1 + · · ·+ CN − 1 + (C0 − 1)(C1 + · · ·+ CN − 1)U
)2
]
.

We now integrate with respect to U and recall that for a, b, c > 0,
∫ 1

0
du a

(b+cu)2 = a
b(b+c) .

So the numerator of the right-hand side of (2.18) coincides with

E

[
NC0C1 log C1

C1+C2+···+CN
C0 + C1 + · · ·+ CN − 1

]
.

On the other hand, the denominator of the right-hand side of (2.18) is equal to

E

[
(C1 + · · ·+ CN )(C̃1 + · · ·+ C̃Ñ ) log(1− U)

C1 + · · ·+ CN + (C̃1 + · · ·+ C̃Ñ − 1)(C1 + · · ·+ CN )U + (C̃1 + · · ·+ C̃Ñ − 1)(1− U)

]

= E

[
(C1 + · · ·+ CN )(C̃1 + · · ·+ C̃Ñ ) log(1− U)

C1 + · · ·+ CN + C̃1 + · · ·+ C̃Ñ − 1 + (C1 + · · ·+ CN − 1)(C̃1 + · · ·+ C̃Ñ − 1)U

]

= E

[ C2
0(C1 + · · ·+ CN )2 log(1− U)

(
C0 + C1 + · · ·+ CN − 1 + (C0 − 1)(C1 + · · ·+ CN − 1)U

)2
]

= −E
[C2

0C2
1

(
− 1 + C0 + C1 − 2C0C1 + (C0 − 1)(C1 − 1)U

)
log(1− U)

(
C0 + C1 − 1 + (C0 − 1)(C1 − 1)U

)3
]
,

where we have repeatedly used (2.10) in the last two equalities, the first time to replace
C̃1 + · · ·+ C̃Ñ by C0, the second time to replace C1 + · · ·+ CN by C1. In order to integrate
with respect to U , we appeal to the identity that for a, b, c > 0,

∫ 1

0

du
(a+ bu) log(1− u)

(c+ bu)3
=
b(c− a) + (2b+ c+ a)c log c

b+c

2bc(b+ c)2
.
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Applying this formula, we see that the denominator of the right-hand side of (2.18)
coincides with

−E
[ C0C1
C0 + C1 − 1

]
.

We have thus obtained the following formula

β =
E
[

NC0C1
C0+C1+···+CN−1 log C1+C2+···+CN

C1

]

E
[
C0C1

C0+C1−1

] . (2.19)

By a symmetry argument, the numerator of the right-hand side of (2.19) is equal to

E
[NC0C1 log(C1 + C2 + · · ·+ CN )

C0 + C1 + · · ·+ CN − 1

]
− E

[ NC0C1 log(C1)

C0 + C1 + · · ·+ CN − 1

]

= E
[C0(C1 + C2 + · · ·+ CN ) log(C1 + C2 + · · ·+ CN )

C0 + C1 + · · ·+ CN − 1

]
− E

[C0(C1 + C2 + · · ·+ CN ) log(C0)

C0 + C1 + · · ·+ CN − 1

]

= E
[
f(C1 + C2 + · · ·+ CN )

]
− E

[
g(C1 + C2 + · · ·+ CN )

]
, (2.20)

where we have set, for every x ≥ 1,

f(x) = E

[ C0x
C0 + x− 1

log x

]
and g(x) = E

[ C0x
C0 + x− 1

log C0
]
.

We can replace E[f(C1 +C2 + · · ·+CN )] by E[f(C1)]+E[C1(C1−1)f ′(C1)] using (2.10), and
similarly for g, to obtain

E
[
f(C1 + C2 + · · ·+ CN )

]
− E

[
g(C1 + C2 + · · ·+ CN )

]
=

1

2

(
E[C0]2 − E

[ C0C1
C0 + C1 − 1

])
.

Plugging this into (2.20) yields the required formula (1.5), and hence finishes the proof
of Proposition 1.4.

2.6 A second approach to Theorem 1.2

In this section, we outline a different approach to Theorem 1.2, which contains cer-
tain intermediate results of independent interest. This approach involves an invariant
measure for the environment seen by Brownian motion on the CTGW tree Γ(α) at the
last visit of a fixed height. This is similar to Section 3 of [5], and for this reason we will
omit the proofs, which may however be found in [11].

We fix the index α ∈ (1, 2], and we first introduce some additional notation. For
T ∈ T and r > 0, if x ∈ Tr, let T [x] denote the subtree of descendants of x in T . To
define it formally, we write vx for the unique element of V such that x = (vx, r), and
define the shifted discrete tree Π[vx] = {v ∈ V : vxv ∈ Π}. Then T [x] is the infinite
continuous tree corresponding to the pair

(
Π[vx], (zvxv − r)v∈Π[vx]

)
.

For a fixed r > 0, we know that Γ(α) has a.s. no branching point at height r. As there
is a unique point x ∈ Γ

(α)
r such that x ≺ W∞, we write Γ(α)〈r〉 = Γ(α)[x] for the subtree

above level r selected by harmonic measure.

To describe the distribution of Γ(α)〈r〉, recall that for every x ≥ 0,

ϕα(x) = E
[

exp(−x C(α)/2)
]

= Θα

(
exp(−x C(T )/2)

)
.
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Proposition 2.8. The distribution under P ⊗ P of the subtree Γ(α)〈r〉 above level r
selected by harmonic measure is

Φ(α)
r (C(T )) Θα(dT ),

where, for every c > 0,

Φ(α)
r (c) := E(c)

[
exp−

∫ r

0

ds
(
mα

(
1− ϕα(Xs)

)α−1 − 1

α− 1

)]
.

Here X = (Xs)0≤s≤r stands for the solution of the stochastic differential equation

dXs = 2
√
Xs dηs + (2−Xs)ds

that starts under the probability measure P(c) with an exponential distribution of pa-
rameter c/2. In the previous SDE, (ηs)s≥0 denotes a standard linear Brownian motion.

Now we define shifts (τr)r≥0 on T∗ in the following way. For r = 0, τ0 is the identity
mapping of T∗. For r > 0 and (T ,v) ∈ T∗, we write v = (v1, v2, . . .) and vn = (v1, . . . , vn)

for every n ≥ 0 (by convention, v0 = ∅). Also let xr,v be the unique element of Tr such
that xr,v ≺ v. Then we set

τr(T ,v) =
(
T [xr,v] , (vk+1, vk+2, . . .)

)
,

where k = min{n ≥ 0: zvn ≥ r}. Informally, τr(T ,v) is obtained by taking the subtree of
T consisting of descendants of the vertex at height r on the distinguished geodesic ray,
and keeping in this subtree the “same” geodesic ray. It is straightforward to verify that
τr ◦ τs = τr+s for every r, s ≥ 0.

The next proposition gives an invariant measure absolutely continuous with respect
to Θ∗α under the shifts τr. To simplify notation, we set first

C1(α) := 2

∫ ∞

0

dsϕ′α(s)2 es/2 =

∫ ∫
γα(d`)γα(d`′)

``′

`+ `′ − 1
.

Proposition 2.9. For every c > 0,

lim
r→+∞

Φ(α)
r (c) = Φ(α)

∞ (c) :=
1

C1(α)

∫
γα(ds)

cs

c+ s− 1
.

The probability measure Λ∗α on T∗ defined as

Λ∗α(dT dv) := Φ(α)
∞ (C(T )) Θ∗α(dT dv)

is invariant under the shifts τr, r ≥ 0.

Furthermore, one can easily adapt the proof of Proposition 13 in [5] to show that for
every r > 0, the shift τr acting on the probability space (T∗,Λ∗α) is ergodic. Applying
Birkhoff’s ergodic theorem to a suitable functional (see Section 3.4 of [5]) leads to the
convergence (1.3) in Theorem 1.2, with βα given by formula (2.19). See [11] for more
details.

3 The discrete setting

3.1 Galton–Watson trees

Let us first introduce discrete (finite) rooted ordered trees, which are also called
plane trees in combinatorics. A plane tree t is a finite subset of V such that the following
holds:
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(i) ∅ ∈ t .

(ii) If u = (u1, . . . , un) ∈ t\{∅}, then û = (u1, . . . , un−1) ∈ t .

(iii) For every u = (u1, . . . , un) ∈ t, there exists an integer ku(t) ≥ 0 such that, for every
j ∈ N, (u1, . . . , un, j) ∈ t if and only if 1 ≤ j ≤ ku(t).

In this section we will say tree instead of plane tree for short. The same notation and
terminology introduced at the beginning of Section 2.1 will be used in this section: |u|
is the generation of u, uv denotes the concatenation of u and v, ≺ stands for the (non-
strict) genealogical order and u∧v is the maximal element of {w ∈ V : w ≺ u and w ≺ v}.
A vertex with no child is called a leaf.

The height of a tree t is
h(t) := max{|v| : v ∈ t}.

We write T for the set of all trees, and Tn for the set of all trees with height n.
We view a tree t as a graph whose vertices are the elements of t and whose edges

are the pairs {û, u} for all u ∈ t\{∅}. The set t is equipped with the distance

d(u, v) :=
1

2
(|u|+ |v| − 2|u ∧ v|).

Notice that this is half the usual graph distance. We will write Bt(v, r), or simply B(v, r)

if there is no ambiguity, for the closed ball of radius r centered at v, with respect to the
distance d in the tree t.

The set of all vertices of t at generation n is denoted by

tn := {v ∈ t : |v| = n}.

If v ∈ t, the subtree of descendants of v is

t̃[v] := {v′ ∈ t : v ≺ v′}.

Note that t̃[v] is not a tree under the previous definition, but we can turn it into a tree
by relabeling its vertices as

t[v] := {w ∈ V : vw ∈ t}.
If v ∈ t, then for every i ∈ {0, 1, . . . , |v|} we write 〈v〉i for the ancestor of v at genera-

tion i. Suppose that |v| = n. Then Bt(v, i)∩ tn = t̃ [〈v〉n−i]∩ tn, for every i ∈ {0, 1, . . . , n}.
This simple observation will be used repeatedly below.

Let ρ be a non-trivial probability measure on Z+ with mean one, which belongs to
the domain of attraction of a stable distribution of index α ∈ (1, 2]. Therefore property
(1.1) holds. For every integer n ≥ 0, we let T(n) be a Galton–Watson tree with offspring
distribution ρ, conditioned on non-extinction at generation n, viewed as a random subset
of V (see e.g. [10] for a precise definition of Galton–Watson trees). In particular, T(0)

is just a Galton–Watson tree with offspring distribution ρ. We suppose that the random
trees T(n) are defined under the probability measure P.

We let T∗n be the reduced tree associated with T(n), which consists of all vertices
of T(n) that have (at least) one descendant at generation n. Note that |v| ≤ n for every
v ∈ T∗n. A priori T∗n is not a tree in the sense of the preceding definition. However
we can relabel the vertices of T∗n, preserving both the lexicographical order and the
genealogical order, so that T∗n becomes a tree in the sense of our definitions. We will
always assume that this relabeling has been done.

Conditionally on T(n), the hitting distribution of generation n is the same for simple
random walk on T(n) and that on the reduced tree T∗n. In view of studying properties of
this hitting distribution, we can consider directly a simple random walk on T∗n starting
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from the root ∅, which we denote by Zn = (Znk )k≥0. This random walk is defined under
the probability measure P . Let

Hn := inf{k ≥ 0: |Znk | = n}

be the first hitting time of generation n by Zn, and set Σn = ZnHn to be the hitting
point. The discrete harmonic measure µn is the law of Σn under P , which is a (random)
probability measure on the level set T∗nn .

Set qn = P
(
h(T(0)) ≥ n

)
. If L is the slowly varying function appearing in (1.1), it has

been established in [16, Lemma 2] that

qα−1
n L(qn) ∼ 1

(α− 1)n
as n→∞. (3.1)

By the asymptotic inversion property of slowly varying functions (see e.g. [4, Section
1.5.7]), it follows that

qn ∼ n−
1

α−1 `(n) as n→∞, (3.2)

for a function ` slowly varying at ∞. Moreover, it is shown in [16, Theorem 1] that,
as n → ∞, qn#T∗nn converges in distribution to the positive random variable W(Γ(α))

introduced in the proof of Proposition 2.7.
We will need to estimate the size of level sets in T∗n. The following lemma is an

analogue of Lemma 15 in [5].

Lemma 3.1. For every r ≥ 1, there exists a constant C = C(r, ρ) depending on r and the
offspring distribution ρ such that, for every integer n ≥ 2 and every integer p ∈ [1, n/2],

E
[
(log #T∗nn−p)

r
] 1
r ≤ C log

n

p
and E

[
(log #T∗nn )r

] 1
r ≤ C log n.

Proof. We can find a = a(r) > 0 such that the function x 7→ (log(a+ x))r is concave over
[1,∞). Then as in the proof of [5, Lemma 15],

E
[
(log #T∗nn−p)

r
] 1
r ≤ E

[
(log(a+ #T∗nn−p))

r
] 1
r ≤ log

(
a+ E[#T∗nn−p]

)
= log(a+

qp
qn

).

Using Potter’s bounds on slowly varying function (see e.g. [4, Theorem 1.5.6]), one can
deduce from (3.2) that there exists a constant C ′ = C ′(ρ) > 0 such that for every n ≥ 2

and every p ∈ [1, n/2],

log
( qp
qn

)
≤ C ′ log

(n
p

)
,

from which the first bound of the lemma easily follows. The second estimate can be
shown in a similar way.

The goal of this section is to prove Theorem 1.1. We will assume in the rest of this
section that the critical offspring distribution ρ satisfies (1.1) with a fixed α ∈ (1, 2].
Accordingly, we will omit the superscripts and subscripts concerning α if there is no
ambiguity.

3.2 Convergence of discrete reduced trees

We first define truncations of the discrete reduced tree T∗n. For every s ∈ [0, n], we
set

Rs(T
∗n) :=

{
v ∈ T∗n : |v| ≤ n− bsc

}
.

Recall from Section 2.1 the definition of the continuous reduced tree ∆ of index α.
For every ε ∈ (0, 1), we have set ∆ε = {x ∈ ∆: H(x) ≤ 1 − ε}. We will implicitly use
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the fact that, for every fixed ε, there is a.s. no branching point of ∆ at height 1− ε. The
skeleton of ∆ε is defined as the following plane tree

Sk(∆ε) := {∅} ∪
{
v ∈ Π\{∅} : Yv̂ ≤ 1− ε

}
= {∅} ∪

{
v ∈ Π\{∅} : (v̂, Yv̂) ∈ ∆ε

}
.

A vertex v of Sk(∆ε) is a leaf of Sk(∆ε) if and only if Yv > 1− ε.
Let t be a tree. We write S(t) for the set of all vertices of t whose number of children

is different from 1. Then we can find a unique tree [t] ∈ T such that there exists a
bijection from [t] onto S(t) that preserves the genealogical order and the lexicographical
order of vertices. Denote the inverse of this canonical bijection by u ∈ S(t) 7→ [u] ∈ [t].
In a less formal way, [t] is just the tree obtained from t by removing all vertices that
have exactly one child.

Proposition 3.2. We can construct the reduced trees T∗n and the (continuous) reduced
stable tree ∆ on the same probability space (Ω,F ,P), so that the following assertions
hold for every fixed ε ∈ (0, 1) with P-probability one.

(1) For every sufficiently large integer n, there exists an injective mapping Ψε
n : u 7→

wn,εu from Sk(∆ε) into S(Rεn(T∗n)) satisfying the following properties.

(1.a) The mapping Ψε
n preserves both the lexicographical order and the genealog-

ical order.
(1.b) If u is a leaf of Sk(∆ε), [wn,εu ] is a leaf of [Rεn(T∗n)] and |wn,εu | = n− bεnc. The

restricted mapping

Ψε
n �Leaves : Leaves of Sk(∆ε) −→

{
v ∈ S(Rεn(T∗n)) : [v] is a leaf of [Rεn(T∗n)]

}

is bijective.
(1.c) For every vertex u of Sk(∆ε),

lim
n→∞

1

n
|wn,εu | = Yu ∧ (1− ε) ,

lim
n→∞

1

n
|wn,εu | = Yû ,

where û denotes the parent of u in Sk(∆ε), and wn,εu stands for the vertex in
S(Rεn(T∗n)) such that [wn,εu ] is the parent of [wn,εu ] in [Rεn(T∗n)]. (Notice that
wn,εu does not necessarily coincide with wn,εû .)

(2) The mapping Ψε
n is asymptotically unique in the sense that, if Ψ̃ε

n is another map-
ping such that the preceding properties hold, then for n sufficiently large,

Ψε
n(u) = Ψ̃ε

n(u) for every u ∈ Sk(∆ε).

Proposition 3.2 (see Fig. 2 for an illustration) essentially results from the conver-
gence in distribution of the rescaled contour functions associated with the trees T(n)

towards the excursion of the stable height process with height greater than 1 (see [6,
Section 2.5]). By using the Skorokhod representation theorem, one may assume that
the trees T(n) and the excursion of the stable height process are constructed so that the
latter convergence holds almost surely. The various assertions of Proposition 3.2 then
easily follow (cf. [6, Section 2.6]), using the relation between the excursion of the stable
height process with height greater than 1 and the limiting reduced tree ∆, which can
be found in [6, Section 2.7].

Remark 3.3. Let us take 0 < δ < ε. If u is not a leaf of Sk(∆ε), we must have wn,εu = wn,δu
for sufficiently large n. On the other hand, if u is a leaf of Sk(∆ε), then for large n, wn,εu
must be an ancestor of wn,δu .
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bεncε

u wn,ε
u

û wn,ε
û

wn,ε
u

Figure 2: On the left, the tree ∆, its truncation ∆ε and its skeleton Sk(∆ε). On the
right, a large reduced tree T∗n of height n, its truncation Rεn(T∗n) and the associated
tree [Rεn(T∗n)]. The vertices depicted as filled red disks on the left correspond to the
vertices depicted as filled red squares on the right, via the mapping Ψε

n.

Remark 3.4. We expect that a result more precise than Proposition 3.2 should hold.
For all sufficiently large n, the mapping Ψε

n should be a bijection, and the equality
wn,εu = wn,εû should hold for all u ∈ Sk(∆ε) (in other words, there should be no white
square in the right part of Fig. 2). However this refinement does not easily follow from
the results of [6], and we will omit it since it is not needed for our purposes.

3.3 Convergence of harmonic measures

Recall that µ is the continuous harmonic measure on the boundary ∂∆ of the reduced
stable tree, and that µn is the discrete harmonic measure on T∗nn . For every x ∈ ∂∆ε,
we set

µε(x) = µ({y ∈ ∂∆: x ≺ y}) = P (x ≺ BT−).

Similarly, we define a probability measure µεn on T∗nn−bεnc by setting

µεn(u) = µn({v ∈ T∗nn : u ≺ v}),

for every u ∈ T∗nn−bεnc. Clearly, µεn is the distribution of 〈Σn〉n−bεnc.
Proposition 3.5. Suppose that the reduced trees T∗n and the (continuous) tree ∆ have
been constructed so that the properties of Proposition 3.2 hold, and recall the notation
(wn,εu )u∈Sk(∆ε) introduced therein. Then P-a.s. for every x = (u, 1− ε) ∈ ∂∆ε,

lim
n→∞

µεn(wn,εu ) = µε(x).

Proof. Let δ ∈ (0, ε) and set Tδ = inf{t ≥ 0 : H(Bt) = 1 − δ} < T . Define a probability
measure µε,(δ) on ∂∆ε by setting for every x ∈ ∂∆ε,

µε,(δ)(x) = P (x ≺ BTδ).

Similarly, we write µ
(δ)
n for the distribution of the hitting point of generation n − bδnc

by random walk on T∗n started from ∅. Then we define a probability measure µε,(δ)n on
T∗nn−bεnc by setting

µε,(δ)n (v) = µ(δ)
n ({w ∈ T∗nn−bδnc : v ≺ w}),
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for every v ∈ T∗nn−bεnc.

As in the proof of [5, Proposition 18], we have P-a.s.

lim
δ→0

(
sup
x∈∂∆ε

∣∣µε,(δ)(x)− µε(x)
∣∣
)

= 0,

lim
δ→0

(
lim sup
n→∞

(
sup

v∈T∗n
n−bεnc

∣∣µε,(δ)n (v)− µεn(v)
∣∣
))

= 0.

So the convergence of the proposition will follow if we can verify that for every fixed
δ ∈ (0, ε), we have P-a.s. for every x = (u, 1− ε) ∈ ∂∆ε,

lim
n→∞

µε,(δ)n (wn,εu ) = µε,(δ)(x). (3.3)

To this end, we may and will assume that the reduced trees T∗n and the (continuous)
tree ∆ have been constructed so that the properties of Proposition 3.2 hold simultane-
ously for ε and for δ.

Firstly, by considering the successive passage times of Brownian motion stopped at
time Tδ in the set {(u, Yu ∧ (1 − δ)) : u ∈ Sk(∆δ)}, we get a Markov chain X(δ), which
is absorbed in the set {(v, 1 − δ) : v is a leaf of Sk(∆δ)}, and whose transition kernels
are explicitly described in terms of the quantities Yu, u ∈ Sk(∆δ) by series and parallel
circuits calculation.

Secondly, let n be sufficiently large so that assertions (1) and (2) of Proposition 3.2
hold with ε as well as with δ, and consider simple random walk on T∗n started from
∅ and stopped at the first hitting time of generation n − bδnc. By considering the
successive passage times of this random walk in the set S(Rδn(T∗n)), we again get a
Markov chain X(δ),n, which is absorbed in the set

{
v ∈ S(Rδn(T∗n)) : [v] is a leaf of [Rδn(T∗n)]

}
.

By property (1.b) of Proposition 3.2, this set is exactly {wn,δv : v is a leaf of Sk(∆δ)}. As
previously, the transition kernels of this Markov chain X(δ),n can be written explicitly in
terms of the quantities |v|, v ∈ S(Rδn(T∗n)).

Recall that by Proposition 3.2,

Ψδ
n(Sk(∆δ)) = {wn,δu : u ∈ Sk(∆δ)}

is a subset of S(Rδn(T∗n)), and that the mapping Ψδ
n is injective. If we let X̃(δ),n be

the Markov chain restricted to the subset Ψδ
n(Sk(∆δ)), then after identifying both sets

Ψδ
n(Sk(∆δ)) and {(u, Yu ∧ (1− δ)) : u ∈ Sk(∆δ)} with Sk(∆δ), we can view both X̃(δ),n and

X(δ) as Markov chains with values in the set Sk(∆δ). Using property (1.c) of Proposi-
tion 3.2, we see that the transition kernels of X̃(δ),n converge to those of X(δ).

Write X
(δ)
∞ for the absorption point of X(δ), and similarly write X

(δ),n
∞ for that of

X(δ),n. Notice that X(δ),n
∞ is also the absorption point of the restricted Markov chain

X̃(δ),n. We thus obtain that the distribution of X(δ),n
∞ converges to that of X(δ)

∞ (recall
that both X

(δ),n
∞ and X

(δ)
∞ are viewed as taking values in the set of leaves of Sk(∆δ)).

Consequently, for every u ∈ V such that x = (u, 1− ε) ∈ ∂∆ε, we have

lim
n→∞

P (u ≺ X(δ),n
∞ ) = P (u ≺ X(δ)

∞ ).

However, from our definitions, we have

P (u ≺ X(δ)
∞ ) = µε,(δ)(x),
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and, for n sufficiently large, since wn,εu coincides with the ancestor of wn,δu at generation
n− bεnc (see Remark 3.3 after Proposition 3.2),

P (u ≺ X(δ),n
∞ ) = µε,(δ)n (wn,εu ).

This completes the proof of (3.3) and of the proposition.

Recall that β is the Hausdorff dimension of the continuous harmonic meaure µ.

Proposition 3.6. Let r ≥ 1 and ξ ∈ (0, 1). We can find ε0 ∈ (0, 1/2) such that the
following holds. For every ε ∈ (0, ε0), there exists n0 ≥ 0 such that for every n ≥ n0,

E⊗ E
[∣∣∣ logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣∣
r
]
≤ ξ | log ε|r.

Proof. Recall our notation Bd(x, r) for the closed ball of radius r centered at x ∈ ∆. Fix
η ∈ (0, 1). Since BT− is distributed according to µ, it follows from Theorem 1.2 that
there exists ε0 ∈ (0, 1/2) such that for every ε ∈ (0, ε0) we have

P⊗ P
(∣∣∣ logµ(Bd(BT− , 2ε))− β log ε

∣∣∣ > (η/2)| log ε|
)
< η/2. (3.4)

Let us fix ε ∈ (0, ε0) and assume that the reduced trees T∗n and the (continuous) tree
∆ have been constructed so that the properties of Proposition 3.2 hold. We now claim
that, under P⊗ P ,

µεn(〈Σn〉n−bεnc)
(d)−→
n→∞

µ(Bd(BT− , 2ε)). (3.5)

To see this, let f be a continuous function on [0, 1]. Since the distribution of 〈Σn〉n−bεnc
under P is µεn, we have

E⊗ E
[
f(µεn(〈Σn〉n−bεnc))

]
= E

[ ∑

v∈T∗n
n−bεnc

µεn(v) f(µεn(v))

]
.

By property (1.b) of Proposition 3.2, we know that P-a.s. for n sufficiently large,
∑

v∈T∗n
n−bεnc

µεn(v) f(µεn(v)) =
∑

x=(u,1−ε)∈∂∆ε

µεn(wn,εu ) f(µεn(wn,εu )),

and by Proposition 3.5 the latter quantities converge as n→∞ towards
∑

x∈∂∆ε

µε(x) f(µε(x)) = E
[
f(µ(Bd(BT− , 2ε)))

]
,

which establishes the convergence (3.5) as claimed.
By (3.4) and (3.5), we can find n0 = n0(ε) ≥ ε−1 such that for n ≥ n0,

P⊗ P
(∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣ > η |log ε|
)
< η.

Using the Cauchy–Schwarz inequality, we have then

E⊗ E
[∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣r]

≤ ηr| log ε|r + η
1
2E⊗ E

[ ∣∣logµεn
(
〈Σn〉n−bεnc

)
− β log ε

∣∣2r
]1/2

≤ ηr| log ε|r + 2rη
1
2 |β log ε|r + 2rη

1
2E⊗ E

[ ∣∣logµεn
(
〈Σn〉n−bεnc

)∣∣2r
]1/2

. (3.6)

Since r ≥ 1, the function

g(x) := (x ∧ e−2r) | log(x ∧ e−2r)|2r

EJP 19 (2014), paper 98.
Page 28/35

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3498
http://ejp.ejpecp.org/


Harmonic measure of balls in critical Galton–Watson trees

is nondecreasing and concave over [0, 1]. Thus, we obtain

E
[ ∣∣logµεn

(
〈Σn〉n−bεnc

)∣∣2r
]

=
∑

v∈T∗n
n−bεnc

µεn(v)| logµεn(v)|2r

≤
∑

v∈T∗n
n−bεnc

g(µεn(v)) + (2r)2r

≤ #T∗nn−bεnc × g
(

(#T∗nn−bεnc)
−1
)

+ (2r)2r

≤
∣∣∣ log #T∗nn−bεnc

∣∣∣
2r

+ 2(2r)2r.

We now use Lemma 3.1 to see

E⊗E
[ ∣∣logµεn

(
〈Σn〉n−bεnc

)∣∣2r
]
≤ E

[∣∣ log #T∗nn−bεnc
∣∣2r
]
+2(2r)2r ≤ C2r

(
log

n

bεnc
)2r

+2(2r)2r.

By combining the last estimate with (3.6), we get that, for every n ≥ n0(ε),

E⊗E
[∣∣logµεn

(
〈Σn〉n−bεnc

)
− β log ε

∣∣r] ≤ (ηr+2rη
1
2 βr)| log ε|r+2r+1η

1
2

(
(2r)r+Cr| log ε|r

)
.

The statement of the proposition follows since η was arbitrary.

3.4 The flow property of discrete harmonic measure

We briefly recall the flow property of the discrete harmonic measure µn presented
in [5, Section 4.3.1]. Let t ∈ Tn be a plane tree of height n and Z(t) = (Z

(t)
k )k≥0 be

simple random walk on t starting from ∅. We set

H(t)
n := inf{k ≥ 0: |Z(t)

k | = n} and Σ(t)
n := Z

(t)

H
(t)
n

.

We write µ(t)
n for the distribution of Σ

(t)
n , considered as a measure on t supported by tn.

For 0 ≤ p ≤ n, we set

L(t)
p := sup{k ≤ H(t)

n : |Z(t)
k | = p}.

Clearly Σ
(t)
n ∈ t̃[Z

(t)

L
(t)
p

], and therefore Z(t)

L
(t)
p

= 〈Σ(t)
n 〉p.

Lemma 3.7 (Lemma 20 in [5]). Let p ∈ {0, 1, . . . , n − 1} and z ∈ tp. Then, conditionally

on 〈Σ(t)
n 〉p = z, the process (

Z
(t)

(L
(t)
p +k)∧H(t)

n

)
k≥0

is distributed as simple random walk on t̃[z] starting from z and conditioned to hit t̃[z]∩tn
before returning to z, and stopped at this hitting time. Consequently, for every integer
q ∈ {0, 1, . . . , n− p}, the conditional distribution of

µ
(t)
n

(
Bt(Σ

(t)
n , q)

)

µ
(t)
n

(
Bt(Σ

(t)
n , n− p)

)

knowing that 〈Σ(t)
n 〉p = z is equal to the distribution of

µ
(t[z])
n−p

(
Bt[z](Σ

(t[z])
n−p , q)

)
.
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3.5 The subtree selected by the discrete harmonic measure

We begin by introducing the conductance of discrete trees. Let i be a positive integer
and let t ∈ T be a tree such that h(t) ≥ i. Consider the new graph t′ obtained by adding
to the graph t an edge between the root ∅ and an extra vertex ∂. We denote by Ci(t) the
effective conductance between ∂ and generation i of t in the graph t′. In probabilistic
terms, it is equal to the probability that simple random walk on t′ starting from ∅ hits
generation i of t before hitting the vertex ∂.

Recall that for i ∈ {1, . . . , n− 1}, T̃∗n[〈Σn〉n−i] is the subtree of T∗n above generation
n − i that is selected by harmonic measure, and T∗n[〈Σn〉n−i] is the tree obtained by
relabeling the vertices of T̃∗n[〈Σn〉n−i] as explained above.

Lemma 3.8. For every integer i ∈ {1, . . . , n−1} and every nonnegative function F on T ,

E⊗ E
[
F
(
T∗n[〈Σn〉n−i]

)]
≤ (i+ 1)E

[
Ci(T∗i)F (T∗i)

]
.

This lemma is proved in [5] under the assumption that ρ has finite variance. Actually
the proof uses only the branching property of Galton–Watson trees and remains valid
under our assumptions on ρ.

Meanwhile, we have the following moment estimate for the conductance Cn(T∗n).

Lemma 3.9. For every r ∈ (0, α), there exists a constant K = K(r, ρ) ≥ 1 depending
on r and the offspring distribution ρ such that, for every integer n ≥ 1,

E
[
Cn(T∗n)r

]
≤ K

(n+ 1)r
.

Proof. We can assume n ≥ 2, and set j = bn/2c ≥ 1. An application of the Nash–Williams
inequality [14, Chapter 2] gives

Cn(T∗n) ≤
#T∗nj
j

.

On the other hand,

E
[
(#T∗nj )r

]
= E

[
(#{v ∈ T

(0)
j : h(T(0)[v]) ≥ n− j})r | h(T(0)) ≥ n

]

= q−1
n E

[
(#{v ∈ T

(0)
j : h(T(0)[v]) ≥ n− j})r

]
.

Notice that given #T
(0)
j = k, the conditional distribution of

#{v ∈ T
(0)
j : h(T(0)[v]) ≥ n− j}

is the binomial distribution B(k, qn−j). Using Jensen’s inequality, we get

E
[
(#{v ∈ T

(0)
j : h(T(0)[v]) ≥ n− j})r

]
≤ E

[
E
[
(#{v ∈ T

(0)
j : h(T(0)[v]) ≥ n− j})2 | #T

(0)
j

] r
2
]

= E
[(
q2
n−j(#T

(0)
j )2 + (qn−j − q2

n−j)#T
(0)
j

) r
2
]

≤ qrn−j E
[
(#T

(0)
j )r

]
+ (qn−j − q2

n−j)
r
2E
[
(#T

(0)
j )

r
2

]
.

At this point, we need the following result proved in [9, Lemma 11] for the uncondi-
tioned Galton–Watson tree. For any γ ∈ (0, α), there is a finite constant C(γ) such that
for every m ≥ 1,

E
[
(#T(0)

m )γ
]
≤ C(γ) q1−γ

m . (3.7)

The original statement of the latter bound in [9] was given for any γ ∈ [1, α), while the
case γ ∈ (0, 1) follows from the (trivial) case γ = 1 by applying the Hölder inequality to

E
[
1{T(0)

m 6=∅}
(#T(0)

m )γ
]
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(we can in fact take C(γ) = 1 for any γ ∈ (0, 1)).
With the help of (3.7), we conclude that

E
[
Cn(T∗n)r

]
≤ j−rq−1

n

(
C(r)qrn−jq

1−r
j + C(r/2)(qn−j − q2

n−j)
r
2 q

1− r2
j

)
,

and the statement of the lemma readily follows from (3.2).

3.6 Proof of Theorem 1.1

Following [5], we will show

E⊗ E
[
| logµn(Σn) + β log n|

]
= o(log n) as n→∞, (3.8)

which is sufficient for establishing Theorem 1.1. The proof given below is adapted
from [5, Section 4.3.2]. For later convenience, we introduce the notation

ᾱ :=
α+ 1

2
∈ (1,

3

2
)

and its Hölder conjugate

α∗ :=
ᾱ

ᾱ− 1
∈ (3,∞).

Fix ξ > 0. Let ε > 0 and n0 ≥ 1 be such that the conclusion of Proposition 3.6 holds
for every n ≥ n0 with the exponent r = α∗. Without loss of generality, we may and will
assume that ε = 1/N , for some integer N ≥ 4, which is fixed throughout the proof. We
also fix a constant γ > 0, such that γ logN < 1/2.

Let n > N be sufficiently large so that Nbγ lognc ≥ n0. Then we let ` ≥ 1 be the
unique integer such that N ` < n ≤ N `+1, and write

logµn(Σn) = log
µn(Σn)

µn(B(Σn, N))
+
∑̀

j=2

log
µn(B(Σn, N

j−1))

µn(B(Σn, N j))
+ log µn(B(Σn, N

`)). (3.9)

To simplify notation, we set

An1 := log
µn(Σn)

µn(B(Σn, N))
+ β logN,

Anj := log
µn(B(Σn, N

j−1))

µn(B(Σn, N j))
+ β logN for every j ∈ {2, . . . , `},

An`+1 := logµn(B(Σn, N
`)) + β log(n/N `) .

From (3.9), we see that

E⊗ E
[∣∣ logµn(Σn) + β log n

∣∣
]

= E⊗ E
[∣∣∣
`+1∑

j=1

Anj

∣∣∣
]
≤

`+1∑

i=1

E⊗ E[|Anj |]. (3.10)

We will bound each term in the sum of the right-hand side.

First step: A priori bounds. We verify that, for every j ∈ {1, 2, . . . , `+ 1},

E⊗ E
[
|Anj |

]
≤ (CK1/ᾱ + β) logN, (3.11)

where C = C(α∗, ρ) is the constant in Lemma 3.1 for the exponent r = α∗, and K =

K(ᾱ, ρ) is the constant in Lemma 3.9 for the exponent r = ᾱ.
Suppose first that 2 ≤ j ≤ `. Using the second assertion of Lemma 3.7, with p =

n −N j and q = N j−1, we obtain that, for every z ∈ T∗nn−Nj , the conditional distribution
of Anj under P , knowing that 〈Σn〉n−Nj = z, is the same as the distribution of

logµ
(T∗n[z])
Nj (B(Σ

(T∗n[z])
Nj , N j−1)) + β logN.
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Recalling that µ(T∗n[z])
Nj is the distribution of Σ

(T∗n[z])
Nj under P , we get

E
[
|Anj | | 〈Σn〉n−Nj = z

]
≤ E

[∣∣ logµ
(T∗n[z])
Nj

(
B(Σ

(T∗n[z])
Nj , N j−1)

)∣∣
]

+ β logN

= Gj(T
∗n[z]) + β logN, (3.12)

where for any tree t ∈ TNj ,

Gj(t) :=

∫
µ

(t)
Nj (dy)

∣∣ logµ
(t)
Nj (Bt(y,N

j−1))
∣∣ =

∑

z∈tNj−Nj−1

µ
(t)
Nj (̃t[z])

∣∣ logµ
(t)
Nj (̃t[z])

∣∣.

As explained in [5], we have the entropy bound Gj(t) ≤ log #tNj−Nj−1 for any tree
t ∈ TNj . So we get from (3.12) that

E⊗ E
[
|Anj |

]
≤ E⊗ E

[
log #T∗nNj−Nj−1 [〈Σn〉n−Nj ]

]
+ β logN

≤ (N j + 1)E
[
CNj (T∗N

j

) log #T∗N
j

Nj−Nj−1

]
+ β logN

≤ (N j + 1)E
[(
CNj (T∗N

j

)
)ᾱ]1/ᾱ

E
[(

log #T∗N
j

Nj−Nj−1

)α∗]1/α∗
+ β logN

≤ K1/ᾱE
[(

log #T∗N
j

Nj−Nj−1

)α∗]1/α∗
+ β logN,

using successively Lemma 3.8, the Hölder inequality and Lemma 3.9. Finally, Lemma 3.1
gives

E
[(

log #T∗N
j

Nj−Nj−1

)α∗]1/α∗ ≤ C logN,

and this completes the proof of (3.11) when 2 ≤ j ≤ `. The cases j = 1 and j = `+ 1 can
be treated in a similar manner. For details we refer the reader to [5, Section 4.3.2].

Second step: Refined bounds. Let us prove that, if bγ log nc ≤ j ≤ `,

E⊗ E
[
|Anj |

]
≤ K1/ᾱξ1/α∗ logN. (3.13)

Recall that for j ∈ {bγ log nc, . . . , `} we have N j ≥ n0. From (3.12), we have

E
[
|Anj |

]
= E

[
Fj(T

∗n[〈Σn〉n−Nj ])
]
,

where, if t ∈ TNj ,

Fj(t) :=
∣∣β logN −Gj(t)

∣∣ =

∣∣∣∣
∫
µ

(t)
Nj (dy)

(
logµ

(t)
Nj (Bt(y,N

j−1)) + β logN
)∣∣∣∣ .

Using Lemma 3.8 as in the first step, we have

E⊗ E
[
|Anj |

]
= E⊗ E

[
Fj(T

∗n[〈Σn〉n−Nj ])
]
≤ (N j + 1)E

[
CNj (T∗N

j

)Fj(T
∗Nj )

]
.

We then apply the Hölder inequality together with the bound of Lemma 3.9 for r = ᾱ to
get

E⊗ E
[
|Anj |

]
≤ K1/ᾱE

[
Fj(T

∗Nj )α
∗]1/α∗

≤ K1/ᾱE

[(∫
µNj (dy)

∣∣logµNj (B(y,N j−1)) + β logN
∣∣
)α∗ ]1/α∗

≤ K1/ᾱE

[∫
µNj (dy)

∣∣logµNj (B(y,N j−1)) + β logN
∣∣α∗
]1/α∗

= K1/ᾱ · E⊗ E
[∣∣∣logµ

1/N
Nj

(
〈ΣNj 〉Nj−Nj−1

)
+ β logN

∣∣∣
α∗
]1/α∗

,
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where the last equality follows from the definition of the measure µεn at the beginning
of Section 3.3. Now recall that 1/N = ε and note that N j − N j−1 = N j − εN j . Since
we have N j ≥ n0, we can apply Proposition 3.6 with r = α∗ and get that the right-hand
side of the preceding display is bounded above by K1/ᾱξ1/α∗ logN , which finishes the
proof of (3.13).

By combining (3.11) and (3.13), and using (3.10), we arrive at the bound

E⊗ E
[∣∣ logµn(Σn) + β log n

∣∣] ≤ bγ log nc(K1/ᾱC + β) logN + `K1/ᾱξ1/α∗ logN

≤
(
γ(K1/ᾱC + β) logN +K1/ᾱξ1/α∗

)
log n,

which holds for every sufficiently large n. By choosing ξ and then γ arbitrarily small,
we see that our claim (3.8) follows from the last bound, and this completes the proof of
Theorem 1.1.

4 Comments and questions

Following [5, Section 5.2], let us consider the supercritical offspring distribution θ(n)
α

of index α ∈ (1, 2], defined as θ(n)
α (1) = 1− 1

n and

θ(n)
α (k) =

1

n
θα(k) for every k ≥ 2.

We let T
(n)
α be an infinite Galton–Watson tree with offspring distribution θ

(n)
α , then

n−1T
(n)
α viewed as a metric space with the graph distance rescaled by the factor n−1,

converges in distribution in an appropriate sense (e.g. for the local Gromov–Hausdorff
topology) to the CTGW tree Γ(α), as n→∞.

Consider then the biased random walk (Z
(n)
k )k≥0 on T

(n)
α with bias parameter λ(n) =

1 − 1
n towards the root (see [13] or [1] for a precise definition of this process). Then

heuristically the rescaled process
(
n−1Z

(n)
bn2tc

)
t≥0

converge in distribution in some sense, as n → ∞, to Brownian motion (W (t))t≥0 with

drift 1/2 on the CTGW tree Γ(α). Furthermore, the rescaled “conductance” n C(T(n)
α , λ(n))

converges in distribution to the continuous conductance C(α) = C(Γ(α)).
Following this informal passage to the limit, we can find a candidate for the limit of

nV
(n)
α as n → ∞, where V

(n)
α stands for the speed of the biased random walk Z(n) on

T
(n)
α . One can either directly employ an explicit formula of V(n)

α stated in [1, Theorem
1.1], or use the invariant measure for the environment seen from the random walker
([1, Theorem 4.1]) to calculate the speed as the proportion of last-exit points. Both
methods give rise to the following quantity which should be interpreted as the speed of
Brownian motion W with drift 1/2 on Γ(α),

Vα :=
E
[
C(α)
0 C(α)

1

C(α)
0 +C(α)

1 −1

]

E
[

2C(α)
0

C(α)
0 +C(α)

1 −1

] , (4.1)

where C(α)
0 and C(α)

1 are two independent copies of C(α) under the probability measure P.
Since the conductance C(α) is a.s. strictly larger than 1, we see immediately from (4.1)

that Vα <
1
2 for any α ∈ (1, 2]. On the other hand, according to the coupling explained

in Section 2.4, the denominator of the right-hand side of (4.1)

E

[
2C(α)

0

C(α)
0 + C(α)

1 − 1

]
= E

[ C(α)
0 + C(α)

1

C(α)
0 + C(α)

1 − 1

]
= 1 + E

[
1

C(α)
0 + C(α)

1 − 1

]
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is increasing with respect to α.

Question 4.1. If we apply the coupling explained in Section 2.4, does the derivative
d

dαC(α) of the conductance with respect to α exist almost surely?

An affirmative answer to Question 4.1 would allow us to take the derivative of the
numerator in (4.1) with respect to α, and to see that

d

dα
E
[ C(α)

0 C
(α)
1

C(α)
0 + C(α)

1 − 1

]
= E

[C(α)
0 (C(α)

0 − 1) d
dαC

(α)
1 + C(α)

1 (C(α)
1 − 1) d

dαC
(α)
0(

C(α)
0 + C(α)

1 − 1
)2

]
≤ 0

because a.s. d
dαC(α) ≤ 0. Hence, the numerator in the right-hand side of (4.1) would be

decreasing with respect to α, and so would be the speed Vα.

Question 4.2. Does the speed Vα decrease with respect to α?

A similar question was raised in [3], concerning the monotonicity of the speed with
respect to the offspring distribution for biased random walk on Galton–Watson trees
with no leaves. It has been proved in [15] that this monotonicity holds for high values
of bias.

We also want to ask the same question of monotonicity for the Hausdorff dimension
of the continuous harmonic measure µα.

Question 4.3. Does the Hausdorff dimension βα decrease with respect to α?

Finally, it is interesting to figure out the Hausdorff dimension of the harmonic mea-
sure on ∂∆(1). Due to the fact that θ1 has infinite mean, it may require different methods
to treat the case α = 1 in the continuous setting.
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