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Abstract

We study weak and strong convergence of Wong-Zakai type approximations of reflected
stochastic differential equations on general domains satisfying the conditions (A) and
(B) introduced by Lions and Sznitman. We assume that the diffusion coefficient is
Lipschitz continuous but the drift coefficient need not be even continuous. In the
case where the drift coefficient is also Lipschitz continuous we show that the rate of
convergence is exactly the same as for usual Euler type approximation.
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1 Introduction

Let W be a standard d-dimensional Brownian motion and Wn denote the linear
approximations of W , i.e. Wn

0 = W0 = 0 and

Wn
t = W k

n
+ n(t− k

n
)(W k+1

n
−W k

n
) ), t ∈ [

k

n
,
k + 1

n
), n ∈ N, k ∈ N ∪ {0}.

In this paper we study convergence of d–dimensional Wong-Zakai type approximations
on a domain D with reflecting boundary condition of the form

Xn
t = X0 +

∫ t

0

σn(Xn
s ) dWn

s +

∫ t

0

bn(Xn
s ) ds+Kn

t , t ∈ R+. (1.1)

Here X0 ∈ D̄ = D ∪ ∂D, Xn is a reflecting process on D̄, Kn is a bounded variation
process with variation |Kn| increasing only, when Xn

t ∈ ∂D and σn : D̄ → Rd ⊗ Rd,
bn : D̄ → Rd are uniformly bounded functions.
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Wong-Zakai type approximations

Doss and Priouret [3] were first to observe that if ∂D is sufficiently smooth and
σn = σ ∈ C2

b(D̄,R
d ⊗Rd), bn = b ∈ C1

b(D̄,R
d) then (Xn,Kn) converges to the solution of

the reflected Stratonovich stochastic differential equation (SDE) of the form

Xt = X0 +

∫ t

0

σ(Xs) dWs +

∫ t

0

(
1

2
σ′σ(Xs) + b(Xs)) ds+Kt, t ∈ R+. (1.2)

Then Doss and Priouret’s results have been generalized in different directions. In
particular, almost sure convergence of Wong–Zakai approximation has been proved by
Pettersson [13] in the case of convex domain and constant diffusion coefficient. Ren
and Xu [15, 16] subsequently refined this result in papers concerning multivalued SDEs,
which correspond to SDEs with reflecting boundary conditions on convex domains. Evans
and Stroock [4] have proved weak convergence of Wong–Zakai approximations in the
case of not necessary smooth domains satisfying the conditions (A), (B) and (C) from the
paper by Lions and Sznitman [10]. Recently, their result have been strengthened to Lp

convergence by Aida and Sasaki [1] and Zhang [30]. Wong-Zakai type approximations of
reflected Stratonovich SDEs with jumps have been considered in [8, 11, 24].

It is worth pointing out that in all the above mentioned papers at least Lipschitz
continuity of the diffusion and drift coefficients is assumed. This assumption is sometimes
too strong, because there are interesting situations in which (1.2) has a unique solution
even if the drift coefficients σ′σ or b are discontinuous. For instance, if σ is bounded
and Lipschitz continuous then σ′, or more precisely, the partial derivatives ∂σi,j

∂xl
, i, j, l =

1, . . . , d, exist a.e. with respect to Lebesgue measure ld on Rd and are a.e. bounded.
Therefore the famous result by Stroock and Varadhan [25] gives weak uniqueness of
(1.2) provided that σσ? is elliptic, b is bounded and ∂D is sufficiently smooth. In the
present paper we assume that D ⊂ Rd satisfies conditions (A), (B) introduced in Lions
and Sznitman [10]. Our main purpose is to find minimal conditions on the coefficients
ensuring the convergence of (Xn,Kn) to (X,K). We will also address the problem of
the rate of convergence.

The paper is organized as follows.
In Section 2 we study the convergence of Wong-Zakai type approximations of the

form (1.1). We assume that there is C > 0 such that

‖an(x)‖+ |bn(x)|2 ≤ C, x ∈ D̄, (1.3)

‖σn(x)− σn(y)‖ ≤ C|x− y|, x, y ∈ D̄ and bn ∈ C(D̄,Rd), (1.4)

where an = σnσn,?, n ∈ N. We show that if σn→K σ (here "→K" denotes the uniform
convergence on all compact subsets of D), then {(Xn,Kn)} is tight in C (R+,R2d) and
its every limit point (X,K) is a solution of the reflected SDE with the same as in
(1.2) diffusion part. If moreover σn, σ ∈ C1(D̄,Rd ⊗ Rd) and σn,′→K σ

′, bn→K b or
σn ∈ C1(D̄,Rd ⊗ Rd), σσ∗ is elliptic and ld(Gc) = 0, where G denotes the set of all
x ∈ D̄ such that σn,′(xn) → σ′(x) and bn(xn) → b(x) for any {xn} ⊂ D̄ converging to
x, then every limit point of {(Xn,Kn)} is a weak solution of (1.2). As a result, under
the assumption that (1.2) has the weak uniqueness (pathwise uniqueness) property we
get conditions ensuring weak (strong) convergence of {(Xn,Kn)} to (X,K). Thus we
generalize convergence results for Wong-Zakai approximations given in the papers cited
before.

Section 3 is devoted to the classical case, where σn = σ, bn = b, n ∈ N, σ ∈
C1(D̄,Rd ⊗Rd) and σ′σ, b are Lipschitz continuous functions. In this case we prove that

{sup
t≤q
|Xn

t −Xt|2} = OP ((
log n

n
)1/2), q ∈ R+,
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Wong-Zakai type approximations

where for a sequence of positive constants hn ↘ 0 and a sequence of nonnegative random
variables {Zn} the notation {Zn} = OP (hn) means that {Zn/hn} is bounded in probability.
This rate is the same as for the usual Euler type approximations (see Remark 4.1). Note
that for domains satisfying (A), (B), (C) and coefficients σ ∈ C2

b(D̄,R
d⊗Rd), b ∈ C1

b(D̄,R
d)

Aida and Sasaki [1] have recently obtained the following rate of convergence in L2 norm:
E supt≤q |Xn

t − Xt|2 = O(( 1
n )θ/6), 0 < θ < 1, q ∈ R+. It is much weaker than the

corresponding rate of Euler type approximations, so it would be desirable to extend our
results to convergence in L2 norm. However, we have been unable to do this.

In the sequel we will use the following notation. R+ = [0,∞), C (R+,Rd) is the
space of continuous functions x : R+ → Rd equipped with the topology of uniform
convergence on compact subsets of R+. ρnt = max{ kn ; kn ≤ t}, n ∈ N, t ∈ R+. For any

x ∈ C (R+,Rd), {xρn} is a sequence of discretizations of x of the form xρ
n

t = xρnt = x k
n

,

t ∈ [ kn ,
k+1
n ), k ∈ N ∪ {0}, n ∈ N. D (R+,Rd) is the space of all càdlàg mappings

x : R+ → Rd, i.e. mappings which are right continuous and admit left-hand limits
equipped with the Skorokhod J1 topology. If X = (X1, . . . , Xd) is a semimartingale then
[[X]]t = {[Xi, Xj ]t}i,j=1,...,d, [X]t =

∑d
i=1[Xi]t = tr [[X]]t and QX = d[[X]]

d[X] is the Radon-

Nikodym derivative. If K = (K1, . . . , Kd) is the process with locally finite variation,
then |K|t =

∑d
i=1 |Ki|t, where |Ki|t = |Ki|[0,t] is the total variation of Ki on [0, t].

Lp(D), p ≥ 1, is the usual Lp - space defined in terms of Lebesgue measure ld on D.
Rd ⊗Rd is the set of all (d× d) - matrices, σ∗ is the matrix adjoint to σ, ‖σ‖ = (trσσ∗)1/2,
Id is the identity matrix of dimension d. As usual, we say that a sequence {Xn} is C-tight
if it is tight in D (R+,Rd) and its every limit point has continuous trajectories. "−→D",
"−→P" denote convergence in law and in probability, respectively.

2 Convergence of Wong-Zakai type approximations

Let D be a connected domain in Rd. Define the set Nx of inward normal unit vectors
at x ∈ ∂D by

Nx =
⋃
r>0

Nx,r, Nx,∞ =
⋂
r>0

Nx,r, Nx,r = {n ∈ Rd : |n| = 1, B(x− rn, r) ∩D = ∅},

where B(z, r) = {y ∈ Rd : |y − z| ≤ r}, z ∈ Rd, r > 0. Following Lions and Sznitman [10]
and Saisho [19] we will consider domains satisfying the assumptions:

(A) There is r0 ∈ (0,∞] such that Nx = Nx,r0 6= ∅ for every x ∈ ∂D.

(B) There exist constants δ > 0, β ≥ 1 such that for every x ∈ ∂D there is a unit vector lx
with the following property: < lx, n >≥ 1/β for every n ∈

⋃
y∈B(x,δ)∩∂DNy, where

< · , · > denotes the usual inner product in Rd.

The remark below is to be found in [10, 19].

Remark 2.1. (i) n∈ Nx,r if and only if < y − x,n > + 1
2r |y − x|

2 ≥ 0 for every y ∈ D̄.
(ii) If dist(x, D̄) < r0, x /∈ D̄ then there exists a unique ΠD̄(x) ∈ ∂D such that |x−ΠD̄(x)| =
dist(x, D̄). Moreover (ΠD̄(x)− x)/|ΠD̄(x)− x| ∈ NΠD̄(x).
(iii) If D is a convex domain in Rd then r0 =∞.

Let (Ω , F , P) be a probability space with filtration (Ft) satisfying the usual conditions
and let W be an (Ft) adapted Wiener process. We will say that the SDE (1.2) has a
(strong) solution if there exists a pair (X, K) of (Ft) - adapted processes satisfying (1.2)
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Wong-Zakai type approximations

and such that

X is D̄ - valued, (2.1)

K is a process with locally bounded variation such that K0 = 0 and

Kt =

∫ t

0

ns d|K|s, |K|t =

∫ t

0

1{Xs∈∂D} d|K|s, t ∈ R+,

where ns ∈ NXs
if Xs ∈ ∂D. (2.2)

Similarly we define strong solutions of (1.1). Recall also that the SDE (1.2) is said
to have a weak solution if there exists a filtered probability space (Ω̄, F̄ , (F̄t), P̄ ), an
(F̄t) - adapted Wiener process W̄ and a pair (X̄, K̄) of (F̄t) - adapted processes such that
the conditions (1.2), (2.1) and (2.2) hold for processes (X̄, K̄) instead of (X, K).

Note that X = (X1, . . . , Xd), K = (K1, . . . ,Kd) are d-dimensional processes and (1.2)
has the following equivalent form

Xi
t = Xi

0 +

d∑
j=1

∫ t

0

σij(Xs) dW
j
s +

1

2

d∑
j=1

d∑
l=1

∫ t

0

∂σi,j
∂xl

σl,j(Xs) ds

+

∫ t

0

bi(Xs) ds+Ki
t , t ∈ R+, i = 1, . . . , d.

In the sequel we say that σ, b, σ′ have some property if the coefficients σij , bi,
∂σij

∂xl

possesses this property for i, j, l = 1, . . . , d.

Theorem 2.2. Assume thatD satisfies (A), (B). Let {(Xn,Kn)} be a sequence of solutions
of (1.1). If the coefficients σn, bn satisfy (1.3), (1.4) and σn→K σ, then {(Xn,Kn)} is
tight in C(R+,R2d) and its each limit point (X̄, K̄) is a solution of the reflected SDE

X̄t = X̄0 +

∫ t

0

σ(X̄s) dW̄s +

∫ t

0

H̄s ds+ K̄t, t ∈ R+, (2.3)

where W̄ is a Wiener process adapted to some filtration (F̄t), L(X0,W ) = L(X̄0, W̄ ) and
H̄ is some d-dimensional bounded and progressively measurable process with respect
(F̄t).

Proof. Let Y n = X0 +
∫ t

0
σn(Xn

s ) dWn
s +

∫ t
0
bn(Xn

s ) ds, t ∈ R+, n ∈ N. We first prove that

{Y n} is tight in C (R+,Rd). (2.4)

To check this we decompose Y n as follows

Y nt = X0 +

∫ t

ρnt

σn(Xn
s ) dWn

s +

∫ ρnt

0

σn(Xn,ρn

s− ) dWn
s +

∫ ρnt

0

(σn(Xn
s )− σn(Xn,ρn

s− )) dWn
s

+

∫ t

0

bn(Xn
s ) ds ≡ X0 + In,1t + In,2t + In,3t + In,4t , t ∈ R+.

Of course

sup
t≤q
|In,1t | = sup

t≤q
|
∫ t

ρnt

σn(Xn
s ) dWn

s | ≤ C sup
t≤q+1

|∆W ρn

t | −→ 0, P -a.s., q ∈ R+.

It is also clear that uniform boundedness of {bn} implies tightness of {In,4} and that

sup
t≤q
|∆In,2t | −→P 0 and sup

t≤q
|∆In,3t | −→P 0
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Wong-Zakai type approximations

for q ∈ R+. To check that {In,2} and {In,3} are C-tight we use Aldous criterion (see [2]).
Since In,20 = In,30 = 0, it suffices to show that In,2γn+δn

− In,2γn −→P 0 and In,3γn+δn
− In,3γn −→P 0

for any q ∈ R+, any sequence {γn} of Fρn stopping times and any sequence of constants
{δn} such that γn + δn ≤ q and δn → 0. Using uniform boundedness of {σn} and the fact

that
∫ ρnt

0
σn(Xn,ρn

s− ) dWn
s =

∫ t
0
σn(Xn,ρn

s− ) dW ρn

s we have

E|In,2γn+δn
− In,2γn |

2 ≤ CE
∫ γn+δn

γn

‖σn(Xn,ρn

s− )‖2 d[W ρn ]s

≤ CE
∫ γn+δn

γn

‖σn(Xn,ρn

s− )‖2 dρns

≤ CE(ρnγn+δn − ρ
n
γn) ≤ C(δn +

1

n
)→ 0 asn→∞.

Clearly,

E|In,3γn+δn
− In,3γn |

2 ≤ CE(

∫ γn+δn

γn

|Xn
s −X

n,ρn

s− | d|Wn|s)2

≤ CE(

[γn+δn]∑
k=[nγn]+1

∫ k
n

k−1
n

∫ s

k−1
n

(σn(Xn
u ) d|Wn|u + bn(Xn

u )du) d|Wn|s)2

+ CE(

[γn+δn]∑
k=[nγn]+1

∫ k
n

k−1
n

(Kn
s −Kn

k−1
n

) d|Wn|s)2 ≡ An,1 +An,2

and

An,1 ≤ CE(

[γn+δn]∑
k=[nγn]+1

∫ k
n

k−1
n

∫ s

k−1
n

(d|Wn|u + du) d|Wn|s)2

≤ CE
(
([W ρn ]γn+δn − [W ρn ]γn) + max

{k; k
n≤q+1}

|∆W ρn

t |δn
)2

≤ C(E(ρnγn+δn − ρ
n
γn)2 + δ2

n) ≤ C(δ2
n +

1

n2
)→ 0 asn→∞.

Since d|Kn|u ≤ C(|σn(Xn
u )| d|Wn|u + |bn(Xn

u )|du) (see, e.g., [1, Lemma 2.4]), we also
have

An,2 ≤ C(δ2
n +

1

n2
)→ 0 asn→∞.

Consequently, {In,2} and {In,3} are C-tight in D (R+,Rd), which completes the proof of
(2.4). Hence, by [21, Proposition 3,4],

{|Kn|q} is bounded in probability (2.5)

and
{(Xn,Kn)} is tight in C (R+,R2d). (2.6)

In particular, (2.6) implies that

sup
t≤q
|Xn

t −X
n,ρn

t | −→
P

0, q ∈ R+. (2.7)

By (2.6), (2.7) without loss of generality we may assume that

(Xn, Xn,ρn , In,3 + In,4,Kn, Y n,W ρn)−→
D

(X̄, X̄, Ī, K̄, Ȳ , W̄ ) in D (R+,R6d), (2.8)
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Wong-Zakai type approximations

where W̄ is a Wiener process adapted to the natural filtration (F̄t) of the pair (X̄, W̄ , Ī).
By [21, Proposition 4], to complete the proof, it suffices to show that (Xn,Kn, Y n)

converges in law to (X̄, K̄, Ȳ ) in D (R+,R3d), where Ȳt = X̄0 +
∫ t

0
σ(X̄s) dW̄s + Īt and

Īt =
∫ t

0
H̄s ds, t ∈ R+, for some bounded and progressively measurable process H̄. By

the functional convergence theorem for stochastic integrals (see, e.g., [7, Theorem 2.6]
or [9, Theorem 2.2]),

(In,2, In,3 + In,4, Xn,Kn,W ρn)−→
D

(

∫ ·
0

σ(X̄s) dW̄s, Ī, X̄, K̄, W̄ ) in D (R+,R5d).

Hence (Xn,Kn, Y n) = (X0 + In,1 + In,2 + In,3 + In,4,Kn, Y n)−→D(X̄, K̄, Ȳ ) and what is
left is to show that Ī has the desired form. By simple calculations for any s < t ≤ q

|In,3t − In,3s |+ |I
n,4
t − In,4s | ≤ C(

∫ t

s

|Xn
u −X

n,ρn

u− | d|Wn|u + (t− s))

≤ C(

[nt]∑
k=[ns]+1

∫ k
n

k−1
n

∫ s

k−1
n

(d|Wn|u + du) d|Wn|s) + (t− s))

≤ C
(
([W ρn ]t − [W ρn ]s) + ( max

k; k
n≤q
|∆W ρn

t |+ 1)(t− s)
)
.

Since supt≤q |[W ρn ]t − dt| −→P 0 and supt≤q |∆|W
ρn

t | −→P 0, it is clear that |Īt − Īs| ≤
C(t− s), which completes the proof.

Remark 2.3. To prove tightness of {(Xn,Kn)} instead of Aldous criterion one can use
Kolmogorov’s tightness criterion and estimates from [1, Lemma 4.5].

Theorem 2.4. Let the assumptions of Theorem 2.2 hold. If one of the two following
conditions is satisfied

(i) σn, σ ∈ C1(D̄,Rd ⊗Rd) and σn,′→
K
σ′, bn→

K
b,

(ii) σn ∈ C1(D̄,Rd ⊗Rd), σσ∗ is elliptic and ld(Rd \G) = 0, where

G = {x ∈ D̄; for any {xn} ⊂ D̄, if xn → x thenσn,′(xn)→ σ′(x), bn(xn)→ b(x)},

then each limit point of {(Xn,Kn)} is a weak solution of (1.2).

Proof. First let us assume (i). Note that

In,3t =

[nt]∑
k=1

∫ k
n

k−1
n

(σn(Xn
s )− σn(Xn

k−1
n

)) dWn
s =

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

σn,′(Xn
u ) dXn

u dW
n
s

=

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

σn,′σn(Xn
u ) dWn

u dW
n
s +

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

σn,′(Xn
u ) dKn

u dW
n
s

=

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

σn,′σn(Xn,ρn

u− ) dWn
u dW

n
s +Rnt = Cnt +Rnt , t ∈ R+,

where

Rnt ≡
[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

(σn,′σn(Xn
u )− σn,′σn(Xn,ρn

u− )) dWn
u dW

n
s

+

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

σn,′(Xn
u ) dKn

u dW
n
s

)
≡ Rn,1t +Rn,2t , t ∈ R+.
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Wong-Zakai type approximations

More precisely, i-th coordinate of Rnt has the form

(Rnt )i = (Rn,1t )i + (Rn,2t )i

=

d∑
j=1

d∑
l=1

d∑
m=1

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

(
∂σni,j
∂xl

σnl,m((Xn
u )−

∂σni,j
∂xl

σnl,m(Xn,ρn

u− )) dWn,m
u dWn,j

s

+

d∑
j=1

d∑
l=1

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

∂σni,j
∂xl

(Xn
u ) dKn,l

u dWn,j
s .

Clearly,

|Rn,1t | ≤ C max
j,l,m

sup
s≤t
|
∂σni,j
∂xl

σnl,m((Xn
u )−

∂σni,j
∂xl

σnl,m((Xn,ρn

u− )|[W ρn ]t, t ∈ R+,

and

|Rn,2t | ≤ C max
j,l

sup
s≤t
|∆W ρn ||

∂σni,j
∂xl

(Xn
u )||Kn|t, t ∈ R+.

Since σn,′σn→K σ
′σ, it follows by (2.7) that supt≤q |Rnt | −→P 0, q ∈ R+. Observe now

that i-th coordinate of Cnt has the form

(Cnt )i =

d∑
j=1

d∑
l=1

d∑
m=1

[nt]∑
k=1

∫ k
n

k−1
n

∫ s

k−1
n

∂σni,j
∂xl

σnl,m(Xn,ρn

u− ) dWm,n
u dW j,n

s

=
1

2

d∑
j=1

d∑
l=1

d∑
m=1

∫ ρnt

0

∂σni,j
∂xl

σnl,m(Xn,ρn

u− ) d[Wm,ρn ,W j,ρn ]s, t ∈ R+.

Since supt≤q ‖[[W ρn ]]t − tId‖−→P 0, q ∈ R+, it follows from [7, Theorem 2.6] or [9,
Theorem 2.2] that

(In,2, Cn, In,4, Xn,Kn,W ρn)−→
D

(

∫ ·
0

σ(X̄s) dW̄s, C̄,

∫ ·
0

b(X̄s)ds, X̄, K̄, W̄ ) (2.9)

in D (R+,R6d), where i-th coordinate of C̄ equals C̄it = 1
2

∑d
j=1

∑d
l=1

∫ t
0
∂σi,j

∂xl
σl,j(X̄s) ds.

Therefore (X̄, K̄) satisfies the reflected SDE

X̄t = X̄0 +

∫ t

0

σ(X̄s) dW̄s +

∫ t

0

(
1

2
σ′σ(X̄s) + b(X̄s)) ds+ K̄t, t ∈ R+, (2.10)

on (Ω̄, F̄ , (F̄t), P̄ ), i.e. (X̄, K̄) is a weak solution of (1.2).
Now we assume (ii). We are going to show that as before each limit point (X̄, K̄) of

{(Xn,Kn)} satisfies (2.10) (From Theorem 2.2 we only know that (X̄, K̄) satisfies (2.3)).
To this end, we first show Krylov’s estimates for solutions of (2.3). Let τR = inf{t ≥ 0 :

|X̄t| > R}. We will show that for any R > 0 there exists C > 0 depending only on a, d,R, q
such that

E

∫ q∧τR

0

f(X̄s) ds ≤ C‖f‖Ld(B(0,R)∩D̄) (2.11)

for all non-negative measurable f : D̄ → R+. As in [17, Lemma 1] (see also [18])
we will apply Krylov’s estimates for continuous semimartingales. Let X̄c denote the
martingale part of X̄. Then QX̄

c

s = a(X̄s)/tr a(X̄s), which implies that (detQX̄
c

s )1/d =

(det a(X̄s))
1/d/tr a(X̄s). Since a is elliptic, it follows that (tr a(X̄s)

−1 ≤ c(detQX̄
c

s )1/d.
Consequently,

ds = (d tr a(X̄s))
−1d < X̄c >s≤

c

d
(detQX̄

c

s )1/d d < X̄c >s
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and

E

∫ q∧τR

0

f(X̄s) ds ≤
c

d
E

∫ q∧τR

0

(detQX̄
c

s )1/df(X̄s) d < X̄c >s .

By [1, Lemma 2.4] and boundedness of H̄, E|K̄|q <∞ and E|
∫ ·

0
H̄s ds|q <∞. Therefore

applying [12, Theorem 6] to f we get (2.11). From (2.11) and the fact that τR ↗ ∞ it
follows that ∫ q

0

1{X̄s∈Gc} ds = 0, q ∈ R+. (2.12)

We will now use (2.12) to show that supt≤q |Rnt | −→P 0, q ∈ R+, and (X̄, K̄) satisfies
(2.10). To this end, let us set Ank ≡ |

√
n(W k

n
−W k−1

n
)|2, n, k ∈ N and observe that

sup
t≤q
|Rn,1t | ≤ C max

j,l,m

∑
{k; k

n≤q}

∫ k
n

k−1
n

|
∂σni,j
∂xl

σnl,m((Xn
u )−

∂σni,j
∂xl

σnl,m((Xn,ρn

u− )|dsAnk

≤ C max
j,l,m

∑
{k; k

n≤t}

∫ k
n

k−1
n

|
∂σni,j
∂xl

σnl,m((Xn
u )−

∂σni,j
∂xl

σnl,m((Xn,ρn

u− )|dsAnk1{An
k≤M}

+ C max
j,l,m

∑
{k; k

n≤t}

∫ k
n

k−1
n

|
∂σni,j
∂xl

σnl,m((Xn
u )−

∂σni,j
∂xl

σnl,m((Xn,ρn

u− )|dsAnk1{An
k>M}

≡ Rn,3q (M) +Rn,4q (M).

By the Skorokhod representation theorem we may assume that Xn → X̄ in C (R+,Rd)

P -a.s. Therefore by (2.12) for any M > 0 we have

Rn,3q (M) ≤ C max
j,l,m

∫ ρnq

0

|
∂σni,j
∂xl

σnl,m((Xn
s )−

∂σni,j
∂xl

σnl,m((Xn,ρn

s− )|ds

= C max
j,l,m

∫ ρnq

0

|
∂σni,j
∂xl

σnl,m((Xn
s )−

∂σni,j
∂xl

σnl,m((Xn,ρn

s− )|1{X̄s∈G}ds

−→ 0, P -a.s.

It is clear that all Ank have the same χ2 distribution. Using this and boundedness of σ′σ
gives

ERn,4q (M) ≤ CE
( ∑
{k; k

n≤q}

1

n
Ank1{An

k>M}
)
≤ Cq Eχ2

{χ2>M} −→ 0 as M ↗∞.

Therefore supt≤q |R
n,1
t | −→P 0, q ∈ R+. Since, as in case (i),

sup
t≤q
|Rn,2t | ≤ C max

j,l
sup
t≤q
|∆W ρn

t ||
∂σni,j
∂xl

(Xn
t )||Kn|q −→

P
0,

we get supt≤q |Rnt | −→P 0, q ∈ R+. To check (2.10), we first observe that uniform
boundedness of σn,′σn implies that

E|Cnq − C̃nq |2 → 0, q ∈ R+,

where

(C̃nt )i =
1

2

d∑
j=1

d∑
l=1

∫ ρnt

0

∂σni,j
∂xl

σnl,j(X
n,ρn

s− ) dρns =
1

2

d∑
j=1

d∑
l=1

∫ ρnt

0

∂σni,j
∂xl

σnl,j(X
n,ρn

s− ) ds,
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i = 1, . . . , d. Since Cn− C̃n is a martingale, this also implies that supt≤q |Cnt − C̃nt | −→P 0,
q ∈ R+. Moreover, assuming without loss of generality that Xn → X̄ P -a.s. and using
(2.12) we see that for any i = 1, . . . , d,

sup
t≤q
|(C̃nt )i − (C̄t)i| ≤

C

n
+

d∑
j=1

d∑
l=1

∫ ρnt

0

|
∂σni,j
∂xl

σnl,j(X
n,ρn

s− )− ∂σi,j
∂xl

σl,j(X̄s)| ds

=
C

n
+

d∑
j=1

d∑
l=1

∫ ρnt

0

|
∂σni,j
∂xl

σnl,j(X
n,ρn

s− )− ∂σi,j
∂xl

σl,j(X̄s)|1{X̄s∈G} ds

−→ 0, P -a.s.

Similarly we prove that

sup
t≤q
|In,4t −

∫ t

0

b(X̄s) ds| ≤
∫ q

0

|bn(Xn
s )− b(X̄s)| ds

=

∫ q

0

|bn(Xn
s )− b(X̄s)|1{X̄s∈G} ds −→ 0, P -a.s.

Therefore (2.10) holds true and the proof is complete.

We recall that we say that the weak uniqueness holds for (1.2) if the laws L(X̄, K̄),
L(X̄ ′, K̄ ′) of any weak solutions (X̄, K̄), (X̄ ′, K̄ ′) of (1.2), possibly defined on different
probability spaces, are the same. SDE (1.2) is weakly unique for instance if b is bounded,
σ is bounded and Lipschitz continuous, σσ∗ is uniformly elliptic and ∂D is regular (see
Stroock and Varadhan [25] for more details).

Corollary 2.5. Under assumptions of Theorem 2.2, if weak uniqueness holds for (1.2),
then

(Xn,Kn)−→
D

(X,K) in C (R+,R2d),

where (X,K) is a unique weak solution of (1.2).

Proof. Follows immediately from Theorem 2.4.

Example 2.6. Assume that d = 2, D = B(0, 2), σ1,1(x) = |x1| + 1, σ2,2(x) = |x2| + 1,
σ1,2(x) = σ2,1(x) = 0, X0 = b = 0. By [25] there exists a unique weak solution (X,K) of
the reflected SDE

Xi
t =

∫ t

0

(|Xi
s|+ 1)dW i

s +
1

2

∫ t

0

(1{X1
s>0} − 1{Xi

s<0})(|Xi
s|+ 1)ds+Ki

t , i = 1, 2, t ∈ R+

(These equations are not independent because Ki depends essentially on both coor-
dinates X1 and X2). Set σni,i(x) = σi,i(x) if |x1| > 1/n and σni,i(x) = nx2

i /2 + 1 + 1/(2n)

if |xi| ≤ 1/n, i = 1, 2, σn1,2 = σn2,1 = 0, bn = 0, n ∈ N. By simple calculations,
σn ∈ C1(B(0, 2),R2 ⊗ R2) and σn,′(xn) → σ′(x) for any x /∈ Gc = {x ∈ B(0, 2);x =

(0, x2) or (x1, 0)} and any {xn} such that xn → x. Therefore the assumptions of Corollary
2.5 are satisfied and

(Xn,Kn)−→
D

(X,K) in C (R+,R2d),

where {(Xn,Kn)} is a sequence of Wong-Zakai type approximations of the form (1.1).

We say that the pathwise uniqueness holds for (1.2) if for any probability space
(Ω̄, F̄ , P̄ ) with filtration (F̄t), any X̄0 ∈ D̄ and any (F̄t) Wiener process W̄ such that
L(X̄0, W̄ ) = L(X0,W ) we have P [(X̄t, K̄t) = (X̄ ′t, K̄

′
t) , t ∈ R+ ] = 1 for any two (F̄t)

adapted strong solutions (X̄, K̄), (X̄ ′, K̄ ′) on ( Ω̄, F̄ , P̄ ) of the SDE (1.2).
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In the case of discontinuous coefficients results on pathwise uniqueness of (1.2)
are known only for d = 1, D = R+. For instance, Semrau [20] have proved that if b is
bounded and σ is Lipschitz continuous and uniformly positive, then (1.2) is pathwise
unique. Some results on pathwise uniqueness can also be found in the earlier paper by
Zhang [29].

Corollary 2.7. Under the assumptions of Theorem 2.2, if pathwise uniqueness holds for
(1.2) then

sup
t≤q

(|Xn
t −Xt|+ |Kn

t −Kt|)−→
P

0, q ∈ R+,

where (X,K) is the unique strong solution of (1.2).

Proof. We have to prove that {(Xn,Kn)} converges in probability. For this purpose, as
Gyöngy and Krylov [6], it suffices to show that from any subsequences (l) ⊂ (n), (m) ⊂ (n)

it is possible to choose further subsequences (lk) ⊂ (l), (mk) ⊂ (m) such that

(X lk ,Klk , Xmk ,Kmk)−→
D

(X̄, K̄, X̄, K̄) in C (R+,R4d).

From the proof of Theorem 2.2 we deduce that {(X l,Kl, Xm,Km,W )} is tight in
C (R+,R5d). Therefore we can choose subsequences (lk) ⊂ (l), (mk) ⊂ (m) such that

(X lk ,Klk , Xmk ,Kmk ,W )−→
D

(X̄, K̄, X̄ ′, K̄ ′, W̄ ), in C (R+,R5d),

where W̄ is a Wiener process adapted to the natural filtration F X̄,X̄′,K̄,K̄′,W̄ and
L(X̄0, W̄ ) = L(X0,W ). By arguments from the proof of Theorem 2.4, (X̄, K̄) and (X̄ ′, K̄ ′)

are two solutions to (1.2) with W̄ instead of W and X̄0 instead of X0. Since (1.2) is path-
wise unique, (X̄, K̄) = (X̄ ′, K̄ ′), and consequently, {(Xn,Kn)} converges in probability
in C (R+,R2d) to some processes (X,K). It follows that (2.9) holds with the convergence
in probability, which implies that (X,K) is a strong solution of (1.2). Using once again
pathwise uniqueness property of (1.2) completes the proof.

Example 2.8. Assume that d = 1, D = R+, σ(x) = min(|x − 2| + 1, 3), X0 = b = 0. By
[20] there exists a unique strong solution (X.K) of the reflected SDE

Xt =

∫ t

0

min(|Xs − 2|+ 1, 3) dWs

+
1

2

∫ t

0

(1{2<Xs<4} − 1{Xs<2}) min(|Xs − 2|+ 1, 3) ds+Kt.

Set

σn(x) =


σ(x), x ∈ [0, 2− 1

n ] ∪ [2 + 1
n , 4−

1
n ] ∪ [4 + 1

n ,∞),
n
2 (x− 2)2 + 1

2n + 1, x ∈ (2− 1
n , 2 + 1

n ),

−n4 (x− 4)2 + 1
2 (x− 4)− 1

4n + 1, x ∈ (4− 1
n , 4 + 1

n ),

and bn = 0, n ∈ N. Clearly, σn ∈ C1(R+,R) and σn,′(xn) → σ′(x) for any x /∈ {2, 4} and
any {xn} such that xn → x. Let (Xn,Kn) denote the Wong-Zakai type approximation of
the form (1.1). Then by Corollary 2.7,

sup
t≤q

(|Xn
t −Xt|+ |Kn

t −Kt|)−→
P

0, q ∈ R+.
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3 Rate of convergence of Wong-Zakai type approximations

In this section we consider Wong-Zakai type approximations of (1.2) with σn = σ,
bn = b, i.e.,

Xn
t = X0 +

∫ t

0

σ(Xn
s ) dWn

s +

∫ t

0

b(Xn
s ) ds+Kn

t , t ∈ R+.

We assume that the coefficients satisfy the following condition

σ ∈ C1(D̄,Rd ⊗Rd), σ, σ′σ, b are bounded and Lipschitz continuous. (3.1)

We will compare the Wong-Zakai type approximation with the classical Euler approxima-
tion (X̄n, K̄n) of the form X̄n

0 = Ȳ n0 = X0, K̄n
0 = 0,

Ȳ nk
n

= Ȳ nk−1
n

+ σ(X̄n
k−1
n

)(W k
n
−W k−1

n
) + ( 1

2σ
′σ + b)(X̄n

k−1
n

) 1
n

X̄n
k
n

= ΠD̄

(
X̄n

k−1
n

+ (Ȳ nk
n

− Ȳ nk−1
n

)
)

K̄n
k
n

= K̄n
k−1
n

+ (X̄n
k
n

− X̄n
k−1
n

)− (Ȳ nk
n

− Ȳ nk−1
n

)

and X̄n
t = X̄n

k−1
n

, K̄n
t = K̄n

k−1
n

, Ȳ nt = Ȳ nk−1
n

, t ∈ [k−1
n , kn ), k ∈ N. One can observe that

(X̄n, K̄n) is a solution of discrete reflected SDE

X̄n
t = X0 +

∫ t

0

σ(X̄n
s−) dW ρn

s +

∫ t

0

(
1

2
σ′σ + b)(X̄n

s−) dρns + K̄n
t , t ∈ R+, (3.2)

which means that the pair (X̄n, K̄n) is a solution of the Skorokhod problem associated
with Ȳ n = X0 +

∫ ·
0
σ(X̄n

s−)dW ρn

s +
∫ ·

0
( 1

2σ
′σ + b)(X̄n

s−) dρns .

Remark 3.1. The rate of convergence of the Euler scheme for (1.2) is studied in [22]. In
particular, in [22, Theorem 4] it is proved that for any q ∈ R+ and ε > 0,

{sup
t≤q
|X̄n

t −Xt|2} = OP ((
1

n
)1/2−ε).

In fact, the calculations from [22, Theorem 4] when combined with the following Lp

estimates of modulus of continuity for Itô process Y with bounded coefficients

E sup
s,t≤q, |s−t|≤1/n

|Yt − Ys|2p = O
(
(
log n

n
)p
)
, q ∈ R+, p ∈ N (3.3)

(see [5, 23]) give better rate. Namely, one can show that

{sup
t≤q
|X̄n

t −Xt|2} = OP ((
log n

n
)1/2), q ∈ R+.

Theorem 3.2. Assume (A), (B) and (3.1). Then

{sup
t≤q
|Xn

t −Xt|2} = OP ((
log n

n
)1/2), q ∈ R+.

Proof. We follow the proof of [1, Theorem 2.9] and [24, Theorem 4.2]. By [1, Lemma
2.4] there is C > 0 such that for t ∈ ( kn ,

k+1
n ],

|Xn
t −X

n,ρn

t− | ≤ C(

∫ t

k
n

||σ(Xn
s || d|Wn|s +

∫ t

k
n

|b(Xn
s | ds, t ∈ R+.

Hence

sup
t≤q
|Xn

t −X
n,ρn

t− | ≤ C( sup
t≤q+1

|∆W ρn

t |+
1

n
), q ∈ R+. (3.4)
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Moreover,

sup
t≤q
|∆X̄n

t | ≤ 2 sup
t≤q
|∆Ȳ nt | ≤ C(sup

t≤q
|∆W ρn

t |+
1

n
), q ∈ R+. (3.5)

Set τnb = inf{t > 0; max(|X̄n
t |, |K̄n|t|, Xn,ρn

t |, |Kn,ρn |t) > b}, n ∈ N, b ∈ N. Of course the
processes X̄n, |K̄n|, Xn,ρn , |Kn,ρn | stopped at τnb − are bounded by b. Since by arguments
from the proof of Theorem 2.2 and [22, Theorem 4] for any q ∈ R+ the sequences
{supt≤q |Xn

t |}, {|Kn|q}, {supt≤q |X̄n
t |} and {|K̄n|q} are bounded in probability,

lim
b→∞

lim sup
n→∞

P (τnb ≤ q) = 0, q ∈ R+. (3.6)

By [19, Lemma 2.3(i)] and the integration by parts formula,

|X̄n
t −X

n,ρn

t |2 ≤ [Ȳ n − Y n,ρ
n

]t +
1

r0

∫ t

0

|X̄n
s− −X

n,ρn

s− | d(|K̄n|+ |Kn,ρn |)s

+ 2

∫ t

0

(X̄n
s− −X

n,ρn

s− ) d(Ȳ n − Y n,ρ
n

)s +Rn,1t

≡ In,1t + In,2t + In,3t +Rn,1t , (3.7)

whereRn,1t ≡ 1
r0

∫ ρnt
0
|(X̄n

s −X̄n
s−)−(Xn

s −X
n,ρn

s− )|2d(|K̄n|+|Kn|)s−2
∫ ρnt

0
(Y n,ρ

n

s −Y ns )d(K̄n−
Kn)s. By (3.3) and (3.4), E supt≤q∧τn

b −
|Rn,1t | ≤ C( logn

n )1/2. Set ∆Wk ≡W k
n
−W k−1

n
, k ∈ N.

Since

Ȳ nt − Y
n,ρn

t =

∫ t

0

σ(X̄n
s−)− σ(Xn,ρn

s− ) dW ρn

s −
∫ ρnt

0

σ(Xn
s )− σ(Xn,ρn

s− ) dWn
s

+

∫ t

0

(
1

2
σ′σ + b)(X̄n

s−) dρns −
∫ ρnt

0

b(Xn
s ) ds,

it follows by (3.1) that

[Ȳ n − Y n,ρ
n

]t ≤ C
( [nt]∑
k=1

|X̄n
k−1
n

−Xn
k−1
n

|2|∆Wk|2 + sup
s≤t
|Xn

t −X
n,ρn

t− |2[W ρn ]t +
t

n

)
.

By the above and (3.4),

In,1t ≤ C
∫ t

0

|X̄n
s− −X

n,ρn

s− |2 d[W ρn ]s +Rn,2t ,

where E supt≤q∧τn
b −
|Rn,2t | ≤ C( logn

n )1/2. To estimate In,3t we first observe that for any
n, k ∈ N,

∆(Ȳ n − Y n,ρ
n

) k
n

= (σ(X̄n
k−1
n

)− σ(Xn,ρn

k−1
n

))∆Wk − n
∫ k

n

k−1
n

(σ(Xn
s )− σ(Xn,ρn

k−1
n

)) ds∆Wk

+
1

2
σ′σ(X̄n

k−1
n

)∆Wk∆Wk +
1

2
σ′σ(X̄n

k−1
n

)(
1

n
Id −∆Wk∆Wk)

+ (b(X̄n
k−1
n

)− b(Xn,ρn

k−1
n

))
1

n
−
∫ k

n

k−1
n

(b(Xn
s )− b(Xn,ρn

k−1
n

)) ds

≡ ∆n,1
k + ∆n,2

k + ∆n,3
k + ∆n,4

k + ∆n,5
k + ∆n,6

k .
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By Itô’s formula applied to the bounded variation process Xn,

∆n,2
k = −n

∫ k
n

k−1
n

∫ s

k−1
n

σ′(Xn
u )dXn

u ds∆Wk

= −n2

∫ k
n

k−1
n

∫ s

k−1
n

σ′σ(Xn
u ) du ds∆Wk∆Wk

− n
∫ k

n

k−1
n

∫ s

k−1
n

(σ′b(Xn
u )du+ dKn

u )ds∆Wk

≡ −1

2
σ′σ(Xn

k−1
n

)∆Wk∆Wk + ∆n,7
k = −∆n,3

k + ∆n,7
k .

Clearly,

|∆n,7
k | ≤ C

(
( sup
u∈[ k−1

n , kn )

|Xn
u −Xn

k−1
n

||∆Wk|2 + |∆Wk|(
1

n
+ |Kn|[ k−1

n , kn ])
)

≤ C
(
( sup
t≤q+1

|∆W ρn

t |+
1

n
)|∆Wk|2 + sup

t≤q
|∆W ρn

t |(
1

n
+ |Kn|[ k−1

n , kn ])
)
.

Similarly, |∆n,6
k | ≤ C(supt≤q+1 |∆W

ρn

t |+ 1
n ) 1

n . Consequently,

|In,3t | ≤
[nt]∑
k=1

(X̄n
k−1
n

−Xn,ρn

k−1
n

)(σ(X̄n
k−1
n

)− σ(Xn,ρn

k−1
n

))∆Wk +

[nt]∑
k=1

(X̄n
k−1
n

−Xn,ρn

k−1
n

)∆n,4
k

+

[nt]∑
k=1

(X̄n
k−1
n

−Xn,ρn

k−1
n

)(b(X̄n
k−1
n

)− b(Xn,ρn

k−1
n

))
1

n
+Rn,3t

≤ |
∫ t

0

(X̄n
s− −X

n,ρn

s− )(σ(X̄n
s−)− σ(Xn,ρn

s− )) dW ρn

s |+
[nt]∑
k=1

(X̄n
k−1
n

−Xn,ρn

k−1
n

)∆n,4
k

+ |
∫ t

0

(X̄n
s− −X

n,ρn

s− )(b(X̄n
s−)− b(Xn,ρn

s− )) dρns |+Rn,3t ,

where E supt≤q∧τn
b −
|Rn,3t | ≤ C( logn

n )1/2. Since by Burkholder’s inequality,

E sup
t≤q∧τn

b −
|

[nt]∑
k=1

(X̄n
k−1
n

−Xn,ρn

k−1
n

)∆n,4
k |

2 ≤ C

n
,

substituting previous estimates into (3.7) we conclude that

|X̄n
t −X

n,ρn

t |2 ≤ C
∫ t

0

|X̄n
s− −X

n,ρn

s− |2 dρns

+
1

r0

∫ t

0

|X̄n
s− −X

n,ρn

s− |2 d(|K̄n|+ |Kn,ρn |)s

+ |
∫ t

0

(X̄n
s− −X

n,ρn

s− )(σ(X̄n
s−)− σ(Xn,ρn

s− )) dW ρn

s |+Rnt , (3.8)

where εn = E supt≤q∧τn
b −
|Rnt | ≤ C( logn

n )1/2. Fix q ∈ R+ and b ∈ N. By (3.8) there is

C > 0 such that for every (Fρ
n

t ) stopping time τn,

E sup
t<γn

|X̄n
t −X

n,ρn

t |2 ≤ CE
∫ γn−

0

sup
u≤s
|X̄n

u− −X
n,ρn

u− |2 d(ρn + |K̄n|+ |Kn,ρn |)s

+ E( sup
t<γn

|
∫ t

0

(X̄n
s− −X

n,ρn

s− )(σ(X̄n
s−)− σ(Xn,ρn

s− )) dW ρn

s |) + εn,
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where γn = τn ∧ q ∧ τnb . Since σ is Lipschitz continuous, it follows by the version of
Metivier-Pellaumail inequality proved in Pratelli [14] and Schwartz inequalities that

In,8 ≡ E( sup
t<γn

|
∫ t

0

(X̄n
s− −X

n,ρn

s− )(σ(X̄n
s−)− σ(Xn,ρn

s− )) dW ρn

s |)

≤ cE(

∫ γn−

0

|X̄n
s− −X

n,ρn

s− |4 d([W ρn ] + ρn)s)
1/2

≤ cE sup
t<γn

|X̄n
s− −X

n,ρn

s− |(
∫ γn−

0

|X̄n
s− −X

n,ρn

s− |2 d([W ρn ] + ρn)s)
1/2

≤ c(E sup
s<γn

|X̄n
s− −X

n,ρn

s− |2)1/2(E

∫ γn−

0

|X̄n
s− −X

n,ρn

s− |2 dρns )1/2.

Therefore there is c′ > 0 such that

In,8 ≤ 1

2
E sup
s<γn

|X̄n
s− −X

n,ρn

s− |2 + c′E

∫ γn−

0

|X̄n
s− −X

n,ρn

s− |2 dρns .

By the above estimates,

E sup
t<γn

|X̄n
t −X

n,ρn

t |2 ≤ CE
∫ γn−

0

sup
u≤s
|X̄n

u−−X
n,ρn

u− |2 d(ρn + |K̄n|+ |Kn,ρn |)s + 2εn. (3.9)

Set Dn = X̄n−Xn,ρn , An = ρn+ |K̄n|+ |Kn,ρn | and observe that by (3.9), for every (Fρ
n

t )

stopping time τn,

E sup
t<τn

|Dn,(q∧τn
b )−

t |2 = E sup
t<γn

|Dn
t |2 ≤ CE

∫ γn−

0

sup
u≤s
|Dn

u−|2 dAns + 2εn

= CE

∫ τn−

0

sup
u≤s
|Dn,(q∧τn

b )−
u− |2 dAn,(q∧τ

n
b )−

s + 2εn.

Since A
n,(q∧τn

b )−
∞ ≤ q + 2b, it follows by a stochastic version of Gronwall’s lemma (see,

e.g., [11, Lemma 2] or [21, Lemma 3 (ii)]) that

E sup
t<q∧τn

b

|X̄n
t −X

n,ρn

t |2 = E sup
t
|Dn,(q∧τn

b )−
t |2 ≤ 2εn exp{C(q + 2b))} ≤ C(

log n

n
)1/2.

Using (3.4), (3.6) and Remark 3.1 completes the proof.

References

[1] Aida, S. and Sasaki, K.: Wong-Zakai approximation of solutions to reflecting stochastic
differential equations on domains in Euclidean spaces. Stochastic Process. Appl., 123, (2013),
3800–3827. MR-3084160

[2] Aldous, D. J.: Stopping time and tightness. Ann. Probab., 6, (1978), 335–340. MR-0474446

[3] Doss, H. and Priouret, P.: Support d’un processus de reflexion. Z. Wahrsch. Verw. Gebiete,
61 (3), (1982), 327–345. MR-0679678

[4] Evans, L. C. and Stroock, D. W.: An approximation scheme for reflected stochastic differential
equations. Stochastic Process. Appl., 121, (2011), 1464–1491. MR-2802461

[5] Fischer, M. and Nappo, G.: On the modulus of continuity of Itô processes. Stoch. Anal. Appl.,
28, (2010), 103–122. MR-2597982

[6] Gyöngy, I. and Krylov, N.: Existence of strong solutions for Itô stochastic equations via
approximations. Probab. Theory Related Fields,105, (1996), 143–158. MR-1392450

EJP 19 (2014), paper 118.
Page 14/15

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=3084160
http://www.ams.org/mathscinet-getitem?mr=0474446
http://www.ams.org/mathscinet-getitem?mr=0679678
http://www.ams.org/mathscinet-getitem?mr=2802461
http://www.ams.org/mathscinet-getitem?mr=2597982
http://www.ams.org/mathscinet-getitem?mr=1392450
http://dx.doi.org/10.1214/EJP.v19-3425
http://ejp.ejpecp.org/


Wong-Zakai type approximations

[7] Jakubowski, A., Mémin, J. and Pages, G.: Convergence en loi des suites d’intégrales stochas-
tiques sur l’espace D1 de Skorokhod. Probab. Theory Related Fields, 81, (1989) 111–137.
MR-0981569

[8] Kohatsu-Higa, A.: Stratonovich type SDEs with normal reflection driven by semimartingales.
Sankhya 63 A (2), (2001), 194-228. MR-1897450

[9] Kurtz, T. G. and Protter, P.: Weak limit theorems for stochastic integrals and stochastic
differential equations. Ann. Probab., 19, (1991), 1035–1070. MR-1112406

[10] Lions, P. L. and Sznitman, A. S.: Stochastic Differential Equations with Reflecting Boundary
Conditions. Comm. Pure Appl. Math., 37, (1984), 511–537. MR-0745330

[11] Mackevicius, V.: Sp stability of symmetric stochastic differential equations with discontinu-
ous driving semimartingales. Ann. Inst. Henri Poincaré B, 23, (1987), 575–592. MR-0928004

[12] Melnikov, A. V.: Stochastic equations and Krylov’s estimates for semimartingales. Stochastics,
10, (1983), 81–102. MR-0716817

[13] Pettersson, R.: Wong-Zakai approximations for reflecting stochastic differential equations.
Stochastic Anal. Appl., 17 (4), (1999), 609–617. MR-1693543

[14] Pratelli, M.: Majoration dans Lp du type Metivier-Pellaumail pour les semimartingales.
Seminaire de Probab. XVII Lect. Notes in Math., 986 Springer Berlin, New York, (1983),
125–131. MR-0770405

[15] Ren, J. and Xu, S.: A transfer principle for multivalued stochastic differential equations. J.
Funct. Anal., 256 (9), (2009), 2780–2814. MR-2502423

[16] Ren, J. and Xu, S.: Support theorem for stochastic variational inequalities. Bull. Sci Math.,
134 (8), (2010), 826–856. MR-2737335
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[22] Słomiński, L.: On approximation of solutions of multidimensional SDE’s with reflecting
boundary conditions. Stochastic Process. Appl., 50, (1994), 197–219. MR-1273770
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[24] Słomiński, L.: On reflected Stratonovich stochastic differential equations. Stochastic Process.
Appl., 125, (2015), 759–779. http://dx.doi.org/10.1016/j.spa.2014.10.003

[25] Stroock D. V. and Varadhan, S. R. S.: Diffusion Processes with Boundary Conditions. Comm.
Pure Appl. Math. 24, (1971), 147–225. MR-0277037

[26] Tanaka, H.: Stochastic differential equations with reflecting boundary condition in convex
regions. Hiroshima Math. J., 9, (1979), 163–177. MR-0529332

[27] Wong, E. and Zakai, M.: On the convergence of ordinary integrals to stochastic integrals.
Ann. Math. Statist., 36, (1965), 1560–1564. MR-0195142

[28] Wong, E. and Zakai, M.: On the relation between ordinary and stochastic differential
equations. Internat. J. Energ. Sci., 3, (1965), 213–229. MR-0183023

[29] Zhang, T. S.: On strong solutions of one-dimensional stochastic differential equations with
reflecting boundary. Stochastic Process. Appl., 50, (1994), 135–147. MR-1262335

[30] Zhang, T. S.: Strong Convergence of Wong-Zakai Approximations of Reflected SDEs in a
Multidimensional General Domain. Potential Anal., 41, (2014), 783–815. MR-3264821

Acknowledgments. The author thank the referee for careful reading of the paper and
valuable remarks.

EJP 19 (2014), paper 118.
Page 15/15

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=0981569
http://www.ams.org/mathscinet-getitem?mr=1897450
http://www.ams.org/mathscinet-getitem?mr=1112406
http://www.ams.org/mathscinet-getitem?mr=0745330
http://www.ams.org/mathscinet-getitem?mr=0928004
http://www.ams.org/mathscinet-getitem?mr=0716817
http://www.ams.org/mathscinet-getitem?mr=1693543
http://www.ams.org/mathscinet-getitem?mr=0770405
http://www.ams.org/mathscinet-getitem?mr=2502423
http://www.ams.org/mathscinet-getitem?mr=2737335
http://www.ams.org/mathscinet-getitem?mr=1102869
http://www.ams.org/mathscinet-getitem?mr=1454837
http://www.ams.org/mathscinet-getitem?mr=0873889
http://www.ams.org/mathscinet-getitem?mr=2545849
http://www.ams.org/mathscinet-getitem?mr=1227416
http://www.ams.org/mathscinet-getitem?mr=1227416
http://www.ams.org/mathscinet-getitem?mr=1273770
http://www.ams.org/mathscinet-getitem?mr=1840835
http://www.ams.org/mathscinet-getitem?mr=0277037
http://www.ams.org/mathscinet-getitem?mr=0529332
http://www.ams.org/mathscinet-getitem?mr=0195142
http://www.ams.org/mathscinet-getitem?mr=0183023
http://www.ams.org/mathscinet-getitem?mr=1262335
http://www.ams.org/mathscinet-getitem?mr=3264821
http://dx.doi.org/10.1214/EJP.v19-3425
http://ejp.ejpecp.org/


Electronic Journal of Probability

Electronic Communications in Probability

Advantages of publishing in EJP-ECP

• Very high standards

• Free for authors, free for readers

• Quick publication (no backlog)

Economical model of EJP-ECP

• Low cost, based on free software (OJS1)

• Non profit, sponsored by IMS2, BS3, PKP4

• Purely electronic and secure (LOCKSS5)

Help keep the journal free and vigorous

• Donate to the IMS open access fund6 (click here to donate!)

• Submit your best articles to EJP-ECP

• Choose EJP-ECP over for-profit journals

1OJS: Open Journal Systems http://pkp.sfu.ca/ojs/
2IMS: Institute of Mathematical Statistics http://www.imstat.org/
3BS: Bernoulli Society http://www.bernoulli-society.org/
4PK: Public Knowledge Project http://pkp.sfu.ca/
5LOCKSS: Lots of Copies Keep Stuff Safe http://www.lockss.org/
6IMS Open Access Fund: http://www.imstat.org/publications/open.htm

http://en.wikipedia.org/wiki/Open_Journal_Systems
http://en.wikipedia.org/wiki/Institute_of_Mathematical_Statistics
http://en.wikipedia.org/wiki/Bernoulli_Society
http://en.wikipedia.org/wiki/Public_Knowledge_Project
http://en.wikipedia.org/wiki/LOCKSS
https://secure.imstat.org/secure/orders/donations.asp
http://pkp.sfu.ca/ojs/
http://www.imstat.org/
http://www.bernoulli-society.org/
http://pkp.sfu.ca/
http://www.lockss.org/
http://www.imstat.org/publications/open.htm

	Introduction
	Convergence of Wong-Zakai type approximations
	Rate of convergence of Wong-Zakai type approximations
	References

