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Abstract
We consider a family of centered Gaussian fields on the d-dimensional unit box, whose
covariance decreases logarithmically in the distance between points. We prove tight-
ness of the recentered maximum of the Gaussian fields and provide exponentially
decaying bounds on the right and left tails. We then apply this result to a version of
the two-dimensional continuous Gaussian free field.
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1 Introduction

Main result

Let
{(
Y xε : x ∈ [0, 1]d

)}
ε>0

be a family of centered Gaussian fields indexed by the d-

dimensional unit box [0, 1]d, where d is any positive integer. Suppose that the family
satisfies, for some constant 0 < CY <∞ and all x, y ∈ [0, 1]d, ε > 0,

|Cov (Y xε , Y
y
ε ) + log (max{ε, ‖x− y‖})| ≤ CY (1.1)

and

E
[
(Y xε − Y yε )

2
]
≤ CY ε−1 ‖x− y‖ if ‖x− y‖ ≤ ε, (1.2)

where ‖·‖ is Euclidean distance. Display (1.1) implies that the covariance is logarithmic
for distant points and that the variance is nearly constant. The second condition is im-
posed so that the field does not vary too much for close points. Display (1.2), basic rela-
tions between the moments of Gaussian random variables and Kolmogorov’s continuity
criterion (see [1, Theorem 1.4.17]) imply that the fields have continuous modifications.

When d = 2, an example of a field satisfying (1.1) and (1.2) is the bulk of the mollified
continuous Gaussian free field (MGFF), which will be defined in Section 3.1, and will be
the object of our attention in Section 3.

Set mε = mε,d =
√

2d log(1/ε)− 3/2√
2d

log log(1/ε). The main result of this paper is:
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Log-correlated Gaussian fields

Theorem 1.1. There exist constants 0 < c,C <∞ (depending on CY and d) and a small
ε0 > 0 (depending on CY and d) such that, for all ε ∈ (0, ε0] and all λ ≥ 0,

P

(∣∣∣∣ max
x∈[0,1]d

Y xε −mε

∣∣∣∣ ≥ λ) ≤ Ce−cλ (1.3)

Theorem 1.1 implies, in particular, that
{

maxx∈[0,1]d Y
x
ε −mε : ε ∈ (0, ε0]

}
is tight and

that, for all ε ∈ (0, ε0], ∣∣∣∣E [ max
x∈[0,1]d

Y xε

]
−mε

∣∣∣∣ ≤ C
for some constant C depending on CY and d.

The main idea of the proof of Theorem 1.1 is to use Slepian’s Lemma (see [2, Theo-
rem 2.2.1]) to compare the maximum of the field Yε with the maximum of the modified
branching Brownian motion (MBBM), which is a continuous time version of the mod-
ified branching random walk (MBRW), a field introduced by Bramson and Zeitouni in
[3]. Since Slepian’s Lemma only allows comparison of fields with the same index set, we
will add an appropriately chosen independent continuous field to the MBBM. Adding an
independent continuous field to the MBBM does not change the maximum much, pro-
vided the continuous field is small and smooth enough. These fields are defined in detail
in Section 2.1. After defining the fields, we compare the right and left tails in Sections
2.2 and 2.3, respectively. We then show, in Section 3, that Theorem 1.1 implies tightness
of the recentered maximum of the MGFF.

A comment on constants: c will always denote a small positive constant and C will
always denote a large positive constant. Both constants are allowed to change from line
to line. The dependence of the constants will be explicit or will be clear from the con-
text. The phrase “absolute constant” will refer to fixed numbers that are independent
of everything.

Related work

Our approach is motivated by recent advances in the study of the two dimensional
discrete Gaussian free field (DGFF). In [3], Bramson and Zeitouni computed the ex-
pected maximum of the DGFF up to an order 1 error and concluded tightness of the
recentered maximum. In [4], Ding obtained bounds on the right and left tail of the re-
centered maximum of the DGFF. Later on, in [5], Bramson, Ding and Zeitouni proved
convergence in distribution of the recentered maximum. The approach of this line of
research is to use first and second moment methods, together with decomposition prop-
erties of the DGFF, to obtain good estimates on tail events. Previous work on the DGFF
includes [6], where Bolthausen, Deuschel and Giacomin obtained asympotics for the
maximum of the DGFF, and [7], where Daviaud studied the extreme points of the DGFF.
On the other hand, previous work on the continuous Gaussian free field (CGFF) includes
[8], where Hu, Miller, and Peres studied the Hausdorff dimension of the “thick points”
of the MGFF, which are closely related to the work of Daviaud. We also mention [9] for
a nice discussion of Gaussian fields induced by Markov processes, and [10] for a survey
on the CGFF.

Our main result implies, in particular, an analog of [3, Theorem 1.1] for the MGFF.
Our approach consists on extending the MBBM by Brownian sheet, so that it is pos-
sible to compare the extended field with scaled log-correlated continuous fields. Log-
correlated Gaussian fields are subject of current interest (see [11], [12], [13]). In par-
ticular, in [12], Madaule proved convergence for stationary centered Gaussian fields
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Log-correlated Gaussian fields

(
Zε(x) : x ∈ [0, 1]d

)
whose covariance satisfies

Cov(Zε(0), Zε(x)) =

∫ log(1/ε)

0

k(erx)dr,

where the fixed kernel k : Rd → R is of class C1, vanishes outside [−1, 1]d, and sat-
isfies k(0) = 1. Theorem 1.1 has weaker conditions on the covariance structure, and
consequently, only tightness is achieved.

In [13], the authors proved the so called “Freezing Theorem for GFF in planar do-
mains” for a sequence of Gaussian fields approximating the continuous GFF by cutting-
off white noise, so that the covariance kernel is proportional to the function Gt :

[0, 1]2 × [0, 1]2 → R given by

Gt(x, y) =

∫ ∞
e−t

p∂[0,1]2(r, x, y)dr,

where p∂[0,1]2(r, x, y) is the transition probability density of a Brownian motion killed at
∂[0, 1]2. In the present paper, we consider a sequence of fields approximating the GFF
by mollifying the Green function (see (3.5)), and we prove tightness. Convergence for
the MGFF is expected to follow by adapting of the arguments given in [5].

2 Comparison to the MBBM

2.1 Auxiliary fields

In this subsection, we rigorously introduce the fields we mentioned in Section 1. A
few properties of these fields will be stated; the proofs of these properties will be given
in the Appendix.

In order to define these fields, it will be notationally more convenient to use [0, 1)d

instead of [0, 1]d as the index set. This will not affect the main result because the supre-
mum of Yε over [0, 1)d is the same, due to continuity, as the maximum over [0, 1]d.

Modified branching Brownian motion

We first divide [0, 1)d into boxes of side length ε > 0. Let Vε =
(
εZd

)
∩ [0, 1)d and, for

v = (vi)1≤i≤d ∈ Vε, let �vε = (
∏

1≤i≤d[vi, vi + ε)) ∩ [0, 1)d. Moreover, if x ∈ �vε , let [x] := v.

The set Vε is, of course, a discretized version of [0, 1)d.
We now define the modified branching Brownian motion (MBBM) as the centered

Gaussian field {ξvε (t) : v ∈ Vε, 0 ≤ t ≤ log(1/ε)} with covariance structure

Cov(ξvε (t), ξuε (s)) =

∫ min{t,s}

0

∏
1≤i≤d

(1− er |vi − ui|)+dr (2.1)

for all 0 ≤ t, s ≤ log (1/ε) and v, u ∈ Vε, where (·)+ = max {·, 0}. For simplicity, write
ξvε = ξvε (log(1/ε)).

Note that, for each point v ∈ Vε, the process (ξvε (t))t is a standard Brownian mo-
tion. Moreover, for each pair v, u ∈ Vε, the Brownian motions are correlated until
t = − log ‖v − u‖∞, at which time their increments become independent. The end time
is t = log (1/ε), because, for the “usual” d-ary branching Brownian motion, it takes
log(1/ε) units of time to generate |Vε| particles (see the proof of Proposition 4.3 for a
definition of the usual d-ary branching Brownian motion).

It will be proved in the Appendix (see Proposition 4.1) that the MBBM exists and
that it satisfies

V ar(ξvε ) = log(1/ε) (2.2)
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Log-correlated Gaussian fields

and, for v 6= u (so that ‖v − u‖∞ ≥ ε),

− log ‖v − u‖∞ − C ≤ Cov(ξvε , ξ
u
ε ) ≤ − log ‖v − u‖∞ (2.3)

for some constant C depending on d. The MBBM also satisfies (see Proposition 4.2)

P

(
max
v∈Vε

ξvε ≥ mε

)
≥ c > 0, (2.4)

where c is a constant depending only on d. It will also be proved in the Appendix (see
Proposition 4.3) that there exist constants 0 < c,C <∞ (depending on d) such that

P

(
max
v∈A

ξvε ≥ mε + z

)
≤ C

(
εd |A|

)1/2
e−cz (2.5)

for all A ⊂ Vε, z ∈ R and ε > 0 small enough, where |A| is the cardinality of A.

Brownian sheet

As mentioned before, we will need an additional continuous Gaussian field. For x =

(xi)1≤i≤d ∈ Rd+, let ψx denote the centered standard Brownian sheet. Recall that it
satisfies

E [ψxψy] =
∏

1≤i≤d

min {xi, yi} .

Define a new field
(
ψxε : x ∈ [0, 1)d

)
, depending on a parameter p ≥ 1, as follows: for

v ∈ Vε, let l be the linear map from �vε onto [p, 2p)d sending v to (p)1≤i≤d = (p, p, . . . , p).
Set

(ψxε : x ∈ �vε ) :
d
=
(
ψl(x) : x ∈ �vε

)
=
(
ψx : x ∈ [p, 2p)d

)
(2.6)

for each v ∈ Vε, and choose ψxε and ψyε to be independent if [x] 6= [y]. Note that the
collection of fields {(ψxε : x ∈ �vε )}v∈Vε consists of i.i.d. copies of Brownian sheet on
[p, 2p)d. Using the covariance structure of the Brownian sheet, it is not hard to see that

pd ≤ V ar (ψxε ) ≤ (2p)d (2.7)

for all x ∈ [0, 1)d, and that (see Proposition 4.5)

pdε−1 ‖x− y‖1 ≤ E
[
(ψxε − ψyε )

2
]
≤ (2p)dε−1 ‖x− y‖1 (2.8)

for all [x] = [y]. Note that p can be chosen as large as desired.

To understand the motivation behind the previous definitions, we invite the reader
to compare the bounds (1.1) and (1.2) with (2.3) and (2.8), respectively. These bounds
will be used in the next sections.

We now proceed to the comparison of the right and left tail of the maximum of the
field Yε (which was defined in Section 1 and satisfies (1.1) and (1.2)) and the maximum
of an appropriate combination of the fields ξε and ψε (which will be specified in the next
section). Note that we will only use Brownian sheet when comparing the right tail; for
the left tail, we will compare directly the MBBM with the field Yε on a discrete index
set.
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2.2 The right tail

Recall from Section 1 that the field Yε satisfies (1.1) and (1.2), by definition.

Proposition 2.1. For ε > 0, let (ξvε : v ∈ Vε) and
(
ψxε : x ∈ [0, 1)d

)
be independent fields,

defined as in (2.1) and (2.6), respectively. Then, there exist δ > 0 small enough and p

large enough (depending on CY and d) such that, for all ε > 0 small enough (depending
on CY and d),

P

(
sup

x∈[0,1)d
Y δxδε ≥ λ

)
≤ P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψxε ≥ λ

)

for all λ ∈ R, where a(x) :=

√(
V ar(Y δxδε )− V ar(ψxε )

)
/V ar(ξ

[x]
ε ).

Proof. We first make sure that V ar(Y δxδε ) − V ar(ψxε ) ≥ 0, so that a(x) is well defined.
Note that (1.1) and (2.7) imply

V ar(Y δxδε )− V ar(ψxε ) ≥ log(1/ε) + log(1/δ)− CY − (2p)d ≥ 0

for all ε > 0 small enough (depending on CY , d and p). As we will see in this proof, p
depends only on CY and d, so a(x) is well defined for all ε > 0 small enough, depending
only on CY and d.

We now check the hypotheses of Slepian’s Lemma (see [2, Theorem 2.2.1]). The
variances of the fields Y δxδε and a(x)ξ

[x]
ε + ψxε are equal by the definition of a(x). We first

choose p so that a(x) ≤ 1. Note that (1.1) and (2.7) imply

a(x)2 =
V ar(Y δxδε )− V ar(ψxε )

V ar(ξ
[x]
ε )

≤ log(1/ε) + log(1/δ) + CY − pd

log(1/ε)
,

so, by choosing p large enough (depending on CY , d and δ), we obtain a(x) ≤ 1, for all
x.

We now compare the covariance for points x 6= y, for which we distinguish two cases:
1. [x] = [y] (that is, �[x]

ε = �[y]
ε ). In this case, (1.2) and (2.8) imply

E

[(
Y δxδε − Y

δy
δε

)2
]
≤ CY (δε)−1 ‖δx− δy‖ ≤ pdε−1 ‖x− y‖1 ≤ E

[
(ψxε − ψyε )

2
]

≤ E
[(
a(x)ξ[x]

ε + ψxε − a(y)ξ[y]
ε − ψyε

)2
]

for p large enough (depending on CY and d). The last inequality is due to the indepen-
dence between ξε and ψε.

2. [x] 6= [y]. In this case, we can apply (2.3) and the independence between ξε, ψ
[x]
ε

and ψ[y]
ε to obtain

Cov(a(x)ξ[x]
ε +ψxε , a(y)ξ[y]

ε +ψyε ) ≤ a(x)a(y)Cov(ξ[x]
ε , ξ[y]

ε ) ≤ a(x)a(y) (− log ‖[x]− [y]‖+ C) .

But a(x)a(y) ≤ 1, so

Cov(a(x)ξ[x]
ε + ψxε , a(y)ξ[y]

ε + ψyε ) ≤ − log ‖[x]− [y]‖+ C.

Note that − log ‖[x]− [y]‖ ≤ − log (max {ε, ‖x− y‖}) + C. Applying (1.1), we obtain

− log (max {ε, ‖x− y‖}) + C ≤ − log (max {δε, ‖δx− δy‖})− CY ≤ Cov(Y δxδε , Y
δy
δε )

for some δ > 0 small enough (depending on CY ). Proposition 2.1 follows now from
Slepian’s Lemma.
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Proposition 2.1 provides an upper bound for the right tail of the supremum of Yδε
taken over the δ-box δ[0, 1)d. The same proof works for any δ-box. Therefore, a union
bound implies

P

(
sup

x∈[0,1)d
Y xδε ≥ λ

)
≤
(

1

δ

)d
P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψxε ≥ λ

)
(2.9)

for all λ ∈ R.
We now provide an upper bound for the probability on the right hand side of the

previous display. We first prove an upper bound on the supremum of the Brownian
sheet.

Lemma 2.2. There exist constants 0 < c,C <∞ (depending on p and d) such that

sup
v∈Vε

P

(
sup
x∈�vε

ψxε ≥ λ

)
≤ Ce−cλ

2

for all λ ≥ 0, ε > 0.

Proof. Let v ∈ Vε. Fernique’s Majorizing Criterion (see [14, Theorem 4.1]) implies that

E

[
sup
x∈�vε

ψxε

]
≤ C sup

x∈�vε

∫ ∞
0

√
− log (µ(B(x, r)))dr

for some absolute constant C, where µ is the normalized d-dimensional Lebesgue mea-

sure on �vε and B(x, r) =
{
y ∈ �vε : E

[
(ψxε − ψyε )

2
]
≤ r2

}
. But (2.8) implies

B(x, r) ⊃
{
y ∈ �vε : (2p)dε−1 ‖y − x‖1 ≤ r

2
}
.

Therefore, µ (B(x, r)) ≥ cr2d for some constant c > 0 depending on p and d. Applying
the previous display and Fernique’s Majorizing Criterion, we obtain

E

[
sup
x∈�vε

ψxε

]
≤ C

∫ ∞
0

√
− log (cr2d)dr ≤ C <∞,

where C depends on p and d. Borell’s Inequality (see [2, Theorem 2.1.1]) and (2.7) imply

P

(
sup
x∈�vε

ψxε ≥ C + λ

)
≤ e−λ

2/(2(2p)d),

where C is the constant obtained in the previous display. Lemma 2.2 now follows from
a change of variables.

Proposition 2.3. Let p and δ be as in Proposition 2.1. There exist constants 0 < c,C <

∞ (depending on CY and d) such that

P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψxε ≥ λ+mε

)
≤ Ce−cλ

for all λ ≥ 0 and all ε > 0 small enough (depending on CY and d).

Proof. By letting ψ∗,[x]
ε = sup

y∈�[x]
ε
ψyε , we have

sup
x∈[0,1)d

a(x)ξ[x]
ε + ψxε ≤ max

x∈[0,1)d
a(x)ξ[x]

ε + ψ∗,[x]
ε .
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The previous display implies

sup
x∈[0,1)d

a(x)ξ[x]
ε + ψxε ≥ mε + λ =⇒ sup

x∈[0,1)d
a(x)ξ[x]

ε + ψ∗,[x]
ε ≥ mε + λ.

We now compute an upper bound for the right hand side of the previous display. De-
fine the random sets Γy = {v ∈ Vε : ψ∗,vε ∈ [y − 1, y)} for y ≥ 1, and Γ0 = {v ∈ Vε : ψ∗,vε ≤ 0}.
Note that

P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψ∗,[x]
ε ≥ mε + λ

)
≤
∑
y≥0

P

(
sup

x:[x]∈Γy

a(x)ξ[x]
ε ≥ mε + λ− y

)
.

By the definition of a(x) and the choice of p and δ in Proposition 2.1,

a(x)2 =
V ar(Y δxδε )− V ar(ψxε )

V ar(ξ
[x]
ε )

≤ 1,

and by (1.1) and (2.7),

a(x)2 ≥ log(1/ε) + log(1/δ)− CY − (2p)d

log(1/ε)
≥ 1

2

for ε > 0 small enough (depending on δ, p, CY and d, all of which ultimately depend on
CY and d). Therefore, the last three displays imply

P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψ∗,[x]
ε ≥ mε + λ

)
≤
∑
y≥0

P

(
max
v∈Γy

ξvε ≥ mε + λ− 2y

)
. (2.10)

But P
(
maxv∈Γy ξ

v
ε ≥ mε + λ− 2y

)
= E

[
P
(
maxv∈Γy ξ

v
ε ≥ mε + λ− 2y | Γy

)]
. Since ψε

and ξε are independent, from (2.5) we obtain

P

(
max
v∈Γy

ξvε ≥ mε + λ− 2y | Γy
)
≤ C

(
εd |Γy|

)1/2
e−c(λ−2y).

Then,

P

(
max
v∈Γy

ξvε ≥ mε + λ− 2y

)
≤ Ce−c(λ−2y)

(
E
[
εd |Γy|

])1/2
. (2.11)

But, by Lemma 2.2, E [|Γy|] =
∑
v∈Vε P (ψ∗,vε ∈ [y − 1, y)) ≤ Cε−de−cy

2

. For y = 0, we
simply use |Γ0| ≤ ε−d. Therefore, from displays (2.10) and (2.11), we obtain

P

(
sup

x∈[0,1)d
a(x)ξ[x]

ε + ψ∗,[x]
ε ≥ mε + λ

)
≤ Ce−cλ

for some constants 0 < c,C <∞ (depending on CY and d).

Proof of Theorem 1.1, (1.3), the right tail. Display (2.9) and Proposition 2.3 imply that
there exist constants 0 < c,C < ∞ (depending on CY and d) such that, for all ε > 0

small enough (depending on CY and d),

P

(
max

x∈[0,1)d
Y xδε ≥ mε + λ

)
≤
(

1

δ

)2

P

(
max

x∈[0,1)d
a(x)ξ[x]

ε + ψxε ≥ λ+mε

)
≤ Ce−cλ.

It is easy to see from the definition that mδε ≤ mε + C ′ for some C ′ depending on δ and
d. Therefore,

P

(
max

x∈[0,1)d
Y xδε ≥ mδε + λ− C ′

)
≤ Ce−cλ.

The upper bound (1.3) for the right tail follows by adjusting the constants.
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2.3 The left tail

In this subsection we prove the upper bound (1.3) for the left tail. As previously
mentioned, we can reduce the set under maximization to a discrete set. More precisely,
if {Dε : ε > 0} is any collection of subsets of [0, 1)d, then

P

(
sup

x∈[0,1)d
Y xε ≤ mε − λ

)
≤ P

(
sup
x∈Dε

Y xε ≤ mε − λ
)
. (2.12)

If we select Dε appropriately, we can perform a comparison with the MBBM using
Slepian’s Lemma.

Proposition 2.4. There exist δ, ρ > 0 small enough (depending on CY and d) such that

P

(
max
u∈Vε/ρ

Y uδε ≤ λ
)
≤ P

(
max

u∈Vε∩ρ[0,1)d
b(u)ξuε ≤ λ

)
for all ε > 0 and all λ ∈ R, where b(u) :=

√
V ar(Y uδε)/V ar(ξ

u
ε ) for u ∈ Vε ∩ ρ[0, 1)d.

Proof. Note that (1.1) and (2.3) imply that b(u) ≥ log(1/ε)+log(1/δ)−CY
log(1/ε) , which is greater

than 1 for δ > 0 small enough (depending on CY ).
Let u, v ∈ Vε/ρ, with u 6= v. Then, for 0 < δ, ρ ≤ 1, we have ‖u− v‖ ≥ ε/ρ ≥ δε.

Display (1.1) therefore implies

Cov(Y uδε, Y
v
δε) ≤ − log ‖u− v‖+ CY .

Choose ρ > 0 small enough (depending on CY and d) so that

− log ‖u− v‖+ CY ≤ − log ‖ρu− ρv‖ − C ≤ Cov(ξρuε , ξρvε ) ≤ Cov(b(ρu)ξρuε , b(ρv)ξρvε ),

where the second to last bound follows from (2.3). All the hypotheses of Slepian’s
Lemma are satisfied, so

P

(
max
u∈Vε/ρ

Y uδε ≤ λ
)
≤ P

(
max
u∈Vε/ρ

b(ρu)ξρuε ≤ λ
)

for all λ ∈ R. Proposition 2.4 follows by observing that ρVε/ρ = Vε ∩ ρ[0, 1]d.

Proposition 2.5. Let ρ > 0 and
{
b(u) : u ∈ Vε ∩ ρ[0, 1]d

}
be as in Proposition 2.4. Then,

P

(
max

u∈Vε∩ρ[0,1]d
b(u)ξuε ≤ mε − λ

)
≤ P

(
max

u∈Vε∩ρ[0,1]d
ξuε ≤ mε − λ/2

)
for all λ ≥ 0 and all ε > 0 small enough (depending on CY ).

Proof. It follows from the definition of b(u) and the choices made in Proposition 2.4 that,
for all u,

1 ≤ b(u) =
√
V ar(Y uδε)/V ar(ξ

u
ε ) ≤

√
log(1/ε) + log(1/δ) + CY

log(1/ε)
≤ 2

for small enough ε > 0 (depending on CY and δ, which itself depends on CY ). Let ν
be the (a.s. well-defined) point that maximizes ξuε , for u ∈ Vε ∩ ρ[0, 1]d. Then, the last
display implies

b(ν)ξνε ≤ mε − λ =⇒ ξνε ≤ mε/b(ν)− λ/b(ν) ≤ mε − λ/2.

EJP 19 (2014), paper 90.
Page 8/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3170
http://ejp.ejpecp.org/
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Our task is now to find an upper bound for the probability on the right hand side of
Proposition 2.5.

Proposition 2.6. There exist constants 0 < c,C <∞ (depending on ρ and d) such that

P

(
max

v∈Vε∩ρ[0,1]d
ξvε ≤ mε − λ

)
≤ Ce−cλ

for all λ ≥ 0 and all ε > 0 small enough.

Proof. We distinguish three cases for λ:
1) λ ∈ [0, 2/ρ]. In this case, the proposition is trivially true by simply adjusting the

constants c and C so that Ce−cλ ≥ 1.

2) λ ∈ (2/ρ,
√

1/ε]. Let n :=
⌊
ρλ
2

⌋
and let

{
Bi : i = 1, . . . , n

}
be a collection of boxes

of side length λ−1 inside ρ[0, 1)d, such that the distance between any pair of boxes is at
least λ−1. Set Biε = Bi ∩ Vε. We claim that the field(

ξvε − ξvε (log λ) : v ∈ Biε
)

is a copy of (ξvλε : v ∈ Vλε), and that the fields
{(
ξvε − ξvε (log λ) : v ∈ Biε

)}
1≤i≤n are inde-

pendent. Indeed, if v, u ∈ Biε, then (2.1) implies

Cov(ξvε − ξvε (log λ), ξuε − ξuε (log λ)) =

∫ log(1/ε)

log(λ)

∏
1≤j≤d

(1− er |vj − uj |)+ dr (2.13)

=

∫ − log(λε)

0

∏
1≤j≤d

(1− er |λvj − λuj |)+ dr,

and the set λBiε =
{
λv : v ∈ Biε

}
coincides with Vλε after a translation. This shows

that
(
ξvε − ξvε (log λ) : v ∈ Biε

) d
= (ξvλε : v ∈ Vλε). Moreover, from (2.13), it is easy to see

that ‖v − u‖ ≥ λ−1 (which is true for points v, u in different boxes Biε, by construction)
implies

Cov(ξvε − ξvε (log λ), ξuε − ξuε (log λ)) = 0,

as desired.
Therefore, independence of the fields

{(
ξvε − ξvε (log λ) : v ∈ Biε

)}
1≤i≤n and (2.4) imply

P

(
max
v∈∪iBiε

(ξvε − ξvε (log λ)) ≤ mλε

)
≤ e−cn

for some constant c > 0 depending on d. But n ≥ cλ for some constant c > 0 depending
on ρ. Therefore,

P

(
max
v∈∪iBiε

(ξvε − ξvε (log λ)) ≤ mλε

)
≤ e−cλ

for some constant c > 0 depending on both d and ρ. By letting ν = arg max
{
ξvε − ξvε (log λ) : v ∈

⋃
iB

i
ε

}
,

the previous display implies

P

(
max

v∈Vε∩ρ[0,1)d
ξvε ≤ mε − λ

)
≤ P (ξνε ≤ mε − λ) ≤ P (ξνε (log λ) ≤ mε −mλε − λ)+P (ξνε − ξνε (log λ) ≤ mλε)

≤ P (ξνε (log λ) ≤ mε −mλε − λ) + e−cλ.

Moreover, it is clear from (2.1) that the fields (ξvε − ξvε (log λ) : v ∈ Vε) and (ξvε (log λ) : v ∈ Vε)
are independent. Hence, ν is independent from ξ

(·)
ε (log λ), and ξνε (log λ) is therefore a

Gaussian random variable with mean zero and variance log λ. But

mε −mλε ≤
√

2d log λ.
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Therefore, the last two displays imply

P

(
max

v∈Vε∩ρ[0,1)d
ξvε ≤ mε − λ

)
≤ Ce−c

(λ−
√

2d log λ)2

log λ + e−cλ ≤ Ce−cλ,

proving Proposition 2.6 in the case λ ∈ [2/ρ,
√

1/ε]. 3) λ ∈ (
√

1/ε,∞). In this case, we
have

P

(
max

v∈Vε∩ρ[0,1)d
ξvε ≤ mε − λ

)
≤ P (ξvε ≤ mε − λ) ≤ Ce−c

(λ−mε)2
log(1/ε) ≤ Ce−cλ

(where v is any point), which implies Proposition 2.6 in this case.

Using Propositions 2.4, 2.5 and 2.6, we are now ready to finish the proof of Theorem
1.1.

Proof of 1.1, (1.3), the left tail. Propositions 2.4, 2.5 and 2.6 imply the existence of con-
stants 0 < δ, ρ, c, C <∞, depending on CY and d, such that

P

(
max
u∈Vε/ρ

Y uδε ≤ mε − λ
)
≤ Ce−cλ

for all λ ≥ 0 and all ε > 0 small enough (depending on CY ). But mδε ≤ mε + C ′, where
C ′ depends on δ and d. Therefore,

P

(
max
u∈Vε/ρ

Y uδε ≤ mδε − λ− C ′
)
≤ Ce−cλ.

The bound (1.3) for the left tail follows by adjusting the constants.

3 Example: a mollified Gaussian free field in d = 2

The Gaussian free field in two dimensions provides an important example of a log-
correlated field. Intuitively speaking, the reason for the log-correlation is simply that,
in d = 2, the Green function for the Laplacian is logarithmic.

We begin by recalling in Section 3.1 the definitions of the Dirichlet product and the
Hilbert space induced by it. We then use this Hilbert space to define the continuous
Gaussian free field and the mollified Gaussian free field. After that, we prove some
useful properties of these fields, which will be used to check the hypotheses of Theorem
1.1. Finally, in Section 3.2, we use Theorem 1.1 to prove tightness of the recentered
maximum of the family of mollified Gaussian free fields.

3.1 Continuous and mollified Gaussian free fields

Dirichlet product

We begin by recalling the definition of the Dirichlet product. Let C∞c
(
(0, 1)2

)
denote the

set of real valued C∞ functions with compact support in (0, 1)2. For φ, ψ ∈ C∞c
(
(0, 1)2

)
,

let

〈φ, ψ〉∇ =

∫
∇φ(x)∇ψ(x)dx

denote the Dirichlet product, where∇ is the gradient and dx is two-dimensional Lebesgue
measure. Note that the Dirichlet product satisfies

〈φ, ψ〉∇ =

∫
φ(x)(−∆ψ)(x)dx, (3.1)
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where ∆ is the standard Laplacian. The Dirichlet product induces a norm on C∞c
(
(0, 1)2

)
by

‖φ‖∇ =
√
〈φ, φ〉∇,

called the Dirichlet norm. Denote by W = W
(
(0, 1)2

)
the completion of C∞c

(
(0, 1)2

)
with respect to the Dirichlet norm. The set W , together with the Dirichlet product on
W , defines a Hilbert space.

The Dirichlet norm satisfies Poincare’s Inequality: there exists a constant C (which
depends only on the domain (0, 1)2) such that

‖φ‖L2 ≤ C ‖∇φ‖L2

for all φ ∈ C∞c . Poincare’s Inequality implies that the Dirichlet norm is equivalent to the
norm

‖φ‖L2 +

∥∥∥∥ ∂

∂x1
φ

∥∥∥∥
L2

+

∥∥∥∥ ∂

∂x2
φ

∥∥∥∥
L2

.

Recall that the completion of C∞c
(
(0, 1)2

)
with respect to the latter norm is called a

(1, 2)-Sobolev space (i.e., measurable functions such that their weak derivatives up to
order 1 exist and belong to L2

(
(0, 1)2

)
). Since the norms are equivalent, the space

(W, ‖·‖∇) is also a Sobolev space. Therefore, for any g ∈ W and any measurable set
E ⊂ [0, 1]2, the integral

∫
E
g(x)dx is well-defined.

For a given open set U ⊂ (0, 1)2, Poincare’s Inequality implies that the linear map-
ping W → R given by

g 7→
∫
U

g(x)dx

is ‖·‖∇-continuous. Note that, since W is a Hilbert space, the Riesz representation
theorem implies the existence of a function f = fU ∈W such that

〈g, fU 〉∇ =

∫
U

g(x)dx (3.2)

for all g ∈W .

Gaussian free fields

The continuous Gaussian free field is defined as follows: since 〈·, ·〉∇ is positive definite,
there exists a family

{
Xf : f ∈W

}
of centered Gaussian variables, defined on some

probability space (Ω,P), such that

Cov(Xf , Xg) = 〈f, g〉∇

for all f ∈W . The family
{
Xf : f ∈W

}
is called the continuous Gaussian free field.

We next define a field indexed by the set [0, 1]2. Fix ε > 0, and let x ∈ [0, 1]2. By (3.2),
there exists a function fx,ε ∈W such that

〈fx,ε, g〉∇ =
1

πε2

∫
D(x,ε)∩(0,1)2

g(u)du (3.3)

for all g ∈ W , where D(x, ε) is the disk of radius ε centered at x. Using (3.1) and (3.3),
it is not hard to show that

fx,ε(u) =
1

πε2

∫
D(x,ε)∩(0,1)2

G(u, v)dv, (3.4)
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where G = G(0,1)2 is the Green function of (0, 1)
2 for the operator −∆, with Dirichlet

boundary conditions on ∂ (0, 1)
2. For the domain (0, 1)

2, the Green function can be
explicitly stated as:

G(u, v) =
4

π2

∑
n,m≥1

1

n2 +m2
sin (nπu1) sin (mπu2) sin (nπv1) sin (mπv2) ,

where u = (u1, u2) ∈ [0, 1]2. The field
(
Xfx,ε : x ∈ [0, 1]2

)
will be called ε-mollified Gaus-

sian free field (MGFF). To simplify notation, set Xx
ε = Xfx,ε . Note that, by definition,

Cov(Xx
ε , X

y
ε ) = 〈fx,ε, fy,ε〉∇ =

1

πε2

∫
D(x,ε)∩(0,1)2

fy,ε(u)du

and, from (3.4), we obtain

Cov(Xx
ε , X

y
ε ) =

1

(πε2)
2

∫
D(x,ε)∩(0,1)2×D(y,ε)∩(0,1)2

G(u, v) dudv, (3.5)

for all x, y ∈ [0, 1]2.

Orthogonal decomposition

The next proposition shows that the MGFF satisfies a tree-like decomposition property.

Proposition 3.1. Let Q = 1
2 (0, 1)2 ⊂ (0, 1)2 be a sub-square of side length 1/2. Then,

Xx
ε can be decomposed as

Xx
ε = X̂x

ε + φx,

where
(
X̂x
ε : x ∈ Q

)
is a copy of

(
Xx

2ε : x ∈ [0, 1]2
)
,
(
φx : x ∈ [0, 1]2

)
is a centered Gaus-

sian field, and
(
X̂x
ε : x ∈ Q

)
is independent of

(
φx : x ∈ [0, 1]2

)
.

Proof. Denote by C∞c (Q) the set of real valued C∞ functions with compact support in
Q, and let W (Q) be the corresponding Hilbert space induced by the Dirichlet product
in C∞c (Q). Note that C∞c (Q) ⊂ C∞c

(
(0, 1)2

)
and

〈f, g〉∇,Q :=

∫
Q

∇f(u) · ∇g(u) du =

∫
(0,1)2

∇f(u) · ∇g(u) du (3.6)

for all f, g ∈ C∞c (Q). By taking the completion of C∞c (Q) with respect to the Dirichlet
product, we see that W (Q) is a Hilbert subspace of W

(
(0, 1)2

)
and that (3.6) holds for

all f, g ∈W (Q).
Let fx,ε be as in (3.3) and decompose it as

fx,ε = gx,ε + hx,ε,

where gx,ε ∈W (Q) and hx,ε ∈W (Q)⊥ (the orthogonal space). Set

X̂x
ε = Xgx,ε

and
φx = Xhx,ε .

Since gx,ε ⊥ hy,ε for all x, y ∈ [0, 1]2, the families
(
X̂x
ε : x ∈ [0, 1]2

)
and

(
φx : x ∈ [0, 1]2

)
are independent. Also, since f 7→ Xf is a linear embedding of W into L2 (Ω,P),

Xx
ε = X̂x

ε + φx a.s.

for every x ∈ [0, 1]2.

We show now that
(
X̂x
ε : x ∈ Q

)
is a copy of

(
Xx

2ε : x ∈ [0, 1]2
)
.
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Claim 3.2. For every k ∈W (Q),

〈gx,ε, k〉∇,Q =
1

πε2

∫
D(x,ε)∩Q

k(u) du.

Proof of Claim 3.2. By (3.6),

〈gx,ε, k〉∇,Q = 〈gx,ε, k〉∇

and, since gx,ε = fx,ε − hx,ε,

〈gx,ε, k〉∇ = 〈fx,ε, k〉∇ − 〈hx,ε, k〉∇.

But hx,ε ⊥ k, so the second term on the right hand side of the previous display vanishes.
Using (3.3) and the two previous displays, we obtain

〈gx,ε, k〉∇,Q =
1

πε2

∫
D(x,ε)∩(0,1)2

k(u) du.

Since k ∈W (Q), the function k vanishes outside of Q. Therefore,

〈gx,ε, k〉∇,Q =
1

πε2

∫
D(x,ε)∩Q

k(u) du,

as desired.

Claim 3.2 implies, in analogy with (3.5), that the following is true for all x, y ∈ Q:

Cov
(
X̂x
ε , X̂

y
ε

)
= 〈gx,ε, gy,ε〉∇ = 〈gx,ε, gy,ε〉∇,Q =

1

(πε2)
2

∫
D(x,ε)∩Q×D(y,ε)∩Q

GQ(u, v) dudv,

where GQ is the Green function of Q for the operator −∆, with Dirichlet boundary
conditions on ∂Q.

Claim 3.3. For every u, v ∈ [0, 1]2,

GQ (u/2, v/2) = G(u, v).

Proof of Claim 3.3. Let φ ∈ C∞c
(

(0, 1)
2
)

and note that (∆φ) (2u) = 1
4∆ (φ(2u)). By the

change of variables u′ = u/2,∫
(0,1)2

GQ (u/2, v/2) (∆φ) (u) du =

∫
Q

GQ (u′, v/2) ∆ (φ (2u′)) du′ = −φ(2v/2),

where the last equality holds by definition of GQ. On the other hand,∫
(0,1)2

G(u, v) (∆φ) (u) du = −φ(v),

by definition of G. Since∫
(0,1)2

GQ (u/2, v/2) (∆φ) (u) du =

∫
(0,1)2

G(u, v) (∆φ) (u) du

for every φ ∈ C∞c
(
(0, 1)2

)
, the functionsGQ(u/2, v/2) andG(u, v) are identical (Lebesgue-

a.e.).

EJP 19 (2014), paper 90.
Page 13/25

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-3170
http://ejp.ejpecp.org/


Log-correlated Gaussian fields

The change of variables u′ = 2u, v′ = 2v implies

Cov
(
X̂x
ε , X̂

y
ε

)
=

1

(πε2)
2

∫
D(x,ε)∩Q×D(y,ε)∩Q

GQ(u, v) dudv

=
1

(π(2ε)2)
2

∫
D(2x,2ε)∩(0,1)2×D(2y,2ε)∩(0,1)2

GQ(u′/2, v′/2) du′dv′,

and Claim 3.3 implies that the previous display is

=
1

(π(2ε)2)
2

∫
D(2x,2ε)∩(0,1)2×D(2y,2ε)∩(0,1)2

G(u′, v′) du′dv′ = Cov
(
X2x

2ε , X
2y
2ε

)
.

For Gaussian fields, equality of the covariance structure implies that the fields have
the same distribution. Therefore,(

X̂x
ε : x ∈ Q

)
d
=
(
X2x

2ε : x ∈ Q
)
,

and the right hand side is clearly equal to
(
Xx

2ε : x ∈ [0, 1]2
)
, which finishes the proof of

Proposition 3.1.

Proposition 3.1 is true for any sub-square Q ⊂ (0, 1)2 of side length 1/2, because
Green functions are translation invariant (i.e., GQ+z (u+ z, v + z) = GQ(u, v) for any
z ∈ R2, u, v ∈ Q, where GQ+z is the Green function of Q + z for the operator −∆, with
Dirichlet boundary conditions on ∂Q+ z).

Estimates on the covariance

In this subsection, we prove that the “bulk” of the field
{√

2πXx
ε : x ∈ [0, 1]2

}
satisfies

both (1.1) and (1.2). Recall that Γ(·, ·) = Γ (‖· − ·‖) = 1
2π log(1/ ‖· − ·‖) is the Green

function of R2 for the operator −∆.

Proposition 3.4. Let K ⊂ (0, 1)2 be such that k = dist(∂(0, 1)2,K) > 0, and let 0 <

ε < k/2. Then, there exists a constant C < ∞, depending on k only, such that, for all
x ∈ K, y ∈ [0, 1]2, ∣∣∣∣∣ 1

πε2

∫
D(x,ε)

G(u, y)du− 1

2π
log(1/ε)

∣∣∣∣∣ ≤ C
if ‖y − x‖ < ε, and ∣∣∣∣∣ 1

πε2

∫
D(x,ε)

G(u, y)du− 1

2π
log(1/ ‖x− y‖)

∣∣∣∣∣ ≤ C
if ‖y − x‖ ≥ ε.

Proof. The function (G− Γ)(x, y) is symmetric, harmonic in each variable, and continu-
ous. Hence,∣∣∣∣∣ 1

πε2

∫
D(x,ε)

(G− Γ)(u, y) du

∣∣∣∣∣ ≤ sup
{u:dist(u,∂(0,1)2)≥k/2}

sup
{y∈[0,1]2}

|(G− Γ)(u, y)|

≤ sup
u:dist(u,∂(0,1)2)≥k/2

|Γ(dist(u, ∂(0, 1)2))| = Γ(k/2),

where the second bound is obtained by applying the maximum principle to (G−Γ)(u, ·),
noting that G(u, ·) vanishes at the boundary of (0, 1)2, and using that Γ is decreasing.
Therefore, it is enough to prove Proposition 3.4 with G replaced by Γ.
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Suppose that ‖x− y‖ < ε. Then,∣∣∣∣∣ 1

πε2

∫
D(x,ε)

Γ(u, y)− Γ(ε)du

∣∣∣∣∣ =

∣∣∣∣∣ 1

πε2

∫
D(x,ε)

Γ

(
‖u− y‖

ε

)
du

∣∣∣∣∣ .
The change of variables u′ = (u− y)/ε implies that the previous display is

=

∣∣∣∣∣ 1π
∫
D((x−y)/ε,1)

Γ(u′)du′

∣∣∣∣∣ ≤ sup
z∈D(0,1)

∣∣∣∣∣ 1π
∫
D(z,1)

Γ(u′)du′

∣∣∣∣∣ ≤ C,
by continuity in z and compactness of D(0, 1), where C is an absolute constant.

Suppose now that ‖x− y‖ ≥ ε. Then,∣∣∣∣∣ 1

πε2

∫
D(x,ε)

Γ(u, y)du− Γ(‖x− y‖) du

∣∣∣∣∣ =

∣∣∣∣∣ 1

πε2

∫
D(x,ε)

Γ

(∥∥∥∥ u− y
‖x− y‖

∥∥∥∥) du
∣∣∣∣∣ .

The change of variables u′ = (u− y)/ ‖x− y‖ implies that the previous line is

=

∣∣∣∣∣ 1

π(ε/ ‖x− y‖)2

∫
D( x−y
‖x−y‖ ,

ε
‖x−y‖ )

Γ(u′) du′

∣∣∣∣∣ ≤ sup
0≤r≤1

sup
‖z‖=1

∣∣∣∣∣ 1

πr2

∫
D(z,r)

Γ(u′) du′

∣∣∣∣∣ < C,

by continuity in r, z and compactness of {0 ≤ r ≤ 1}×{‖z‖ = 1}, where C is an absolute
constant.

Note that the fact that we are integrating over disks is not essential. We could define
similar MGFF for other mollifiers.

A trivial corollary (which follows from elementary properties of log) of the previous
proposition is

Corollary 3.5. Let K, k, ε be as in Proposition 3.4 and let c0 > 0. Then, there exists a
constant C (depending on k and c0) such that, for all x ∈ K, y ∈ [0, 1]2,∣∣∣∣∣ 1

πε2

∫
D(x,ε)

G(u, y)du− 1

2π
log(1/ε)

∣∣∣∣∣ ≤ C
whenever ‖x− y‖ < c0ε, and∣∣∣∣∣ 1

πε2

∫
D(x,ε)

G(u, y)du− 1

2π
log(1/ ‖x− y‖)

∣∣∣∣∣ ≤ C
whenever‖x− y‖ ≥ c0ε.

Now we prove an important corollary of Proposition 3.4.

Corollary 3.6. Let K, k be as in Proposition 3.4. Then, there exists a constant C (de-
pending only on k) such that, for all x, y ∈ K, ε > 0,

|Cov(Xx
ε , X

y
ε ) +

1

2π
log(max{ε, ‖x− y‖})| ≤ C. (3.7)

Moreover, if ‖x− y‖ ≤ ε, then

E (Xx
ε −Xy

ε )
2 ≤ Cε−1 ‖x− y‖ . (3.8)
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Proof. Let us prove (3.7). If ‖x− y‖ ≤ 2ε, by Corollary 3.5,∣∣∣∣∣ 1

πε2

∫
D(y,ε)

G(u, v) dv − Γ(ε)

∣∣∣∣∣ ≤ C
for every u ∈ D(x, ε). Integrating the last inequality over u ∈ D(x, ε) and using (3.5), we
obtain that

|Cov(Xx
ε , X

y
ε )− Γ(ε)| ≤ C

for all ‖x− y‖ ≤ 2ε (and in particular, for ‖x− y‖ ≤ ε).
If ‖x− y‖ ≥ 2ε, Corollary 3.5 implies∣∣∣∣∣ 1

πε2

∫
D(y,ε)

G(u, v)dv − Γ(‖y − u‖)

∣∣∣∣∣ ≤ C
for every u ∈ D(x, ε). But Γ(3/2) ≤ Γ(1 + ε

‖x−y‖ ) ≤ Γ(‖y − u‖) − Γ(‖x− y‖) ≤ Γ(1 −
ε

‖x−y‖ ) ≤ Γ(1/2) for all u ∈ D(x, ε). Therefore,∣∣∣∣∣ 1

πε2

∫
D(y,ε)

G(u, v)dv − Γ(‖x− y‖)

∣∣∣∣∣ ≤ C.
The same (with a different constant) holds for ‖x− y‖ ≥ ε, because Γ is logarithmic.
Integrating over u ∈ D(x, ε) finishes the proof of (3.7).

We now prove (3.8). Display (3.5) implies

Cov(Xx
ε , X

x
ε −Xy

ε ) =
1

π2ε4

∫
D(x,ε)

∫
D(x,ε)

G− 1

π2ε4

∫
D(x,ε)

∫
D(y,ε)

G

=
1

π2ε4

(∫
D(x,ε)\D(y,ε)

∫
D(x,ε)

G−
∫
D(y,ε)\D(x,ε)

∫
D(x,ε)

G

)
.

We can use Corollary 3.5 to obtain an upper bound of the first term and a lower bound
of the second term of the previous display. Then, the previous display is

≤ 1

πε2

(∫
D(x,ε)\D(y,ε)

(Γ(ε) + C)−
∫
D(y,ε)\D(x,ε)

(Γ(ε)− C)

)
=

C

πε2
|D(x, ε)\D(y, ε)| ,

where |D(x, ε)\D(y, ε)| is the Lebesgue measure of the set D(x, ε)\D(y, ε). Elementary
geometry implies |D(x, ε)\D(y, ε)| ≤ Cε ‖x− y‖. Repeating the previous argument for
Cov(Xy

ε , X
y
ε −Xx

ε ) finishes the proof.

3.2 Tightness for the MGFF

In the next theorem we provide upper bounds on the left and right tail of the MGFF,
and we compute the expected maximum up to an order 1 term.

Theorem 3.7. For ε > 0 small enough, let Xx
ε , x ∈ [0, 1]2 be the MGFF. Then, there exist

absolute constants 0 < c,C <∞ such that

P

(∣∣∣∣∣ max
x∈[0,1]2

Xx
ε −

√
1

2π
mε

∣∣∣∣∣ ≥ +λ

)
≤ Ce−cλ (3.9)

for all λ ≥ 0. Moreover,

E

[
max
x∈[0,1]2

Xx
ε

]
=

√
1

2π
mε +O(1).
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Proof. Let Q be the open square of side length 1/2, which is concentric with (0, 1)2,
and let q : [0, 1]2 → Q be the natural concentric contraction. Consider the field Y xε :=

X
q(x)
ε/2 ;x ∈ [0, 1]2. By Corollary 3.6,

Cov(Y xε , Y
y
ε ) = Cov(X

q(x)
ε/2 , X

q(y)
ε/2 ) =

1

2π
log (max {ε/2, ‖q(x)− q(y)‖}) +O(1)

=
1

2π
log (max {ε, ‖x− y‖}) +O(1)

for all x, y ∈ [0, 1]2, and

E (Y xε − Y yε )
2

= E
(
X
q(x)
ε/2 −X

q(y)
ε/2

)2

≤ Cε−12 ‖q(x)− q(y)‖ = Cε−1 ‖x− y‖

for all x, y ∈ [0, 1]2 such that ‖x− y‖ ≤ ε. An application of Theorem 1.1 yields the
existence of absolute constants 0 < c,C <∞ such that

P

(
max
x∈[0,1]2

Y xε −
√

1

2π
mε ≥ λ

)
= P

(
max
x∈Q

Xx
ε/2 −

√
1

2π
mε ≥ λ

)
≤ Ce−cλ (3.10)

and

P

(
max
x∈Q

Xx
ε/2 −

√
1

2π
mε ≤ λ

)
≤ Ce−cλ (3.11)

for all λ ≥ 0. Bound (3.11) easily implies that

P

(
max
x∈[0,1]2

Xx
ε/2 −

√
1

2π
mε ≤ λ

)
≤ P

(
max
x∈Q

Xx
ε/2 −

√
1

2π
mε ≤ λ

)
≤ Ce−cλ

for all λ ≥ 0, proving (3.9) for the left tail (after using mε/2 = mε + O(1), and adjusting
the constants).

In order to prove the bound (3.9) for the right tail, we use Proposition 3.1 and the
comment that follows it to decompose

Xx
ε/2 = X̂x

ε/2 + φx,

where
(
X̂x
ε/2 : x ∈ Q

)
d
=
(
Xx
ε : x ∈ [0, 1]2

)
and the fields

(
φx : x ∈ Q

)
,
(
X̂x
ε/2 : x ∈ Q

)
are

independent. If χ = arg max
{
X̂x
ε/2 : x ∈ Q

}
, then{

φχ ≥ 0, X̂χ
ε/2 −

√
1

2π
mε ≥ λ

}
⊂

{
max
x∈Q

Xx
ε/2 −

√
1

2π
mε ≥ λ

}
.

But independence of φ and χ implies

P

(
φχ ≥ 0, X̂χ

ε/2 −
√

1

2π
mε ≥ λ

)
=

1

2
P

(
X̂χ
ε/2 −

√
1

2π
mε ≥ λ

)

because φ is a centered field. By using the last display and (3.10), we obtain

P

(
X̂χ
ε/2 −

√
1

2π
mε ≥ λ

)
≤ 2P

(
max
x∈Q

Xx
ε/2 −

√
1

2π
mε ≥ λ

)
≤ Ce−cλ
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for some absolute constants 0 < c,C <∞.
The bound (3.9) and mε/2 = mε +O(1) implies tightness of the family{

max
x∈[0,1]2

Xx
ε −

√
1

2π
mε : ε > 0

}
,

and the same bound also implies

E

[
max
x∈[0,1]2

Xx
ε

]
=

√
1

2π
mε +O(1),

finishing the proof.

4 Appendix

We prove here the claims made in Section 2.1.

Proposition 4.1. The MBBM, defined by display (2.1), exists and satisfies

V ar(ξvε (t)) = t

for all 0 ≤ t ≤ log(1/ε) and all v ∈ Vε, and

t− C ≤ Cov(ξvε (t), ξwε (t)) ≤ t

for all 0 ≤ t ≤ − log ‖v − w‖∞ and all v, w ∈ Vε, where C is a constant depending on the
dimension.

Proof. We show that the mapping (Vε × [0, log(1/ε)])
2 → R given by

((v, t), (u, s)) 7→
∫ min{t,s}

0

∏
1≤i≤d

(1− er |vi − ui|)+dr

is positive definite. Note first that∏
1≤i≤d

(1− er |vi − ui|)+ =

∫
Rd

1A(v,r)(z)1A(u,r)(z)dz,

where dz is d-dimensional Lebesgue measure and A(v, r) is the d-dimensional box of
side length 1, centered at erv. Let {(vα, tα)}α be any finite subset of Vε × [0, log(1/ε)],
and let {cα}α be arbitrary real numbers. Then, applying the previous display, we obtain

∑
α,β

cαcβ

∫ min{tα,tβ}

0

∏
1≤i≤d

(1− er
∣∣∣vαi − vβi ∣∣∣)+dr

=

∫ ∞
0

∫
Rd

∑
α,β

cαcβ1[0,tα](r)1[0,tβ ](r)1A(vα,r)(z)1A(vβ ,r)(z) dz dr

=

∫ ∞
0

∫
Rd

(∑
α

cα1[0,tα](r)1A(vα,r)(z)

)2

dz dr ≥ 0,

as desired. This shows that the MBBM exists.
For any v ∈ Vε and t ≤ log(1/ε),

V ar(ξvε (t)) =

∫ t

0

∏
1≤i≤d

(1) dr = t.
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Moreover, if v 6= w,

∏
1≤i≤d

(1− er |vi − wi|)+

{
> 0 if r < − log ‖v − w‖∞
= 0 if r ≥ − log ‖v − w‖∞

.

Therefore, if t < − log ‖v − w‖∞,

t ≥ Cov(ξvε (t), ξwε (t)) ≥
∫ t

0

∏
1≤i≤d

(1− er |vi − wi|) dr ≥
∫ t

0

(1− er ‖v − w‖∞)
d
dr,

where the last inequality follows because 1 − er |vi − wi| ≥ 1 − er ‖v − w‖∞ for all i ∈
{1, 2, . . . , d}. Expanding and integrating, we obtain that the last display is

≥ t+

d∑
k=1

(
d

k

)
(−1)k ‖v − w‖k∞

(
ekt − 1

k

)
≥ t−

d∑
k=1

(
d

k

)
‖v − w‖k∞

(
ekt + 1

)
. (4.1)

But since ‖v − w‖∞ ≤ 1 and t < − log ‖v − w‖∞, we have

‖v − w‖k∞
(
ekt + 1

)
≤
(
‖v − w‖∞ e− log‖v−w‖∞

)k
+ 1 ≤ 2.

Therefore, display (4.1) is

≥ t− 2

d∑
k=1

(
d

k

)
≥ t− C

for some constant C <∞ depending on d only. Similarly, if t ≥ − log ‖v − w‖∞,

− log ‖v − w‖∞ ≥ Cov(ξvε (t), ξwε (t)) ≥ − log ‖v − w‖∞ − C.

Proposition 4.2. Let (ξvε : v ∈ Vε) be the MBBM and let mε be the number defined in
the line preceding Theorem 1.1. Then, there exists a constant c > 0 (depending on the
dimension) such that

P

(
max
v∈Vε

ξvε ≥ mε

)
≥ c.

Proof. We use a second moment method. Let T = Tε = log(1/ε) and let

Av =
{
ξvε ≥ mε, ξ

v
ε (t) ≤ mε

T
t+ 1 for all 0 ≤ t ≤ T

}
,

Z =
∑
v∈Vε

1Av .

Note that

P

(
max
v∈Vε

ξvε ≥ mε

)
≥ P (Z > 0) ≥ (E [Z])

2

E [Z2]
, (4.2)

where the second inequality follows by Cauchy-Schwarz. We first compute a lower
bound for E [Z]. Note that

E [Z] = ε−dP (Av) .

Let ξ̄vε (t) = ξvε (t)− mε
T t. Define a probability measure Q by

dP

dQ
= exp

(
−mε

T
ξ̄vε (T )− m2

ε

2T

)
.
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Girsanov’s Theorem (see [16, Theorem 5.1]) implies that ξ̄vε (t) is Brownian motion under
Q. Note that

P (Av) =

∫
Av

exp

(
−mε

T
ξ̄vε (T )− m2

ε

2T

)
dQ ≥ exp

(
−mε

T
− m2

ε

2T

)
Q(Av)

≥ ce−
√

2dεdT 3/2Q(Av)

for some absolute constant c > 0. It follows easily from the Reflection Principle (see
[16, Proposition 6.19]) that Q(Av) = Q(ξ̄vε ≥ 0, ξ̄vε (t) ≤ 1 for all 0 ≤ t ≤ T ) ≥ cT−3/2 for
some absolute constant c > 0. Combining the three previous displays, we obtain

E [Z] ≥ c (4.3)

for some constant c > 0, depending on the dimension d.
We now compute an upper bound for E

[
Z2
]
. Note that

E
[
Z2
]

=
∑

v,w∈Vε

P (Av ∩Aw) =
∑

v,w∈Vε

P
(
ξ̄vε , ξ̄

w
ε ≥ 0, ξ̄vε (t), ξ̄wε (t) ≤ 1 for all 0 ≤ t ≤ T

)
.

(4.4)
Both ξvε (·), ξwε (·) are Brownian motions, which have independent increments starting at
time s = sv,w = − log (max {ε, ‖v − w‖∞}). Therefore,

P (Av ∩Aw) ≤
∑

−∞<x,y≤1

p(x)p(y)P
(
ξ̄vε (t), ξ̄wε (t) ≤ 1 for all t ∈ [0, s], ξ̄vε (s) ∈ [x− 1, x], ξ̄wε (s) ∈ [y − 1, y]

)
≤

∑
−∞<y≤x≤1

2p(x)p(y)P
(
ξ̄vε (t), ξ̄wε (t) ≤ 1 for all t ∈ [0, s], ξ̄vε (s) ∈ [x− 1, x], ξ̄wε (s) ∈ [y − 1, y]

)
,

(4.5)
where

p(x) = sup
z∈[x−1,x]

P
(
ξ̄vε (t) ≤ 1− z for all t ∈ [0, T − s], ξ̄vε (T − s) ≥ −z

)
.

Assume 0 < s < T . Applying Girsanov’s Theorem and the Reflection Principle, we
obtain

p(x) ≤ C exp

(
mε

T
x− m2

ε

2T 2
(T − s)

)
(1− x)

(T − s)3/2

for some constant C. Therefore, from (4.5) and the last display,

P (Av ∩Aw) ≤
∑

−∞<y≤x≤1

Cp(x)2P
(
ξ̄vε (t), ξ̄wε (t) ≤ 1 for all t ∈ [0, s], ξ̄vε (s) ∈ [x− 1, x], ξ̄wε (s) ∈ [y − 1, y]

)
≤

∑
−∞<x≤1

Cp(x)2P
(
ξ̄vε (t) ≤ 1 for all t ∈ [0, s], ξ̄vε (s) ∈ [x− 1, x]

)
.

Applying Girsanov’s Theorem and the Reflection Principle again,

P (Av ∩Aw) ≤ C
∑

−∞<x≤1

p(x)2 exp

(
−mε

T
x− m2

ε

2T 2
s

)
(1− x)

s3/2

≤ C 1

(T − s)3
s3/2

exp

(
− m2

ε

2T 2
(2T − s)

)
(4.6)

for some constant C.
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Consider now the case s = 0. Then, the independence of ξvε (·) and ξwε (·) implies

P (Av ∩Aw) = P (Av)
2

= P
(
ξ̄vε (t) ≤ 1 for all t ∈ [0, T ], ξ̄vε (T ) ≥ 0

)2
≤ C 1

T 3
exp

(
−m

2
ε

T

)
, (4.7)

where the last bound follows from Girsanov’s Theorem and the Reflection Principle. In
the case s = T ,

P (Av ∩Aw) ≤ P (Av) ≤ C
1

T 3/2
exp

(
−m

2
ε

2T

)
. (4.8)

In consequence, for any pair v, w ∈ Vε, displays (4.6), (4.7) and (4.8) imply

P (Av ∩Aw) ≤ C 1

((T − s) ∨ 1)
3

(s ∨ 1)
3/2

exp

(
− m2

ε

2T 2
(2T − s)

)
,

where · ∨ · = max {·, ·}. For any fixed v ∈ Vε, there are O(e(d−1)(T−s)) points w such that
− log ‖v − w‖∞ = s. Therefore, from (4.4) and the last display, we obtain

E
[
Z2
]
≤ C

∑
0≤s≤T

|Vε| e(d−1)(T−s) 1

((T − s) ∨ 1)
3

(s ∨ 1)
3/2

exp

(
− m2

ε

2T 2
(2T − s)

)

≤ C + C
∑

0<s<T

|Vε| e(d−1)(T−s)
exp

(
− m2

ε

2T 2 (2T − s)
)

(T − s)3
s3/2

= C + C
∑

0<s<T

edT e(d−1)(T−s)
exp

(
− m2

ε

2T 2 (2T − s)
)

(T − s)3
s3/2

.

But,

∑
0<s<T

edT e(d−1)(T−s)
exp

(
− m2

ε

2T 2 (2T − s)
)

(T − s)3
s3/2

≤
∑

0<s<T

ed(2T−s)
exp

((
−d+ 3 log T

2T

)
(2T − s)

)
(T − s)3

s3/2

=
∑

0<s<T

exp
(

3
2

log T
T (2T − s)

)
(T − s)3s3/2

≤ C
∑

0<s<T/2

1

s3/2
+

∑
T/2≤s<T

exp
(

3
2

log T
T (T − s)

)
(T − s)3

T 3/2

s3/2

≤ C + C
∑

0<s≤T/2

T 3s/2T

s3
≤ C <∞,

because the last expression is (eventually) decreasing in T . Proposition 4.2 follows from
the last display, (4.2) and (4.3).

Proposition 4.3. Let (ξvε : v ∈ Vε) be the MBBM and let mε be the number defined in
the line preceding Theorem 1.1. Then, there exist constants 0 < c,C < ∞ (depending
on the dimension d) such that

P

(
max
v∈A

ξvε ≥ mε + z

)
≤ C

(
εd |A|

)1/2
e−cz

for all A ⊂ Vε, z ∈ R and ε > 0 small enough.
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Proof. We introduce the d-ary branching Brownian motion (BBM) as follows: let ε = 2−n

for some n ∈ N. At each time Tk = k log 2; k = 0, 1, . . . , n, we partition [0, 1)d into 2kd

disjoint boxes of side length 2−k. For a pair v, w ∈ Vε, denote by l(v, w) the first time
that v, w lie in different boxes of the partition. With this notation, define the BBM as the
Gaussian field (ηvε (t) : v ∈ Vε, t ∈ [0, Tn]) with

Cov(ηvε (t), ηwε (s)) = min {t, s, l(v, w)} .

For simplicity, let T = Tn and ηvε = ηvε (T ). It is not hard to show that such a field exists.
Note that our BBM can be interpreted as a branching Brownian motion that splits every
log 2 units of time into 2d independent Brownian motions. Following the argument given
in [15, Lemma 3.7], one can show that there exists C (depending on the dimension) such
that

P

(
max
v∈A

ξvε ≥ mε + λ

)
≤ CP

(
max
v∈A

ηvε/C ≥ mε + λ

)
for all A ⊂ Vε ⊂ Vε/C and all λ ∈ R. Therefore, it is enough to prove Proposition 4.3 for
the BBM. We do so by following very closely the proof in [5, Lemma 3.8].

We will use the following estimate, which is proved in [5, Lemma 3.6]: let Ws be
standard Brownian motion under P and fix a large constant C1. Then, if

µ∗q,r(x) = P
(
Wq ∈ dx,Ws ≤ r + C1(min {s, q − s})1/20 for all 0 ≤ s ≤ q

)
/dx,

we have

µ∗q,r(x) ≤ C2r(r − x)/q3/2 (4.9)

for all x ≤ r, where C2 depends on C1.
We next define the event

G(λ) =
{
∃t ≤ T, v ∈ Vε : ηvε (t)− mε

T
t− 10 log (min {t, T − t})+ ≥ λ

}
and we prove the following claim:

Claim 4.4. There exists a constant C > 0 (depending on d) such that

P (G(λ)) ≤ Cλe−
√

2dλ

for all λ ≥ 1.

Proof. Following the proof of [5, Lemma 3.7], we define ψt = λ+ 10 log (min {t, T − t})+

and χTk(x) = P
(
ηvε (t)− mε

T t ≤ ψt for all t ≤ Tk, ηvε (Tk)− mε
T Tk ∈ dx

)
/dx. Then, by de-

composing based on the first time such that ηvε (t)− mε
T t ≥ ψt, we obtain that

P (G(λ)) ≤
n∑
k=1

2dk
∫ ψTk

−∞
χTk(x)P

(
max
s≤log 2

ηvε (s) ≥ ψTk − x− C
)
dx,

where C is an absolute constant. Display (4.9) and Girsanov’s Theorem imply that

χTk(x) ≤ C2−dke−x(
√

2d−O(log T/T ))ψTk(ψTk − x),

where C depends on d. On the other hand,

P

(
max
s≤log 2

ηvε (t) ≥ ψTk − x− C
)
≤ Ce−(ψTk−x−C)

2
/2 log 2
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for some absolute constant C. Therefore, by the three previous displays, we obtain

P (G(λ)) ≤ C
n∑
k=1

ψTk

∫ ψTk

−∞
e−x(

√
2d−O(log T/T ))(ψTk − x)e−(ψTk−x−C)

2
/2 log 2dx.

A change of variables u = ψTk − x yields

P (G(λ)) ≤ C
n∑
k=1

ψTke
−
√

2dψTk

= C

n∑
k=1

(λ+ 10 log (min {Tk, T − Tk} ∨ 1)) e−
√

2d(λ+10 log(min{Tk,T−Tk}∨1))

= C

n∑
k=1

(λ+ 10 log (min {Tk, T − Tk} ∨ 1))

(min {Tk, T − Tk} ∨ 1)
10 e−

√
2dλ ≤ Cλe−

√
2dλ,

where · ∨ · = max {·, ·}, and the convergence of the last sum is due the exponent 10 in
the denominator (with room to spare).

We now finish the proof of Proposition 4.3. Fix A ⊂ Vε and z ∈ R. For z +

(|Vε| / |A|)1/4 ≥ 1, let λ = z + (|Vε| / |A|)1/4, and continuing with the notation of Claim
4.4, we let

Fv =
{
ηvε (t) ≤ mε

T
t+ ψt for all 0 ≤ t ≤ T, ηvε ≥ mε + z

}
,

where v ∈ Vε. We now compute

P (Fv(λ)) =

∫ ψT

z

dP

dQ
(x+mε)χT (x)dx

≤ C
∫ ψT

z

2−dne−x(
√

2d−O(log T/T ))ψT (ψT − x) dx

≤ C2−dnψT e
−
√

2dψT

∫ ψT−z

0

euu du ≤ C2−dnψT e
−
√

2dz (ψT − z) .

Recalling that ψT = λ = z + (|Vε| / |A|)1/4, we obtain

P (Fv(λ)) ≤ C2−dn
(
z + (|Vε| / |A|)1/4

)
(|Vε| / |A|)1/4

e−
√

2dz

≤ C2−dn (|Vε| / |A|)1/2
e−cz.

Adding the last display for v ∈ A and using Claim 4.4, we obtain

P

(
max
v∈A

ηvε ≥ mε + z

)
≤ C

(
εd |A|

)1/2
e−cz + C

(
z + (|Vε| / |A|)1/4

)
e−
√

2d(z+(|Vε|/|A|)1/4)

≤ C
(
εd |A|

)1/2
e−cz

for some 0 < c,C <∞ (depending on d only), as desired. The previous computation was
made under the assumption z + (|Vε| / |A|)1/4 ≥ 1. Assume now (|Vε| / |A|)1/4 − 1 ≤ −z.
In this case, (

εd |A|
)1/2

e−cz ≥ c
(
εd |A|

)1/2
ec(ε

d|A|)
−1/4

.

But inf0<x<1 x
1/2ecx

−1/4 ≥ c > 0, where c depends only d. Therefore, in this case,
Proposition 4.3 holds trivially by adjusting the constant C.
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Proposition 4.5. Let (ψxε : x ∈ �vε ) be the Brownian sheet defined in (2.6). Then, for
all x, y ∈ �vε ,

pdε−1 ‖x− y‖1 ≤ E
[
(ψxε − ψyε )

2
]
≤ (2p)dε−1 ‖x− y‖1 .

Proof. By (2.6),

E
[
(ψxε − ψyε )

2
]

= E

[(
ψl(x) − ψl(y)

)2
]
, (4.10)

where l is the linear map from �vε onto [p, 2p)d sending v to (p)1≤i≤d = (p, p, . . . , p). Call
l(x) = x′ and l(y) = y′. Note that

E

[(
ψx
′
− ψy

′
)2
]

=

 ∏
1≤i≤d

x′i −
∏

1≤i≤d

min {x′i, y′i}

+

 ∏
1≤i≤d

y′i −
∏

1≤i≤d

min {x′i, y′i}

 =: A+B.

(4.11)
Consider the first term, A. Adding and subtracting the intermediate terms ∏

j≤i≤d

x′i

 ∏
1≤i≤j−1

min {x′i, y′i}


for j = 2, . . . , d, we obtain

A =
∑

1≤j≤d

 ∏
j≤i≤d

x′i

 ∏
1≤i≤j−1

min {x′i, y′i}

−
 ∏
j+1≤i≤d

x′i

 ∏
1≤i≤j

min {x′i, y′i}



=
∑

1≤j≤d

 ∏
j+1≤i≤d

x′i

 ∏
1≤i≤j−1

min {x′i, y′i}

(x′j −min
{
x′j , y

′
j

})
.

Since both x′ and y′ belong to [p, 2p)d, we obtain

pd−1
∑

1≤j≤d

(
x′j −min

{
x′j , y

′
j

})
≤ A ≤ (2p)d−1

∑
1≤j≤d

(
x′j −min

{
x′j , y

′
j

})
.

An analogous expression holds for B. Then,

pd−1
∑

1≤j≤d

(
x′j + y′j − 2 min

{
x′j , y

′
j

})
≤ A+B ≤ (2p)d−1

∑
1≤j≤d

(
x′j + y′j − 2 min

{
x′j , y

′
j

})
,

so, from the last display, (4.10) and (4.11)

pd−1 ‖x′ − y′‖1 ≤ E
[
(ψxε − ψyε )

2
]
≤ (2p)d−1 ‖x′ − y′‖1 .

But, from the definition of x′ and y′, we see that ‖x′ − y′‖1 = ε−1p ‖x− y‖1. Therefore,

pdε−1 ‖x− y‖1 ≤ E
[
(ψxε − ψyε )

2
]
≤ (2p)dε−1 ‖x− y‖1 ,

as desired.
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