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Abstract

We study measures in Banach space which arise as the skew convolution product
of two other measures where the convolution is deformed by a skew map. This is
the structure that underlies both the theory of Mehler semigroups and operator self-
decomposable measures. We show how that given such a set-up the skew map can
be lifted to an operator that acts at the level of function spaces and demonstrate that
this is an example of the well known functorial procedure of second quantisation. We
give particular emphasis to the case where the product measure is infinitely divisible
and study the second quantisation process in some detail using chaos expansions
when this is either Gaussian or is generated by a Poisson random measure.
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1 Introduction

In recent years there has been considerable interest in skew-convolution semigroups
of probability measures in Banach spaces and the so-called Mehler semigroups that
they induce on function spaces. These objects arise naturally in the study of infinite
dimensional Ornstein-Uhlenbeck processes driven by Banach-space valued Lévy pro-
cesses. Such processes have attracted much attention as they are the solutions of the
simplest non-trivial class of stochastic partial differential equations driven by additive
Lévy noise (see [1, 7, 29]). The first systematic study of Mehler semigroups in their
own right were [6] and [14] with the former concentrating on Gaussian noise while the
latter generalised to the Lévy case. Harnack inequalities were obtained in [31] and
the infinitesimal generators were found in [4]. From a different point of view, skew-
convolution semigroups also appear naturally in the investigation of continuous state
branching processes with immigration [11] and more general affine processes [10].

In this paper we focus on the representation of Mehler semigroups as second quan-
tised operators. Such a result has been known for a long time in the Gaussian case.
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Second quantisation for skew convolution products

It was first established for Hilbert space valued semigroups in [8] and then extended
to Banach spaces in [23]. Once such a representation is known it can be put to good
use in proving key properties of the semigroup such as compactness and smoothness
[8], symmetry [9], analyticity [15, 22], and in the computation of their Lp spectra [24].
When the semigroups act on Hilbert spaces, the desired second quantisation represen-
tation was recently obtained in [28] in the pure jump case using chaotic decomposition
techniques from [20], under the assumption that the Ornstein-Uhlenbeck process has
an invariant measure. This paper extends that result to the Banach space case and ob-
tains the second quantisation representation without needing to assume the existence
of an invariant measure.

In fact, within the main part of our paper we dispense with Mehler semigroups
altogether and work with a more general structure which we introduce herein. For this
we require that there are measures µ1 on a Banach space E1 and µ2 and ρ on a Banach
space E2 which are related by the identity

µ2 = T (µ1) ∗ ρ,

where T : E1 → E2 is a Borel mapping and ∗ is the usual convolution of measures. An
operator T that has such an induced action is precisely a skew map as featured in the
abstract of this paper. Note that if E1 = E2 = E and µ1 = µ2 = µ say, then µ is an
operator self-decomposable measure and such objects have been intensely studied (see
e.g. [18, 19, 34].) The invariant measures arising in [28] are precisely of this form. On
the other hand a skew convolution semigroup of measures (µt, t ≥ 0) with respect to a
C0-semigroup (S(t), t ≥ 0) is characterised by the relations µs+t = S(t)µs ∗ µt and these
are clearly also examples of our structure. At our more general level, the antecedent
of a Mehler semigroup is a bounded linear operator PT which acts from L2(E2, µ2) to
L2(E1, µ1). Our main result is then to show that this operator can be seen as a second
quantisation of the adjoint T ∗ : E2 → E1 in a natural way in the case where µ1 and
µ2 are both infinitely divisible and either Gaussian or of pure jump type. With regard
to the pure jump case, Surgailis [33] has found necessary and sufficient conditions for
a contraction semigroup to second quantise to a Markov semigroup in Poisson Fock
space. The emphasis in our paper is different, in that we work at a more general level,
but it may be fruitful for future work to explore the confluence of these two streams of
thought.

A key part of our approach is the use of a family of vectors that we call exponen-
tial martingale vectors. We now explain how these arise and contrast them with the
more familiar exponential vectors (see e.g. [3, 27]). Second quantisation is seen most
naturally as a covariant functor Γ within the category whose objects are Hilbert spaces
and morphisms are contractions (see e.g. [27]). If H is a Hilbert space and Γ(H) is the
associated symmetric Fock space, the set of exponential vectors is linearly independent
and total in Fock space. If we are given a Gaussian field over H then the exponential
vectors correspond to the generating functions of the Hermite polynomials, and from
the point of view of stochastic calculus they correspond both to the Doléans-Dade ex-
ponentials and to the exponential martingales. When we consider Lévy processes, the
latter symmetry is broken. Exponential vectors still correspond to Doléans-Dade expo-
nentials (see [3]) but these are no longer exponential martingales. In this paper, we
find that a natural context for defining second quantisation in a non-Gaussian context
is to employ vectors that are natural generalisations of exponential martingales, rather
than using exponential vectors themselves. Hence we call these exponential martingale
vectors. In particular, as we show in Section 2 and the appendix, these are still both
total and linearly independent.

Notation. Throughout this article, E is a real Banach space. The space of all bounded
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Second quantisation for skew convolution products

linear operators on E is denoted by L (E) and the dual of E is denoted by E∗. The
action of E∗ on E is represented by x∗(x) = 〈x, x∗〉. Whenever we consider measures
on a Banach space E, they are defined on the Borel σ-algebra B(E). If µ is a Borel
measure on E and T : E → F is a Borel mapping from E into another Banach space F
we frequently write T (µ) to denote the Borel measure µ◦T−1. The Dirac measure based
at x ∈ E is denoted by δx. The Banach space (with respect to the supremum norm) of all
bounded Borel measurable functions on E will be denoted Bb(E;K), where K is either
R or C. If both choices are permitted we simply write Bb(E).

2 Skew convolution of measures and associated skew maps

Let ν be a finite Radon measure on a Banach space E, that is, ν is a finite Borel
measure on E with the property that for all ε > 0 there exists a compact set K in E

such that ν(E \K) < ε. Recall that if E is separable, then every finite Borel measure is
Radon.

The characteristic function of ν is the mapping ν̂ : E∗ → C defined by

ν̂(x∗) =

∫
E

exp(i〈x, x∗〉) ν(dx),

for all x∗ ∈ E∗. The mapping ν̂ is continuous with respect to the topology of uniform
convergence on compact subsets of E. More generally, for a measurable function φ :

E → R we may define

ν̂(φ) =

∫
E

exp(iφ(x)) ν(dx).

Definition 2.1. Let µ1 and µ2 be Radon probability measures on the Banach spaces
E1 and E2, respectively, with µ̂2(x∗) 6= 0 for all x∗ ∈ E∗2 (e.g. this condition is fulfilled,
when µ2 is infinitely divisible). A Borel mapping T : E1 → E2 is called a skew map with
respect to the pair (µ1, µ2) if there exists a Radon probability measure ρ on E2 such that

T (µ1) ∗ ρ = µ2,

and we say that µ2 is the skew-convolution product (with respect to T ) of µ1 and ρ. If
T is also a bounded linear operator between E1 and E2 we call it a skew operator with
respect to (µ1, µ2).

Given the pair (µ1, µ2), the measure ρ is easily seen to be unique. Indeed, the iden-

tity T̂ (µ1)(x∗)ρ̂(x∗) = µ̂2(x∗) 6= 0 forces T̂ (µ1)(x∗) 6= 0, and therefore ρ̂ is uniquely
determined by T (µ1) and µ2. We call ρ the skew convolution factor associated with T

and the pair (µ1, µ2).

Proposition 2.2. Suppose that T : E1 → E2 is a skew map with respect to the pair
(µ1, µ2), where µ̂2(x∗) 6= 0 for all x∗ ∈ E∗2 . Let ρ be the associated skew convolution
factor. For all 1 ≤ p <∞ the linear mapping PT : Bb(E2)→ Bb(E1) defined by

PT f(x) :=

∫
E2

f(T (x) + y) dρ(y), x ∈ E1,

extends uniquely to a linear contraction PT : Lp(E2, µ2)→ Lp(E1, µ1).
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Second quantisation for skew convolution products

Proof. Fix 1 ≤ p <∞. By the Hölder inequality, for all f ∈ Bb(E2) we have

‖PT f‖pLp(E1,µ1) =

∫
E1

∣∣∣ ∫
E2

f(T (x) + y) dρ(y)
∣∣∣p dµ1(x)

≤
∫
E1

∫
E2

|f(T (x) + y)|p dρ(y) dµ1(x)

=

∫
E2

∫
E2

|f(y′ + y)|p dρ(y) dT (µ1)(y′)

=

∫
E2

|f(z)|p d(T (µ1) ∗ ρ)(z)

=

∫
E2

|f(z)|p dµ2(z) = ‖f‖pLp(E2,µ2),

and the required result follows.

Example 2.3 (Skew Convolution Semigroups). Let (S(t), t ≥ 0) be a C0-semigroup on
a Banach space E. A skew convolution semigroup is a family (µt, t ≥ 0) of Radon
probability measures on E for which µs+t = S(t)µs ∗ µt for all s, t ≥ 0. Then S(t) is
a skew operator with respect to the pair (µs, µs+t), In this case we write Pt for the
linear operator PS(t). Then (Pt, t ≥ 0) is a semigroup in that P0 = I and Ps+t = PsPt
for all s, t ≥ 0, and is called a Mehler semigroup (see e.g. [4, 6, 10, 11, 14]). Such
objects arise naturally in the study of linear stochastic partial differential equations
with additive noise of the form:

dY (t) = AY (t) + dL(t), (2.1)

where A is the infinitesimal generator of (S(t), t ≥ 0) and (L(t), t ≥ 0) is an E-valued
Lévy process. If E is a real Hilbert space then it is well-known (see e.g. [1, 7] and
the recent book [29]) that this equation has a unique mild (equivalently weak) solution
(Y (t), t ≥ 0) which is a Markov process given by the generalised Ornstein-Uhlenbeck
process:

Y (t) = S(t)Y (0) +

∫ t

0

S(t− u) dL(u), (2.2)

(where the initial condition Y (0) is assumed to be independent of (L(t), t ≥ 0).) Then
µt is the law of the E-valued random variable

∫ t
0
S(t − u) dL(u) and (Pt, t ≥ 0) is the

transition semigroup of (Y (t), t ≥ 0). On a Banach space we may define the stochastic
convolution in (2.2) by using integration by parts as in [19]. Quite general necessary
and sufficient conditions for solutions to exist to (2.1) (where the stochastic convolution
is defined in the sense of Itô calculus) are given in [30]. If X is a Brownian motion, we
refer the reader to [25].

Example 2.4 (Operator Self-Decomposable Measures). Let µ be a Radon probability
measure on E that takes the form

µ = Tµ ∗ ρ, (2.3)

where T is a bounded linear operator on E and ρ is another Radon probability measure
on E. Then µ is operator self-decomposable (see [34]) and T is a skew operator with
respect to the pair (µ, µ). There has been extensive work on such measures in the case
where (2.3) holds with T = S(t) for all t ≥ 0 where (S(t), t ≥ 0) is a C0-semigroup on E
(see e.g. [1, 18, 19]). Indeed such measures µ arise as the invariant measures of the
Mehler semigroups of Example 2.3 (when these exist - see e.g. [7, 14]) and in the case
of (2.2), ρ is the law of

∫∞
0
S(t− u) dL(u).
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Definition 2.5. Let µ be a Radon probability measure on E satisfying µ̂(x∗) 6= 0 for all
x∗ ∈ E∗. For each Borel function φ : E → R we define the function Kµ,φ : E → C by

Kµ,φ(x) :=
exp(iφ(x))

µ̂(φ)
.

We call Kµ,φ an exponential martingale vector.

Proposition 2.6. Let µ1 and µ2 be Radon probability measures on E1 and E2, respec-
tively, with µ̂2(x∗) 6= 0 for all x∗ ∈ E∗2 . Let T be a skew map with respect to the pair
(µ1, µ2). Then for all x∗ ∈ E∗2 we have

PTKµ2,x∗ = Kµ1,x∗◦T . (2.4)

Proof. Let ρ denote the associated skew convolution factor. From the identity

µ̂2(x∗) = T̂ (µ1)(x∗)ρ̂(x∗) = µ̂1(x∗ ◦ T )ρ̂(x∗)

we deduce that for all x ∈ E

PTKµ2,x∗(x) =

∫
E2

Kµ2,x∗(T (x) + y) dρ(y)

=
exp(i〈T (x), x∗〉)

µ̂2(x∗)

∫
E2

exp(i〈y, x∗〉) dρ(y)

=
exp(i〈T (x), x∗〉)

µ̂2(x∗)
ρ̂(x∗) =

exp(i(x∗ ◦ T )(x))

µ̂1(x∗ ◦ T )
= Kµ1,x∗◦T (x).

Fix a Radon probability measure µ on E and let Eµ denote the linear span of the set
of exponential martingale vectors {Kµ,x∗ ;x

∗ ∈ E∗}. The proposition implies that, under
the stated hypotheses on µ1, µ2, and T , the mapping

Kµ2,x∗ 7→ Kµ1,x∗◦T

has a well-defined linear extension to a contraction from Eµ2
→ Eµ1

(this extension
being also denoted PT ). Under suitable assumptions on the measures one may show
that the functions Kµ,x∗ are in fact linearly independent. This fact is of some interest
by itself but is not needed here; therefore we have included it in an appendix at the
end of this paper. Using the injectivity of the Fourier transform, a standard argument
shows that Eµ is dense in Lp(E,µ;C) for all 1 ≤ p <∞ (see e.g. [2, Lemma 5.3.1]), and
consequently PT is the unique such extension.

3 Second quantisation: The Gaussian case

In this section we connect, in the Gaussian setting, the notions of skew operators
with second quantisation. The presentation is slightly different from the usual one, in
that we introduce a form of the chaos expansion that utilises iterated Malliavin deriva-
tives that was introduced by Stroock [32]. This approach will bring out the analogies
between the Gaussian and the Poisson case (which we present in the next section) very
elegantly.

We begin by recalling some standard results from the theory of Gaussian measures.
Proofs and more details can be found in the monographs [5, 26, 35].
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Second quantisation for skew convolution products

Let µ be a Gaussian measure on the real Banach space E, and let H denote its
reproducing kernel Hilbert space, which is defined as follows. The covariance operator
Q of µ is given by

Qx∗ =

∫
E

〈x, x∗〉xµ(dx), x∗ ∈ E∗.

This integral is known to be absolutely convergent in E and defines a bounded operator
Q ∈ L (E∗, E) which is positive in the sense that 〈Qx∗, x∗〉 ≥ 0 for all x∗ ∈ E∗ and
symmetric in the sense that 〈Qx∗, y∗〉 = 〈Qy∗, x∗〉 for all x∗, y∗ ∈ E∗. The mapping
(Qx∗, Qy∗) 7→ 〈Qx∗, y∗〉 defines an inner product on the range of Q. The real Hilbert
space H is defined to be the completion of the range of Q with respect to this inner
product. The identity mapping Qx∗ 7→ Qx∗ extends to a bounded injective operator
j : H → E, and we have the factorisation Q = j ◦ j∗. Here we have identified H and its
dual via the Riesz representation theorem.

Each element h ∈ H of the form h = j∗x∗ defines a real-valued function φh ∈ L2(E,µ)

by φh(x) := 〈x, x∗〉, and we have

‖φh‖2L2(E,µ) =

∫
E

〈x, x∗〉2 dµ(x) = ‖j∗x∗‖2H = ‖h‖2H .

Since j∗ has dense range in H, the mapping h 7→ φh uniquely extends to an isometry
from H into L2(E,µ).

Suppose now that µ1 and µ2 are Gaussian Radon measures on Banach spaces E1

and E2, with reproducing kernel Hilbert spaces H1 and H2 respectively. In the next two
Propositions 3.1 and 3.2 we shall investigate the relationship between linear skew maps
from E1 to E2 with respect to the pair (µ1, µ2) and linear contractions from H1 to H2.

We begin by proving that if T is a skew operator with respect to the pair (µ1, µ2),
then T restricts to a contraction between the reproducing kernel Hilbert spaces. This
result and its proof extend a similar result for semigroup operators in [8, 23].

Proposition 3.1. If T is a bounded linear operator from E1 to E2 which is a skew
operator with respect to the pair (µ1, µ2) of Gaussian measures, then T restricts to a
contraction from H1 to H2.

Proof. By assumption we have Tµ1 ∗ ρ = µ2 for some Radon probability measure ρ. We
claim that ρ is Gaussian. Indeed, using the fact that Tµ1 has mean zero, we have∫

E

〈x, x∗〉2 µ2(dx) =

∫
E

∫
E

〈Tx+ y, x∗〉2 µ1(dx) ρ(dy)

=

∫
E

〈x, x∗〉2 Tµ1(dx) +

∫
E

〈y, x∗〉2 ρ(dy).

Hence, denoting the covariances of µ1 and µ2 by Q1 and Q2 (respectively), we see that
the operator R := Q2 − TQ1T

∗ is positive and symmetric as an operator from E∗2 to E2.
Since R ≤ Q2, a well-known tightness result for Gaussian measures implies that R is
the covariance of a Gaussian Radon measure ρ̃ on E2. The identity TQ1T

∗ + R = Q2

implies Tµ1∗ρ̃ = µ2. Since µ2 is a Gaussian measure, its characteristic function vanishes
nowhere and hence, by the observation following Definition 2.1, ρ = ρ̃. This proves the
claim.

Recall that Q1 = j1 ◦ j∗1 , where j1 : H1 ↪→ E is the canonical inclusion mapping, and
likewise we have Q2 = j2 ◦ j∗2 and R = jR ◦ j∗R. For all x∗ ∈ E∗ we have

‖j∗1T ∗x∗‖2H1
= 〈TQ1T

∗x∗, x∗〉
= 〈Q2x

∗, x∗〉 − 〈R∗x∗, x∗〉 ≤ 〈Q∗2x∗, x∗〉 = ‖j∗2x∗‖2H2
.

(3.1)
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Hence,

|〈Q1T
∗x∗, y∗〉| = |[j∗1T ∗x∗, j∗1y∗]H1

| ≤ ‖j∗2x∗‖H2
‖j∗1y∗‖H1

. (3.2)

Define a linear functional ψy∗ on the range of j∗2 by

ψy∗(j
∗
2x
∗) := 〈Q1T

∗x∗, y∗〉.

If j∗2x
∗ = 0, then j∗1T

∗x∗ = 0 by (3.1), so ψy∗ is well-defined. By (3.2), ψy∗ extends to a
bounded linear functional on H2 of norm ≤ ‖j∗1y∗‖H1

. Identifying ψy∗ with an element
of H2, for all x∗ ∈ E∗ we have

〈j2ψy∗ , x∗〉 = [j∗2x
∗, ψy∗ ]H2

= 〈Q1T
∗x∗, y∗〉 = 〈TQ∗1y∗, x∗〉.

Hence, TQ1y
∗ = j2ψy∗ and ‖TQ1y

∗‖H2
≤ ‖j∗1y∗‖H1

. Writing Q1 = j1j
∗
1 we see that

the restriction of T |H1
to H1 maps j∗1y

∗ to the element j2ψy∗ of H1, and that T |H is
contractive on the dense range of j∗1 in H1. This gives the result.

In the converse direction we have the following result.

Proposition 3.2. Suppose T : H1 → H2 is a linear contraction. Then T admits a linear
Borel measurable extension T̄ : E1 → E2 with the following properties:

1. the image measure T̄ (µ1) is a Gaussian Radon measure;

2. there exists a Gaussian Radon measure ρ on E2 such that T̄ (µ1) ∗ ρ = µ2.

In particular, T̄ is a linear skew map for the pair (µ1, µ2).

Proof. The following facts follows from the general theory of Gaussian measures (see,
e.g., [5, 13]):

1. the mapping T : H1 → H2 admits an extension to a linear Borel mapping T̄ : E1 →
E2;

2. the operator Q = j2TT
∗j∗2 is the covariance of a Gaussian measure µ on E2;

3. µ coincides with the image measure T̄ (µ1).

In terms of the covariance operators Q and Q2 of µ and µ2 we have

〈Qx∗, x∗〉 = ‖T ∗j∗2x∗‖2H1
≤ ‖j∗2x∗‖2H2

= 〈Q2x
∗, x∗〉.

Hence the positive symmetric operator R := Q2 − Q is the covariance of a Gaussian
measure ρ for which we have T̄ (µ1) ∗ ρ = µ ∗ ρ = µ2.

Our next objective is to relate the abstract second quantisation procedure of the
previous section to the Wiener-Itô decompositions of L2(E1, µ2) and L2(E2, µ2).

Following the presentation in [26], for each n ≥ 1 we define Hn to be the closed
linear subspace of L2(E,µ) spanned by the functions Hn(φh), where h ∈ H has norm
one and Hn is the n-th Hermite polynomial given by the generating function expansion

exp
(
tx− 1

2
t2
)

=

∞∑
n=0

tn

n!
Hn(x).

The Wiener-Itô decomposition theorem asserts that we have an orthogonal direct sum
decomposition

L2(E,µ) =
⊕
n≥0

Hn.
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Let Sn be the permutation group on n elements. The range of the symmetrising projec-
tion Σn : H⊗n → H⊗n defined by

Σn(h1 ⊗ . . .⊗ hn) :=
∑
σ∈Sn

(hσ(1) ⊗ . . .⊗ hσ(n))

is denoted by H s©n and is called the n-fold symmetric tensor product of H. Let (hn)n≥1

be an orthonormal basis of H (the Hilbert space H, being a reproducing kernel Hilbert
space of a Gaussian Radon measure, is separable (see e.g. [5])).

Consider the n-fold stochastic integral In : H s©n →Hn, defined by

In
(
Σn(h⊗k1

j1
⊗ . . .⊗ h⊗kmjm

)
)

:=

m∏
l=1

Hkl(φhjl )

with j1 < · · · < jm and k1 + · · ·+ km = n. Then 1√
n!
In sets up an isometric isomorphism

H s©n ' Hn. Stated differently, the mapping I =
⊕∞

n=0
1√
n!
In defines an isometric

isomorphism
L2(E,µ) ' Γ(H),

where

Γ(H) :=

∞⊕
n=0

H s©n

with norm ‖(hn)∞n=0‖2Γ(H) =
∑∞
n=0 ‖hn‖2H s©n is the symmetric Fock space over H.

For a function f : E → R of the form

f = g(φh1 , . . . , φhn)

with h1, . . . , hn orthonormal in H and g : Rn → C of class C1, we define the Malliavin
derivative in the direction of H as the function Df : E → H given by

Df =

n∑
j=1

∂jg(φh1 , . . . , φhn)⊗ hj .

As is well known (see e.g. [26]), for all 1 ≤ p <∞ the linear operator D is closable and
densely defined from Lp(E,µ) to Lp(E,µ;H). From now on we will denote its closure by
D as well, and denote the domain of its closure by W 1,p(E,µ). The higher order deriva-
tives Dkf : E → H⊗k are defined recursively by Dkf := D(Dk−1f). These operators are
closable as well and the domains of their closures will be denoted by W k,p(E,µ). We
define the spaces W∞,p(E,µ) :=

⋂
k∈NW

k,p(E,µ).
The next proposition is due to Stroock [32] in the context of an abstract Wiener

space. We give a different proof for Gaussian measures on Banach spaces. We write
Eµf =

∫
E
f dµ.

Proposition 3.3. The space W∞,2(E,µ) is dense in L2(E,µ) and for all f ∈W∞,2(E,µ)

we have

f =

∞∑
n=0

1

n!
In(EµD

nf).

Proof. For each h ∈ H, the function eh : E → R is defined by eh := exp(φh − 1
2‖h‖

2
H). It

is well known that the linear span of {eh, h ∈ E} is dense in L2(E,µ) (see e.g. [26] for a
proof). Since

Dneh = eh ⊗ (h⊗ . . .⊗ h︸ ︷︷ ︸
n times

)
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for all n ∈ N, the first assertion follows. We clearly have

EµD
neh = Eµeh ⊗ (h⊗ . . .⊗ h) = h⊗ . . .⊗ h.

Applying the n-fold stochastic integral and using the generating function identity for
the Hermite polynomials we obtain

∞∑
n=0

1

n!
In(EµD

neh) =

∞∑
n=0

1

n!
In(h⊗ . . .⊗ h︸ ︷︷ ︸

n times

)

=

∞∑
n=0

1

n!
Hn(φnh) = exp

(
φh −

1

2
‖h‖2H

)
= eh,

and the required result follows by density.

Let us now return to the setting where µ1 and µ2 are Gaussian measures on E1 and
E2, having reproducing kernel Hilbert spaces H1 and H2, respectively. In order to avoid
unnecessary notational complexity we will use the notation D for Malliavin derivatives
acting on both L2(E1, µ1) and L2(E2, µ2), and define

Dhf := [Df, h].

Lemma 3.4. Let T : H1 → H2 be a linear contraction. Then for all f ∈ Wn,2(E2, µ2)

and h1, . . . hn ∈ H1,
Eµ1D

n
h1,...,hnPT f = Eµ2D

n
Th1,...,Thnf.

Proof. Let us check this first for n = 1. By an easy computation (see [22]), for f ∈
W 1,2(E2, µ2) we have PT f ∈W 1,2(E2, µ2) and

DPT f = (PT ⊗ T ∗)Df.

Consequently,
Eµ1DhPT f = Eµ1 [(PT ⊗ T ∗)Df, h]

=

∫
E

∫
E

[Df(Tx+ y), Th] dρ(y) dµ1(x)

=

∫
E

[Df(z), Th] dµ2(z) = Eµ2DThf.

(3.3)

Here, ρ is the measure constructed in Proposition 3.2. The higher order case is proved
along similar lines.

In terms of the global derivative, the computation (3.3) shows that Eµ1
DPT f =

T ∗Eµ2
Df and more generally we have

Eµ1
DnPT f = (T ∗) s©nEµ2

Dnf. (3.4)

Applying In to both sides of (3.4) and using Proposition 3.3 together with the density
of W∞,2(E,µ) in L2(E,µ) we have proved:

Theorem 3.5. The following diagram commutes:

L2(E2, µ2)
PT−−−−→ L2(E1, µ1)

⊕∞
n=0

1√
n!
In

x x⊕∞
n=0

1√
n!
In

Γ(H2)
⊕∞
n=0(T∗) s©n

−−−−−−−−−→ Γ(H1)
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The operator Γ(T ∗) :=
⊕∞

n=0(T ∗) s©n is usually called the symmetric second quanti-
sation of the operator T ∗.

Remark 3.6. The operator
⊕∞

n=0
1√
n!
In is inverse to

⊕∞
n=0

1√
n!
EµD

n by Proposition 3.3,
so we may rewrite the commutative diagram in the following equivalent form:

L2(E2, µ2)
PT−−−−→ L2(E1, µ1)

⊕∞
n=0

1√
n!
Eµ2

Dn
y y⊕∞

n=0
1√
n!
Eµ1

Dn

Γ(H2)
⊕∞
n=0(T∗) s©n

−−−−−−−−−→ Γ(H1)

This diagram should be compared with the one in the next section.

Let us finally return to the setting of the previous section and derive the identity
(2.4) by the methods of the present section. Fix x∗ ∈ E∗2 and let h := j∗2x

∗. Then
Kµ2,x∗ = exp(iφh − ‖h‖2H2

) and therefore by Lemma 3.4 (which we apply to the real and
imaginary parts of Kµ2,x∗), for all g ∈ H1 we have

Eµ1
DgPTKµ2,x∗ = Eµ2

DTgKµ2.x∗ = i[h, Tg]Eµ2
Kµ2,x∗ = i[T ∗h, g],

so Eµ1DPTKµ2,x∗ = iT ∗h. Likewise we have

Eµ1
DnPTKµ2,x∗ = in ⊗ (T ∗h⊗ · · · ⊗ T ∗h︸ ︷︷ ︸

n times

).

Applying the n-fold stochastic integral, using Proposition 3.3 (again considering real
and imaginary parts separately), and using the (analytic extension of the) generating
function identity for the Hermite polynomials, we obtain

PTKµ2,x∗ =

∞∑
n=0

1

n!
In(EµD

nPTKµ2,x∗)

=

∞∑
n=0

in

n!
In(T ∗h⊗ . . .⊗ T ∗h︸ ︷︷ ︸

n times

)

=

∞∑
n=0

in

n!
Hn(φnT∗h)

= exp
(
iφT∗h −

1

2
‖T ∗h‖2H

)
= Kµ1,T∗x∗ ,

where the last identity used that T ◦ j2 = j2 ◦ T implies T ∗h = T ∗j∗2x
∗ = j∗2T

∗x∗.

4 Second quantisation: the Poisson random measure case

We proceed with a similar result in the case where µ1 and µ2 are infinitely divisible
measures of pure jump type. For this we need do delve a bit deeper into the structure
of such measures and develop their connection with Poisson random measures.

Let (Y,Y , ν) be a σ-finite measure space and let N(Y ) denote the set of all N-valued
measures on Y . We endow this space with the σ-algebra σ(Y ) generated by Y , that is,
the smallest σ-algebra which renders the mappings ξ 7→ ξ(B) measurable for all B ∈ Y .

Let (Ω,F ,P) be a probability space and Π be a Poisson random measure having
intensity measure ν. We denote by PΠ the distribution of Π, that is, PΠ is the probability
measure on (N(Y ), σ(Y )) given by

PΠ(B) = P(Π ∈ B)
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for measurable B ⊆ N(Y ).
Following Last and Penrose [20], for a measurable function f : N(Y )→ R and y ∈ Y

we define the measurable function Dyf : N(Y )→ R by

Dyf(η) := f(η + δy)− f(η).

The function Dn
y1,...,ynf : N(Y )→ R is defined recursively by

Dn
y1,...,ynf = DynD

n−1
y1,...,yn−1

f,

for y1, . . . , yn ∈ Y . This function is symmetric, i.e. it is invariant under any permutation
of the variables.

We have a canonical isometry L2
s©(Y n) = (L2(Y )) s©n, where the former denotes the

closed subspace of L2(Y n) comprised of all symmetric functions. We set

Γ(L2
s©(Y )) =

∞⊕
n=0

L2
s©(Y n)

with norm ‖(fn)∞n=0‖2H =
∑∞
n=0 ‖fn‖2L2

s©(Y n); for n = 0 it is understood that (L2(Y )) s©0 =

L2
s©(Y 0) := R. By In : L2

s©(Y n) → L2(Ω) we denote the n-fold stochastic integral as-
sociated with Π as defined in [20]. We note that part (3) of the Last-Penrose theorem
is essentially a Stroock formula for Poisson measures (cf. Proposition 3.3) and that a
version of this result for a class of real-valued Lévy processes may be found in [12].

Theorem 4.1 (Last-Penrose [20]). 1. For all n ∈ N, y1, . . . , yn ∈ Y , and f ∈ L2(PΠ)

we have τnf ∈ L2
s©(Y n), where

τnf(y1, . . . , yn) := EDn
y1,...,ynf(Π).

2. The mapping τ :=
⊕∞

n=0
1√
n!
τn is a surjective isometry from L2(PΠ) onto Γ(L2

s©(Y )).

3. For all f ∈ L2(PΠ) we have

f(Π) =

∞∑
n=0

1

n!
In(EDnf(Π)).

From this point on, we shall consider the special case Y = E, where E is a separable
real Banach space. We use the shorthand notation

Π̄(dx) = 1{0<‖x‖≤1}Π̂(dx) + 1{‖x‖>1}Π(dx),

where Π̂ is the compensated Poisson random measure,

Π̂(B) = Π(B)− ν(B),

and ν is now assumed to be a Lévy measure on E (see e.g. [17, 21] for the definition).
We will need to use the Lévy-Itô decomposition for Banach space-valued Lévy processes,
as established in [30], and the next lemma is key in that regard.

Lemma 4.2. The function x 7→ x is Pettis integrable with respect to Π̄.

Proof. Let N be a Poisson random measure on [0,∞)×E with intensity measure dt× ν.
By a theorem of Riedle and Van Gaans [30], x 7→ x is Pettis integrable with respect to
N̄ . It follows that x 7→ x is Pettis integrable with respect to M̄ , where M is the Poisson
random measure on E given by M(B) = N([0, 1] × B). Since M and Π are identically
distributed (both being Poisson random measures with intensity measure ν), this proves
the lemma.
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We will be interested in Borel probability measures µ on E which arise as the distri-
bution of E-valued random variables X of the form

X = ξ +

∫
E

x Π̄(dx) (4.1)

where Π is a Poisson random measure on E whose intensity measure ν is a Lévy mea-
sure and ξ ∈ E is a given vector. The interest of such random variables comes from
the Lévy-Itô decomposition for E-valued Lévy processes, which asserts that if (L(t))t≥0

is a Lévy process without Gaussian part, then L(1) is precisely of this form (see [30]).
Note that µ is a Radon measure (since every Borel measure on a separable Banach
space is Radon) and infinitely divisible. In particular, its characteristic function van-
ishes nowhere.

It will be convenient to define, for f ∈ L2(E,µ),

D̃yf(x) := f(x+ y)− f(x) (4.2)

The higher order derivatives are defined recursively by D̃n
y1,...,yn = D̃ynD̃

n−1
y1,...,yn−1

.

Suppose now that µ1 and µ2 are two measures of the above form, associated with
random variables X1 : Ω→ E1 and X2 : Ω→ E2 which are given in terms of the vectors
ξ1 ∈ E1 and ξ2 ∈ E2 and Poisson random measures Π1 and Π2 as in (4.1). Consider a
linear skew map T : E1 → E2 with respect to the pair (µ1, µ2), so that

Tµ1 ∗ ρ = µ2

for some unique Borel probability measure ρ.
We have the following analogue of Lemma 3.4:

Lemma 4.3. For all f ∈ L2(E2, µ2) and y1, . . . , yn ∈ E1,

Eµ1D̃
n
y1,...,ynPT f = Eµ2D̃

n
Ty1,...,Tynf. (4.3)

Proof. Suppose the random variable R : Ω̃ → E2, defined on an independent probabil-
ity space (Ω̃, F̃ , P̃ ), has distribution ρ. Then using the fact that TX1 + R and X2 are
identically distributed,

Eµ1PT f = EẼf(TX1 +R) = Ef(X2) = Eµ2f

and

Eµ1D̃yPT f = Eµ1PT f(·+ y)− Eµ1PT f(·)
= EẼf(Ty + TX1 +R)− f(TX1 +R)

= Ef(Ty +X2)− f(X2)

= Eµ2
f(·+ Ty)− Eµ2

f(·)
= Eµ2

D̃Tyf.

For the higher derivatives we use a straightforward inductive argument.

Below we will think of the left and right hand side of (4.3) as symmetric functions on
En. As such, the identity will be written as

Eµ1
D̃nPT f = Eµ1

D̃nf ◦ T s©n,

where
(g ◦ T s©n)(y1, . . . , yn) := g(Ty1, . . . , T yn).
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Define, for k = 1, 2, the operators jk : L2(Ek, µk)→ L2(PΠk) by

jkf(η) = f
(
ξ +

∫
E

x η̄(dx)
)
, η ∈ N(E).

The rigorous interpretation of this identity is provided by noting that

‖jkf‖2L2(PΠ) = E

∣∣∣f(ξ +

∫
E

x Π̄(dx)
)∣∣∣2 = ‖f‖2L2(E,µk),

which means that jkf(η) is well-defined for PΠ-almost all η and that jk establishes an
isometry from L2(Ek, µk) into L2(PΠk). Note that

jkf(Πk) = f(Xk) (4.4)

and
jk ◦ D̃ = D ◦ jk,

and therefore, for all g ∈ L2(Ek, µk),

(τnk ◦ jk)g = EDnjkg(Πk) = EjkD̃
ng(Πk) = ED̃ng(Xk) = EµkD̃

ng.

Using this identity in combination with Lemma 4.3, for all f ∈ L2(E2, µ2) we obtain

(τn1 ◦ j1)PT f = Eµ1D̃
nPT f = Eµ1D̃

nf ◦ T s©n = (τn1 ◦ j1)f ◦ T s©n.

When combined with the contractivity of PT and the surjectivity of τ (see Theorem 4.1),
this identity implies that the mapping f 7→ f ◦ T s©n is a is a linear contraction from
L2

s©(En2 , ν
n
2 ) to L2

s©(En1 , ν
n
1 ).

In summary we have proved the following theorem.

Theorem 4.4. Let T : E1 → E2 be a linear Borel mapping. Under the above assump-
tions, the mapping (T ∗) s©n : f 7→ f ◦ T s©n is a linear contraction from L2

s©(En2 , ν
n
2 ) to

L2
s©(En1 , ν

n
1 ), and the following diagram commutes:

L2(E2, µ2)
PT−−−−→ L2(E1, µ1)

⊕∞
n=0

1√
n!
Eµ2 D̃

n

y y⊕∞
n=0

1√
n!
Eµ1 D̃

n

Γ(L2(E2, ν2))
⊕∞
n=0(T∗) s©n

−−−−−−−−−→ Γ(L2(E1, ν1))

To make the connection with the commuting diagram in the Gaussian case, which
features the n-fold stochastic integrals rather than n-fold derivatives, we note that by
Theorem 4.1 the following diagram commutes as well for k = 1, 2:

L2(E,µk)
f 7→f(Xk)−−−−−−→ L2(Ω)

⊕∞
n=0

1√
n!
Eµk D̃

n

y x⊕∞
n=0

1√
n!
In

Γ(L2(Ek, νk))
=−−−−→ Γ(L2(Ek, νk))

Theorem 4.4 is a generalisation of the result obtained by Peszat [28] in the case
where µ1 = µ2 is an invariant measure associated with a Mehler semigroup on a Hilbert
space E1 = E2.

As we did in the previous section, we wish to make the link with the results on skew
operators. In principle we could repeat the Gaussian computation at the end of Section
3, but this requires the evaluation of a rather intractable Poisson stochastic integral.
There is, however, a simpler argument.
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We start with some preparations. IfX and µ are as in (4.1), thenKµ,x∗ = exp(i〈x, x∗〉−
ζ(x∗)), where µ̂(x∗) = exp(ζ(x∗)) is the characteristic function of µ (with ζ the Lévy sym-
bol of µ; see [2, page 31]). Then, for all y ∈ E and for all x∗ ∈ E∗,

EµD̃yKµ,x∗ = EµKµ,x∗(·+ y)− EµKµ,x∗(·)
= exp(−ζ(x∗))Eµ exp(i〈·, x∗〉)[exp(i〈y, x∗〉)− 1] = exp(i〈y, x∗〉)− 1.

Likewise, for y1, . . . , yn ∈ E,

EµD̃
n
y1,...,ynKµ,x∗ =

n∏
j=1

[exp(i〈yj , x∗〉)− 1]. (4.5)

Now suppose that T : E1 → E2 is a skew operator with respect to (µ1, µ2), where the
measures µk are the distributions of random variables Xk as in (4.1) for k = 1, 2. Then,
by (4.4), the Last-Penrose theorem, Lemma 4.3 and (4.5), for all x∗ ∈ E∗2 we have

PTKµ2,x∗(X1) = j1PTKµ2,x∗(Π1) =

∞∑
n=0

1

n!
In(EDnj1PTKµ2,x∗(Π1))

=

∞∑
n=0

1

n!
In(Eµ1D̃

nPTKµ2,x∗)

=

∞∑
n=0

1

n!
In(Eµ2

D̃n
T ·Kµ2,x∗)

=

∞∑
n=0

1

n!
In

( n∏
j=1

[exp(i〈T ·j , x∗〉)− 1]
)

and, by duality and then repeating the same computation backwards,

=

∞∑
n=0

1

n!
In

( n∏
j=1

[exp(i〈·j , T ∗x∗〉)− 1]
)

=

∞∑
n=0

1

n!
In(Eµ1D̃

nKµ1,T∗x∗)

=

∞∑
n=0

1

n!
In(EDnj1Kµ1,T∗x∗(Π1))

= j1Kµ1,T∗x∗(Π1) = Kµ1,T∗x∗(X1).

It follows that PTKµ2,x∗ = Kµ1,x∗◦T , in agreement with (2.4).

Remark 4.5. The results of Sections 3 and 4 suggest the problem of extending the
theory to that case where µ1 and µ2 are arbitrary infinitely divisible measures. We
conjecture that Theorems 3.5 and 4.4 extend to this more general framework.

A Linear independence of the functions Kµ,x∗

The support of a Radon measure µ on E is the complement of the union of all open
µ-null sets in E. We denote the support of µ by supp(µ) and its closed linear span by
Eµ. We say that µ has linear support if supp(µ) = Eµ. The proof of the next result uses
a variant of a standard technique of reduction to a system of linear equations that can
be found in [16, pp. 20-21] or [27, pp. 126-7].
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Proposition A.1. Suppose that µ has linear support and let F ⊆ E∗ be such that its
points are separated by Eµ. Then the family {x 7→ exp(i〈x, x∗〉);x∗ ∈ F} is linearly
independent in L2(E,µ).

Proof. Let x∗1, . . . x
∗
N ∈ F be distinct linear functionals and let c1, . . . , cN ∈ R be such

that
∑N
n=1 cn exp(i〈·, x∗n〉) = 0 in L2(E,µ). In particular, the set G of all x ∈ Eµ such

that
∑N
n=1 cn exp(i〈x, x∗n〉) = 0 has full measure. By the assumption on µ, every open

set V which intersects Eµ has positive µ-measure and therefore intersects G in a set of
positive µ-measure. It follows that G is dense in Eµ. But then, by continuity, we find that

G = Eµ, that is,
∑N
n=1 cn exp(i〈x, x∗n〉) = 0 for all x ∈ Eµ. Hence

∑N
n=1 cn exp(it〈x, x∗n〉) =

0 for all t ∈ R and x ∈ Eµ. For r = 0, 1, 2, . . . , N differentiate r times with respect to t

(where 1 ≤ r ≤ n− 1) and then put t = 0. This yields
∑N
n=1 cn〈x, x∗n〉r = 0 for all x ∈ Eµ.

We thus obtain a system of N linear equations in c1, . . . cN and it has a non-zero solution
if and only if ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1

〈x, x∗1〉 〈x, x∗2〉 · · · 〈x, x∗N 〉
· · · · · ·
· · · · · ·
· · · · · ·
· · · · · ·

〈x, x∗1〉N−1 〈x, x∗2〉N−1 · · · 〈x, x∗N 〉N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

The left hand side of this equation is a Vandermonde determinant and so the equa-
tion simplifies to ∏

1≤m<n≤N

(〈x, x∗m〉 − 〈x, x∗n〉) = 0.

Hence for each x ∈ E there exist 1 ≤ m,m ≤ N such that 〈x, x∗m − x∗n〉 = 0. The
choice of m and n here depends on x. We now prove that in fact they are independent
of the choice of vector x ∈ Eµ. To this end for each 1 ≤ m,n ≤ N define Fmn :=

{x ∈ Eµ : 〈x, x∗m − x∗n〉 = 0}. Then Fmn is closed and
⋃N
m,n=1 Fmn = Eµ. By the

Baire category theorem, at least one pair (m,n) must be such that Fmn has non-empty
interior Omn in Eµ. Let (m0, n0) be such a pair and fix x0 ∈ Om0n0

. Then by linearity
〈x − x0, x

∗
m0
− x∗n0

〉 = 0 for all x ∈ Om0n0
. In other words 〈y, x∗m0

− x∗n0
〉 = 0 for all

y ∈ Om0n0
− {x0}. But Om0n0

− {x0} contains an open neighbourhood of 0 in Eµ and
hence by linearity again, 〈x, x∗m0

−x∗n0
〉 = 0 for all x ∈ Eµ, contradicting our assumptions.

So we must have c1 = · · · = cN = 0.
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