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Abstract

Let K be the convex hull of the path of a standard Brownian motion B(t) inRn, taken
at time 0 ≤ t ≤ 1. We derive formulas for the expected volume and surface area of
K. Moreover, we show that in order to approximate K by a discrete version of K,
namely by the convex hull of a random walk attained by taking B(tn) at discrete
(random) times, the number of steps that one should take in order for the volume of
the difference to be relatively small is of order n3. Next, we show that the distribution
of facets of K is in some sense scale invariant: for any given family of simplices
(satisfying some compactness condition), one expects to find in this family a constant
number of facets of tK as t→∞. Finally, we discuss some possible extensions of our
methods and suggest some further research.
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1 Introduction

Convex hulls seem to attract a significant amount of interest, in some cases for
representing physical phenomena and in others for their central importance in many
algorithmic methods. Random convex hulls, in numerous different settings, have been
widely studied by probabilists and geometers (see [2, 5, 21, 22] for surveys of the sub-
ject). One example of a random convex hull that has been studied is the convex hull
of a Brownian motion, which may represent, for example, the domain of influence on
a diffusing particle in a certain physical system. The object of this paper is to further
study the object generated by taking the convex hull of the standard Brownian motion
in Rn.

The convex hull of the path of the planar Brownian motion has been quite extensively
studied. Much is known about this object, including its expected area and perimeter
length, the degree of smoothness of its boundary, the rate of convergence of the area
of a convex hull of a random walk to its area, etc. (see e.g. [5, 3, 4, 24, 10, 6] and
references therein). However, it seems like much less is known about the convex hull of
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Convex hull of Brownian motion

the Brownian motion in higher dimensions. Two examples of notable works concerning
the higher dimensional case are a paper by Kampf, Last and Molchanov, [18] in which,
for instance, the first and second intrinsic volumes are calculated and a work by Kinney,
[16], in which a bound for the total curvature is established.

We extend some known results from the planar case to the higher dimensional case,
as well as obtain certain asymptotics of the behaviour of these objects as the dimen-
sion goes to infinity. We introduce new methods which may be further used to study
volumetric and combinatorial properties of the convex hull of the Brownian motion and
random walk.

Since not many concrete examples of high-dimensional convex bodies are known,
finding new explicit constructions may lead to a deeper understanding of the theory
around such bodies and may possibly provide counter examples to some general con-
jectures related to those bodies (one example of such a conjecture is the hyperplane
conjecture described in [17]). The methods introduced in the present paper may be
seen as a basic tool box for the geometer to analyze the convex hull of a high dimen-
sional Brownian motion, thus enhancing the understanding of this specific explicit con-
struction. As explained in the discussion below, one may expect this construction to
have some properties that are different from most known examples, thus making it an
interesting case to study. For instance, there is evidence which suggests that it ad-
mits highly-neighborly approximating polytopes, however its boundary is smooth. See
Section 7 for more details and examples.

Let us introduce our setting. Fix a dimension n ∈ N. LetB(·) be a standard Brownian
motion in Rn. For a subset A ⊂ Rn, by Conv(A) we denote the minimal convex set
containing A, the convex hull of A. Our main object of concern in this paper will be

K = Conv({B(t), 0 ≤ t ≤ 1}).

We will be interested, for example, in its expected volume and in its distribution of
facets. In order to better study these properties, in many cases it will be convenient to
introduce an approximation for this object by a simpler object, namely the convex hull
of a random walk. We construct the random walk as follows:

Let P = ((x1, y1), (x2, y2), ...) be a Poisson point process of intensity 1 in the set [0, 1] ×
[0,∞] and for all α ≥ 0, define

Λα = {xi| yi ≤ α, i ∈ N} ∪ {0, 1}.

The process Λ can be thought of as a "Poisson rain" on the interval [0, 1]: note that for
all α ≥ 0, Λα is a Poisson point-process of intensity α on the unit interval and that the
family Λα is increasing with α. For a fixed value of α, writing Λα = (t1, ..., tN ) where
0 = t1 ≤ ... ≤ tN = 1, we can think of (B(t1), B(t2), ..., B(tN )) as a random walk in Rn.
Finally, for all α > 0, we define

Kα = Conv({B(t)| t ∈ Λα}),

so Kα is a monotone sequence of discrete approximations of K, each defined as the
convex hull of a certain random walk.

For a measurable set L ⊂ Rn, we denote the k-dimensional Hausdorff measure of L
by Volk(L). By ∂L we denote the boundary of L. The first theorem we prove is a formula
for the expected volume and surface area of K. The theorem reads,
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Theorem 1.1. One has, for every dimension n ≥ 2,

E[Voln(K)] =
(π

2

)n/2 1

Γ
(
n
2 + 1

)2
and

E[Voln−1(∂K)] =
2(2π)(n−1)/2

Γ(n)
.

As was pointed to us by Christoph Thäle, a corollary of this theorem is an explicit
formula for expressing all intrinsic volumes of the body K, which generalizes a result
of Kampf, Last and Molchanov ([18]). Let Vj(K) denote the j-th intrinsic volume of K
(see [18] for a definition).

Corollary 1.2. One has for all n ≥ 2 and for all 1 ≤ j ≤ n

E[Vj(K)] =

(
n

j

)(π
2

)j/2 Γ
(
n−j

2 + 1
)

Γ
(
j
2 + 1

)
Γ
(
n
2 + 1

) .
Shortly after the first version of this manuscript appeared, an independent proof of

Theorem 1.1 and Corollary 1.2, based on a completely different approach, was found
by Kabluchko and Zaporozhets [15]. Their method relies on a calculation of intrinsic
volumes of the so-called Brownian motion body, carried out by Gao and Vitale in [13].
Using the isonormal process, one can show that an n-dimensional Brownian motion
can be seen as a random projection of the (infinite dimensional) Brownian motion body.
Roughly speaking, since linear projections and the operation of taking the convex hull
commute, and using Kubota’s formula in its infinite-dimensional version obtained by
Tsirelson [25], they manage to show that the expected intrinsic volumes of the convex
hull of Brownian motion are directly related to intrinsic volumes of the Brownian motion
body.

Our next result is a derivation of asymptotics for the number of steps needed in
order to approximate the convex hull of the Brownian motion, K, by the convex hull
of the random walk, Kα. Our theorem roughly states that the correct order of points
needed in order for the volume of Kα to be a proportion of the volume of K is n3. It
reads,

Theorem 1.3. One has the following bounds: For all n ≥ 2 and all α > 0,

E[Voln(K \Kα)]

E[Voln(K)]
≤ e−n + 16

√
n3

α
. (1.1)

On the other hand, for all α < n3/8, one has

E[Voln(Kα)]

E[Voln(K)]
≤ 100

α

n3
log2

(
n3

α

)
. (1.2)

Note that, according to the above theorem, for any given proportion constant R <

1, there exists a constant C(R) independent of the dimension, such that whenever
α > C(R)n3, the proportion between the expected volume Kα out of the entire vol-
ume of K will be at least R. By basic properties of the Poisson process, the same
will be true if we take C(R)n3 uniform points on the interval [0, 1]. On the other
hand, the second part of the theorem shows us that taking only o(n3) points will yield
E[Voln(Kα)] = o(E[Voln(K)]).
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Our last result concerns with the distribution of facets of K. In order to formulate it,
we need some notation. For two (n−1)-dimensional simplices s1, s2 ⊂ Rn we say that s1

and s2 are equivalent if they are equal up to some translation. From this point further,
by slight abuse of terminology, the term simplex will refer to an equivalence class of
simplices. We denote by S the set of (n − 1)-dimensional simplices and let F(K) ⊂ S
denote the set of (n − 1)-dimensional facets of K (i.e., the set of (n − 1)-dimensional
simplices lying entirely in the boundary of K, which are maximal in the sense that they
are not strictly contained in any simplex lying in the boundary of K). For a family of
simplices C ⊂ S, we define

MK(C) = E [#(F(K) ∩ C)] ,

the expected number of facets of K which are in C. Our aim is to study the behaviour
of MK(C).

Next, for a set L ⊂ Rn and for ε > 0, we denote

e(L, ε) := {x ∈ Rn| ∃y ∈ L, |y − x| ≤ ε},

the ε-extension of L. For two sets L, T ⊂ Rn, we denote

dH(L, T ) := inf{ε; L ⊂ e(T, ε) and T ⊂ e(L, ε)},

the Hausdorff distance between L and T . For a family C ⊂ S we say that C is compact
if the set is compact with respect to the topology induced by the Hausdorff metric. We
say that C is non-degenerate if there exists a constant c > 0 such that every simplex
s ∈ C satisfies Voln−1(s) ≥ c. For a set C ⊂ S and t > 0, we understand tC as {ts; s ∈ C}.

The body K is not a polytope; the set F(K) is almost-surely infinite. This follows di-
rectly, for example, from the result of [6] which implies that two-dimensional projec-
tions of K almost-surely have a smooth boundary. In fact, we conjecture that ∂K is
smooth in any dimension (see discussion in Section 7). However, we do know that up
to a set of measure 0, all of the n − 1-dimensional volume of the boundary of K is con-
tained in the interior of these facets (see Corollary 6.4 below). Our last theorem, which
characterizes the distribution of the boundary facets, reads

Theorem 1.4. Let C ⊂ S be a family of simplices. The function

t→MK(tC)

is decreasing. Moreover, if C is compact and non-degenerate, then the above function
is bounded from above, and thus the limit

lim
t→0+

MK(tC)

exists.

Roughly speaking, the above theorem states that one should expect to find a con-
stant number of facets of a given shape at any scale. For example, if n = 3 and the set
C consists of all triangles of distance ε to an equilateral triangle whose edge has length
1, the theorem suggests that there exists some constant S such that one expects to find
approximately one almost-equilateral facet whose edges are of length between t and tS,
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for all small enough values of t.

Some of our methods of proof extend a certain formula that appears in [11], based
on very simple principles from integral geometry. Some of these principles have already
been used by Baxter [3] in order to study the convex hull of planar random walks. The
structure of this paper is the following: in Section 2, we derive certain estimates for
one-dimensional random walks, which will be used later on. In Section 3 we establish
some formulas concerning the distribution of facets of the polytope Kα, which will be
one of the central ingredients in our proofs. In Section 3 we prove Theorem 1.1 and
Corollary 1.2. In sections 5 and 6 we prove theorems 1.3 and 1.4 respectively. Finally,
in Section 7 we discuss some further possible extensions of our methods and raise some
questions for further research.

Throughout this paper, the symbols C,C ′, C ′′, c, c′, c′′ denote positive universal con-
stants whose values may change between different formulas. Given a subset A ⊂ Rn, by
Conv(A) we denote the convex hull of A, ∂A will denote its boundary, Cl(A) its closure
and Int(A), its interior. For a function f : Rn → R we write supp(f) = Cl({x; f(x) 6= 0}),
its support. By slight abuse of terminology, the word polytope in this paper refers to a
convex polytope, i.e., the convex hull of the finite number of points.

2 One dimensional random walks

In this section we derive some estimates concerning one-dimensional random walks.
Let 0 ≤ t1 ≤ ... ≤ tN ≤ 1 be a Poisson point process on [0, 1] with intensity α and

let B(t) be a standard 1-dimensional Brownian motion, independent from the above
Poisson process. Consider the random walk B(0), B(t1), ..., B(tN ). By slight abuse of
notation, for 1 ≤ j ≤ n, denote B(j) = B(tj). Let us calculate the probability that
B(j) ≥ 0 for all 1 ≤ j ≤ N .
Define a random variable,

X =

∫ 1

0

1{B(t)<0}dt.

Recall the second arcsine law of P. Lévy (see for example [19], Chapter 5, p. 137),
according to which, X has the distribution whose density fX satisfies

fX(x) =
1

π
(x− x2)−1/21x∈[0,1].

By definition of the Poisson distribution, we know that for all measurable A ⊂ (0, 1) one
has

P({t1, ...tN} ∩A = ∅) = e−α|A|

where |A| denotes the Lebesgue measure of A. Applying this to A = {t ∈ (0, 1); B(t) <

0} gives

P(B(ti) ≥ 0, ∀1 ≤ i ≤ N) = E
[
e−αX

]
=

1

π

∫ 1

0

e−αx(x− x2)−1/2dx =

(substituting t2 = αx)

2

π
√
α

∫ √α
0

e−t
2 1√

1− t2

α

dt.
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Now suppose that W (t) is a Brownian bridge such that W (0) = W (1) = 0 and consider
the discrete Brownian bridge W (0),W (t1), ...,W (tN ),W (1).

The cyclic shifting principle (see e.g., [3]) is the following observation: for every
0 ≤ s ≤ 1, define Γs(t) = t+ s, where the sum is to be understood as a sum on the torus
[0, 1]. Then the function W ◦Γs(t)−W (s) has the same distribution as the function W (t).
Now, since there is exactly one choice i between 0 and N such that W (tj) −W (ti) will
be non-negative for every 1 ≤ j ≤ N (where t0 = 0), it follows that for only one choice
of 0 ≤ i ≤ N , the function

W ◦ Γti(·)−W (ti)

will be positive for all the points tj − ti, 0 ≤ j ≤ N (where the subtraction is again
understood on the torus [0, 1]). Since the points t1, ..., tN are independent of the function
W (t), it follows that

P(W (ti) ≥ 0, ∀1 ≤ i ≤ N) = E

[
1

N + 1

]
=

∞∑
k=0

1

k + 1

αke−α

k!
=

e−α
∞∑
k=0

αk

(k + 1)!
=
e−α

α

∞∑
k=1

αk

k!
=

1− e−α

α
. (2.1)

(recall that N was a Poisson random variable with expectation α).

We conclude the calculations as a lemma:

Lemma 2.1. Let B(·) be a standard one-dimensional Brownian motion, let W (·) be a
standard Brownian bridge on [0, r] and let t1, ..., tN be a Poisson point process on [0, r]

with intensity α, all processes being independent. We have

P(B(ti) ≥ 0, ∀1 ≤ i ≤ N) = Ψ(rα) =
1√
πrα

Φ(rα). (2.2)

where

Ψ(t) =
2

π
√
t

∫ √t
0

e−x
2

dx√
1− x2/t

, Φ(t) =
2√
π

∫ √t
0

e−x
2

dx√
1− x2/t

. (2.3)

Moreover,

P(W (ti) ≥ 0, ∀1 ≤ i ≤ N) =
1− e−rα

rα
. (2.4)

Next, we will need the following estimate:

Lemma 2.2. Let B(·) be a standard one-dimensional Brownian motion and let T =

(t1, ..., tN ) be a Poisson point process with intensity α on the interval [0, L], independent
from the Brownian motion.Define

A = {B(ti) ≥ 0, ∀1 ≤ i ≤ N} .

We have

E
[
1B(L)>0B(L)1A

]
=

1√
2α

erf
(√

αL
)

+
e−αL − 1√

2πLα

where erf is the error function, defined as

erf(x) =
2√
π

∫ x

0

e−t
2

dt.
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Proof:
The proof follows the same lines as in [19, Page 215]. Let u(t, x) be the function satisfy-
ing

ut(t, x) =
1

2
uxx(t, x)− U(x)u(t, x), u(0, x) = x1{x≥0}, (2.5)

where U(x) = α1{x<0}. By the Feynman-Kac formula, one has

u(t, 0) = E

[
1B(t)>0B(t) exp

(
−
∫ t

0

U(B(t))dt

)]
. (2.6)

(see e.g., [19, Theorem 7.43, page 214] for a proof of this formula in the special case
that u(0, x) ≡ 1. A straightforward adaptation of this proof may extend the formula to
the boundary condition in hand). By the definition of the Poisson process and by the
independence of B(t) and the Poisson process, one has almost surely

P(A|FB) = exp

(
−
∫ t

0

U(B(t))dt

)
.

where FB denotes the σ-algebra generated by the Brownian motion B(·). Consequently,

E(1B(t)>0B(t)1A|FB) = 1B(t)>0B(t) exp

(
−
∫ t

0

U(B(t))dt

)
almost surely. Taking expectation on both sides and using (2.6) yields

u(t, 0) = E
[
1B(t)>0B(t)1A

]
.

Our goal is therefore to estimate u(L, 0). For ρ > 0, we define

g(x) =

∫ ∞
0

e−ρtu(t, x)dt,

the Laplace transform of u(·, x). Integration by parts yields

e−ρtu(t, x)
∣∣∞
0

= −ρ
∫ ∞

0

e−ρtu(t, x)dt+

∫ ∞
0

e−ρtut(t, x)dt,

so, using (2.5),

−u(0, x) = −ρg(x) +
1

2
g′′(x)− U(x)g(x).

In other words,

− x+ ρg(x)− 1

2
g′′(x) = 0, ∀x > 0, (2.7)

(ρ+ α)g(x)− 1

2
g′′(x) = 0, ∀x < 0.

Next, we claim that the function g(x)/(1 +x2) is bounded. Indeed, consider the solution
to the equations

wt(t, x) =
1

2
wxx(t, x), w(0, x) = x2 + 1. (2.8)

Another application of the Feynman-Kac formula yields

w(t, x) = E
[
(B(t) + x)2 + 1

]
and, likewise

u(t, x) = E

[
1(B(t)+x)>0(B(t) + x) exp

(
−
∫ t

0

U(B(t) + x)dt

)]
≤
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E [|B(t) + x|] .

These two equations easily imply that w(t, x) ≥ u(t, x) for all x ∈ R and t > 0. Now, it is
easy to check that w(x, t) = x2 + 1 + t, therefore g(x) ≤

∫∞
0
e−ρtw(x, t)dt = 1/ρ2 + 1 +x2.

It follows that g(x) cannot grow exponentially with x. The only solution to the equations
(2.7) which satisfies this is

g(x) =
x

ρ
+Ae−

√
2ρx, ∀x > 0,

g(x) = Be
√

2(ρ+α)x, ∀x < 0,

for some A,B ∈ R. The function g(x) should be continuously differentiable at 0, thus,
by matching derivatives, we attain

A = B; 1/ρ−
√

2ρA =
√

2(ρ+ α)B

which gives

g(0) = A = B =
1√

2ρ(
√
ρ+
√
ρ+ α)

=

√
ρ+ α−√ρ
√

2ρα
. (2.9)

According to Lerch’s theorem, the Laplace transform is unique in the sense that if a
continuous function F (t) satisfies∫ ∞

0

e−ρtF (t)dt =

√
ρ+ α−√ρ
√

2ρα
, ∀ρ > 0, (2.10)

then necessarily one has
F (t) = u(t, 0) = E [B(t)1A] . (2.11)

Our goal is therefore to find a function F (t) solving equation (2.10). To that end, fix
γ ∈ R and let F (t) be a function which satisfies

F ′(t) = γ

(
1

t3/2
e−αt − 1

t3/2

)
, ∀t > 0

and F (0) = 0. We have∫ ∞
0

F (t)e−ρtdt = −1

ρ
F (t)e−ρt

∣∣∣∣∞
0

+
1

ρ

∫ ∞
0

F ′(t)e−ρtdt =

(plugging in the definition of F )

γ

ρ

∫ ∞
0

1

t3/2
(
e−αt − 1

)
e−ρtdt =

(integrating by parts)

−2γ

ρ

(
1√
t

(
e−αt − 1

)
e−ρt

)∣∣∣∣∞
0

+
2γ

ρ

∫ ∞
0

1√
t

(
−(α+ ρ)e−(α+ρ)t + ρe−ρt

)
dt.

Now, a simple calculation shows that for every δ > 0, one has∫ ∞
0

e−δt√
t
dt =

√
π

δ
.

So, the two above equations together yield∫ ∞
0

F (t)e−ρtdt =
2γ
√
π

ρ

(
−
√
α+ ρ+

√
ρ
)
.
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Finally, choosing γ = −1
2
√

2πα
, gives∫ ∞

0

F (t)e−ρtdt =

√
ρ+ α−√ρ
√

2ρα

which means that (2.10) is satisfied, and according to (2.11) we conclude that

E [B(L)1A] =
1

2
√

2πα

∫ L

0

1

s3/2

(
1− e−αs

)
ds =

1√
2πα

(√
παerf

(√
αL
)

+
e−αL − 1√

L

)
=

1√
2α

erf
(√

αL
)

+
e−αL − 1√

2πLα

The proof is complete.

3 A formula for the facets

The goal of this section is to derive a formula which will serve as a central ingredient
in our theorems.

We begin with some notation. Let ∆n be the n-dimensional simplex, namely

∆n =

{
(r1, ..., rn) ∈ [0, 1]n;

n∑
i=1

ri ≤ 1

}
.

For a point r = (r1, ..., rn) ∈ ∆n, define

si(r) =

i∑
j=1

rj , ∀1 ≤ i ≤ n

and
s(r) = (s1(r), ..., sn(r)). (3.1)

Next, for r ∈ ∆n we define

Fr = Conv
(
B(s1(r)), ..., B(sn(r))

)
which is almost surely an (n− 1)-dimensional simplex. Let nr be a unit vector normal to
Fr chosen such that 〈nr, B(s1(r))〉 ≥ 0, and write

V (r) = Voln−1(Fr), H(r) = 〈nr, B(s1(r))〉.

Next, we define two point processes on ∆n. For a Borel subset A ⊂ ∆n we define

q(A) = #{r ∈ A; Fr is a facet in the boundary of K}. (3.2)

and
qα(A) = #{r ∈ A; Fr is a facet in the boundary of Kα}.

We also need the definition of the point process

wα(A) = # {r ∈ A; η(r) ⊂ Λα}
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where

η(r) =

n⋃
i=1

{si(r)}

which we can think of as points r ∈ ∆n which are candidates to be facets of Kα in
the sense that all their vertices are in the random walk. Observe that, since Kα is a
polytope, one has almost surely

qα(A) ≤ wα(A), ∀α > 0, A ⊂ ∆n. (3.3)

Moreover, we define the (deterministic) measures

µ(·) = E[q(·)], µα(·) = E [qα(·)] and να(·) = E[wα(·)].

The observation (3.3) implies µα � να. Therefore, we may denote

pα(r) =
dµα
dνα

(r), ∀r ∈ ∆n.

Let us try to understand how to calculate pα(r). To this end, we need a few more
definitions.

Let FB be the σ-algebra generated by the Brownian motion B(·) (so that a random
variable is measurable with respect to FB if and only if it does not depend on the point
process Λ). We denote by P the space of all finite subsets of [0, 1]. Next, for all r ∈ ∆n,
we define the corresponding Palm measure

Pr,α(·) = PΛ (Λα ∪ η(r) ∈ ·) .

Now, let g : ∆n × P → R be a function such that for all r ∈ ∆n and φ ∈ P, the
random variable g(r, φ) is measurable with respect to FB. According to the reduced
Campbell-Little-Mecke formula (see e.g. [23], section 3), one has for all α > 0,

E

[∫
∆n

g(r,Λα)wα(dr)

]
= EB

[∫
∆n

∫
P
g(r, φ)Pr,α(dφ)να(dr)

]
. (3.4)

For r ∈ ∆n, define Mr ⊂ P to be the random set, measurable with respect to FB,
satisfying

Λα ∈Mr ⇔ Fr is a facet in the boundary of ∂Kα.

Let f : ∆n → R be a function such that for all r ∈ ∆n, f(r) is a random variable which
is measurable with respect to FB. Then by taking g(r, φ) = f(r)1{φ∈Mr} in the previous
formula and using Fubini’s theorem, we obtain

E

[∫
∆n

f(r)dqα(r)

]
= EB

[∫
∆n

∫
P
f(r)1{φ∈Mr}Pr,α(dφ)να(dr)

]
=

∫
∆n

EB

[
f(r)

∫
P
1{φ∈Mr}Pr,α(dφ)

]
να(dr).

At this point, it is convenient to define the events

Eα(r) :=

{
Fr is a facet in the boundary of Conv

((
n⋃
i=1

B(si(r))

)
∪Kα

)}
.

By the definition of Pr,α and Mr, we have∫
P
1{φ∈Mr}Pr,α(dφ) = E

[
1Eα(r) | FB

]
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almost surely with respect to B(·). A combination the two above formulas finally gives

E

[∫
∆n

f(r)dqα(r)

]
=

∫
∆n

E
[
f(r)1Eα(r)

]
να(dr). (3.5)

By taking f(r) = 1 we get that

pα(r) = P(Eα(r)). (3.6)

Next, we would like to understand the measure να. To that end, let s = (s1, ..., sn) and
ε > 0 be such that si − si−1 > ε for all 2 ≤ i ≤ n. Define

Q = s−1({(x1, ..., xn); xi ∈ [si, si + ε], for i = 1, .., n})

where s−1(·) is the inverse of the function defined in (3.1). Then, by the independence
of the number of Poisson points on disjoint intervals,

ν(Q) = E

[
n∏
i=1

#{j; tj ∈ [si, si + ε]}

]
= (εα)n.

By the σ-additivity of ν, it follows that for a measurable A ⊂ Int(∆n),

ν(A) = αnVoln(s(A)) = αnVoln(A).

where in the last equality we use the fact that the Jacobian of the function r → s(r) is
identically one. We learn that, in fact, dνα = αndr. In view of this identity, equation
(3.5) becomes

E

[∫
∆n

f(r)dqα(r)

]
= αn

∫
∆n

E
[
f(r)1Eα(r)

]
dr. (3.7)

The above formula will play a central role in our proofs. It will serve us to find the
expectation of several quantities of interest. For instance, in order to calculate the
volume or the surface area of K, we observe that

Voln(Kα) =
∑
r∈∆n

1{Fr is a facet of Kα}Voln(Conv({0}, Fr) = (3.8)

1

n

∫
∆n

V (r)H(r)dqα(r)

and

Voln−1(∂Kα) =

∫
∆n

V (r)dqα(r). (3.9)

Using equation (3.7), we get

E[Voln(Kα)] =
αn

n

∫
∆n

E
[
V (r)H(r)1Eα(r)

]
dr. (3.10)

In a similar way, we obtain the following formula for the surface area:

E[Voln−1(∂Kα)] = αn
∫

∆n

E
[
V (r)1Eα(r)

]
dr. (3.11)

Next, we would like to derive more explicit expressions for the expectations on the
right hand side of the two last formulae. The next lemma follows lines analogous to the
ones developed in ([11]):
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Lemma 3.1. For all α > 0 and all r ∈ ∆n, one has

P(Eα(r)) = 2

 n∏
j=2

1− e−αrj
αrj

Ψ(αr1)Ψ(αrn+1). (3.12)

where Ψ is defined as in Lemma 2.1 and rn+1 = 1−
∑n
i=1 ri. Moreover, the event Eα(r)

is independent from the equivalence class of Fr (up to translations), and one has

E
[
V (r)H(r)1Eα(r)

]
= E[V (r)]EB

[
H(r)1Eα(r)

]
= (3.13)

2E[V (r)]

 n∏
j=2

1− e−αrj
αrj

Ψ(αrn+1)

(
1√
2α

erf (
√
αr1) +

e−αr1 − 1√
2πr1α

)
.

Proof:
Our first goal is to write the event Er as the product of independent events whose
probabilities will be calculated using the formulas derived in section 2. The idea which
allows us to do this is the following: the representation theorem for the Brownian bridge
suggests that we may equivalently construct B(t) by first generating the differences
B(sj) − B(sj−1) as independent Gaussian random vectors, and then "fill in" the gaps
between them by generating a Brownian motion up to B(s1), a Brownian bridge for
each 1 < j ≤ n, and a "final" Brownian motion between B(sn) and B(1), all of the above
independent from each other. To make it formal, fix r ∈ ∆n and define s = s(r). For all
i, 2 ≤ i ≤ n, we write

Di = B(si)−B(si−1)

and define Ci : [si−1, si]→ Rn by

Ci(t) = B(t)−B(si−1)− t− si−1

si − si−1
(B(si)−B(si−1)),

the bridges that correspond to the intervals [si−1, si]. Finally, we define two func-
tions B0 : [0, s1] → Rn and Bf : [sn, 1] → Rn by B0(t) = B(s1 − t) − B(s1) and
Bf (t) = B(t) − B(sn). By the independence of the differences of a Brownian motion
on disjoint intervals and by the representation theorem for the Brownian bridge, it fol-
lows that the variables {Di}ni=2, {Ci}ni=2, B0, Bf are all independent, each Ci being a
Brownian bridge and B0 and Bf being Brownian motions.

Define
C̃i = 〈Ci, ns〉, ∀2 ≤ i ≤ n

and also B̃0 = 〈B0, ns〉 and B̃f = 〈Bf , ns〉. Since ns is fully determined by {Di}ni=2, it
follows that {C̃i}ni=2, B̃0 and B̃f are independent. Observe that for all 2 ≤ i ≤ n, C̃i is a
one-dimensional Brownian bridge fixed to be zero at its endpoints, and B̃0 and B̃f are
one dimensional Brownian motions starting from the origin.

A moment of reflection reveals that the event Eα(s) is reduced to the intersection of
the following conditions, for each possible direction of ns with respect to Fs,

(i) For all 2 ≤ i ≤ n, the function C̃i is non-positive at all points tj such that si−1 ≤
tj ≤ si.
(ii) The function B̃0 is non-positive at all points tj such that tj < s1.
(iii) The function B̃f is non-positive at all points tj such that sn < tj ≤ 1.
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As explained above, {C̃i}ni=2, B̃0 and B̃f are independent, thus we can estimate p(r)

using equations (2.2) and (2.4). We get

pα(r) = 2

 n∏
j=2

1− e−αrj
αrj

Ψ(αr1)Ψ(αrn+1). (3.14)

Note that the factor 2 stems from that fact that ns has two possible directions. Formula
(3.12) is thus established.

Next, we note that Hr = B̃0(0). Defining Ẽα(r) as the event that (iii) above holds,
we use Lemma 2.2 in order to learn that

E
[
1Ẽα(r)Hr

]
=

1√
2α

erf (
√
αr1) +

e−αr1 − 1√
2πr1α

.

Since (i) and (iii) above are independent from (ii) and from B̃0(0), we get

E
[
1Eα(r)H(r)

]
=

2

 n∏
j=2

1− e−αrj
αrj

Ψ(αrn+1)

(
1√
2α

erf (
√
αr1) +

e−αr1 − 1√
2πr1α

)
.

Finally, the equivalence class of the facet Fs (up to translations) clearly only depends on
the differences Di which are, as explained above, independent of B0, Bf and Ci. Thus,
we learn that V (r) is independent from the events (i)-(iii) above. In particular,

E[1Eα(r)V (r)Hα(r)] = E[V (r)]E[1Eα(r)Hα(r)].

A combination of the last two equations gives (3.13).

4 Expected volume and surface area

The purpose of this section is to use the technique developed in the previous section
in order to obtain a formula for the expected volume of K. The formula will be derived
in the following way: first, we can find a formula for the expected volume of Kα by
combining formula (3.10) and Lemma 3.1. Then, in order to find E[Voln(K)], we will
establish the fact that the latter may be expressed as a limit of the former, by taking
α→∞. This fact is stated in a corollary below.

We begin with some notation. For a convex body L and for ε > 0, we denote

e(L, ε) := {x ∈ Rn| ∃y ∈ L, |y − x| ≤ ε},

the ε-extension of L. For two convex bodies L, T , we denote

dH(L, T ) := inf{ε; L ⊂ e(T, ε) and T ⊂ e(L, ε)},

the Hausdorff distance between L and T .

Lemma 4.1. Almost surely, one has

lim
α→∞

dH(Kα,K) = 0.
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Proof:
For θ ∈ Sn−1, we write hK(θ) = supx∈K〈x, θ〉, the support function of K, and Hθ(t) =

{x ∈ Rn; 〈x, θ〉 ≤ t}. Note that

K =
⋂

θ∈Sn−1

Hθ(hK(θ)).

Define

K(ε) =
⋂

θ∈Sn−1

Hθ(hK(θ)− ε).

It is easy to verify that, limε→0 d(K(ε)),K) = 0. Therefore, it is enough to show that
almost surely, for every ε > 0, there exist α0 such that for every α > α0, one has

P(Kα ⊃ K(ε)) > 1− ε.

To that end, for every θ ∈ Sn−1, define K(ε, θ) = K \Hθ(hk(θ)− ε), and

D(θ) =
{
θ′ ∈ Sn−1; 〈x, θ′〉 > hK − ε, ∀x ∈ K(ε/2, θ)

}
.

Evidently, D(θ) is an open set that contains θ. Next, define

r(θ) = sup{r| B(θ, r) ⊂ D(θ)},

where B(θ, r) is an open spherical cap of radius r, centered at θ. The fact that D(θ) is
open implies that r(θ) > 0. Moreover, one may verify that r(θ) is continuous with respect
to θ, and therefore attains a minimum, r0 > 0. Now, take θ1, ..., θM to be an r0-net of
the sphere. Suppose a set of points x1, ..., xM ∈ K satisfy xi ∈ K(ε/2, θi), and denote
C = Conv(x1, .., xM ). Then for all θ ∈ Sn−1, there exists some i such that θ ∈ B(θi, r0)

which implies that 〈xi, θ〉 ≥ hK(θ) − ε. It follows that hC(θ) ≥ hK(θ) − ε, which implies
that K(ε) ⊂ C. It is therefore enough to show that the following event has probability
tending to 1:

E =
⋂

1≤i≤M

{∃x ∈ Kα such that 〈x, θi〉 ≥ hK(θi)− ε/2}.

For all 1 ≤ i ≤ M , define Ti = B−1(K(ε/2, θi)). By the continuity of B, this set has a
positive measure, which means that the probability that one of the points of the Pois-
son process is in Ti tends to 1 as α → ∞. By applying a union bound, it follows that
limα→∞ P (E) = 1, and the lemma is proven.

As a direct corollary, we obtain

Corollary 4.2. Almost surely, one has

lim
α→∞

Voln(Kα) = Voln(K),

and

lim
α→∞

Voln−1(∂Kα) = Voln−1(∂K).

In view of the above corollary, the proof of Theorem 1.1 is reduced to calculating
limα→∞E[Voln(Kα)]. Recall formulae (3.10) and (3.13). The only ingredient we still
need is E[V (r)]. The next lemma is a simple calculation.
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Lemma 4.3. Let r = (r1, ..., rn) ∈ ∆n. We have

E[V (r)] = 2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

n−1∏
i=1

√
ri+1.

Furthermore, V (r) ∼
∏n−1
i=1

√
ri+1X where X is a random variable whose distribution

does not depend on r.

Proof: Define s = s(r) and
vi = B(si+1)−B(si)

for 1 ≤ i ≤ n− 1. One has

(n− 1)!Voln−1(Fr) =

∣∣∣∣∣∣∣∣∣∣
det


v1

v1 + v2

...

v1 + ...+ vn−1

ns


∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
det


v1

v2

...

vn−1

ns


∣∣∣∣∣∣∣∣∣∣
.

Let Γ1, ..,Γn−1 be independent standard Gaussian random vectors in Rn. By the inde-
pendence of increments of the Brownian motion on disjoint intervals, we have

(v1, .., vn−1) ∼ (
√
r2Γ1, ...,

√
rnΓn−1).

So,

Voln−1(Fr) ∼
1

(n− 1)!

n−1∏
i=1

√
ri+1

∣∣∣∣∣∣∣∣det


Γ1

...

Γn−1

nr


∣∣∣∣∣∣∣∣

Denote E0 = Rn and Ei = span{Γ1,Γ2, ...Γi}⊥. Thinking about the above determinant as
the volume of the parallelepiped spanned by the vectors Γi and using a simple induction
to calculate this volume gives∣∣∣∣∣∣∣∣det


Γ1

...

Γn−1

u


∣∣∣∣∣∣∣∣ =

n−1∏
i=1

∣∣ProjEi−1
Γi
∣∣ .

Observe that the dimension of Ei is almost surely n − i. Let u1, ..., un be vectors such
that {u1, ..., un−i+1} is an orthonormal basis of Ei−1. One has

E
[∣∣ProjEi−1Γi

∣∣] = E

√√√√n−i+1∑
j=1

〈Γi, uj〉2

 .
Note that in the last equality we use the fact that Γi is independent of Ei−1 and therefore
the vectors u1, ..., un−i+1 can be assumed constant. The above is just the first moment
of the χ-distribution with (n− i+ 1) degrees of freedom, which is equal to

E
[∣∣ProjEi−1

Γi
∣∣] =

√
2

Γ((n− i+ 2)/2)

Γ((n− i+ 1)/2)
.

Since Γi is independent of Ei−1, it also follows that the variables |ProjEi−1
Γi| are inde-

pendent. Consequently,

E


∣∣∣∣∣∣∣∣det


Γ1

...

Γn−1

u


∣∣∣∣∣∣∣∣
 =

n−1∏
i=1

√
2

Γ((n− i+ 2)/2)

Γ((n− i+ 1)/2)
= 2(n−1)/2Γ((n+ 1)/2).
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We conclude,

E[Voln−1(Fr)] = 2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

n−1∏
i=1

√
ri+1.

We now have all the ingredients we need. Plugging the result of the above lemma in
(3.13), we attain

E
[
1Eα(r)H(r)V (r)

]
= (4.1)

2

 n∏
j=2

1− e−αrj
αrj

Ψ(αrn+1)E[1ẼrHr]E[Vr] =

ξn
αn

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)(
erf (

√
αr1) +

e−αr1 − 1
√
πr1α

)
Φ(αrn+1). (4.2)

where we set ξn = 1√
π

2n/2 Γ((n+1)/2)
Γ(n) .

Plugging this into equation (3.10), we finally get

E[Voln(Kα)] = (4.3)

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)

(
erf (

√
αr1) +

e−αr1 − 1
√
πr1α

)
dr.

As mentioned above, we aim at calculating E[Voln(K)] by means of taking α → ∞. To
do this, we would like to use the dominated convergence theorem in order to take the
limit inside the integral, so we end up with a simpler integrand. Let us inspect each
term separately. First, note that

n∏
j=2

(
1− e−αrj

)
≤ 1,

and

0 ≤ erf (
√
αr1) +

e−αr1 − 1
√
πr1α

≤ erf (
√
αr1) ≤ 1.

(where the first inequality follows from Lemma 2.2). Also, we estimate

Φ(t) =
2√
π

∫ √t
0

e−x
2

dx√
1− x2/t

≤ (4.4)

2√
π

(∫ √ 3
4 t

0

e−x
2

dx√
1/4

dx+

∫ √t
√

3
4 t

e−
3
4 tdx√

1− x2/t

)
≤ 2 + e−

3
4 t
√
t
√
π ≤ 3,

for all t ≥ 0. We learn that the integrand in (4.3) is positive and smaller than the
term 3

∏n+1
j=2

1√
rj

, whose integral clearly converges, therefore we may use the dominated

convergence theorem. For all r ∈ Int(∆n), we calculate

lim
α→∞

(
erf (

√
αr1) +

e−αr1 − 1
√
πr1α

)
=
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lim
α→∞

erf (
√
αr1) = 1,

and

lim
α→∞

Φ(αrn+1) = lim
t→∞

2√
π

∫ √t
0

e−x
2

dx√
1− x2/t

=

2√
π

∫ ∞
0

e−x
2

dx = 1.

We attain

lim
α→∞

E[Voln(Kα)] =
ξn
n

∫
∆n

n+1∏
j=2

1
√
rj
dr =

(interchanging between r1 and rn+1)

ξn
n

∫
{∑n

i=1 ri≤1}

n∏
i=1

1
√
ri
dr =

(substituting ti =
√
ri)

ξn
n

2n
∫{∑n

i=1
t2
i
≤1

ti≥0

} dt =
ξn
n

∫
{∑n

i=1 t
2
i≤1}

dt =
ξn
n

Voln(Bn)

where Bn := {x ∈ Rn, |x| ≤ 1}, the unit Euclidean ball.

The following formula is well-known:

Voln(Bn) =
πn/2

Γ
(
n
2 + 1

) .
We finally get

E[Voln(K)] =
1√
πn

(2π)n/2
Γ((n+ 1)/2)

Γ(n)Γ
(
n
2 + 1

) =
(π

2

)n/2 1

Γ
(
n
2 + 1

)2
The computation of the surface area is completely analogous. By combining (3.11),
(3.14) and Lemma 4.3 we get

E[Voln−1(∂K)] =

∫
∆n

E[Vr]P[1Eα(r)] =

2

π
2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

∫
∆n

n+1∏
j=1

1
√
rj

 dr =

(substituting ti =
√
ri)

2

π
2(n−1)/2 Γ((n+ 1)/2)

Γ(n)
2n
∫{∑n

i=1
t2
i
≤1

ti≥0

} 1√
1− |t|2

dt =

2

π
2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

∫
Bn

1√
1− |t|2

dt =

Voln−1(∂Bn)
2

π
2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

∫ 1

0

xn−1

√
1− x2

dx =

4πn/2

Γ(n/2)

1

π
2(n−1)/2 Γ((n+ 1)/2)

Γ(n)

√
πΓ(n/2)

2Γ((n+ 1)/2)
=

2(2π)(n−1)/2

Γ(n)
.
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We have established Theorem 1.1.

The following proof of Corollary 1.2 was communicated to us by Christoph Thäle.
Proof of Corollary 1.2:

For a linear subspace L ⊂ Rn, define by K|L the projection of K onto L, in other
words,

K|L =
{
x ∈ L; ∃y ∈ L⊥, x+ y ∈ K

}
.

For all 1 ≤ j ≤ n, let Ej be some fixed j-dimensional subspace. According to Kubota’s
formula (see [23, p. 222]), we have

Vj(K) = c(n, j)

∫
SO(n)

Volj(U(K)|Ej)m(dU)

where SO(n) denotes the special orthogonal group on n-dimensions, m(·) denotes the
normalized Haar measure on this group and

c(n, j) :=

(
n

j

)
Γ
(
j
2 + 1

)
Γ
(
n−j

2 + 1
)

Γ(n/2 + 1)
.

After taking expectation on both sides and using Fubini’s theorem, the last formula
becomes

EVj(K) = c(n, j)

∫
SO(n)

E [Volj(U(K)|Ej)]m(dU).

Now, by the rotational invariance of the Brownian motion, for any fixed U ∈ SO(n), the
body K has the same distribution as U(K), which tells us that

EVj(K) = c(n, j)E [Volj(K|Ej)] .

Next, we make the following observation: since the coordinates of a Brownian motion,
under any orthogonal basis, are independent and since the operation of taking the con-
vex hull commutes with the operation of projecting a set onto a linear subspace, the ran-
dom body K|Ej has the same distribution as that of the convex hull of a j-dimensional
Brownian motion embedded in Ej . According to Theorem 1.1, we therefore know that

E [Volj(K|Ej)] =
(π

2

)j/2 1

Γ
(
j
2 + 1

)2 .
A combination of the two last formulas yields the result of the corollary.

5 The approximating polytope

The goal of this section is to prove Theorem 1.3. Since in the previous section, we
already calculated E[Voln(K)], the derivation of the bounds in the theorem is reduced to
obtaining estimates on E[Voln(Kα)], which in turn, are reduced to obtaining respective
estimates on (4.3).

We begin with the lower bound. Inspect equation (4.3). Our first goal will be to show
that the term involving the expression e−αr1−1√

πr1α
is small. We calculate, using (4.4),

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)
1− e−αr1
√
πr1α

dr ≤

EJP 19 (2014), paper 45.
Page 18/34

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2571
http://ejp.ejpecp.org/


Convex hull of Brownian motion

3ξn
n
√
α

∫
∆n

n+1∏
j=1

1
√
rj
dr =

3ξn
n
√
α

∫
Bn

1√
1− |x|2

dx

(here, we used the substitution ri = x2
i ). It is easy to verify that,∫

Bn

1√
1− |x|2

dx ≤ 4
√
nVoln(Bn).

So,

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)
1− e−αr1
√
πr1α

dr ≤ (5.1)

12
√
n√
α

ξnVoln(Bn)

n
.

Our next task is to estimate the remaining term. To that end, we note that Φ(x) ≥
erf(
√
x) and use the following well-known estimate:

erf(x) ≥ 1− e−x
2

.

This estimate yields

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)erf (
√
αr1) dr ≥

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

n+1∏
j=1

(
1− e−αrj

) dr =

When interchanging the roles of r1 and rn+1 in the above integral, the domain of inte-
gration ∆n becomes {

∑n
i=1 ri ≤ 1}, and by using the substitution t2i = ri for all 1 ≤ i ≤ n,

the domain of integration will become the unit ball, Bn. In other words,

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)erf (
√
αr1) dr ≥ (5.2)

ξn
n

∫
∑n
i=1 ri≤1

 n∏
j=1

1
√
rj

 n∏
j=1

(
1− e−αrj

)(1− e−(1−
∑n
i=1 ri)α

)
dr =

ξn
n

∫
Bn

 n∏
j=1

(
1− e−αt

2
j

)(1− e−(1−|t|2)α
)
dt.

Define

F (t) =
Voln

({(
1− |x|2

)
≤ t
}
∩Bn

)
Voln(Bn)

.

A straightforward calculation gives

F

(
t

10n

)
≤ t, ∀t ≥ 0. (5.3)

So we can estimate ∫
Bn

e(|x|
2−1)αdx ≤

∫
Bn

1

1 + (1− |x|2)α
dx = (5.4)
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Voln(Bn)

∫ 1

0

F ′(t)

1 + αt
dt = Voln(Bn)

(
F (1)

1 + α
+ α

∫ 1

0

F (t)

(1 + αt)2
dt

)
.

Using (5.3), we attain∫
Bn

e(|x|
2−1)αdx ≤ Voln(Bn)

(
1

α
+ 10nα

∫ 1

0

t

(1 + αt)2
dt

)
=

Voln(Bn)

(
1

α
+

10n

α

∫ α

0

t

(1 + t)2
dt

)
≤ nVoln(Bn)√

α
,

where in the last inequality, we use the legitimate assumption that α is greater than
some universal constant. Combining this with (5.2) yields

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)erf (
√
αr1) dr ≥ (5.5)

ξn
n

∫
Bn

 n∏
j=1

(
1− e−αt

2
j

) dt− nVoln(Bn)√
α

 .

To estimate the right hand side, we will need the following inequality,

∫
Bn

 n∏
j=1

(
1− e−αt

2
j

) dt ≥ (5.6)

Voln(Bn)

∫
Bn

(∏n
j=1

(
1− e−αt

2
j

))
e−2n

∑n
i=1 t

2
i dt∫

Bn
e−2n

∑n
i=1 t

2
i dt

.

In order to see why this inequality holds, we first note that the term
∏n
j=1

(
1− e−αt

2
j

)
is monotone on rays of the form {s(t1, ..., tn); s ≥ 0} and we recall the simple fact that
for any two integrable monotone functions f, g : [0, 1] → R+ and for any probability
measure µ on [0, 1] one has∫ 1

0

f(s)g(s)dµ(s) ≥
∫ 1

0

f(s)dµ(s)

∫ 1

0

g(s)dµ(s).

Fix θ = (θ1, ..., θn) ∈ ∂Bn. By taking µ to be the measure satisfying dµ
ds = nsn−1 and

defining

f(s) = e−2ns
∑n
i=1 θ

2
i , g(s) =

n∏
j=1

(
1− e−αsθ

2
j

)
we get ∫ 1

0
sn−1

(∏n
j=1

(
1− e−αsθ

2
j

))
e−2n

∑n
i=1 sθ

2
i ds∫ 1

0
sn−1e−2n

∑n
i=1 θ

2
i ds

≤

n

∫ 1

0

sn−1

 n∏
j=1

(
1− e−αsθ

2
j

) ds.

Now, by rotational symmetry,

Voln−1(∂Bn)

∫ 1

0

sn−1e−2n
∑n
i=1 θ

2
i ds =

∫
Bn

e−2n
∑n
i=1 t

2
i dt
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and therefore ∫ 1

0
sn−1

(∏n
j=1

(
1− e−αsθ

2
j

))
e−2n

∑n
i=1 sθ

2
i ds∫

Bn
e−2n

∑n
i=1 t

2
i dt

≤

n

Voln−1(∂Bn)

∫ 1

0

sn−1

 n∏
j=1

(
1− e−αsθ

2
j

) ds =

1

Voln(Bn)

∫ 1

0

sn−1

 n∏
j=1

(
1− e−αsθ

2
j

) ds.

Integration of both sides of the last equation with respect to θ on ∂Bn finally proves
(5.6).

Next, since the term e−2n
∑n
i=1 t

2
i is proportional to the density of a standard Gaussian

random vector Γ = (Γ1, ...,Γn), we get

∫
Bn

 n∏
j=1

(
1− e−αt

2
j

) dt ≥

Voln(Bn) E

 n∏
j=1

(
1− e− α

4nΓ2
j

) ∣∣∣∣∣∣ |Γ|2 ≤ 4n

 .
A calculation gives P(|Γ|2 ≤ 4n) > 1− e−n. So we get

∫
Bn

 n∏
j=1

(
1− e−αt

2
j

) dt ≥ Voln(Bn)

 n∏
j=1

E
[
1− e− α

4nΓ2
j

]
− e−n

 =

Voln(Bn)

((
1− 1√

α
2n + 1

)n
− e−n

)
≥ Voln(Bn)

(
1− 2

n3/2

√
α
− e−n

)
The above estimate combined with (5.5) gives

ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

)Φ(αrn+1)erf (
√
αr1) dr ≥

ξnVoln(Bn)

n

(
1− 2

n3/2

√
α
− e−n − n√

α

)
≥ ξnVoln(Bn)

n

(
1− 3

n3/2

√
α
− e−n

)
.

Finally, the last equation along with (4.3) and (5.1) give

E[Voln(Kα)] ≥ ξnVoln(Bn)

n

(
1− 15

n3/2

√
α
− e−n

)
Since Kα ⊂ K almost surely, one has E[Voln(K \ Kα)] = E[Voln(K)] − E[Voln(Kα)].
Therefore, combining the above bound with Theorem 1.1 establishes (1.1).

We continue with proving the bound (1.2). Formula (4.3) and the bound (4.4) suggest
that

E[Voln(Kα)] ≤ 3ξn
n

∫
∆n

n+1∏
j=2

1
√
rj

 n∏
j=2

(
1− e−αrj

) dr = (5.7)
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(interchanging between r1 and rn+1 and substituting t2i = ri)

3ξn
n

∫
Bn

 n∏
j=2

(
1− e−αt

2
j

) dt.

Let X = (X1, ..., Xn) be uniformly distributed in Bn. It is straightforward to verify that

P

(
|X1| ≤

t

n
√
n

)
≥ t

4n
, ∀0 ≤ t ≤ n

10
.

We observe that for all k > 1 and for all 0 ≤ t ≤ n/10, one has

P

(
|Xk| ≤

t

n
√
n

∣∣∣∣ |X1| >
t

n
√
n
, |X2| >

t

n
√
n
, ..., |Xk−1| >

t

n
√
n

)
≥

P

(
|Xk| ≤

t

n
√
n

)
.

It follows that

P

(
min
k
|Xk| >

t

n
√
n

)
=

P (|X1| >
t

n
√
n

)

n∏
k=2

P

(
|Xk| ≤ t | |X1| >

t

n
√
n
, ..., |Xk−1| >

t

n
√
n

)
≤ e−t/4,

for all 0 ≤ t ≤ n/10. The last inequality, combined with (5.7), implies that

E[Voln(Kα)] ≤

3ξnVoln(Bn)

n

(
e−t/4 + (1− e−t/4)

(
1− e−αt

2/n3
))
≤

3ξnVoln(Bn)

n

(
1 + e−t/4 − e−αt

2/n3
)
≤ 3ξnVoln(Bn)

n

(
e−t/4 + αt2/n3

)
,

for all 0 ≤ t ≤ n/10. Using the assumption α < n3

8 and choosing t = 4 log(n3/α) gives

E[Voln(Kα)] ≤ 100
α

n3
log2

(
n3

α

)
E[Voln(K)].

The upper bound is established, and we have proven Theorem 1.3.

6 Approximate scaling invariance of the facet distribution

In this section we will prove Theorem 1.4.

We begin by fixing some compact and non-degenerate family of simplices C ⊂ S. Recall
the definition of the measure q(·) (equation 3.2). We have

MK(C) = E

[∫
∆n

1{Fr∈C}dq(r)

]
. (6.1)

Our main ingredient will be the following lemma which helps us express the behavior
of facets of K in terms of limits of the expected behavior of facets of Kα. This, in turn,
will allow us to use the machinery developed in section 3 in order to calculate the right
hand side of the above equation.
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Lemma 6.1. Let f : ∆n → [0,∞) be a random function satisfying the following condi-
tions:
(i) For all r ∈ ∆n, f(r) is measurable with respect to the σ-algebra generated by the
Brownian motion B(·).
(ii) There exist constants C > 0 and p ≥ 1 such that almost surely,

f(r) ≤ CV (r)p, ∀r ∈ ∆n (6.2)

where V (r) = V oln−1(Fr) is defined in section 3.
(iii) The function f is almost surely continuous in ∆n.
Then we have

E

[∫
∆n

f(r)dq(r)

]
= lim
α→∞

αn
∫

∆n

E
[
f(r)1Eα(r)

]
dr.

We postpone the proof of this lemma to the end of the section.

This lemma encourages us to define for all δ > 0

fδ(r) = max
(
0, 1− δ−1dH(Fr, C)

)
.

where dH(s, C) denotes the minimal Hausdorff distance between s and some s′ ∈ C. The
non-degeneracy assumption of the family C implies

Fr ∈ C ⇒ V (r) ≥ c

for some constant c > 0. Therefore, since the volume of a simplex is continuous with
respect to the Hausdorff metric and by the compactness of C, we deduce that there
exists some δ0, C > 0 such that

fδ(r) ≤ CV (r), ∀0 < δ < δ0.

Consequently, the assumption (6.2) is satisfied and we may apply the above lemma to
get

E

[∫
∆n

fδ(r)dq(r)

]
= lim
α→∞

αn
∫

∆n

E
[
fδ(r)1Eα(r)

]
dr.

Since fδ(r) is increasing with respect to δ, the monotone convergence theorem and
equation (6.1) teach us that

lim
δ→0+

E

[∫
∆n

fδ(r)dq(r)

]
= MK(C).

The last two equations give

MK(C) = lim
δ→0+

lim
α→∞

αn
∫

∆n

E
[
fδ(r)1Eα(r)

]
dr.

Recall that the equivalence class of Fr and the event Eα(r) are independent (by Lemma
3.1). It follows that

MK(C) = lim
δ→0+

lim
α→∞

αn
∫

∆n

pα(r)E
[
max

(
0, 1− δ−1dH(Fr, C)

)]
dr. (6.3)

Let Γ1, ...,Γn−1 be independent standard Gaussian random vectors. For a point r ∈ ∆n,
we define

Xr = Conv

{0} ∪
n−1⋃
i=1


i∑

j=1

√
rj+1Γj


 , (6.4)
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so Xr has the same distribution as Fr, up to a translation. Using formula (3.12), equa-
tion (6.3) becomes

MK(C) = lim
δ→0+

lim
α→∞

αn
∫

∆n

pα(r)g(δ, r)dr =

lim
δ→0+

lim
α→∞

2

π

∫
∆n

 n∏
j=2

1− e−αrj
rj

 1
√
r1rn+1

Φ(αr1)Φ(αrn+1)g(δ, r)dr

where
g(δ, r) := E

[
max

(
0, 1− δ−1dH(Xr, C)

)]
.

The bound (4.4) suggests that the dominated convergence theorem may be used to
attain

MK(C) = lim
δ→0+

2

π

∫
∆n

 n∏
j=2

1

rj

 1
√
r1rn+1

g(δ, r)dr.

Moreover, we have

lim
δ→0+

max
(
0, 1− δ−1dH(Xr, C)

)
= 1{Xr∈C}.

an application of the monotone convergence theorem with the two previous equations
gives

MK(C) =
2

π

∫
∆n

 n∏
j=2

1

rj

 1
√
r1rn+1

P(Xr ∈ C)dr =

2

π

∫
∆n−1

 n∏
j=2

1

rj

P(Xr ∈ C)

(∫ 1−
∑n
i=2 ri

0

1√
t(1−

∑n
i=2 ri − t)

dt

)
dr2...drn =

2

∫
∆n−1

 n∏
j=2

1

rj

P(Xr ∈ C)dr2...drn.

Recall that for a set C ⊂ S and t > 0, we understand tC as {ts; s ∈ C}. Note that
Xtr ∼

√
tXr. Therefore, by substituting ri = λwi for 2 ≤ i ≤ n in the last integral we

attain that, for all λ ≥ 1,

MK(C) = 2

∫
∆n−1

 n∏
j=2

1

rj

P(Xr ∈ C)dr2...drn ≤

2

∫
λ∆n−1

 n∏
j=2

1

rj

P(Xr ∈ C)dr2...drn =

2

∫
∆n−1

 n∏
j=2

1

wj

P(Xλw ∈ C)dw2...dwn = MK

(
1√
λ
C
)
.

It follows that MK(tC) is a decreasing function of t, which means that limt→0MK(tC)
exists in the wide sense. This completes the first part of the theorem.

The second part of the theorem will follow directly from the next technical lemma.
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Lemma 6.2. Let C ⊂ S be compact in the Hausdorff metric, such that every s ∈ C has
a non-empty relative interior. Then∫

R
n−1
+

 n∏
j=2

1

rj

P(Xr ∈ C)dr2...drn <∞,

where Rn−1
+ = {(r2, ..., rn); ri ≥ 0, ∀2 ≤ i ≤ n}.

Proof: For a simplex s ∈ C, let M(s) and m(s) denote the length of the longest and
shortest two-dimensional edge of s, respectively. Since C is compact we may define

M = max
s∈C

M(s), m = min
s∈C

m(s).

Along with the assumption that the simplices are non-degenerate (e.g. have a non-
empty interior), the reader can easily verify that m > 0. Fix (r1, ..., rn) = r ∈ Rn+ and for

all 1 ≤ i ≤ n let ti =
∑i
j=1 ri. Let Γ be a standard Gaussian random vector in Rn. Recall

the definition of Xr in equation (6.4). We estimate

P(m(Xr) > m/2) ≤ P
(

min
2≤i≤n

|B(ti−1)−B(ti)| > m/2

)
≤

P

(√
min

2≤i≤n
ri|Γ| > m/2

)
≤ C1 exp

(
−c1

m2

min2≤i≤n ri

)
≤

C1 exp

(
−c1m2

n∏
i=2

r
−1/n−1
i

)
for some constants c1, C1 > 0. On the other hand, we can write

P(M(Xr) < 2M) ≤ P( max
2≤i≤n

√
ri|Γ| < 2M) ≤

C2 max
2≤i≤n

r
−n/2
i ≤ C2

n∏
i=2

r
−1/2
i .

for some constants c2, C2 > 0 (which may depend on M and n). Using these two esti-
mates, we obtain

P(M(Xr) ∈ C) ≤ C min

(∏
i=2n

r
−1/2
i , exp

(
−c

n∏
i=2

r
−1/n−1
i

))
for some constants c, C > 0. We therefore get∫

R
n−1
+

 n∏
j=2

1

rj

P(Xr ∈ C)dr2...drn ≤

∫
R
n−1
+

C min

 n∏
j=2

1

r
3/2
j

,

n∏
j=2

1

rj
exp

(
−c

n∏
i=2

r
−1/n−1
i

) dr2...drn ≤ .

∫
R
n−1
+

min

 n∏
j=2

1

r
3/2
j

, C ′

 dr2...drn

for some constant C ′ > 0. The above integral obviously converges, and the lemma is
proven.
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Remark 6.3. The method above may actually be used to find a precise formula for,
say, the expected number of facets of K whose volume is between two given constants,
in terms of the distribution function of the product of χ-random variables. As another
example, by taking f(r) = V (r)2 in Lemma 6.1, another quantity which we can easily
calculate using this method is the expected volume of the facet containing a point x ∈
∂(K) when x is uniformly generated on the set ∂(K). Quantities of this sort may serve
us to attain a little more information on the distribution of facets of K.

Proof of Lemma 6.1:
We divide the proof into several steps.
Step 1. We start with showing that for all A ⊂ Int(∆n) compact, one has almost surely

q(A) = 0⇒ lim sup
α→∞

qα(A) = 0. (6.5)

Clearly, it suffices to fix an arbitrary continuous function B(t) and show that the last
equation holds almost surely with respect to the Poisson process. Set A ⊂ Int(∆n)

and assume that q(A) = 0 (note that the last event is measurable with respect to the
Brownian motion B(·). Its only property that we will use is continuity). For any r ∈ A,
denote

T (r) =
{
t ∈ [0, 1] | 〈nr, B(t)〉 > H(r)

}
.

The assumption q(A) = 0 implies that T (r) 6= ∅ for all r ∈ A. By the continuity of
the Brownian motion, it follows that T (r) is an open set and moreover λ(T (r)) (namely,
the Lebesgue measure of T (r)) is a positive and continuous function and so attains a
minimum on A, which we denote by ε. Now, for every r ∈ A, let T̃ (r) be some closed
subset of T (r) whose Lebesgue measure is at least ε/2. It is easy to check that for all
r ∈ ∆n there exists an open neighborhood, N(r) such that

r′ ∈ N(r)⇒ T̃ (r) ⊂ T (r′).

Since A is compact, there exists a finite set r1, ..., rN ∈ A such that

A ⊂ N(r1) ∪ ... ∪N(rN ).

Now, suppose that for each 1 ≤ i ≤ N , one has Λα ∩ T̃ (ri) 6= ∅. Then for all r ∈ A we
have T (r) ⊃ T̃ (rj) for some 1 ≤ j ≤ N , which implies that T (r) ∩ Λα 6= ∅, which in turn
means that Eα(r) does not hold. It follows that

P(qα(A) = 0|B(t)) ≥ P

 ⋂
1≤j≤N

{Λα ∩ T̃i 6= ∅}

 ≥ 1−Ne−εα/2.

Since Λα is monotone in α (with respect to inclusion), it follows that the events {Λα∩T̃i 6=
∅} are increasing with α, and we get lim supα→∞ qα(A) = 0 almost surely.

Step 2 We show that if A ⊂ Int(∆n) is compact and f is supported in A then, almost
surely,

lim sup
α→∞

∫
∆n

f(r)dqα(r) ≤
∫

∆n

f(r)dq(r). (6.6)

Again, we may fix an arbitrary continuous function B(·) and prove that the last equation
holds almost surely with respect to the Poisson process. Observe that for almost every
point r ∈ ∆, there exists a neighborhood M(r) (which depends on B(t)) such that

r1, r2 ∈M(r)⇒ Int(Conv(Fr1 , 0)) ∩ Int(Conv(Fr2 , 0)) 6= ∅.
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We will use the following geometric fact: for any polytope P which contains the origin,
for any two distinct facets F1, F2 ⊂ ∂P (of co-dimension 1) one has Int(Conv(F1, 0)) ∩
Int(Conv(F2, 0)) = ∅. Since 0 ∈ Kα by definition, this fact implies that almost surely

lim sup
α→∞

qα(M(r)) ≤ 1. (6.7)

Denote S = supp(q) ∩A. For all ε > 0, define

Mε =
⋃
r∈S

(M(r) ∩B(r, ε))

where B(r, ε) denotes the open Euclidean ball of radius ε centered at r. Then due to
(6.7), we learn that almost surely

lim sup
α→∞

∫
Mε

f(r)dqα(r) ≤
∑
r∈S

sup
r′∈B(r,ε)

f(r′).

Next, since M is open by definition, using (6.5), we have

lim sup
α→∞

∫
A\Mε

f(r)dqα(r) = 0.

Evidently, the set function lim supα→∞ qα(·) is sub-additive. Thus, the last two equations
imply that for all ε > 0 we have almost surely

lim sup
α→∞

∫
∆n

f(r)dqα(r) ≤
∑
r∈S

sup
r′∈B(r,ε)

f(r′).

Recall that f is assumed to be continuous and compactly supported. By using the uni-
form continuity of f and taking ε→ 0 we attain (6.6).

Step 3: We show that almost surely,

lim
α→∞

∫
∆n

f(r)dqα(r) =

∫
∆n

f(r)dq(r). (6.8)

Assume by contradiction that one has with positive probability ε > 0, where

ε =

∫
∆n

f(r)dq(r)− lim inf
α→∞

∫
∆n

f(r)dqα(r). (6.9)

Recall that V (r) = Voln−1(Fr). By Corollary 4.2, we have almost surely

lim inf
α→∞

∫
∆n

V (r)dqα(r) ≥
∫

∆n

V (r)dq(r). (6.10)

Now, according to the assumption (6.2) we have for all r ∈ ∆n,

f(r) ≤ CV (r)p ≤ CV (r) max
r∈∆n

V (r)p−1.

Consequently, almost surely there exists a constant m > 0 such that the function h(r) =

V (r)− m
2 f(r) satisfies h(r) ≥ 0 for all r ∈ ∆n. Equations (6.10) and (6.9) imply,

lim sup
α→∞

∫
∆n

h(r)dqα(r) ≥
∫

∆n

h(r)dq +
mε

2
. (6.11)
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Since h(r) is continuous, there exists a compact A ⊂ Int(∆n) such that

lim sup
α→∞

∫
A

h(r)dqα(r) ≥
∫
A

h(r)dq +
mε

4
(6.12)

with positive probability. This contradicts (6.6). Therefore, we have established (6.8).

Step 4 To finish the proof of the lemma, we argue that the dominated convergence
theorem may be used to show that

E

[
lim
α→∞

∫
∆n

f(r)dqα(r)

]
= lim
α→∞

E

[∫
∆n

f(r)dqα(r)

]
. (6.13)

Indeed, according to (3.9) and by the assumption (6.2), we have∫
∆n

f(r)dqα(r) ≤ C
∫

∆n

V (r)pdqα(r) ≤

C ′n,pC

(∫
∆n

V (r)dqα(r)

)p
= C ′n,pCVoln−1(∂Kα)p

where in the second inequality we use the fact that qα is a counting measure, and C ′n,p
is a positive constant depending only on n and on p. The inclusion

Kα ⊂ K ⊂
{
x ∈ Rn; |x| ≤ max

0≤t≤1
|B(t)|

}
teaches us that

Voln−1(∂Kα)p ≤
(
Voln−1(∂Bn)

)p(
max

0≤t≤1
|B(t)|

)p(n−1)

,

and therefore ∫
∆n

f(r)dqα(r) ≤ C
(

max
0≤t≤1

|B(t)|
)p(n−1)

where C is deterministic. Now, it is well known that the maximum of a Brownian motion
in a bounded interval has finite moments of all orders (for example, by a combination
of Doob’s theorem with the fact that the Gaussian distribution has finite moments). In
other words,

E

[(
max

0≤t≤1
|B(t)|

)p(n−1)
]
<∞.

The two last inequalities and the dominated convergence theorem finally prove (6.13).
We now combine (6.13), (6.8) and (3.7) to get

E

[∫
∆n

f(r)dq(r)

]
= E

[
lim
α→∞

∫
∆n

f(r)dqα(r)

]
=

lim
α→∞

E

[∫
∆n

f(r)dqα(r)

]
= lim
α→∞

αn
∫

∆n

E
[
f(r)1Eα(r)

]
dr.

The lemma is complete.
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We finish this section with a small remark. As a consequence of the above lemma,
and by Corollary 4.2, we have

E

[∫
∆n

V (r)dq(r)

]
=

lim
α→∞

αn
∫

∆n

E
[
V (r)1Eα(r)

]
dr =

lim
α→∞

E [Voln−1(∂Kα)] = E [Voln−1(∂K)] .

Note that a-priori, the quantity
∫

∆n
V (r)dq(r) need not be equal to the surface area of

K, because some of its surface area may be contained in facets of dimension smaller
than n− 1. We therefore have the following corollary to the above lemma:

Corollary 6.4. Let A ⊂ ∂K be the set of points not contained in the interior of any
(n− 1)-dimensional facet of K. We have

Voln−1(A) = 0.

7 Comments and Possible Further Research

7.1 Higher moments

In this paper, we derived formulas for the expectation (i.e, the first moment) of the
volume and surface area of K. It may be interesting to investigate the behaviour of
higher moments. In particular, it may be interesting to ask, for example, how concen-
trated the volume of K is around its mean.

One possible strategy of finding the second moment is by using an analogous formula
to (4.3). It can be seen that, in the notations of section 3,

E[Voln(K)2] =

1

n2

∫
∆n×∆n

E
[
V (x)V (y)R(x)R(y)1Eα(y)1Eα(x)

]
dxdy.

It seems rather hard to find a precise formula for the integrand. However, when the
dimension n is large, it is possible to show using standard techniques related to high-
dimensional measure concentration that for a typical choice of x, y ∈ ∆n ×∆n (i.e, with
high probability), the facets Fx and Fy will be approximately orthogonal to each other.
Now, note that the random variables R(x) and 1Eα(x) depend only on 〈B(t), nx〉 while
the variables R(y) and 1Eα(y) depend only on 〈B(t), ny〉. It follows that when nx ⊥ ny,
these two pairs are mutually independent. Since nx and ny are almost orthogonal, it is
reasonable to suspect that for a typical pair x, y one would have

E
[
V (x)V (y)R(x)R(y)1Eα(y)1Eα(x)

]
≈

E
[
V (y)R(y)1Eα(y)

]
E
[
V (x)R(x)1Eα(x)

]
.

In some sense, the above would imply that E[Voln(K)]2 is close to E[Voln(K)2] when
the dimension is large. This suggests that the answer to the following question may be
positive:

Question 7.1. Is it true that

lim
n→∞

√
V ar[Voln(K)]

E[Voln(K)]
= 0?
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7.2 Smoothness

In 1983, El Bachir ([10]) proved the assertion of P. Lévy that almost surely, the con-
vex hull of a planar Brownian motion has a smooth boundary. Later, in 1989, Cranston,
Hsu and March ([6]) showed that in fact, it is exactly Hölder 1 1

2 -smooth. A natural
question would be about the extension of these facts to higher dimensions:

Question 7.2. Does the body K have a smooth boundary for any dimension?

It doesn’t seem straightforward to adapt their methods even to the three dimen-
sional case: their proofs rely on the fact that if a 2-dimensional convex hull has a "cor-
ner", then the directions of its supporting hyperplanes will contain some interval, which
will in turn contain a rational direction. This fact allows them to express the smooth-
ness of the boundary as a countable intersection of events, each depending on a single
direction. It is easy to see that in 3-dimensional space, this is already not the case: it is
not hard to construct a body whose boundary is not smooth, but a uniformly generated
random 2-dimensional projection of this body will almost surely be smooth.

The following heuristic argument may suggest that the boundary is, in fact, smooth
in higher dimensions:

For two (n − 1)-dimensional facets s, t of a polytope P , we say that s, t are neighbors if
the intersection of s, t has Hausdorff dimension n − 2. The first step is to try to prove
that for any ε > 0, the probability that there exists at least one pair of n− 1-dimensional
neighboring facets of Kα such that the angle between the two is at least ε goes to zero
as α→∞. The idea is the following: in the notation of section 3, note that any choice of
two neighboring facets of Kα corresponds to a choise of n + 1 points from the process
Λα. In other words, it corresponds to the choice of two point r, s ∈ ∆n such that t(r)
and t(s) differ by only one coordinate.

Consider the event E that both Fr and Fs are facets of Kα and that the angle be-
tween the two is more than ε. By the representation theorem for the Brownian bridge,
it follows that one can first generate the points B(t) for t ∈ t(r) ∪ t(s), and then "fill in"
the missing gaps by Brownian bridges, as carried out in the proof of Lemma 3.1. Now,
project the Brownian motion onto the two dimensional subspace spanned by nr and ns.
Following the same lines as the proof of Lemma 3.1, we see that the event E is reduced
to the event that n − 1 independent discrete Brownian bridges and two Brownian mo-
tions all stay in a wedge of angle π − ε (in Lemma 3.1, the event Eα(r) was equivalent
to the fact that they stay in a half-space).

The next step would be to generalize the bounds in Lemma 2.1 to a wedge rather than
a half-space. Considering the bounds obtained in [7] as well as by the conformal in-
variance of the Brownian motion, it is reasonable to expect that the probability of an
α-step random walk to stay in a wedge of angle θ is of the order α−

π
2θ , and that for an

α-step discrete Brownian bridge to stay in such a wedge, would be of order α−
π
θ . If

these estimates are indeed correct, plugging them in the analogue of equation (3.12)
for wedges should give roughly

P(E) ≤ α−1
n∏
i=2

(αri)
−πθ (α2r1rn+1)−

π
2θ .
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If the above bound is true, it would imply that

αn+1

∫
∆n+1

P(E)d(r, s)→ 0

as α → ∞. This means that when α is large, one should expect Kα to be "smooth" in
the sense that any neighboring two faces have angle less than ε between them. Next,
an analogue of Lemma 6.1 may be used to show that this property is preserved when
passing to the limit: Indeed, the lemma shows that any facet of K already becomes a
facet of Kα for α large enough. Therefore, if K has two neighboring facets with some
angle ε > 0 between them, then Kα will have two such facets for all α large enough,
and we would arrive at a contradiction.

7.3 Neighborliness of the approximating polytope

A polytope P ⊂ Rn is said to be k-neighborly if for any choice of k vertices of P ,
v1, ..., vk, the simplex Conv(v1, ..., vk) is a facet of P . The concept of neighborlyness is
related to the ability of linear programming to find solutions to systems of underdeter-
mined linear equations (see [8]).

We believe that a slight generalization of the method introduced in [11, section 2]
may be used to show that when α is a polynomial of n, the polytope Kα is (cn/ log2 n)-
neighborly, with probability approaching 1 as n→∞. The idea of proof is as follows:

Fix some k < n and take α = n10, say. Let 0 ≤ s1 < ... < sk ≤ 1 be a selection of k
points from Λα. Define F = Conv(B(s1), ..., B(sk)). Let us try to understand the event
that F is contained in the boundary of Kα. By the representation theorem of the Brow-
nian bridge, one may first generate the points B(s1), ..., B(sk) and then "fill in" the gaps
with Brownian bridges, as carried out in the proof of Lemma 3.1. In view of this, and by
considering the projection of the Brownian motion onto F⊥, the event above is reduced
to the fact that k − 1 discrete Brownian bridges of length smaller than n10 in Rn−k and
two random walks are all contained in some open halfspace of Rn−k. At this point, The-
orem 2.1 in [11] comes to our service. According to this theorem, for a random walk
of polynomial length in Rn with probability 1 − n−10, there exists a unit vector whose
scalar product with any internal point of the random walk is of order log n. By proving
an analogous result for a discrete Brownian bridge, one would be able to combine log n

such vectors together to create a vector separating these bridges from the origin, thus
proving that F is in the boundary of Kα.

In some sense, the property of a polytope being k-neighborly is contradictory to the
fact that it approximates a smooth convex body: it is not hard to realize that as a family
of polytopes approaches a smooth convex body, they become less neighborly in some
sense. Therefore, the above fact may be interesting considering the fact that Kn4 is
already a good volumetric approximation for the polytope K which is obviously not 2-
neighborly (and may, in fact, be smooth).

7.4 Comparison with a Gaussian Polytope

Fix a dimension n. For an integer α ∈ N, let Γ1, ...,Γα be independent standard
Gaussian random vectors in Rn. We define Gα = Conv(Γ1, ...,Γα), the convex hull of
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independent Gaussian points. The object Gα is usually referred to as a Gaussian poly-
tope. The study of the Gaussian polytope began in the 60’s by Rényi and Sulanke, and
ever since it has been deeply investigated (see [1, 14] and [5]).

For geometers in convexity, a central motivation in the investigation of random poly-
topes stems from the fact that random objects often admit a rather pathological be-
havior and thus often serve as counterexamples to certain conjectures. A-priori, one
may have expected that the Gaussian polytope may be used to serve as a counter exam-
ple for certain phenomena related to the distribution of mass on convex bodies. Alas,
results such as [17] and [12] suggest that this object admits a quite regular and sym-
metric nature. It may therefore be interesting to try to find a construction of random
polytopes that are, in some sense, as irregular and asymmetric as possible. Some of the
estimate we obtained here may point to the fact that the behavior of the polytope Kα

is less regular than the behavior of Gα. We list some possible qualitative differences
between those two constructions.

It can be seen (see e.g., [12], Theorem 3) that the facets of Gn admit a rather regu-
lar behavior in the sense that for any given family of simplices C, the function MGα(tC)
is rather concentrated around a specific value of t. In other words, there is a typical
"correct" scale at which one expects to find most of the facets of Gα. On the other hand,
by Theorem 1.4, we know that when α is rather large, one expects to find facets of the
same shape at a wide range of scales, which suggests a less regular behavior.

As shown in [17], the covariance matrix of a uniform point randomly generated of
Gα is not far from a multiple of the identity matrix (for α large enough). This property
is sometimes referred to as isotropicity. It can be also seen by [12, Theorem 3] that
the covariance matrix of a typical facet of Gα is rather isotropic. On the other hand, in
view of the formulas developed in sections 3 and 6, one may expect that the polytope
Kα exhibits a very different behavior. Formula (3.14), suggests that covariance matrix
of a uniform point on Kα, as well as on one of the large-scale facets of Kα will have a
covariance matrix close to the one of B(·), which is far from isotropic. Note also that
the small-scale facets which, in the notations of section 3, have ri � 1 for 2 ≤ i ≤ n,
seem to "ignore" the covariance structure of B(·). Therefore, it is reasonable to guess
that there is a phase shift in the geometry of facets of Kα when passing from larger to
smaller scales of facets.

Both constructions, Gα and Kα seem to tend to a rather smooth shape as α → ∞:
it is well known that the shape of Gα becomes quite close to a Euclidean ball when
the value of α is large enough, namely exponential in n, and Kα approaches K, which
as the last section suggests, may have a smooth boundary. It is known that Gα is a
highly-neighborly polytope when n is a proportion of α (see [8]), but it becomes almost
non-neighborly as it approaches a Euclidean ball. On the other hand, Kn10 which is, by
Theorem 1.3, already close in expectation to its "smooth limit", may be a highly neigh-
borly polytope, as the previous subsection suggests.
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