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Abstract

We consider the convergence of a continuous-time Markov chain approximation Xh,
h > 0, to anRd-valued Lévy process X. The state space of Xh is an equidistant lattice
and its Q-matrix is chosen to approximate the generator of X. In dimension one
(d = 1), and then under a general sufficient condition for the existence of transition
densities of X, we establish sharp convergence rates of the normalised probability
mass function of Xh to the probability density function of X. In higher dimensions
(d > 1), rates of convergence are obtained under a technical condition, which is
satisfied when the diffusion matrix is non-degenerate.
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1 Introduction

Discretization schemes for stochastic processes are relevant both theoretically, as
they shed light on the nature of the underlying stochasticity, and practically, since they
lend themselves well to numerical methods. Lévy processes, in particular, constitute
a rich and fundamental class with applications in diverse areas such as mathematical
finance, risk management, insurance, queuing, storage and population genetics etc.
(see e.g. [22]).

1.1 Short statement of problem and results

In the present paper, we study the rate of convergence of a weak approximation of
an Rd-valued (d ∈ N) Lévy process X by a continuous-time Markov chain (CTMC). Our
main aim is to understand the rates of convergence of transition densities. These cannot
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Markov chain approximations for densities of Lévy processes

be viewed as expectations of (sufficiently well-behaved, e.g. bounded continuous) real-
valued functions against the marginals of the processes, and hence are in general hard
to study.

Since the results are easier to describe in dimension one (d = 1), we focus first on
this setting. Specifically, our main result in this case, Theorem 2.4, establishes the pre-
cise convergence rate of the normalised probability mass function of the approximating
Markov chain to the transition density of the Lévy process for the two proposed dis-
cretisation schemes, one in the case where X has a non-trivial diffusion component and
one when it does not. More precisely, in both cases we approximate X by a CTMC Xh

with state space Zh := hZ and Q-matrix defined as a natural discretised version of the
generator of X. This makes the CTMC Xh into a continuous-time random walk, which
is skip-free (i.e. simple) if X is without jumps (i.e. Brownian motion with drift). The
quantity:

κ(δ) :=

∫
[−1,1]\[−δ,δ]

|x|dλ(x), δ ≥ 0,

where λ is the Lévy measure of X, is related to the activity of the small jumps of X
and plays a crucial role in the rate of convergence. We assume that either the diffusion
component of X is present (σ2 > 0) or the jump activity of X is sufficient (Orey’s condi-
tion [27], see also Assumption 2.3 below) to ensure that X admits continuous transition
densities pt,T (x, y) (from x at time t to y at time T > t), which are our main object of
study.

Let Pht,T (x, y) := P(Xh
T = y|Xh

t = x) denote the corresponding transition probabilities

of Xh and let

∆T−t(h) := sup
x,y∈Zh

∣∣∣∣pt,T (x, y)− 1

h
Pht,T (x, y)

∣∣∣∣ .
The following table summarizes our result (for functions f ≥ 0 and g > 0, we shall write
f = O(g) (resp. f = o(g), f ∼ g) for lim suph↓0 f(h)/g(h) <∞ (resp. limh↓0 f(h)/g(h) = 0,
limh↓0 f(h)/g(h) ∈ (0,∞)) — if g converges to 0, then we will say f decays no slower than
(resp. faster than, at the same rate as) g):

σ2 > 0 σ2 = 0

λ(R) = 0 ∆T−t(h) = O(h2) ×
0 < λ(R) <∞ ∆T−t(h) = O(h) ×
λ(R) =∞ ∆T−t(h) = O(hκ(h/2))

We also prove that the rates stated here are sharp in the sense that there exist Lévy
processes for which convergence is no better than stated.

Note that the rate of convergence depends on the Lévy measure λ, it being best
when λ = 0 (quadratic when σ2 > 0), and linear otherwise, unless the pure jump part of
X has infinite variation, in which case it depends on the quantity κ. This is due to the
nature of the discretisation of the Brownian motion with drift (which gives a quadratic
order of convergence, when σ2 > 0), and then of the Lévy measure, which is aggregated
over intervals of length h around each of the lattice points; see also (v) of Remark 3.11.
In the infinite activity case, κ(h) = o(1/h), indeed κ is bounded, if in addition κ(0) <∞.
However, the convergence of hκ(h/2) to zero, as h ↓ 0, can be arbitrarily slow. Finally,
if X is a compound Poisson process (i.e. λ(R) ∈ (0,∞)) without a diffusion component,
but possibly with a drift, there is always an atom present in the law of X at a fixed time,
which is why the finite Lévy measure case is studied only when σ2 > 0.

By way of example, note that if λ([−1, 1]\[−h, h]) ∼ 1/h1+α for some α ∈ (0, 1), then
κ(h) ∼ h−α and the convergence of the normalized probability mass function to the
transition density is by Theorem 2.4 of order h1−α, since κ(0) =∞ and Orey’s condition
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is satisfied. In particular, in the case of the CGMY [5] (tempered stable) or β-stable [30,
p. 80] processes with stability parameter β ∈ (1, 2), we have α = β − 1 and hence
convergence of order h2−β . More generally, if β := inf{p > 0 :

∫
[−1,1]

|x|pdλ(x) < ∞}
is the Blumenthal-Getoor index of X, and β ≥ 1, then for any p > β we have κ(h) =

O(h1−p). Conversely, if for some p ≥ 1, κ(h) = O(h1−p), then β ≤ p.
The proof of Theorem 2.4 is in two steps: we first establish the convergence rate

of the characteristic exponent of Xh
t to that of Xt (Subsection 3.2). In the second step

we apply this to the study of the convergence of transition densities (Section 4) via
their spectral representations (established in Subsection 3.1). Note that in general
the rates of convergence of the characteristic functions do not carry over directly to
the distribution functions. We are able to follow through the above programme by
exploiting the special structure of the infinitely divisible distributions in what amounts
to a detailed comparison of the transition kernels pt,T (x, y) and Pht,T (x, y).

This gives the overall picture in dimension one. In dimensions higher than one
(d > 1), and then under a straightforward extension of the discretization described
above, essentially the same rates of convergence are obtained as in the univariate case;
this time under a technical condition (cf. Assumption 2.6), which is satisfied when the
diffusion-matrix is non-degenerate. Our main result in this case is Theorem 2.8.

1.2 Literature overview

In general, there has been a plethora of publications devoted to the subject of dis-
cretization schemes for stochastic processes, see e.g. [19], and with regard to the
pricing of financial derivatives [15] and the references therein. In particular, there ex-
ists a wealth of literature concerning approximations of Lévy processes in one form or
another and a brief overview of simulation techniques is given by [29].

In continuous time, for example, [18] approximates by replacing the small jumps
part with a diffusion, and discusses also rates of convergence for E[g ◦ XT ], where g

is real-valued and satisfies certain integrability conditions, T is a fixed time and X the
process under approximation; [9] approximates by a combination of Brownian motion
and sums of compound Poisson processes with two-sided exponential densities. In dis-
crete time, Markov chains have been used to approximate the much larger class of
Feller processes and [4] proves convergence in law of such an approximation in the
Skorokhod space of càdlàg paths, but does not discuss rates of convergence; [33] has
a finite state-space path approximation and applies this to option pricing together with
a discussion of the rates of convergence for the prices. With respect to Lévy process
driven SDEs, [21] (resp. [35]) approximates solutions Y thereto using a combination
of a compound Poisson process and a high order scheme for the Brownian component
(resp. discrete-time Markov chains and an operator approach) — rates of convergence
are then discussed for expectations of sufficiently regular real-valued functions against
the marginals of the solutions.

We remark that approximation/simulation of Lévy processes in dimensions higher
than one is in general more difficult than in the univariate case, see, e.g. the discussion
on this in [6] (which has a Gaussian approximation and establishes convergence in the
Skorokhod space [6, p. 197, Theorem 2.2]). Observe also that in terms of pricing theory,
the probability density function of a process can be viewed as the Arrow-Debreu state
price, i.e. the current value of an option whose payoff equals the Dirac delta function.
The singular nature of this payoff makes it hard, particularly in the presence of jumps,
to study the convergence of the prices under the discretised process to its continuous
counterpart.

Indeed, Theorem 2.8 can be viewed as a generalisation of such convergence re-
sults for the well-known discretisation of the multi-dimensional Black-Scholes model
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(see e.g. [24] for the case of Brownian motion with drift in dimension one). In addi-
tion, existing literature, as specific to approximations of densities of Lévy processes (or
generalizations thereof), includes [12] (polynomial expansion for a bounded variation
driftless pure-jump process) and [13] (density expansions for multivariate affine jump-
diffusion processes). [20, 34] study upper estimates for the densities. On the other
hand [2] has a result similar in spirit to ours, but for solutions to SDEs: for the case of
the Euler approximation scheme, the authors there also study the rate of convergence
of the transition densities.

Further, from the point of view of partial integro-differential equations (PIDEs), the
density p : (0,∞)×Rd → [0,∞) of the Lévy process X is the classical fundamental solu-
tion of the Cauchy problem (in u ∈ C1,2

0 ((0,∞),Rd)) ∂u
∂t = Lu, L being the infinitesimal

generator of X [7, Chapter 12] [14, Chapter IV]. Note that Assumption 2.3 in dimension
one (resp. Assumption 2.6 in the multivariate case) guarantees p ∈ C1,∞

0 . There are
numerous numerical methods in dealing with such PIDEs (and PIDEs in general): fast
Fourier transform, trees and discrete-time Markov chains, viscosity solutions, Galerkin
methods, see, e.g. [8, Subsection 1.1] [7, Subsections 12.3-12.7] and the references
therein. In particular, we mention the finite-difference method, which is in some sense
the counterpart of the present article in the numerical analysis literature, discretising
both in space and time, whereas we do so only in space. In general, this literature often
restricts to finite activity processes, and either avoids a rigorous analysis of (the rates
of) convergence, or, when it does, it does so for initial conditions h = u(0, ·), which ex-
clude the singular δ-distribution. For example, [8, p. 1616, Assumption 6.1] requires h
continuous, piecewise C∞ with bounded derivatives of all orders; compare also Propo-
sitions 5.1 and 5.4 concerning convergence of expectations in our setting. Moreover,
unlike in our case where the discretisation is made outright, the approximation in [8] is
sequential, as is typical of the literature: beyond the restriction to a bounded domain
(with boundary conditions), there is a truncation of the integral term in L, and then a
reduction to the finite activity case, at which point our results are in agreement with
what one would expect from the linear order of convergence of [8, p. 1616, Theorem
6.7].

The rest of the paper is organised as follows. Section 2 introduces the setting by speci-
fying the Markov generator of Xh and precisely states the main results. Then Section 3
provides integral expressions for the transition kernels by applying spectral theory to
the generator of the approximating chain and studies the convergence of the charac-
teristic exponents. In section 4 this allows us to establish convergence rates for the
transition densities. While Sections 3 and 4 restrict this analysis to the univariate case,
explicit comments are made in both, on how to extend the results to the multivariate
setting (this extension being, for the most part, direct and trivial). Finally, Section 5 de-
rives some results regarding convergence of expectations E[f ◦Xh

t ]→ E[f ◦Xt] for suit-
able test functions f ; presents a numerical algorithm, under which computations are
eventually done; discusses the corresponding truncation/localization error and gives
some numerical experiments.

2 Definitions, notation and statement of results

2.1 Setting

Fix a dimension d ∈ N and let (ej)
d
j=1 be the standard orthonormal basis of Rd.

Further, let X be an Rd-valued Lévy process with characteristic exponent [30, pp. 37-
39]:

Ψ(p) = −1

2
〈p,Σp〉+ i〈µ, p〉+

∫
Rd

(
ei〈p,x〉 − i〈p, x〉1[−V,V ]d(x)− 1

)
dλ(x) (2.1)
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(p ∈ Rd). Here (Σ, λ, µ)c̃ is the characteristic triplet relative to the cut-off function
c̃ = 1[−V,V ]d ; V is 1 or 0, the latter only if

∫
[−1,1]d

|x|dλ(x) < ∞. Note that X is then

a Markov process with transition function Pt,T (x,B) := P(XT−t ∈ B − x) (0 ≤ t ≤ T ,
x ∈ Rd and B ∈ B(Rd)) and (for t ≥ 0, p ∈ Rd) φXt(p) := E[ei〈p,Xt〉] = exp{tΨ(p)}. We
refer to [3, 30] for the general background on Lévy processes.

Since Σ ∈ Rd×d is symmetric, nonnegative definite, it is assumed without loss of
generality that Σ = diag(σ2

1 , . . . , σ
2
d) with σ2

1 ≥ · · · ≥ σ2
d. We let l := max{k ∈ {1, . . . , d} :

σ2
k > 0} (max ∅ := 0). In the univariate case d = 1, Σ reduces to the scalar σ2 := σ2

1.
Now fix h > 0. Consider a CTMC Xh = (Xh

t )t≥0 approximating our Lévy process
X (in law). We describe (see [26] for a general reference on CTMCs) Xh as having
state space Zdh := hZd := {hk : k ∈ Zd} (Zh := Z1

h), initial state Xh
0 = 0, a.s. and

an infinitesimal generator Lh given by a spatially homogeneous Q-matrix Qh (i.e. Qhss′
depends only on s−s′, for {s, s′} ⊂ Zdh). Thus Lh is a mapping defined on the set l∞(Zdh)

of bounded functions f on Zdh, and Lhf(s) =
∑
s′∈Zdh

Qhss′f(s′).

It remains to specify Qh. To this end we discretise on Zdh the infinitesimal generator
L of the Lévy process X, thus obtaining Lh. Recall that [30, p. 208, Theorem 31.5]:

Lf(x) =
d∑
j=1

(
σ2
j

2
∂jjf(x) + µj∂jf(x)

)
+

∫
Rd

f(x+ y)− f(x)−
d∑
j=1

yj∂jf(x)1[−V,V ]d (y)

 dλ(y)

(f ∈ C2
0 (Rd), x ∈ Rd). We specify Lh separately in the univariate, d = 1, and in the

general, multivariate, setting.

2.1.1 Univariate case

In the case when d = 1, we introduce two schemes. Referred to as discretization
scheme 1 (resp. 2), and given by (2.2) (resp. (2.4)) below, they differ in the discretiza-
tion of the first derivative, as follows.

Under discretisation scheme 1, for s ∈ Zh and f : Zh → R vanishing at infinity:

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+
(
µ− µh

) f(s+ h)− f(s− h)

2h
+∑

s′∈Zh\{0}

[f(s+ s′)− f(s)] chs′ (2.2)

where the following notation has been introduced:

• for s ∈ Zh:

Ahs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

;

• for s ∈ Zh\{0}: chs := λ(Ahs );

• and finally:

ch0 :=

∫
Ah0

y21[−V,V ](y)dλ(y) and µh :=
∑

s∈Zh\{0}

s

∫
Ahs

1[−V,V ](y)dλ(y).

Note that Qh has nonnegative off-diagonal entries for all h for which:

σ2 + ch0
2h2

+
µ− µh

2h
+ chh ≥ 0 and

σ2 + ch0
2h2

− µ− µh

2h
+ ch−h ≥ 0 (2.3)
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and in that case Qh is a genuine Q-matrix. Moreover, due to spatial homogeneity, its
entries are then also uniformly bounded in absolute value.

Further, when σ2 > 0, it will be shown that (2.3) always holds, at least for all suffi-
ciently small h (see Proposition 3.9). However, in general, (2.3) may fail. It is for this
reason that we introduce scheme 2, under which the condition on the nonnegativity of
off-diagonal entries of Qh holds vacuously.

To wit, we use in discretization scheme 2 the one-sided, rather than the two-sided
discretisation of the first derivative, so that (2.2) reads:

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+

∑
s′∈Zh\{0}

[f(s+ s′)− f(s)]chs′ +

(µ− µh)

(
f(s+ h)− f(s)

h
1[0,∞)(µ− µh) +

f(s)− f(s− h)

h
1(−∞,0](µ− µh)

)
(2.4)

Importantly, while scheme 2 is always well-defined, scheme 1 is not; and yet the two-
sided discretization of the first derivative exhibits better convergence properties than
the one-sided one (cf. Proposition 3.10). We therefore retain the treatment of both
these schemes in the sequel.

For ease of reference we also summarize here the following notation which will be
used from Subsection 3.2 onwards:

c := λ(R), b := κ(0), d := λ(R\[−1, 1])

and for δ ∈ (0, 1]:

ζ(δ) := δ

∫
[−1,1]\[−δ,δ]

|x|dλ(x) and γ(δ) := δ2

∫
[−1,1]\[−δ,δ]

dλ(x).

2.1.2 Multivariate case

For the sake of simplicity we introduce only one discretisation scheme in this general
setting. If necessary, and to avoid confusion, we shall refer to it as the multivariate
scheme. We choose V = 0 or V = 1, according as λ(Rd) is finite or infinite. Lh is then
given by:

Lhf(s) =
1

2

d∑
j=1

(
σ2
j + ch0j

) f(s+ hej) + f(s− hej)− 2f(s)

h2
+

l∑
j=1

(µj − µhj )
f(s+ hej)− f(s− hej)

2h
+

d∑
j=l+1

(µj − µhj )

(
f(s+ hej)− f(s)

h
1[0,∞)(µj − µhj ) +

f(s)− f(s− hej)
h

1(−∞,0](µj − µhj )

)
+

∑
s′∈Zd

h

(
f(s+ s′)− f(s)

)
chs′

(f ∈ c0(Zdh), s ∈ Zdh; and we agree
∑
∅ := 0). Here the following notation has been

introduced:

• for s ∈ Zdh: Ahs :=
∏d
j=1 I

h
sj , where for s ∈ Zh:

Ihs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

so that {Ahs : s ∈ Zdh} constitutes a partition of Rd;

• for s ∈ Zdh\{0}: chs := λ(Ahs );
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• and finally for j ∈ {1, . . . , d}:

ch0j :=

∫
Ah0

x2
j1[−V,V ]d(x)dλ(x) and µhj :=

∑
s∈Zdh\{0}

sj

∫
Ahs

1[−V,V ]d(y)dλ(y).

Notice that when d = 1, this scheme reduces to scheme 1 or scheme 2, according as
σ2 > 0 or σ2 = 0. Indeed, statements pertaining to the multivariate scheme will always
be understood to include also the univariate case d = 1.

Remark 2.1. The complete analogue of ch0 from the univariate case would be the matrix
ch0 , entries (ch0 )ij :=

∫
Ah0
xixj1[−V,V ]d(x)dλ(x), {i, j} ⊂ {1, . . . , d}. However, as h varies,

so could ch0 , and thus no diagonalization of ch0 + Σ possible (in general), simultaneously
in all (small enough) positive h. Thus, retaining ch0 in its totality, we should have to
discretize mixed second partial derivatives, which would introduce (further) nonpositive
entries in the corresponding Q-matrix Qh of Xh. It is not clear whether these would
necessarily be counter-balanced in a way that would ensure nonnegative off-diagonal
entries. Retaining the diagonal terms of ch0 , however, is of no material consequence in
this respect.

It is verified just as in the univariate case, component by component, that there is
some h? ∈ (0,+∞] such that for all h ∈ (0, h?), Lh is indeed the infinitesimal generator of
some CTMC (i.e. the off-diagonal entries of Qh are nonnegative). Qh is then a regular
(as spatially homogeneous) Q-matrix, and Xh is a compound Poisson process, whose
Lévy measure we denote λh.

2.2 Summary of results

We have (see Remark 3.11(iii) pursuant to Proposition 3.10 for proof):

Remark 2.2 (Convergence in distribution). Xh converges to X, as h ↓ 0, weakly in
finite-dimensional distributions (hence w.r.t. the Skorokhod topology on the space of
càdlàg paths [17, p. 415, Corollary 3.9]).

Next, in order to formulate the rates of convergence, recall that Pht,T (x, y) (resp.
pt,T (x, y)) denote the transition probabilities (resp. continuous transition densities,
when they exist) of Xh (resp. X) from x at time t to y at time T , {x, y} ⊂ Zdh, 0 ≤ t < T .
Further, for 0 ≤ t < T define:

∆T−t(h) := sup
{x,y}⊂Zd

h

Dht,T (x, y) where Dht,T (x, y) :=

∣∣∣∣pt,T (x, y)−
1

hd
Pht,T (x, y)

∣∣∣∣ . (2.5)

We now summarize the results first in the univariate, and then in the multivariate set-
ting (Remark 2.2 holding true of both).

2.2.1 Univariate case

The assumption alluded to in the introduction is the following (we state it explicitly
when it is being used):

Assumption 2.3. Either σ2 > 0 or Orey’s condition [27] holds:

∃ε ∈ (0, 2) such that lim inf
r↓0

1

r2−ε

∫
[−r,r]

u2dλ(u) > 0.

The usage of the two schemes and the specification of V is as summarized in Table 1.
In short we use scheme 1 or scheme 2, according as σ2 > 0 or σ2 = 0, and we use V = 0
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Table 1: Usage of the two schemes and of V depending on the nature of σ2 and λ.

Lévy measure/diffusion part σ2 > 0 σ2 = 0

λ(R) <∞ scheme 1, V = 0 scheme 2, V = 0

λ(R) =∞ scheme 1, V = 1 scheme 2, V = 1

or V = 1, according as λ(R) < ∞ or λ(R) = ∞. By contrast to Assumption 2.3 we
maintain Table 1 as being in effect throughout this paragraph (Paragraph 2.2.1).

Under Assumption 2.3 for every t > 0, φXt ∈ L1(m) where m is Lebesgue measure
and (for 0 ≤ t < T , {x, y} ⊂ R):

pt,T (x, y) =
1

2π

∫
R

exp {ip(x− y)} exp {Ψ(p)(T − t)} dp (2.6)

(see Remark 3.1). Similarly, with Ψh denoting the characteristic exponent of the com-
pound Poisson process Xh (for 0 ≤ t < T , y ∈ Zh, PXht -a.s. in x ∈ Zh):

1

h
Pht,T (x, y) =

1

2π

∫ π
h

−πh
exp{ip(x− y)} exp{Ψh(p)(T − t)}dp (2.7)

(see Proposition 3.5). Note that the right-hand side is defined even if P(Xh
t = x) = 0

and we let the left-hand side take this value when this is so.
The main result can now be stated.

Theorem 2.4 (Convergence of transition kernels). Under Assumption 2.3, whenever
s > 0, the convergence of ∆s(h) is summarized in the following table. In general con-
vergence is no better than stipulated.

λ(R) = 0 0 < λ(R) <∞ κ(0) <∞ = λ(R) κ(0) =∞
σ2 > 0 ∆s(h) = O(h2) ∆s(h) = O(h)

∆s(h) = O(h) ∆s(h) = O(hκ(h/2))
σ2 = 0 × ×

More exhaustive statements, of which this theorem is a summary, are to be found
in Propositions 4.5 and 4.6, and will be proved in Section 4. The proof of Theorem 2.4
itself can be found at the end of Section 4.

Remark 2.5. Assumption 2.3 implies that Xt, for any t > 0, has a smooth density [30, p.
190, Proposition 28.3]. It hence appears to be unlikely that this assumption constitutes
a necessary condition for the convergence rates of Theorem 2.4 to hold. In particular,
Assumption 2.6 with d = 1, stipulating a certain exponential decay of the characteris-
tic exponents, is implied by Assumption 2.3 (see Remark 3.1 and Proposition 4.1) but
sufficient for the validity of the convergence rates in Theorem 2.4 (see Theorem 2.8).

2.2.2 Multivariate case

The relevant technical condition here is:

Assumption 2.6. There are {P,C, ε} ⊂ (0,∞) and an h0 ∈ (0, h?], such that for all
h ∈ (0, h0), s > 0 and p ∈ [−π/h, π/h]d\(−P, P )d:

|φXhs (p)| ≤ exp{−Cs|p|ε} (2.8)

whereas for p ∈ Rd\(−P, P )d:

|φXs(p)| ≤ exp{−Cs|p|ε}. (2.9)
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Again we shall state it explicitly when it is being used.

Remark 2.7. It is shown, just as in the univariate case, that Assumption 2.6 holds if l =

d, i.e. if Σ is non-degenerate. Moreover, then we may take P = 0, C = 1
2

(
2
π

)2 (∧dj=1σ
2
j

)
,

ε = 2 and h0 = h?.
It would be natural to expect that the same could be verified for the multivariate

analogue of Orey’s condition, which we suggest as being:

lim inf
r↓0

inf
e∈Sd−1

∫
B(0,r)

|〈e, x〉|2dλ(x)/r2−ε > 0

for some ε ∈ (0, 2) (with Sd−1 ⊂ Rd (resp. B(0, r) ⊂ Rd) the unit sphere (resp. closed
ball of radius r centered at the origin)). Specifically, under this condition, it is easy to
see that (2.9) of Assumption 2.6 still holds. However, we are unable to show the validity
of (2.8).

Under Assumption 2.6, Fourier inversion yields the integral representation of the
continuous transition densities for X (for 0 ≤ t < T , {x, y} ⊂ Rd):

pt,T (x, y) =
1

(2π)d

∫
Rd
ei〈p,x−y〉e(T−t)Ψ(p)dp.

On the other hand, L2([−π/h, π/h]d) Hilbert space techniques yield for the normalized
transition probabilities of Xh (for 0 ≤ t < T , y ∈ Zdh and PXht -a.s. in x ∈ Zdh):

1

hd
Pt,T (x, y) =

1

(2π)d

∫
[−π/h,π/h]d

ei〈p,x−y〉e(T−t)Ψh(p)dp,

where Ψh is the characteristic exponent of Xh.
Finally, we state the result with the help of the following notation:

• κ(δ) :=
∫

[−1,1]d\[−δ,δ]d |x|dλ(x), ζ(δ) := δκ(δ) and χ(δ) :=
∑

1≤i<j≤d
∫

[−δ,δ]d |xixj |dλ(x)

(where δ ∈ [0,∞)).

• σ̂2 := ∧dj=1σ
2
j and σ2 :=

∑d
j=1 σ

2
j .

Note that by the dominated convergence theorem, (ζ + χ)(δ) → 0 as δ ↓ 0 (this is seen
as in the univariate case, cf. Lemma 3.8).

Theorem 2.8 (Convergence — multivariate case). Let d ∈ N and suppose Assump-
tion 2.6 holds. Then for any s > 0, ∆s(h) = O(h ∨ (ζ + χ)(h/2)). Moreover, if σ̂2 > 0,
then there exists a universal constant Dd ∈ (0,∞), such that:

1. If λ(Rd) = 0,

lim sup
h↓0

∆s(h)

h2
≤ Dd

[
σ2

σ̂2

1√
sσ̂2

+
|µ|
σ̂2

]
1

(sσ̂2)
d+1
2

.

2. If 0 < λ(Rd) <∞,

lim sup
h↓0

∆s(h)

h
≤ Dd

λ(Rd)s

(sσ̂2)
d+1
2

.

3. If κ(0) <∞ = λ(Rd),

lim sup
h↓0

∆s(h)

h
≤ Dd

[
λ(Rd\[−1, 1]d)s+

κ(0)s√
sσ̂2

]
1

(sσ̂2)
d+1
2

.
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4. If κ(0) =∞,

lim sup
h↓0

∆s(h)

(ζ + χ)(h/2)
≤ Dd

s

(sσ̂2)
d+2
2

.

Remark 2.9. Notice that in the univariate case ζ + χ reduces to ζ. The presence of
χ is a consequence of the omission of non-diagonal entries of ch0 in the multivariate
approximation scheme (cf. Remark 2.1).

The proof of Theorem 2.8 is an easy extension of the arguments behind Theorem 2.4
and can be found immediately following the proof of Proposition 4.2.

3 Transition kernels and convergence of characteristic exponents

In the interest of space, simplicity of notation and ease of exposition, the analysis in
this and in Section 4 is restricted to dimension d = 1. Proofs in the multivariate setting
are, for the most part, a direct and trivial extension of those in the univariate case.
However, when this is not so, necessary and explicit comments will be provided in the
sequel, as appropriate.

3.1 Integral representations

First we note the following result (its proof is essentially by the standard inversion
theorem, see also [30, p. 190, Proposition 28.3]).

Remark 3.1. Under Assumption 2.3, for some {P,C, ε} ⊂ (0,∞) depending only on
{λ, σ2} and then all p ∈ R\(−P, P ) and t ≥ 0: |φXt(p)| ≤ exp{−Ct|p|ε}. Moreover, when
σ2 > 0, one may take P = 0, C = 1

2σ
2 and ε = 2, whereas otherwise ε may take the

value from Orey’s condition in Assumption 2.3. Consequently, Xt (t > 0) admits the
continuous density fXt(y) = 1

2π

∫
R
e−ipyφXt(p)dp (y ∈ R). In particular, the law Pt,T (x, ·)

is given by (2.6).

Second, to obtain (2.7) we apply some classical theory of Hilbert spaces, see e.g. [10].

Definition 3.2. For s ∈ Zh let gs : [−πh ,
π
h ] → C be given by gs(p) :=

√
h
2π e
−isp. The

(gs)s∈Zh constitute an orthonormal basis of the Hilbert space L2([−πh ,
π
h ]).

Let A ∈ l2(Zh). We define: FhA :=
∑
s∈Zh A(s)gs. The inverse of this transform

F−1
h : L2([−πh ,

π
h ])→ l2(Zh) is given by:

(F−1
h φ)(s) = 〈φ, gs〉 :=

∫
[−πh ,

π
h ]

φ(u)gs(u)du

for φ ∈ L2([−πh ,
π
h ]) and s ∈ Zh.

Definition 3.3. For a bounded linear operator A : l2(Zh) → l2(Zh), we say FA :

[−π/h, π/h]→ R is its diagonalization, if FhAF−1
h φ = FAφ for all φ ∈ L2([−πh ,

π
h ]).

We now diagonalize Lh, which allows us to establish (2.7). The straightforward proof
is left to the reader.

Proposition 3.4. Fix C ∈ l1(Zh). The following introduces a number of bounded linear
operators A : l2(Zh) → l2(Zh) and gives their diagonalization. With f ∈ l2(Zh), s ∈ Zh,
p ∈ [−πh ,

π
h ]:

(i) ∆hf(s) := f(s+h)+f(s−h)−2f(s)
h2 . F∆h

(p) = 2 cos(hp)−1
h2 .
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(ii) ∇hf(s) := f(s+h)−f(s−h)
2h . F∇h(p) = i sin(hp)

h . Under scheme 2 we let ∇+
h f(s) :=

f(s+h)−f(s)
h (resp. ∇−h f(s) := f(s)−f(s−h)

h ) and then F∇+
h

(p) = eihp−1
h (resp. F∇−h

(p) =

1−e−ihp
h ).

(iii) LCf(s) :=
∑
s′∈Zh(f(s+ s′)− f(s))C(s′). FLC (p) =

∑
s∈Zh C(s)(eisp − 1).

As λ is finite outside any neighborhood of 0, Lh|l2(Zh) (as in (2.2), resp. (2.4)) is a
bounded linear mapping. We denote this restriction by Lh also. Its diagonalization is
then given by Ψh := FLh , where, under scheme 1,

Ψh(p) = i(µ− µh)
sin(hp)

h
+ (σ2 + ch0 )

(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(3.1)

and under scheme 2,

Ψh(p) = (µ− µh)

(
eihp − 1

h
1[0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

)
+

+ (σ2 + ch0 )
(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(3.2)

(with p ∈ [−πh ,
π
h ], but we can and will view Ψh as defined for all real p by the formulae

above). Under either scheme, Ψh is bounded and continuous as the final sum converges
absolutely and uniformly.

Proposition 3.5. For scheme 1 under Equation (2.3) and always for scheme 2, for
every 0 ≤ t < T , y ∈ Zh and PXht -a.s. in x ∈ Zh (2.7) holds, i.e.:

P(Xh
T = y|Xh

t = x) =
h

2π

∫ π
h

−πh
exp{ip(x− y)} exp{Ψh(p)(T − t)}dp.

Proof. (Condition (2.3) ensures scheme 1 is well-defined (Qh needs to have nonnega-
tive off-diagonal entries).) Note that: P(Xh

T = y|Xh
t = x) = (e(T−t)Lh1{y})(x). Thus

(2.7) follows directly from the relation FhLhF−1
h = Ψh· (where Ψh· is the operator that

multiplies functions pointwise by Ψh).

In what follows we study the convergence of (2.7) to (2.6) as h ↓ 0. These expres-
sions are particularly suited to such an analysis, not least of all because the spatial and
temporal components are factorized.

One also checks that for every t ≥ 0 and p ∈ R:

φXht (p) = E[eipX
h
t ] = exp{tΨh(p)}.

Hence Xh are compound Poisson processes [30, p. 18, Definition 4.2] with characteris-
tic exponents Ψh.

In the multivariate scheme, by considering the Hilbert space L2([−π/h, π/h]d) in-
stead, Xh is again seen to be compound Poisson with characteristic exponent given by
(for p ∈ Rd):

Ψh(p) =

d∑
j=1

(σ2
j + ch0j)

cos(hpj)− 1

h2
+ i

l∑
j=1

(µj − µhj )
sin(hpj)

h
+

+

d∑
j=l+1

(µj − µhj )

(
eihpj − 1

h
1[0,∞)(µj − µhj ) +

1− e−ihpj
h

1(−∞,0](µj − µhj )

)
+
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+
∑

s∈Zdh\{0}

(
ei〈p,s〉 − 1

)
chs . (3.3)

In the sequel, we shall let λh denote the Lévy measure of Xh.

3.2 Convergence of characteristic exponents

We introduce for p ∈ R:

fh(p) :=
cos(hp)− 1

h2
+
p2

2

and, under scheme 1:

gh(p) := i

(
sin(hp)

h
− p
)

lh(p) := ch0
cos(hp)− 1

h2
− µhi

sin(hp)

h
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u),

respectively, under scheme 2:

gh(p) :=
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)− ip;

lh(p) := ch0
cos(hp)− 1

h2
− µh

[
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

]
+

+
∑

s∈Zh\{0}

chs
(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u).

Thus:

Ψh −Ψ = σ2fh + µgh + lh.

Next, three elementary but key lemmas. The first concerns some elementary trigono-
metric inequalities as well as the Lipschitz difference for the remainder of the exponen-

tial series fl(x) :=
∑∞
k=l+1

(ix)k

k! (x ∈ R, l ∈ {0, 1, 2}): these estimates will be used again
and again in what follows. The second is only used in the estimates pertaining to the
multivariate scheme. Finally, the third lemma establishes key convergence properties
relating to λ.

Lemma 3.6. For all real x: 0 ≤ cos(x)−1+ x2

2 ≤
x4

4! , 0 ≤ sgn(x)(x−sin(x)) ≤ sgn(x)x
3

3! and
0 ≤ x2 + 2(1− cos(x))− 2x sin(x) ≤ x4/4. Whenever {x, y} ⊂ R we have (with δ := y− x):

1. |eix − 1− (eiy − 1)|2 ≤ δ2.

2. |eix − 1− ix− (eiy − 1− iy)|2 ≤ δ4/4 + δ2x2 + |δ|3|x|.

3. |eix−1−ix+x2/2−(eiy−1−iy+y2/2)|2 ≤ δ6/36+|δ|5|x|/6+(5/12)δ4x2+|δ|3|x|3/2+

δ2x4/4.

Proof. The first set of inequalities may be proved by comparison of derivatives. Then,
(1) follows from |ei(x−y) − 1|2 = 2(1− cos(x− y)) and |eiy| = 1; (2) from

|eix − ix− eiy + iy|2 =
(
δ2 + 2(1− cos(δ))− 2δ sin(δ)

)
− 2δ(cos(x)− 1) sin(δ) + 2δ sin(x)(1− cos(δ))

and finally (3) from the decomposition of |eix − ix + x2/2 − eiy + iy − y2/2|2 into the
following terms:

1. 2(1− cos(δ)) + δ2 + δ4/4− 2δ sin(δ)− (1− cos(δ))δ2 ≤ δ6/36 for any real δ.

2. δ3x− sin(x) sin(δ)δ2 = δ2(δ(x− sin(x)) + sin(x)(δ − sin(δ))) ≤ |δ|3|x|3/6 + |δ|5|x|/6.
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3. −2(1−cos(δ))δx+2δx(1−cos(x))(1−cos(δ))+2δ(1−cos(δ)) sin(x) = 2δ(1−cos(δ))(x(1−
cos(x)) + sin(x) − x) ≤ |δ|3|x|3/3, since for all real x one has | sin(x) − x cos(x)| ≤
|x|3/3.

4. −(cos(x)− 1)(1− cos(δ))δ2 ≤ x2δ4/4.

5. δ2x2−2δx sin(x) sin(δ)−2δ sin(δ)(cos(x)−1) = x2δ(δ− sin(δ))+2δ sin(δ)(1−cos(x)−
x sin(x) + x2/2) ≤ δ4x2/6 + δ2x4/4 since for all real x, one has 0 ≤ 1 − cos(x) −
x sin(x) + x2/2 ≤ x4/8.

The latter inequalities are again seen to be true by comparing derivatives.

Lemma 3.7. Let {p, x, y} ⊂ Rd. Then:

1. |(ei〈p,x〉 − 1)− (ei〈p,y〉 − 1)| ≤ |p||x− y|.

2. |(ei〈p,x〉 − i〈p, x〉 − 1)− (ei〈p,y〉 − i〈p, y〉 − 1)| ≤ 2|p|2(|x|+ |y|)|x− y|.

Proof. This is an elementary consequence of the complex Mean Value Theorem [11, p.
859, Theorem 2.2] and the Cauchy-Schwartz inequality.

Lemma 3.8. For any Lévy measure λ on R, one has for the two functions (given for 1 ≥
δ > 0): M0(δ) := δ2

∫
[−1,1]\(−δ,δ) dλ(x) and M1(δ) := δ

∫
[−1,1]\(−δ,δ) |x|dλ(x) that M0(δ)→ 0

and M1(δ) → 0 as δ ↓ 0. If, moreover,
∫

[−1,1]
|x|dλ(x) < ∞, then δ

∫
[−1,1]\(−δ,δ) dλ(x) → 0

as δ ↓ 0.

Proof. Indeed let µ be the finite measure on ([−1, 1],B[−1,1]) given by µ(A) :=
∫
A
x2dλ(x)

(where A is a Borel subset of [−1, 1]) and let f0
δ (x) :=

(
δ
x

)2
1[−1,1]\(−δ,δ)(x) and f1

δ (x) :=
δ
|x|1[−1,1]\(−δ,δ)(x) be functions on [−1, 1]. Clearly 0 ≤ f0

δ , f
1
δ ≤ 1 and f0

δ , f
1
δ → 0 pointwise

as δ ↓ 0. Hence by the Lebesgue Dominated Convergence Theorem (DCT), we have
M0(δ) =

∫
f0
δ dµ and M1(δ) =

∫
f1(δ)dµ converging to

∫
0dµ = 0 as δ ↓ 0. The “finite first

absolute moment” case is similar.

Proposition 3.9. Under scheme 1, with σ2 > 0, (2.3) holds for all sufficiently small h.
Notation-wise, under either of the two schemes, we let h? ∈ (0,+∞] be such that Qh

has non-negative off-diagonal entries for all h ∈ (0, h?).

Proof. If V = 0 this is immediate. If V = 1, then (via a triangle inequality):

h|µh| ≤ h

∣∣∣∣∣∣
∑

s∈Zh\{0}

s

∫
Ahs

1[−1,1](y)dλ(y)

∣∣∣∣∣∣ ≤ h
∑

s∈Zh\{0}

∫
Ahs

|s− u+ u|1[−1,1](y)dλ(y)

≤ h

(
h

2
λ([−1, 1]\[−h/2, h/2]) +

∫
[−1,1]\[h/2,h/2]

|u|dλ(u)

)
→ 0

as h ↓ 0 by Lemma 3.8. Eventually the expression is smaller than σ2 > 0 and the claim
follows.

Furthermore, we have the following inequalities, which together imply an estimate
for |Ψh − Ψ|. In the following, recall the notation (δ ≥ 0): ζ(δ) := δ

∫
[−1,1]\[−δ,δ] |x|dλ(x),

γ(δ) := δ2
∫

[−1,1]\[−δ,δ] dλ(x), c := λ(R), b := κ(0), d := λ(R\[−1, 1]). Recall also the

definition of the sets Ahs following (2.2).

Proposition 3.10 (Convergence of characteristic exponents). For all p ∈ R: 0 ≤
fh(p) ≤ p4h2/4! and 0 ≤ isgn(p)gh(p) ≤ h2|p|3/3! (resp., under scheme 2, |gh(p)| ≤
hp2/2!). Moreover:
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(i) when c <∞; with V = 0: |lh(p)| ≤ c|p|h/2.

(ii) when b < ∞ = c; with V = 1; for all h ≤ 2: |lh(p)| ≤ h
2

(
|p|d+ p2b

)
+ (p2 + |p|3 +

p4)o(h) (resp. under scheme 2, |lh(p)| ≤ h
2

(
|p|d+ 2p2b

)
+(p2 + |p|3 +p4)o(h)) where

o(h) depends only on λ.

(iii) when b = ∞; with V = 1; for all h ≤ 2: |lh(p)| ≤ p2
(
ζ(h/2) + 1

2γ(h/2)
)

+ (|p| +
|p|3 + p4)O(h) (resp. under scheme 2, |lh(p)| ≤ p2

[
2ζ(h/2) + 1

2γ(h/2)
]

+ (|p|+ p2 +

|p|3 + p4)O(h)) where again O(h) depends only on λ. Note here that we always
have γ ≤ ζ and that ζ decays strictly slower than h, as h ↓ 0.

Remark 3.11.

(i) We may briefly summarize the essential findings of Proposition 3.10 in Table 2, by
noting that the following will have been proved for p ∈ R and h ∈ (0, h? ∧ 2):

|Ψh(p)−Ψ(p)| ≤ f(h)R(|p|) + o(f(h))Q(|p|) (3.4)

where R and Q are polynomials of respective degrees α and β and f : (0, h? ∧ 2)→
(0,∞).

Table 2: Summary of Proposition 3.10 via the triplet (f(h), α, β) introduced in (i) of
Remark 3.11. We agree deg 0 = −∞, where 0 is the zero polynomial.

(f(h), α, β) σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)
λ(R) = 0 (V = 0) (h2, 4,−∞) (h, 2,−∞)

λ(R) <∞ (V = 0) (h, 1, 4) (h, 2,−∞)

κ(0) <∞ = λ(R) (V = 1) (h, 2, 4)

κ(0) =∞ (V = 1) (ζ(h/2), 2, 4)

(ii) An analogue of (3.4) is got in the multivariate case, simply by examining directly
the difference of (3.3) and (2.1). One does so either component by component
(when it comes to the drift and diffusion terms), the estimates being then the same
as in the univariate case; or else one employs, in addition, Lemma 3.7 (for the part
corresponding to the integral against the Lévy measure). In particular, (3.4) (with
p ∈ Rd) follows for suitable choices of R, Q and f , and Table 2 remains unaffected,
apart from its last entry, wherein ζ should be replaced by ζ + χ (one must also
replace “σ2 = 0” (resp. “σ2 > 0”) by “Σ (resp. non-) degenerate” (amalgamating
scheme 1 & 2 into the multivariate one) and λ(R) by λ(Rd)).

(iii) The above entails, in particular, convergence of Ψh(p) to Ψ(p) as h ↓ 0 pointwise in
p ∈ R. Lévy’s continuity theorem [10, p. 326] and stationarity and independence
of increments yield at once Remark 2.2.

(iv) Note that we use V = 1 rather than V = 0 when b < ∞ = c, because this choice
yields linear convergence (locally uniformly) of Ψh → Ψ. By contrast, retaining
V = 0, would have meant that the decay of Ψh − Ψ would be governed, modulo
terms which are O(h), by the quantity Q(h) :=

∑
s∈Zh\{0}

∫
Ahs∩[−1,1]

(s − u)dλ(u)

(as will become clear from the estimates in the proof of Proposition 3.10 below).
But the latter can decay slower than h. In particular, consider the family of Lévy
measures, indexed by ε ∈ [0, 1): λε =

∑∞
n=1 wnδ−xn , with hn = 1/3n, xn = 3hn/2,

wn = 1/xεn, n ≥ 1. For all these measures b <∞ = c. Furthermore, it is straightfor-
ward to verify that lim infn→∞Q(hn)/K(hn) > 0, where K(h) is h1−ε or h log(1/h),
according as ε ∈ (0, 1) or ε = 0.
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(v) It is seen from Table 2 that the order of convergence goes from quadratic (at
least when σ2 > 0) to linear, to sublinear, according as the Lévy measure is zero,
λ(R) > 0 & κ(0) < ∞, or κ becomes more and more singular at the origin. Let
us attempt to offer some intuition in this respect. First, the quadratic order of
convergence is due to the convergence properties of the discrete second and sym-
metric first derivative. Further, as soon as the Lévy measure is non-zero, the lat-
ter is aggregated over the intervals (Ahs )s∈Zh\{0}, length h, which (at least in the
worst case scenario) commit respective errors of order λ(Ahs )h or

∫
Ahs

(|x|∧1)dλ(x)h

(s ∈ Zh\{0}) each, according as V = 0 or V = 1. Hence, the more singular the
κ, the bigger the overall error. Figure 1 depicts this progressive worsening of the
convergence rate for the case of α-stable Lévy processes.
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Figure 1: Comparison of the convergence of characteristic exponents for α-stable Lévy
processes, α ∈ {1/2, 1, 4/3, 5/3}; σ2 = 0, µ = 0 and λ(dx) = dx/|x|1+α (scheme 2, V = 1).
Each plot is of Ψ and of Ψh (h ∈ {1, 1/2, 1/4, 1/8}) on the interval [0, π]. Note that (i)
κ(0) =∞, precisely when α ≥ 1 and (ii) the characteristic exponents are real-valued for
the examples shown. The plots are indeed suggestive of a progressive worsening of the
rate of convergence as α ↑.

Proof of Proposition 3.10. The first two assertions are transparent by Lemma 3.6 —
with the exception of the estimate under scheme 2, where (with δ := hp):

|gh(p)| = 1

h

√
δ2 − 2δ sin(δ) + 2(1− cos(δ)) ≤ 1

h

δ2

2
= hp2/2!.
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Further, if c <∞ (under V = 0):∣∣∣∣∣∣
∑

s∈Zh\{0}
chs (eisp − 1)−

∫
R\[−h

2
,h
2

]
(eipu − 1)dλ(u)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈Zh\{0}
chs e

isp −
∫
R\[−h

2
,−h

2
]
eipudλ(u)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

s∈Zh\{0}

∫
Ahs

(
eisp − eipu

)
dλ(u)

∣∣∣∣∣∣ ≤
∑

s∈Zh\{0}

∫
Ahs

∣∣∣1− eip(u−s)∣∣∣ dλ(u) ≤ |p|hλ
(
R\
[
−
h

2
,
h

2

])
/2,

where in the second inequality we apply (1) of Lemma 3.6 and the first follows from the
triangle inequalities. Finally, |

∫
[−h/2,h/2]

(eipu − 1)dλ(u)| ≤ λ([−h/2, h/2])|p|h/2, again by
(1) of Lemma 3.6, and the claim follows.

For the remaining two claims, in addition to recalling the results of Lemma 3.6,
we prepare the following specific estimates. Whenever {x, y} ⊂ R, with δ := y − x,
0 6= |x| ≥ |δ|, we have:

• using the inequality
√

1 + z ≤ 1 + z/2 (z ≥ 0) and (2) of Lemma 3.6:

|eix−ix−eiy+iy| ≤ |δx|
(

1 +
1

2

∣∣∣∣ δx
∣∣∣∣+

1

8

δ2

x2

)
= |δx|+ 1

2
δ2+

1

8

∣∣∣∣δ3

x

∣∣∣∣ ≤ |δx|+ 5

8
δ2. (3.5)

• using (3) of Lemma 3.6:

|eix − ix− eiy + iy| ≤ |eix − eiy − ix+ iy+ x2/2− y2/2|+
1

2
|x2 − y2| ≤

7

6
|δ|x2 + |δ||x|+

1

2
δ2. (3.6)

Now, when c = ∞ (under V = 1; for all h ≤ 2), denoting ξ(δ) :=
∫

[−δ,δ] x
2dλ(x), we

have, under scheme 1, as follows:∣∣∣∣ch0 (cos(hp)− 1

h2
+
p2

2

)∣∣∣∣ ≤ p4h2ξ(h/2)/4!. (3.7)

∣∣∣∣∣
∫

[−h2 ,
h
2 ]

u2

(
−p

2

2

)
dλ(u)−

∫
[−h2 ,

h
2 ]

(
eipu − 1− ipu

)
dλ(u)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[−h2 ,
h
2 ]

(
cos(pu)− 1 +

p2u2

2!

)
dλ(u)

∣∣∣∣∣+

∣∣∣∣∣
∫

[−h2 ,
h
2 ]

(sin(pu)− pu) dλ(u)

∣∣∣∣∣
≤ p4(h/2)2ξ(h/2)/4! + |p|3(h/2)ξ(h/2)/3!. (3.8)

| − µhgh(p)| =
∣∣∣∣−iµh( sin(hp)

h
− p
)∣∣∣∣ ≤ 1

3!
h2|p|3 (ζ(h/2) + κ(h/2)) . (3.9)

∣∣∣∣∣∣
∑

s∈Zh\{0}
chs (eisp − 1)− ipµh −

∫
R\[−h

2
,h
2

]
(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
≤

∑
s∈Zh\{0}

∫
Ahs

∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣ dλ(u)

≤
∑

s∈Zh\{0}

[∫
Ahs∩(R\[−1,1])

+

∫
Ahs∩[−1,1]

] ∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣ dλ(u)

≤
h

2
|p|
∫
R\[−1,1]

dλ(u) + p2 h

2

∫
[−1,1]\[−h

2
,h
2

]
|u|dλ(u) + p2 5

8

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]), (3.10)

where, in particular, we have applied (3.5) to x = ps, y = pu. If in addition b = ∞, we
opt rather to use (3.6), again with x = ps and y = pu, and obtain instead:∣∣∣∣∣∣

∑
s∈Zh\{0}

chs (eisp − 1)− ipµh −
∫
R\[−h2 ,

h
2 ]

(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
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≤ h

2
|p|
∫
R\[−1,1]

dλ(u) + p2h

2

∫
[−1,1]\[−h2 ,

h
2 ]

|u|dλ(u) + p2 1

2

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]) +

+
7

6
|p|3h

2

∫
[−1,1]

x2dλ(x). (3.11)

Under scheme 2, (3.7), (3.8) and (3.10)/(3.11) remain unchanged, whereas (3.9) reads:∣∣µhgh(p)
∣∣ ≤ h

2
p2 (ζ(h/2) + κ(h/2)) . (3.12)

Now, combining (3.7), (3.8), (3.9) and (3.10) under scheme 1 (resp. (3.7), (3.8), (3.12)
and (3.10) under scheme 2), yields the desired inequalities when b < ∞. If b = ∞ use
(3.11) in place of (3.10).

4 Rates of convergence for transition kernels

Finally let us incorporate the estimates of Proposition 3.10 into an estimate of
Dh
t,T (x, y) (recall the notation in (2.5)). Assumption 2.3 and Table 1 are understood as

being in effect throughout this section from this point onwards. Recall that |Ψh −Ψ| ≤
σ2|fh|+ µ|gh|+ |lh| and that the approximation is considered for h ∈ (0, h?) (cf. Proposi-
tion 3.9).

First, the following observation, which is a consequence of the h-uniform growth of
−<Ψh(p) as |p| → ∞, will be crucial to our endeavour (compare Remark 3.1).

Proposition 4.1. For some {P,C, ε} ⊂ (0,∞) and h0 ∈ (0, h?], depending only on
{λ, σ2}, and then all h ∈ (0, h0), p ∈ [−π/h, π/h]\(−P, P ) and t ≥ 0: |φhXt(p)| ≤ exp

{−C|p|ε}. Moreover, when σ2 > 0, we may take ε = 2, P = 0, C = 1
2

(
2
π

)2
and

h0 = h?, whereas otherwise ε may take the same value as in Orey’s condition (cf. As-
sumption 2.3).

Proof. Assume first σ2 > 0, so that we are working under scheme 1. It is then clear
from (3.1) that:

−<Ψh(p) ≥ σ2 1− cos(hp)

h2
≥ 1

2

(
2

π

)2

σ2p2,

since 1 − cos(x) = 2 sin2(x/2) ≥ 2
(
x
π

)2
for all x ∈ [−π, π]. On the other hand, if σ2 = 0,

we work under scheme 2 and necessarily V = 1. In that case it follows from (3.2) for
h ≤ 2 and p ∈ [−π/h, π/h]\{0}, that:

−<Ψh(p) ≥

ch0 1− cos(hp)

h2
+

∑
s∈Zh\{0}

chs (1− cos(sp))


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
∑

s∈Zh\{0},|s|≤ π
|p|

s2chs


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
4

9

∑
s∈Zh\{0},|s|≤ π

|p|

∫
Ahs

u2dλ(u)


≥ 2

π2
p2

(∫
Ah0

u2dλ(u) +
4

9

∫
[−( π
|p|−

h
2 ), π|p|−

h
2 ]\Ah0

u2dλ(u)

)

≥ 8

9

1

π2
p2

∫
[−(( π

|p|−
h
2 )∨h2 ),(( π

|p|−
h
2 )∨h2 )]

u2dλ(u)

EJP 19 (2014), paper 7.
Page 17/37

ejp.ejpecp.org

http://dx.doi.org/10.1214/EJP.v19-2208
http://ejp.ejpecp.org/


Markov chain approximations for densities of Lévy processes

≥ 8

9

1

π2
p2

∫
[− 1

2
π
|p| ,

1
2
π
|p| ]

u2dλ(u).

Now invoke Assumption 2.3. There are some {r0, A0} ∈ (0,+∞) such that for all r ∈
(0, r0]:

∫
[−r,r] u

2dλ(u) ≥ A0r
2−ε. Thus for P = π/(2r0) and then all p ∈ R\(−P, P ), we

obtain: ∫
[− 1

2
π
|p| ,

1
2
π
|p| ]

u2dλ(u) ≥ A0

(
1

2

π

|p|

)2−ε

,

from which the desired conclusion follows at once. Remark that, possibly, r0 may be
taken as +∞, in which case P may be taken as zero.

Second, we have the following general observation which concerns the transfer of
the rate of convergence from the characteristic exponents to the transition kernels. Its
validity is in fact independent of Assumption 2.3.

Proposition 4.2. Suppose there are {P,C, ε} ⊂ (0,∞), a real-valued polynomial R, an
h0 ∈ (0, h?], and a function f : (0, h0)→ (0,∞), decaying to 0 no faster than some power
law, such that for all h ∈ (0, h0):

1. for all p ∈ [−π/h, π/h]: |Ψh(p)−Ψ(p)| ≤ f(h)R(|p|).

2. for all s > 0 and p ∈ [−π/h, π/h]\(−P, P ): |φXhs (p)| ≤ exp{−Cs|p|ε}; whereas for
p ∈ R\(−P, P ): |φXs(p)| ≤ exp{−Cs|p|ε}.

Then for any s > 0, ∆s(h) = O(f(h)).

Before proceeding to the proof of this proposition, we note explicitly the following
elementary, but key lemma:

Lemma 4.3. For {z, v} ⊂ C: |ez − ev| ≤ (|ez| ∨ |ev|)|z − v|.

Proof. This follows from the inequality |ez − 1| ≤ |z| for <z ≤ 0, whose validity may be
seen by direct estimation.

Proof of Proposition 4.2. From (2.6) and (2.7) we have for the quantity ∆s(h) from (2.5):

∆s(h) ≤
∫
R\(−π/h,π/h)

| exp{Ψ(p)s}|dp+

∫
[−π/h,π/h]

| exp{Ψh(p)s} − exp{Ψ(p)s}|dp.

Then the first term decays faster than any power law in h by (2) and L’Hôpital’s rule,
say, while in the second term we use the estimate of Lemma 4.3. Since exp{−Ct|p|ε}dp
integrates every polynomial in |p| absolutely, by (1) and (2) integration in the second
term can then be extended to the whole of R and the claim follows.

Proposition 4.2 allows us to transfer the rates of convergence directly from those of
the characteristic exponents to the transition kernels. In particular, we have, immedi-
ately, the following proof of the multivariate result (which we state before the univariate
case is dealt with in full detail):

Proof of Theorem 2.8. The conclusions of Theorem 2.8 follow from a straightforward ex-
tension (of the proof) of Proposition 4.2 to the multivariate setting, (ii) of Remark 3.11,
Assumption 2.6 and Remark 2.7.

Returning to the univariate case, analogous conclusions could be got from Remark
3.1, Proposition 4.1 (themselves both consequences of Assumption 2.3) and Proposi-
tion 3.10. In the sequel, however, in the case when σ2 > 0, we shall be interested in
a more precise estimate of the constant in front of the leading order term (D1 in the
statement of Theorem 2.6). Moreover, we shall want to show our estimates are tight in
an appropriate precise sense.

To this end we assume given a function K with the properties that:
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(F) 0 ≤ K(h)→∞ as h ↓ 0 and K(h) ≤ π
h for all sufficiently small h;

(E) the quantity

A(h) :=

[∫ −K(h)

−∞
+

∫ ∞
K(h)

]
|exp{Ψ(p)s}| dp+

[∫ −K(h)

−πh
+

∫ π
h

K(h)

] ∣∣exp{Ψh(p)s}
∣∣ dp

decays faster than the leading order term in the estimate of Dh
t,T (x, y) (for which

see, e.g., Table 2);

(C) sup[−K(h),K(h)] |Ψh −Ψ| ≤ 1 for all small enough h

(suitable choices of K will be identified later, cf. Table 3 on p. 20). We now comment on
the reasons behind these choices.

First, the constants {C,P, ε} are taken so as to satisfy simultaneously Remark 3.1
and Proposition 4.1. In particular, if σ2 > 0, we take ε = 2, P = 0, C = 1

2σ
2, and if

σ2 = 0, we may take ε from Orey’s condition (cf. Assumption 2.3).
Next, we divide the integration regions in (2.6) and (2.7) into five parts (cf. property

(F)): (−∞,−πh ], (−πh ,−K(h)), [−K(h),K(h)], (K(h), πh ), [πh ,∞). Then we separate (via
a triangle inequality) the integrals in the difference Dh

t,T (x, y) accordingly and use the
triangle inequality in the second and fourth region, thus (with s := T − t > 0):

2πDht,T (x, y) ≤
[∫ −π/h
−∞

+

∫ ∞
π/h

]
|exp{Ψ(p)s}| dp+[∫ −K(h)

−π
h

+

∫ π
h

K(h)

](∣∣∣exp{Ψh(p)s}
∣∣∣+ |exp{Ψ(p)s}|

)
dp+

∫ K(h)

−K(h)

∣∣∣exp{Ψ(p)s} − exp{Ψh(p)s}
∣∣∣ dp.

Finally, we gather the terms with |exp{Ψ(p)s}| in the integrand and use |ez−1| ≤ e|z|−1

(z ∈ C) to estimate the integral over [−K(h),K(h)], so as to arrive at:

2πDh
t,T (x, y) ≤ A(h) +

∫ K(h)

−K(h)

| exp{Ψ(p)s}|
(
exp

{
s
∣∣Ψh(p)−Ψ(p)

∣∣}− 1
)
dp. (4.1)

Now, the rate of decay of A(h) can be controlled by choosing K(h) converging to +∞
fast enough, viz. property (E). On the other hand, in order to control the second term on
the right-hand side of the inequality in (4.1), we choose K(h) converging to +∞ slowly
enough so as to guarantee (C). Table 3 lists suitable choices of K(h). It is easily checked
from Table 2 (resp. using L’Hôpital’s rule coupled with Remark 3.1 and Proposition 4.1),
that these choices of K(h) do indeed satisfy (C) (resp. (E)) above. Property (F) is
straightforward to verify.

Further, due to (C), for all sufficiently small h, everywhere on [−K(h),K(h)]:

es|Ψ
h−Ψ|−1 = s|Ψh−Ψ|+

∞∑
k=2

(s|Ψh −Ψ|)k

k!
≤ s|Ψh−Ψ|+(s|Ψh−Ψ|)2es|Ψ

h−Ψ| ≤ s|Ψh−Ψ|+e(s|Ψh−Ψ|)2.

Manifestly the second term will always decay strictly faster than the first (so long as
they are not 0). Moreover, since exp{−Cs|p|ε}dp integrates every polynomial in |p| (cf.
the findings of Proposition 3.10) absolutely, it will therefore be sufficient in the sequel
to estimate (cf. (4.1)):

s

2π

∫
R

exp{−Cs|p|ε}
∣∣Ψh(p)−Ψ(p)

∣∣ dp. (4.2)

On the other hand, for the purposes of establishing sharpness of the rates for the
quantity Dh

t,T (x, y), we make the following:
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Table 3: Suitable choices of K(h). For example, the σ2 > 0 and λ(R) = 0 entry indicates

that we choose K(h) =
√

2
Cs log 1

h and then A(h) is of order o(h2).

σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)

λ(R) = 0 (V = 0) K(h) =
√

2
Cs

log 1
h
→A(h) = o(h2) ×

λ(R) <∞ (V = 0) K(h) =
√

1
Cs

log 1
h
→A(h) = o(h) ×

κ(0) <∞ = λ(R) (V = 1) K(h) =
√

1
Cs

log 1
h
→A(h) = o(h) K(h) = ε

√
2
Cs

log 1
h
→A(h) = o(h)

κ(0) =∞ (V = 1) K(h) =
(

1
ζ(h/2)

)1/4
→A(h) = o(ζ(h/2))

Remark 4.4 (RD). Suppose we seek to prove that f ≥ 0 converges to 0 no faster than
g > 0, i.e. that lim suph↓0 f(h)/g(h) ≥ C > 0 for some C. If one can show f(h) ≥ A(h)−
B(h) and B = o(g), then to show lim suph↓0 f(h)/g(h) ≥ C, it is sufficient to establish
lim suph↓0A(h)/g(h) ≥ C. We refer to this extremely useful principle as reduction by
domination (henceforth RD).

In particular, it follows from our above discussion, that it will be sufficient to consider
(we shall always choose x = y = 0):

s

2π

∫ K(h)

−K(h)

esΨ(p)
(
Ψh(p)−Ψ(p)

)
dp, (4.3)

i.e. in Remark 4.4 this is A, and the difference to Dt,T (0, 0) represents B. Moreover,
we can further replace Ψh(p) − Ψ(p) in the integrand of (4.3) by any expression whose
difference to Ψh(p)−Ψ(p) decays, upon integration, faster than the leading order term.
For the latter reductions we (shall) refer to the proof of Proposition 3.10.

We have now brought the general discussion as far as we could. The rest of the
analysis must invariably deal with each of the particular instances separately and we do
so in the following two propositions. Notation-wise we let DCT stand for the Lebesgue
Dominated Convergence Theorem.

Proposition 4.5 (Convergence of transition kernels — σ2 > 0). Suppose σ2 > 0. Then
for any s = T − t > 0:

1. If λ(R) = 0:

∆s(h) ≤ h2

[
1

3π

|µ|
σ4s

+
1

8
√

2π

1

(sσ2)3/2

]
+ o(h2).

Moreover, with σ2s = 1 and µ = 0 we have lim suph↓0D
h
t,T (0, 0)/h2 ≥ 1/(8

√
2π),

proving that in general the convergence rate is no better than quadratic.

2. If 0 < λ(R) <∞:

∆s(h) ≤ h 1

2π

c

σ2
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2 (δ1/2 + δ−1/2), lim suph↓0D

h
t,T (0, 0)/h >

0, showing that convergence in general is indeed no better than linear.

3. If κ(0) <∞ = λ(R):

∆s(h) ≤ h
[

1

2π

d

σ2
+

1

2
√

2π

bs

(σ2s)3/2

]
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2 (δ3/2 + δ−3/2) + 1

2

∑∞
k=1(δ1/3k + δ−1/3k),

one has lim suph↓0D
h
t,T (0, 0)/h > 0.
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4. If κ(0) =∞:

∆s(h) ≤ 1√
2π

s

(σ2s)3/2

(
ζ(h/2) +

1

2
γ(h/2)

)
+ o(ζ(h/2)).

Moreover, with σ2 = s = 1, µ = 0, and λ =
∑∞
k=1 wk(δxk + δ−xk), where xn = 3

2
1

3n

and wn = 1/xn (n ∈ N), one has lim suph↓0D
h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Estimates of ∆s(h) follow at once from (4.2) and Proposition 3.10, simply by
integration. As regards establishing sharpness of the estimates, however, we have as
follows (recall that we always take x = y = 0):

1. λ(R) = 0. Using (4.3) it is sufficient to consider:

A(h) :=
1

2π

∣∣∣∣∣
∫ K(h)

−K(h)

exp

{
−1

2
p2

}
fh(p)dp

∣∣∣∣∣ .
By DCT, we have A(h)/h2 → 1

2π

∫∞
−∞ exp{− 1

2p
2}p4/4!dp and the claim follows.

2. 0 < λ(R) < ∞. Using (4.3) and further RD via the estimates in the proof of Proposi-
tion 3.10, we conclude that it is sufficient to observe for the sequence (hn = 1

3n )n≥1 ↓ 0

that:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)

exp

{
−1

2
p2 − 1 + cos(p/2)

}
lhn(p)dp

∣∣∣∣∣ > 0.

It is also clear that we may express:

lhn (p) = 2
1

2
<
(
eip(1/2−hn/2) − eip/2

)
= cos(p/2)(cos(phn/2)− 1) + sin(p/2) sin(phn/2).

Therefore, by further RD, it will be sufficient to consider:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)

exp

{
−1

2
p2 − 1 + cos(p/2)

}
sin(phn/2) sin(p/2)dp

∣∣∣∣∣ .
By DCT it is equal to:

I :=
1

2π

∫ ∞
0

p sin(p/2) exp{−1

2
p2 − 1 + cos(p/2)}dp.

The numerical value of this integral is (to one decimal place in units of 2π) 0.4/(2π), but
we can show that I > 0 analytically. Indeed the integrand is positive on [0, 6]. Hence
2πeI ≥ sin(1/2)ecos(3/2)

∫ 3

1
pe−p

2/2dp − e
∫∞

6
pe−p

2/2dp = sin(1/2)ecos(3/2)[e−1/2 − e−9/2] −
e−17. Now use sin(1/2) ≥ (1/2)·(2/π) (which follows from the concavity of sin on [0, π/2]),
so that, very crudely: 2πeI ≥ (1/π)e−1/2(1 − e−4) − e−17 ≥ (1/π)e−1/2(1/2) − e−17 ≥
(1/e2)e−1/2(1/e)− e−17 ≥ e−4 − e−17 > 0.

3. κ(0) < ∞ = λ(R). Let hn = 1/3n, n ≥ 1. Because the second term in λ lives on
∪n∈NZhn , it is seen quickly (via RD) that one need only consider (to within non-zero
multiplicative constants):

lim sup
n→∞

∫ K(hn)

−K(hn)

1

hn
sin(phn/2) sin(3p/2) exp

{
−

1

2
p2 + (cos(3p/2)− 1) +

∞∑
k=1

(cos(p/3k)− 1)

}
dp.

By DCT it is sufficient to observe that:∫ 2π/3

0
sin(3p/2)p exp

{
−

1

2
p2 + (cos(3p/2)− 1)−

p2

2

∞∑
k=1

1

9k

}
dp−

∫ ∞
2π/3

p exp

{
−

1

2
p2

}
dp > 0.
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To see the latter, note that the second integral is immediate and equals: e−(2π/3)2/2. As
for the first one, make the change of variables u = 3p/2. Thus we need to establish that:

A := (4/(9e))

∫ π

0

sin(u)u exp{−u2/4 + cos(u)}du− e−(2π/3)2/2 > 0.

Next note that −u2/4 + cos(u) is decreasing on [0, π] and the integrand in A is positive.
It follows that:

A ≥ 4

9e

∫ π/3

0

u sin(u) exp

{
−1

4

(π
3

)2

+ cos
(π

3

)}
du+

4

9e

∫ π/2

π/3

u sin(u) exp

{
−1

4

(π
2

)2

+ cos
(π

2

)}
du− e−2π2/9.

Using integration by parts, it is now clear that this expression is algebraic over the
rationals in e,

√
3 and the values of the exponential function at rational multiples of π2.

Since this explicit expression can be estimated from below by a positive quantity, one
can check that A > 0.

4. κ(0) =∞. Let again hn = 1/3n, n ≥ 1. Notice that:

σ1 :=

∫
[−1,1]\[−hn/2,hn/2]

u2dλ(u) = 2
n∑
k=1

x2
kwk, and σ2 :=

∑
s∈Zhn\{0}

chns s2 = 2
n∑
k=1

(
xk −

hn

2

)2

wk,

so that ∆ := σ1 − σ2 = 2ζ(hn/2) − γ(hn/2) ≥ ζ(hn/2). Using (3) of Lemma 3.6 in the
estimates of Proposition 3.10, it is then not too difficult to see that it is sufficient to

show
∫K(hn)

−K(hn)
p2 exp{Ψ(p)}dp converges to a strictly positive value as n → ∞, which is

transparent (since Ψ is real valued).

Proposition 4.6 (Convergence of transition kernels — σ2 = 0). Suppose σ2 = 0. For
any s = T − t > 0:

1. If Orey’s condition is satisfied and κ(0) < ∞ = λ(R), then ∆s(h) = O(h). More-
over, with σ2 = 0, s = 1, µ = 0 and λ = 1

2

∑∞
k=1 wk(δxk + δ−xk), where xn = 3

2
1

3n

and wn = 1/
√
xn (n ∈ N), Orey’s condition holds with ε = 1/2 and one has

lim suph↓0D
h
t,T (0, 0)/h > 0.

2. If Orey’s condition is satisfied and κ(0) = ∞, then ∆s(h) = O(ζ(h/2)). More-
over, with σ2 = 0, s = 1, µ = 0, and λ =

∑∞
k=1 wk(δxk + δ−xk), where xn =

3
2

1
3n and wn = 1/xn (n ∈ N), Orey’s condition holds with ε = 1 and one has

lim suph↓0D
h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Again the rates of convergence for ∆s(h) follow at once from (4.2) and Propo-
sition 3.10 (or, indeed, from Proposition 4.2). As regards sharpness of these rates, we
have (recall that we take x = y = 0):

1. κ(0) < ∞ = λ(R). Let hn = 1/3n, n ≥ 1. By checking Orey’s condition on the
decreasing sequence (hn)n≥1, Assumption 2.3 is satisfied with ε = 1/2 and we have
b < ∞ = c. µh = 0 by symmetry. Moreover by (4.3), and by further going through the
estimates of Proposition 3.10 using RD, it suffices to show:

lim sup
n→∞

1

hn

∣∣∣∣∣∣
∫ K(hn)

−K(hn)

exp{Ψ(p)}

 ∑
s∈Zhn\{0}

∫
Ahns

(cos(ps)− cos(pu)) dλ(u)

 dp

∣∣∣∣∣∣ > 0.
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Now, one can write for s ∈ Zhn\{0} and u ∈ Ahns ,

cos(sp)−cos(pu) = cos(pu)(cos((s−u)p)−1)−sin(pu)(sin((s−u)p)−(s−u)p)−sin(pu)(s−u)p

and via RD get rid of the first two terms (i.e. they contribute to B rather than A in
Remark 4.4). It follows that it is sufficient to observe:

lim sup
n→∞

1

hn

∣∣∣∣∣
∫ K(hn)

−K(hn)

exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}(
n∑
k=1

wk sin(pxk)

)
hnpdp

∣∣∣∣∣ > 0.

Finally, via DCT and evenness of the integrand, we need only have:∫ ∞
0

( ∞∑
k=1

wk sin(pxk)

)
p exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}
dp 6= 0.

One can in fact check that the integrand is strictly positive, as Lemma 4.7 shows, and
thus the proof is complete.

2. κ(0) =∞. The example here works for the same reasons as it did in (4) of the proof
of Proposition 4.5 (but here benefiting explicitly also from µh = 0). We only remark
that Orey’s condition is of course fulfilled with ε = 1, by checking it on the decreasing
sequence (hn)n≥1.

Lemma 4.7. Let ψ(p) :=
∑∞
k=1 3k/2 sin( 3

2p/3
k). Then ψ is strictly positive on (0,∞).

Proof. We observe that, (i) ψ|(0,π2 ] > 0 and (ii) for p ∈ (π/2, 3π/2] we have: ψ(p) >√
3/(
√

3− 1) =: A0. Indeed, (i) is trivial since for p ∈ (0, π/2], ψ(p) is defined as a sum of
strictly positive terms. We verify (ii) by observing that (ii.1) ψ(π/2) > A0 and (ii.2) ψ is
nondecreasing on [π/2, 3π/2]. Both these claims are tedious but elementary to verify by
hand. Indeed, with respect to (ii.1), summing three terms of the series defining ψ(π/2)

is sufficient. Specifically we have ψ(π/2) >
√

3 sin(π/4)+ 3 sin(π/12)+ 3
√

3 sin(π/36) and
we estimate sin(π/36) ≥ π

36 sin(π/3)/(π/3). With respect to (ii.2) we may differentiate

under the summation sign, and then ψ′(p) ≥
√

3
2 cos(3π/4) + 1

2 cos(π/4) +
√

3
6 cos(π/12).

The final details of the calculations are left to the reader.
Finally, we claim that if for some B > 0 we have ψ|(0,B] > 0 and ψ|(B,3B] > A0, then

ψ|(0,3B] > 0 and ψ|(3B,9B] > A0, and hence the assertion of the lemma will follow at once
(by applying the latter first to B = π/2, then B = 3π/2 and so on). So let 3p ∈ (3B, 9B],
i.e. p ∈ (B, 3B]. Then ψ(3p) =

√
3(sin(3p/2)+ψ(p)) >

√
3(−1+A0) = A0, as required.

Finally, note that:
Proof of Theorem 2.4. The conclusions of Theorem 2.4 follow from Propositions 4.5
and 4.6.

5 Convergence of expectations and algorithm

5.1 Convergence of expectations

For the sake of generality we state the results in the multivariate setting, but only
do so, when this is not too burdensome on the brevity of exposition. For d = 1, either
the multivariate or the univariate schemes may be considered.

Let f : Rd → R be bounded Borel measurable and define for t ≥ 0 and h ∈ (0, h?):
pt := p0,t and Pht := Ph0,t, whereas for x ∈ Zdh, we let pt(x) := pt(0, x) and Pht (x) =
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Pht (0, x) (assuming the continuous densities exist). Note that for t ≥ 0, and then for
x ∈ Rd,

Ex[f ◦Xt] =

∫
R

f(y)pt(x, y)dy, (5.1)

whereas for x ∈ Zdh and h ∈ (0, h?):

Ex[f ◦Xh
t ] =

∑
y∈Zdh

f(y)Pht (x, y). (5.2)

Moreover, if f is continuous, we know that, as h ↓ 0, Ex[f ◦ Xh
t ] → Ex[f ◦ Xt], since

Xh
t → Xt in distribution. Next, under additional assumptions on the function f , we are

able to establish the rate of this convergence and how it relates to the convergence rate
of the transition kernels, to wit:

Proposition 5.1. Assume (2.9) of Assumption 2.6. Let h0 ∈ (0,∞), g : (0, h0) → (0,∞)

and t > 0 be such that ∆t = O(g). Suppose furthermore that the following two condi-
tions on f are satisfied:

(i) f is (piecewise1, if d = 1) Lipschitz continuous.

(ii) suph∈(0,h0) h
d
∑
x∈Zdh

|f(x)| <∞.

Then:
sup
x∈Zdh

|Ex[f ◦Xt]− Ex[f ◦Xh
t ]| = O(h ∨ g(h)).

Remark 5.2.

(1) Condition (ii) is fulfilled in the univariate case d = 1, if, e.g.: f ∈ L1(R), w.r.t.
Lebesgue measure, f is locally bounded and for some K ∈ [0,∞), |f ||(−∞,−K] (re-
striction of |f | to (−∞,−K]) is nondecreasing, whereas |f ||[K,∞) is nonincreasing.

(2) The rate of convergence of the expectations is thus got by combining the above
proposition with the findings of Theorems 2.4 and 2.8.

(3) Note also that the convergence rate in Proposition 5.1 is never established as
better than linear, albeit the transition kernels may converge faster, e.g. at a
quadratic rate in the case of Brownian motion with drift. This is so, because
we are not only approximating the density with the normalized probability mass
function, but also the integral is substituted by a sum (cf. (5.1) and (5.2)). One
thus has to invariably estimate f(y) − f(z) for z ∈ Ahy , y ∈ Zdh. Excluding the
trivial case of a constant f , however, this estimate can be at best linear in |y − z|
(α-Hölder continuous functions on Rd with Hölder exponent α > 1 being, in fact,
constant). Moreover, it appears that this problem could not be avoided using
Fourier inversion techniques (as opposed to the direct estimate given in the proof
below). Indeed, one would then need to estimate, in particular, the difference
of the Fourier transforms

∫
R
e−ipyf(y)dy − h

∑
y∈Zdh

f(y)e−ipy, wherein again an
integral is substituted by a discrete sum and a similar issue arises.

Proof. Decomposing the difference Ex[f ◦Xt]− Ex[f ◦Xh
t ] via (5.1) and (5.2), we have:

Ex[f ◦Xt]− Ex[f ◦Xh
t ] =

∑
y∈Zdh

∫
Ahy

(f(z)− f(y)) pt(x, z)dz + (5.3)

1In the sense that there exists some natural n, and then disjoint open intervals (Ii)
n
i=1, whose union is

cofinite in R, and such that f |Ii is Lipschitz for each i ∈ {1, . . . , n}.
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+
∑
y∈Zdh

∫
Ahy

f(y) (pt(x, z)− pt(x, y)) dz + (5.4)

+
∑
y∈Zdh

f(y)hd
[
pt(x, y)− 1

hd
Pht (x, y)

]
. (5.5)

Now, (5.5) is of order O(g(h)), by condition (ii) and since ∆t = O(g). Further, (5.3)
is of order O(h) on account of condition (i), and since

∫
pt(x, z)dz = 1 for any x ∈ Rd

(to see piecewise Lipschitzianity is sufficient in dimension one (d = 1), simply observe
sup{x,y}⊂R pt(x, y) is finite, as follows immediately from the integral representation of

pt). Finally, note that pt(x, ·) is also Lipschitz continuous (uniformly in x ∈ Rd), as
follows again at once from the integral representation of the transition densities. Thus,
(5.4) is also of order O(h), where again we benefit from condition (ii) on the function
f .

In order to be able to relax condition (ii) of Proposition 5.1, we first establish the
following Proposition 5.3, which concerns finiteness of moments of Xt.

In preparation thereof, recall the definition of submultiplicativity of a function g :
Rd → [0,∞):

g is submultiplicative⇔ ∃a ∈ (0,∞) such that g(x+ y) ≤ ag(x)g(y), whenever {x, y} ⊂ Rd (5.6)

and we refer to [30, p. 159, Proposition 25.4] for examples of such functions. Any sub-
multiplicative locally bounded function g is necessarily bounded in exponential growth
[30, p. 160, Lemma 25.5], to wit:

∃{b, c} ⊂ (0,∞) such that g(x) ≤ bec|x| for x ∈ Rd. (5.7)

Proposition 5.3. Let g : Rd → [0,∞) be measurable, submultiplicative and locally
bounded, and suppose

∫
Rd\[−1,1]d

gdλ < ∞. Then for any t > 0, E[g ◦ Xt] < ∞ and,

moreover, there is an h0 ∈ (0, h?) such that

sup
h∈(0,h0)

E[g ◦Xh
t ] <∞.

Conversely, if
∫
Rd\[−1,1]d

gdλ =∞, then for all t > 0, E[g ◦Xt] =∞.

Proof. The argument follows the exposition given in [30, pp. 159-162], modifying the
latter to the extent that uniform boundedness over h ∈ (0, h0) may be got. In particular,
we refer to [30, p. 159, Theorem 25.3] for the claim that E[g ◦ Xt] < ∞, if and only if∫
Rd\[−1,1]d

gdλ < ∞. We take {a, b, c} ⊂ (0,∞) satisfying (5.6) and (5.7) above. Recall

also that λh is the Lévy measure of the process Xh, h ∈ (0, h?).
Now, decompose X = X1 + X2 and Xh = Xh1 + Xh2, h ∈ (0, h?) as independent

sums, where X1 is compound Poisson, Lévy measure λ1 := 1Rd\[−1,1]d · λ, and Xh1 are
also compound Poisson, Lévy measures λh1 := 1Rd\[−1,1]d · λh, h ∈ (0, h?). Consequently
X2 is a Lévy process with characteristic triplet (Σ,1[−1,1]d · λ, µ)c̃ and Xh2 are com-
pound Poisson, Lévy measures 1[−1,1]d · λh, h ∈ (0, h?). Moreover, for h ∈ (0, h?), by
submultiplicativity and independence:

E[g ◦Xh
t ] = E[g ◦ (Xh1

t +Xh2
t )] ≤ aE[g ◦Xh1

t ]E[g ◦Xh2
t ].

We first estimate E[g ◦Xh1
t ]. Let (Jn)n≥1 (resp. Nt) be the sequence of jumps (resp.

number of jumps by time t) associated to (resp. of) the compound Poisson process Xh1.
Then Xh1

t =
∑Nt
j=1 Jj and so by submultiplicativity:

E[g ◦Xh1
t ] ≤ E

g(0)1{Nt=0} + aNt−1
Nt∏
j=1

g(Jj)1{Nt>0}


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= g(0)e−tλ
h
1 (Rd) +

∞∑
n=1

tnan−1

n!
e−tλ

h
1 (Rd)

(∫
gdλh1

)n
.

We also have for all h ∈ (0, 1 ∧ h?):∫
gdλh1 =

∑
s∈Zdh\[−1,1]d

∫
Ahs

g(s)dλ =
∑

s∈Zdh\[−1,1]d

∫
Ahs

g(u+ (s− u))dλ(u)

≤ a

(
sup
k∈A0

h

g(k)

) ∑
s∈Zdh\[−1,1]d

∫
Ahs

gdλ,by submultiplicativity

≤ a

(
sup
k∈A0

1

g(k)

)∫
Rd\[−1/2,1/2]d

gdλ.

Now, since g is locally bounded, λ is finite outside neighborhoods of 0, and since by
assumption

∫
Rd\[−1,1]d

gdλ <∞, we obtain: suph∈(0,1∧h?) E[g ◦Xh1
t ] <∞.

Second, we consider E[g ◦ Xh2
t ]. First, by boundedness in exponential growth and

the triangle inequality:

E[g ◦Xh2
t ] ≤ bE[ec|X

h2
t |] ≤ bE[ec

∑d
j=1 |X

h2
tj |] = bE

 d∏
j=1

ec|X
h2
tj |

 .
It is further seen by a repeated application of the Cauchy-Schwartz inequality that it
will be sufficient to show, for each j ∈ {1, . . . , d}, that for some h0 ∈ (0, h?]:

sup
h∈(0,h0)

E
[
e2d−1c|Xh2tj |

]
<∞.

Here Xh2
t = (Xh2

t1 , . . . , X
h2
td ) and likewise for X2

t . Fix j ∈ {1, . . . , d}.
The characteristic exponent of Xh2

j , denoted Ψh
2 , extends to an entire function on C.

Likewise for the characteristic exponent of X2
j , denoted Ψ2 [30, p. 160, Lemma 25.6].

Moreover, since, by expansion into power series, one has, locally uniformly in β ∈ C, as
h ↓ 0:

• eβh+e−βh−2
2h2 → 1

2β
2;

• eβh−e−βh
2h → β;

• eβh−1
h → β and 1−e−βh

h → β;

since furthermore:

•
(

(β, u) 7→ eβu−βu−1
u2

)
: R\{0}×C→ C is bounded on bounded subsets of its domain;

and since finally by the complex Mean Value Theorem [11, p. 859, Theorem 2.2]:

• as applied to the function (x 7→ eβx) : C→ C; |eβx − eβy| ≤ |x− y||β|(|eβz1 |+ |eβz2 |)
for some {z1, z2} ⊂ conv({x, y}), for all {x, y} ⊂ R;

• as applied to the function (x 7→ eβx − βx) : C → C; |eβx − βx − (eβy − βy)| ≤
|x− y||β|

(
|eβz1 − 1|+ |eβz2 − 1|

)
for some {z1, z2} ∈ conv({x, y}), for all {x, y} ⊂ R;

then the usual decomposition of the difference Ψh
2 − Ψ2 (see proof of Proposition 3.10)

shows that Ψh
2 → Ψ2 locally uniformly in C as h ↓ 0. Next let φh2 and φ2 be the character-

istic functions of Xh2
tj and X2

tj , respectively, h ∈ (0, h?); themselves entire functions on
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C. Using the estimate of Lemma 4.3, we then see, by way of corollary, that also φh2 → φ2

locally uniformly in C as h ↓ 0.
Now, since φh2 is an entire function, for n ∈ N ∪ {0}, inE[(Xh2

tj )n] = (φh2 )(n)(0)

and it is Cauchy’s estimate [32, p. 184, Lemma 10.5] that, for a fixed r > 2d−1c,∣∣(φh2 )(n)(0)
∣∣ ≤ n!

rnM
h, where Mh := sup{z∈C:|z|=r} |φh2 |. Observe also that for some

h0 ∈ (0, h?], suph∈(0,h0)M
h < ∞, since φh2 → φ2 locally uniformly as h ↓ 0 and φ2 is

continuous (hence locally bounded).

Further to this E[|Xh2
tj |2k+1] ≤ 1 + E[|Xh2

tj |2k+2] (k ∈ N ∪ {0}) and E
[
e2d−1c|Xh2tj |

]
=∑∞

n=0
1
n!E[|Xh2

tj |n](c2d−1)n. From this the desired conclusion finally follows.

The following result can now be established in dimension d = 1:

Proposition 5.4. Let d = 1 and t > 0. Let furthermore:

(i) g : R→ [0,∞), measurable, satisfy E[g◦Xt] <∞, g locally bounded, submultiplica-
tive, g 6= 0.

(ii) f : R → C, measurable, be locally bounded,
∫
R
|f | ∈ (0,∞], |f | ultimately mono-

tone (i.e. |f ||[K,∞) and |f ||(−∞,−K] monotone for some K ∈ [0,∞)), |f |/|g| ulti-
mately nonincreasing (i.e. (|f |/|g|)|[K,∞) and (−|f |/|g|)|(−∞,−K] nonincreasing for
some K ∈ [0,∞)), and with the following Lipschitz property holding for some
{a,A} ∈ (0,∞): f |[−A,A] is piecewise Lipschitz, whereas

|f(z)− f(y)| ≤ a|z − y|(g(z) + g(y)), whenever {z, y} ⊂ R\(−A,A).

(iii) K : (0,∞)→ [0,∞), with lim0+K = +∞.

Then |E[f ◦Xt]− E[f ◦Xh
t ]| is of order:

O

((∫
[−K(h),K(h)]

|f(x)|dx

)
(h ∨∆t(h)) +

(
|f |
|g|
∨ |f |
|g|
◦ (−idR)

)
(K(h)− 3h/2)

)
, (5.8)

where ∆t(h) is defined in (2.5).

Remark 5.5.

(1) In (5.8) there is a balance of two terms, viz. the choice of the functionK. Thus, the
slower (resp. faster) that K increases to +∞ at 0+, the better the convergence
of the first (resp. second) term, provided f /∈ L1(R) (resp. |f |/|g| is ultimately
converging to 0, rather than it just being nonincreasing). In particular, when so,
then the second term can be made to decay arbitrarily fast, whereas the first term
will always have a convergence which is strictly worse than h ∨ ∆t(h). But this
convergence can be made arbitrarily close to h ∨∆t(h) by choosing K increasing
all the slower (this since f is locally bounded). In general the choice of K would
be guided by balancing the rate of decay of the two terms.

(2) Since, in the interest of relative generality, (further properties of) f and λ are not
specified, thus also g cannot be made explicit. Confronted with a specific f and
Lévy process X, we should like to choose g approaching infinity (at ±∞) as fast
as possible, while still ensuring E[g ◦ Xt] < ∞ (cf. Proposition 5.3). This makes,
ceteris paribus, the second term in (5.8) decay as fast as possible.

(3) We exemplify this approach by considering two examples. Suppose for simplicity
∆t(h) = O(h).
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(a) Let first |f | be bounded by (x 7→ A|x|n) for some A ∈ (0,∞) and n ∈ N, and
assume that for some m ∈ (n,∞), the function g = (x 7→ |x|m ∨ 1) satisfies
E[g◦Xt] <∞ (so that (i) holds). Suppose furthermore condition (ii) is satisfied
as well (as it is for, e.g., f = (x 7→ xn)). It is then clear that the first term
of (5.8) will behave as ∼ K(h)n+1h, and the second as ∼ K(h)−(m−n), so
we choose K(h) ∼ 1/h1/(1+m) for a rate of convergence which is of order

O(h
m−n
m+1 ).

(b) Let now |f | be bounded by (x 7→ Aeα|x|) for some {A,α} ⊂ (0,∞), and assume
that for some β ∈ (α,∞), the function g = (x 7→ eβ|x|) indeed satisfies E[g ◦
Xt] < ∞ (so that (i) holds). Suppose furthermore condition (ii) is satisfied
as well (as it is for, e.g., f = (x 7→ (eαx − k)+), where k ∈ [0,∞) — use
Lemma 4.3). It is then clear that the first term of (5.8) will behave as ∼
eαK(h)h, and the second as ∼ e−(β−α)K(h), so we choose, up to a bounded
additive function of h, K(h) = log(1/h1/β) for a rate of convergence which is
of order O(h1−αβ ).

(4) Finally, note that Proposition 5.4 can, in particular, be applied to f , which is the
mapping (x 7→ eipx), p ∈ R, once suitable functions g and K have been identified.
This, however, would give weaker results than what can be inferred regarding
the rate of the convergence of the characteristic functions φXht (p) → φXt(p) from
Remark 3.11(i) (using Lemma 4.3, say). This is so, because the characteristic
exponents admit the Lévy-Khintchine representation (allowing for a very detailed
analysis of the convergence), a property that is lost for a general function f (cf.
Remark 5.2(3)).

Proof of Proposition 5.4. This is a simple matter of estimation; for all sufficiently small
h > 0:

|E[f ◦Xt]− E[f ◦Xh
t ]| =

∣∣∣∣∣∣
∫
R

f(z)pt(z)dz −
∑
y∈Zh

f(y)Pht (y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

y∈[−K(h),K(h)]∩Zh

(∫
Ahy

f(z)pt(z)dz − f(y)Pht (y)

)∣∣∣∣∣∣+
∑

y∈Zh\[−K(h),K(h)]

|f(y)|Pht (y) +

∫
R\[−(K(h)−h/2),K(h)−h/2]

|f(z)| pt(z)dz

≤

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

(f(z)− f(y)) pt(z)dz

∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

f(y) (pt(z)− pt(y)) dz

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

+

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

f(y)h

[
pt(y)−

1

h
Pht (y)

]∣∣∣∣∣∣︸ ︷︷ ︸
(C)

+

(
|f |
|g|
∨
|f |
|g|
◦ (−idR)

)
(K(h))E[g ◦Xh

t ]︸ ︷︷ ︸
(D)

+

(
|f |
|g|
∨
|f |
|g|
◦ (−idR)

)
(K(h)− h/2)E[g ◦Xt]︸ ︷︷ ︸

(E)

.

Thanks to Proposition 5.3, and the fact that |f |/|g| is ultimately nonincreasing, (D) & (E)
are bounded (modulo a multiplicative constant) by |f ||g| (K(h)−h/2)∨ |f ||g| (−(K(h)−h/2)).
From the Lipschitz property of f , submultiplicativity and local boundedness of g, and
the fact that E[g ◦ Xt] < ∞, we obtain (A) is of order O(h). By the local boundedness
and eventual monotonicity of |f |, the Lipschitz nature of pt and the fact that

∫
|f | > 0,

(B) is bounded (modulo a multiplicative constant) by h
∫

[−(K(h)+h),K(h)+h]
|f |. Finally, a

similar remark pertains to (C), but with ∆t(h) in place of h. Combining these, using
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once again
∫
|f | > 0, yields the desired result, since we may finally replace K(h) by

(K(h)− h) ∨ 0.

5.2 Algorithm

From a numerical perspective we must ultimately consider the processes Xh on a
finite state space, which we take to be ShM := {x ∈ Zdh : |x| ≤ M} (M > 0, h ∈ (0, h?)).
We let Q̂h denote the sub-Markov generator got from Qh by restriction to ShM , and we
let X̂h be the corresponding Markov chain got by killing Xh at the time ThM := inf{t ≥
0 : |Xh

t | > M}, sending it to the coffin state ∂ thereafter.
Then the basis for the numerical evaluations is the observation that for a (finite state

space) Markov chain Y with generator matrix Q, the probability Py(Yt = z) (resp. the
expectation Ey[f ◦ Y ], when defined) is given by (etQ)yz (resp. (etQf)(y)). With this in
mind we propose the:

Sketch algorithm

(i) Choose {h,M} ⊂ (0,∞).

(ii) Calculate, for the truncated sub-Markov generator Q̂h, the ma-
trix exponential exp{tQ̂h} or action exp{tQ̂h}f thereof (where f
is a suitable vector).

(iii) Adjust truncation parameter M , if needed, and discretization pa-
rameter h, until sufficient precision has been established.

Two questions now deserve attention: (1) what is the truncation error and (2) what is
the expected cost of this algorithm. We address both in turn.

First, with a view to the localization/truncation error, we shall find use of the follow-
ing:

Proposition 5.6. Let g : [0,∞) → [0,∞) be nondecreasing, continuous and submulti-
plicative, with lim+∞ g = +∞. Let t > 0 and denote by:

X?
t = sup

s∈[0,t]

|Xs|, Xh?
t = sup

s∈[0,t]

|Xh
s |,

the running suprema of |X| and of |Xh|, h ∈ (0, h?), respectively. Suppose furthermore
E[g ◦ |Xt|] <∞. Then E[g ◦X?

t ] <∞ and, moreover, there is some h0 ∈ (0, h?] such that

sup
h∈(0,h0)

E[g ◦Xh?
t ] <∞.

Remark 5.7. The function g ◦ | · | : Rd → [0,∞) is measurable, submultiplicative and
locally bounded, so for a condition on the Lévy measure equivalent to E[g ◦Xt] <∞ see
Proposition 5.3.

We prove Proposition 5.6 below, but first let us show its relation to the truncation
error. For a function f : Zdh → R, we extend its domain to Zdh ∪ {∂}, by stipulating that
f(∂) = 0. The following (very crude) estimates may then be made:

Corollary 5.8. Fix t > 0. Assume the setting of Proposition 5.6. There is some h0 ∈
(0, h?] and then C := suph∈(0,h0) E[g ◦Xh?

t ] <∞, such that the following two claims hold:

(i) For all h ∈ (0, h0):∑
x∈Zdh

|P(Xh
t = x)− P(X̂h

t = x)| = P(ThM < t) ≤ C/g(M).
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(ii) Let f : Zdh → R and suppose |f | ≤ f̃ ◦|·|, with f̃ : [0,∞)→ [0,∞) nondecreasing and
such that f̃/g is (resp. ultimately) nonincreasing. Then for all (resp. sufficiently
large) M > 0 and h ∈ (0, h0):

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ C

(
f̃

g

)
(M).

Remark 5.9.

1. Ad (i). Note that M may be taken fixed (i.e. independent of h) and chosen so as to
satisfy a prescribed level of precision. In that case such a choice may be verified
explicitly at least retrospectively: the sub-Markov generator Q̂h gives rise to the
sub-Markov transition matrix P̂ht := etQ̂

h

; its deficit (in the row corresponding to
state 0) is precisely the probability P(ThM < t).

2. Ad (ii). But M may also be made to depend on h, and then let to increase to +∞ as
h ↓ 0, in which case it is natural to balance the rate of decay of |E[f ◦Xh

t ]−E[f ◦X̂h
t ]|

against that of |E[f ◦ Xt] − E[f ◦ Xh
t ]| (cf. Proposition 5.4). In particular, since

E[g ◦ |Xt|] < ∞ ⇔ E[g ◦ X?
t ] ⇔

∫
Rd\[−1,1]d

g ◦ | · |dλ < ∞ [30, p. 159, Theorem
25.3 & p. 166, Theorem 25.18], this problem is essentially analogous to the one
in Proposition 5.4. In particular, Remark 5.5 extends in a straightforward way to
account for the truncation error, with M in place of K(h)− 3h/2.

Proof. (i) follows from the estimate
∑
x∈Zdh

|P(Xh
t = x) − P(X̂h

t = x)| = P(ThM < t) =

P(Xh?
t > M) ≤ E[g◦Xh?t ]

g(M) , which is an application of Markov’s inequality. When it comes
to (ii), we have for all (resp. sufficiently large) M > 0:

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ E
[(
|f | ◦Xh

t

)
1(ThM < t)

]
≤ E

[(
f̃ ◦ |Xh

t |
)
1(ThM < t)

]
≤ E

[(
f̃ ◦Xh?

t

)
1(ThM < t)

]
= E

[((
f̃

g

)
◦Xh?

t

)(
g ◦Xh?

t

)
1(Xh?

t > M)

]

≤

(
f̃

g

)
(M)E[g ◦Xh?

t ],

whence the desired conclusion follows.

Proof of Proposition 5.6. We refer to [30, p. 166, Theorem 25.18] for the proof that
E[g ◦ X?

t ] < ∞. Next, by right continuity of the sample paths of X, we may choose
b > 0, such that P(X∗t ≤ b/2) > 0 and we may also insist on b/2 being a continuity
point of the distribution function of X?

t (there being only denumerably many points of
discontinuity thereof). Now, Xh → X as h ↓ 0 w.r.t. the Skorokhod topology on the
space of càdlàg paths. Moreover, by [17, p. 339, 2.4 Proposition], the mapping Φ :=

(α 7→ sups∈[0,t] |α(s)|) : D([0,∞),Rd) → R is continuous at every point α in the space

of càdlàg paths D([0,∞),Rd), which is continuous at t. In particular, Φ is continuous,
a.s. w.r.t. the law of the process X on the Skorokhod space [30, p. 59, Theorem
11.1]. By the Portmanteau Theorem, it follows that there is some h0 ∈ (0, h?] such that
infh∈(0,h0) P(Xh?

t ≤ b/2) > 0.
Moreover, from the proof of [30, p. 166, Theorem 25.18], by letting g̃ : [0,∞) →

[0,∞) be nondecreasing, continuous, vanishing at zero and agreeing with g on restric-
tion to [1,∞), we may then show for each h ∈ (0, h?) that:

E[g̃ ◦ (Xh?
t − b);X

h?
t > b] ≤ E[g̃ ◦ |Xh

t |]/P(Xh?
t ≤ b/2).
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Now, since E[g ◦|Xt|] <∞, by Proposition 5.3 (cf. Remark 5.7), there is some h0 ∈ (0, h?]

such that suph∈(0,h0) E[g ◦ |Xh
t |] <∞, and thus suph∈(0,h0) E[g̃ ◦ |Xh

t |] <∞.

Combining the above, it follows that for some h0 ∈ (0, h?], suph∈(0,h0) E[g̃ ◦ (Xh?
t −

b);Xh?
t > b] <∞ and thus suph∈(0,h0) E[g◦(Xh?

t −b);X
h?
t > b] <∞. Finally, an application

of submultiplicativity of g allows to conclude.

Having thus dealt with the truncation error, let us briefly discuss the cost of our
algorithm.

The latter is clearly governed by the calculation of the matrix exponential, or, resp.,
of its action on some vector. Indeed, if we consider as fixed the generator matrix Q̂h,
and, in particular, its dimension n ∼ (M/h)d, then this may typically require O(n3)

[25, 16], resp. O(n2) [1], floating point operations. Note, however, that this is a no-
tional complexity analysis of the algorithm. A more detailed argument would ultimately
have to specify precisely the particular method used to determine the (resp. action of
a) matrix exponential, and, moreover, take into account how Q̂h (and, possibly, the trun-
cation parameter M , cf. Remark 5.9) behave as h ↓ 0. Further analysis in this respect
goes beyond the desired scope of this paper.

We finish off by giving some numerical experiments in the univariate case. To com-
pute the action of Q̂h on a vector we use the MATLAB function expmv.m [1], unless Q̂h

is sparse, in which case we use the MATLAB function expv.m from [31].

We begin with transition densities. To shorten notation, fix the time t = 1 and allow
p := p1(0, ·) and ph := 1

h P̂
h
1 (0, ·) (P̂h being the analogue of Ph for the process X̂h). Note

that to evaluate the latter, it is sufficient to compute (eQ̂
ht)0· = e(Q̂h)′t1{0}, where (Q̂h)′

denotes transposition.

Example 5.10. Consider first Brownian motion with drift, σ2 = 1, µ = 1, λ = 0 (scheme
1, V = 0). We compare the density p with the approximation ph (h ∈ {1/2n : n ∈
{0, 1, 2, 3}}) on the interval [0, 2] (see Figure 2 on p. 32), choosing M = 5. The vector

of deficit probabilities (P(T
1/2n

M < t))3
n=0 corresponding to using this truncation was

(5.9 · 10−4, 1.5 · 10−4, 5.8 · 10−5, 4.4 · 10−5). In this case the matrix Q̂h is sparse.

Example 5.11. Consider now α-stable Lévy processes, σ2 = 0, µ = 0, λ(dx) = dx/|x|1+α

(scheme 2, V = 1). We compare the density p with ph on the interval [0, 1] (see Fig-
ure 4 on p. 33). Computations are made for the vector of alphas given by (αk)4

k=1 :=

(1/2, 1, 4/3, 5/3) with corresponding truncation parameters (Mk)4
k=1 = (500, 100, 30, 20)

resulting in the deficit probabilities (uniformly over the h considered) of (P(ThMk
<

t))4
k=1 = (1.7 ·10−1, 2.0 ·10−2, (from 1.7 to 1.8) ·10−2, (from 0.94 to 1.01) ·10−2). The heavy

tails of the Lévy density necessitate a relatively high value of M . Nevertheless, ex-
cluding the case α = 5/3, a reduction of M by a factor of 5 resulted in an absolute
change of the approximating densities, which was at most of the order of magnitude of
the discretization error itself. Conversely, for α = 1/2, when the deficit probability is
highest and appreciable, increasing M by a factor of 2, resulted in an absolute change
of the calculated densities of the order 10−6 (uniformly over h ∈ {1, 1/2, 1/4}). Finally,
note that α = 1 gives rise to the Cauchy distribution, whereas otherwise we use the
MATLAB function stblpdf.m to get a benchmark density against which a comparison
can be made.

Example 5.12. A particular VG model [5, 23] has σ2 = 0, µ = 0, λ(dx)= e−|x|

|x| 1R\{0}(x)dx

(scheme 2, V = 1). Again we compare p with ph (h ∈ {1/2n : n ∈ {0, 1, 2, 3}}) on the
interval [0, 1] (see Figure 3 on p. 32), choosing M = 5. The vector of deficit probabilities

(P(T
1/2n

M < t))3
n=0 corresponding to using this truncation was (5.2 · 10−3, 6.4 · 10−3, 7.2 ·

10−3, 7.6 · 10−3). The density p is given explicitly by (x 7→ e−|x|/2).
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Figure 2: Convergence of ph to p (as h ↓ 0) on the interval [0, 2] for Brownian motion
with drift (σ2 = µ = 1, λ = 0, scheme 1, V = 0). See Example 5.10 for details.
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Figure 3: Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for the VG model

(σ2 = 0, µ = 0, λ(dx) = e−|x|

|x| 1R\{0}(x)dx, scheme 2, V = 1). Note that in this case Orey’s
condition fails, but (at least as evidenced numerically) linear convergence does not. See
Example 5.12 for details.
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Figure 4: Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for α-stable Lévy pro-
cesses (σ2 = 0, µ = 0, λ(dx) = dx/|x|1+α, scheme 2, V = 1), α ∈ {1/2, 1, 4/3, 5/3}. See
Example 5.11 for details. Note that convergence becomes progressively worse as α ↑,
which is precisely consistent with Figure 1 and the theoretical order of convergence,
this being O(h(2−α)∧1) (up to a slowly varying factor log(1/h), when α = 1; and noting
that Orey’s condition is satisfied with ε = α). For example, when α = 5/3 each suc-

cessive approximation should be closer to the limit by a factor of
(

1
2

)1/3 .
= 0.8, as it

is.

Finally, to illustrate convergence of expectations, we consider a particular option
pricing problem.

Example 5.13. Suppose that, under the pricing measure, the stock price process S =

(St)t≥0 is given by St = S0e
rt+Xt , t ≥ 0, where S0 is the initial price, r is the interest

rate, and X is a tempered stable process with Lévy measure given by:

λ(dx) = c

(
e−λ+x

x1+α
1(0,∞)(x) +

e−λ−|x|

|x|1+α
1(−∞,0)(x)

)
dx.

To satisfy the martingale condition, we must have E[eXt ] ≡ 1, which in turn uniquely
determines the drift µ (we have, of course, σ2 = 0). The price of the European put
option with maturity T and strike K at time zero is then given by:

P (T,K) = e−rTE[(K − ST )+].

We choose the same value for the parameters as [28], namely S0 = 100, r = 4%, α = 1/2,
c = 1/2, λ+ = 3.5, λ− = 2 and T = 0.25, so that we may quote the reference values
P (T,K) from there.
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Now, in the present case, X is a process of finite variation, i.e. κ(0) < ∞, hence
convergence of densities is of order O(h), since Orey’s condition holds with ε = 1/2

(scheme 2, V = 1). Moreover, 1R\[−1,1] · λ integrates (x 7→ e2|x|), whereas the function
(x 7→ (K − ert+x)+) is bounded. Pursuant to (2) of Remark 5.9 we thus choose M =

M(h) :=
(

1
2 log(1/h)

)
∨1, which by Corollary 5.8 and Proposition 5.4 (with K(h) = M(h))

(cf. also ((3)b) of Remark 5.5) ensures that:

|P̂h(T,K)− P (T,K)| = O(h log(1/h)),

where P̂h(T,K) := e−rTE[(K − S0e
rT+X̂hT )+]. Table 4 on p. 35 summarizes this conver-

gence on the decreasing sequence hn := 1/2n, n ≥ 1.
In particular, we wish to emphasize that the computations were all (reasonably) fast.

For example, to compute the vector (P̂hn(T,K))9
n=1 with K = 80, the times (in seconds;

entry-by-entry) (0.0106, 0.0038, 0.0044, 0.0078, 0.0457, 0.0367, 0.0925, 0.4504, 2.4219) were
required on an Intel 2.53 GHz processor (times obtained using MATLAB’s tic-toc fa-
cility). This is much better than, e.g., the Monte Carlo method of [28] and comparable
with the finite difference method of [8] (VG2 model in [8, p. 1617, Section 7]).

In conclusion, the above numerical experiments serve to indicate that our method
behaves robustly when the Blumenthal-Getoor index of the Lévy measure is not too
close to 2 (in particular, if the pure-jump part has finite variation). It does less well if
this is not the case, since then the discretisation parameter h must be chosen small,
which is expensive in terms of numerics (viz. the size of Q̂h).
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K → 80 85 90 95 100 105 110 115 120

P (T,K)→ 1.7444 2.3926 3.2835 4.5366 6.3711 9.1430 12.7631 16.8429 21.1855

n P̂hn(T,K)− P (T,K)

1 0.6411 0.5422 0.2006 -0.5033 -1.7885 -0.8227 0.0970 0.5570 0.7542
2 -0.1089 0.2816 0.4295 0.2151 -0.5806 0.0975 0.5341 0.5109 0.2250
3 -0.2271 -0.1596 -0.1928 0.0920 -0.2046 0.1405 0.0348 -0.4356 -0.3937
4 -0.0904 -0.0753 -0.0517 -0.0442 0.0652 0.1487 0.0057 -0.1511 -0.1838
5 -0.0411 -0.0338 -0.0193 -0.0053 0.0679 0.0569 -0.0073 -0.0616 -0.0833
6 -0.0184 -0.0163 -0.0081 0.0022 0.0347 0.0314 -0.0033 -0.0244 -0.0384
7 -0.0079 -0.0069 -0.0040 0.0019 0.0152 0.0109 -0.0034 -0.0108 -0.0164
8 -0.0034 -0.0029 -0.0016 0.0011 0.0072 0.0053 -0.0012 -0.0048 -0.0070
9 -0.0014 -0.0012 -0.0007 0.0006 0.0033 0.0026 -0.0004 -0.0020 -0.0030

Table 4: Convergence of the put option price for a CGMY model (scheme 2, V = 1). See Example 5.13 for details.
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[13] Damir Filipović, Eberhard Mayerhofer, and Paul Schneider, Density approximations for mul-
tivariate affine jump-diffusion processes, J. Econometrics 176 (2013), no. 2, 93–111. MR-
3084047

[14] M. G. Garroni and J.-L. Menaldi, Green functions for second order parabolic integro-
differential problems, Pitman Research Notes in Mathematics Series, vol. 275, Longman
Scientific & Technical, Harlow, 1992. MR-1202037

[15] Paul Glasserman, Monte Carlo methods in financial engineering, Applications of Mathemat-
ics (New York), vol. 53, Springer-Verlag, New York, 2004, Stochastic Modelling and Applied
Probability. MR-1999614

[16] Nicholas J. Higham, The scaling and squaring method for the matrix exponential revisited,
SIAM J. Matrix Anal. Appl. 26 (2005), no. 4, 1179–1193 (electronic). MR-2178217

[17] Jean Jacod and Albert N. Shiryaev, Limit theorems for stochastic processes, second ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 288, Springer-Verlag, Berlin, 2003. MR-1943877

[18] Jonas Kiessling and Raúl Tempone, Diffusion approximation of Lévy processes with a view
towards finance, Monte Carlo Methods Appl. 17 (2011), no. 1, 11–45. MR-2784742

[19] Peter E. Kloeden and Eckhard Platen, Numerical solution of stochastic differential equa-
tions, Applications of Mathematics (New York), vol. 23, Springer-Verlag, Berlin, 1992. MR-
1214374

[20] Viktorya Knopova and René L. Schilling, Transition density estimates for a class of Lévy and
Lévy-type processes, J. Theoret. Probab. 25 (2012), no. 1, 144–170. MR-2886383

EJP 19 (2014), paper 7.
Page 36/37

ejp.ejpecp.org

http://www.ams.org/mathscinet-getitem?mr=2785959
http://www.ams.org/mathscinet-getitem?mr=1401964
http://www.ams.org/mathscinet-getitem?mr=1401964
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=2502474
http://www.ams.org/mathscinet-getitem?mr=2307403
http://www.ams.org/mathscinet-getitem?mr=2042661
http://www.ams.org/mathscinet-getitem?mr=2042661
http://www.ams.org/mathscinet-getitem?mr=2182141
http://www.ams.org/mathscinet-getitem?mr=2646974
http://www.ams.org/mathscinet-getitem?mr=2646974
http://www.ams.org/mathscinet-getitem?mr=1932358
http://www.ams.org/mathscinet-getitem?mr=1191706
http://www.ams.org/mathscinet-getitem?mr=2734238
http://www.ams.org/mathscinet-getitem?mr=3084047
http://www.ams.org/mathscinet-getitem?mr=3084047
http://www.ams.org/mathscinet-getitem?mr=1202037
http://www.ams.org/mathscinet-getitem?mr=1999614
http://www.ams.org/mathscinet-getitem?mr=2178217
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=2784742
http://www.ams.org/mathscinet-getitem?mr=1214374
http://www.ams.org/mathscinet-getitem?mr=1214374
http://www.ams.org/mathscinet-getitem?mr=2886383
http://dx.doi.org/10.1214/EJP.v19-2208
http://ejp.ejpecp.org/


Markov chain approximations for densities of Lévy processes

[21] A. Kohatsu-Higa, S. Ortiz-Latorre, and P. Tankov, Optimal simulation schemes for Lévy driven
stochastic differential equations, Math. Comp. (to appear).

[22] Andreas E. Kyprianou, Introductory lectures on fluctuations of Lévy processes with applica-
tions, Universitext, Springer-Verlag, Berlin, 2006. MR-2250061

[23] Dilip B. Madan, Peter Carr, and Eric C. Chang, The Variance Gamma Process and Option
Pricing, European Finance Review 2 (1998), 79–105.
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