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Abstract

For the one-dimensional Brownian motion B = (Bt)t≥0, started at x > 0, and the first hitting time

τ= inf{t ≥ 0 : Bt = 0}, we find the probability density of Buτ for a u ∈ (0,1), i.e. of the Brownian

motion on its way to hitting zero.

1 Introduction

The following problem has been recently addressed in [5], [6]. The authors considered a contin-

uous time subcritical branching process Z = (Zt)t≥0, starting from the initial population of size

Z0 = x . As is well known, Zt gets extinct at the random time T = inf{t ≥ 0 : Zt = 0}, and T <∞
with probability one. What can be said about ZT/2, i.e. the population size on the half-way to its

extinction? While the complete characterization of the law of ZuT with u= 1/2, or more generally

u ∈ (0,1), does not seem to be trackable, it turns out that under quite general conditions

xu−1ZuT

d−−→
x→∞

Cc−ue−uη, (1.1)

where the convergence is in distribution, C and c are constants, explicitly computable in terms of

parameters of Z and η is a random variable with Gumbel distribution.

In this note we study the analogous problem for one-dimensional Brownian motion B = (Bt)t≥0,

started from x > 0. Hereafter we assume that B is defined on the canonical probability space

(Ω,F ,Px) and let τ denote the first time it hits zero, i.e. τ= inf{t ≥ 0 : Bt = 0}.
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Theorem 1.1. For x > 0 and u ∈ (0,1), the distribution Px

�

Buτ ≤ y
�

is absolutely continuous with

the density

p(u, x; y) =
4
p

u(1− u)x y2

π
�

(y − x)2(1− u) + y2u
	�

(y + x)2(1− u) + y2u
	 . (1.2)

Remark 1.2. Notice that p(u, x; y) decays as ∝ 1/y2 and hence its mean is infinite. Such behavior,

of course, stems from the possibility of large excursions of B from the origin, before hitting zero.

Remark 1.3. The formula (1.2) implies that x−1Buτ has the same law under Px as Buτ under P1, or

using different notations,

x−1Bx
uτ(x)

d
= B1

uτ(1)
, (1.3)

where Bx stands for the Brownian motion, starting at x > 0, and τ(x) = inf{t ≥ 0 : Bx
t
= 0} (i.e.

B1
uτ(1)

has the density p(u, 1, y)). This scale invariance does not seem to be obvious at the outset and

should be compared to (1.1), where the scaling depends on u and holds only in the limit.

In the following section we shall give an elementary proof of Theorem 1.1. In Section 3 our result

is discussed in the context of Doob’s h-transform conditioning.

2 Proof

Let δ > 0 and define2 τδ := δ⌊τ/δ⌋. Recall that τ has the probability density (see e.g. [2]):

f (x; t) =
∂

∂ t
Px(T ≤ t) =

x
p

2πt3
e−x2/2t , t ≥ 0, x > 0. (2.1)

Let M̂s,t := infs≤r<t Br and φ(·) be a continuous bounded function, then3

Exφ
�

Buτδ

�

=

∞
∑

k=0

Exφ
�

Buτδ

�

I
�

τ ∈
�

δk,δ(k+ 1)
�

�

=

∞
∑

k=0

Exφ
�

Buδk

�

I
�

τ ∈
�

δk,δ(k+ 1)
�

�

=

∞
∑

k=0

Exφ
�

Buδk

�

I
�

M̂0,δk > 0, M̂δk,δ(k+1) ≤ 0
�

=

∞
∑

k=0

Exφ
�

Buδk

�

I
�

M̂0,uδk > 0
�

Px

�

M̂uδk,δk > 0, M̂δk,δ(k+1) ≤ 0
¯

¯F B
uδk

�

=

∞
∑

k=0

Exφ
�

Buδk

�

I
�

M̂0,uδk > 0
�

Px

�

M̂uδk,δk > 0, M̂δk,δ(k+1) ≤ 0
¯

¯Buδk

�

= φ
�

x
�

Px

�

τ ∈ [0,δ)
�

+

∞
∑

k=1

Exφ
�

Buδk

�

I
�

M̂0,uδk > 0
�

×

PBuδk

�

τ ∈
�

(1− u)δk, (1− u)δk+δ
�

�

2⌊x⌋ stands for the integer part of x ∈ R and ⌈x⌉ := ⌊x⌋+ 1
3 I(·) denotes the indicator function
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= φ
�

x
�

∫ δ

0

f
�

x; t
�

d t +

∞
∑

k=1

Exφ
�

Buδk

�

I
�

M̂0,uδk > 0
�

∫ (1−u)δk+δ

(1−u)δk

f
�

Buδk; t
�

d t

= φ
�

x
�

∫ δ

0

f
�

x; t
�

d t +

∫ ∞

0

φ(y)

½ ∞
∑

k=1

∫ δ(k+1)

δk

q(x ,uδk, y) f
�

y; t − uδk
�

d t

¾

d y

= φ
�

x
�

∫ δ

0

f
�

x; t
�

d t +

∫ ∞

0

φ(y)

½
∫ ∞

δ

q(x ,u⌊t/δ⌋δ, y) f
�

y; t − u⌊t/δ⌋δ
�

d t

¾

d y

= φ
�

x
�

∫ δ

0

f
�

x; t
�

d t +

∫ ∞

0

φ(y)

½
∫ ∞

0

q(x ,u⌈t/δ⌉δ, y) f
�

y; t +δ− u⌈t/δ⌉δ
�

d t

¾

d y, (2.2)

where q(x , t, y) is the probability density of Px

�

M̂0,t > 0, Bt ∈ d y
�

with respect to the Lebesgue

measure (see e.g. formula 1.2.8 page 126, [2]):

q(x , t, y) =

½

1
p

2πt
e−(y−x)2/2t −

1
p

2πt
e−(y+x)2/2t

¾

, x , y > 0. (2.3)

By continuity of the densities (2.1) and (2.3), for any fixed x > 0 and u ∈ (0,1), the function

Fδ(t, y) := q(x ,u⌈t/δ⌉δ, y) f
�

y; t +δ− u⌈t/δ⌉δ
�

converges to

lim
δ→0

Fδ(t, y) = q(x ,ut, y) f (y; t − ut), ∀t ≥ 0, y ≥ 0.

In Lemma 2.1 below we exhibit a function G(t, y), independent of δ, such that

Fδ(t, y)≤ G(t, y), ∀(t, y) ∈ R2
+

and

∫

R
2
+

G(t, y)d td y <∞, (2.4)

and hence, the dominated convergence and (2.2) imply

lim
δ→0

Exφ
�

Buτδ

�

= lim
δ→0

∫

R
2
+

φ(y)Fδ(t, y)d yd t =

∫

R
2
+

φ(y)q(x ,ut, y) f (y; t − ut)d td y. (2.5)

On the other hand, limδ→0 τδ = τ, Px -a.s. and thus by continuity of Bt , limδ→0 Buτδ
= Buτ, Px -a.s.

for any u ∈ (0,1). Thus, by arbitrariness of φ, (2.5) implies that the distribution of Buτ has the

density:

p(u, x; y) :=

∫ ∞

0

q(x ,ut, y) f (y; t − ut)d t.

A calculation now yields:

p(u, x; y) =

∫ ∞

0

y
p

2π
�

t(1− u)
�3/2

e−y2/2t(1−u)

½

1
p

2πut
e−(y−x)2/2ut −

1
p

2πut
e−(y+x)2/2ut

¾

d t

=
y

2π(1− u)3/2u1/2

∫ ∞

0

1

t2

½

e−(y−x)2/2ut−y2/2t(1−u) − e−(y+x)2/2ut−y2/2t(1−u)

¾

d t,
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and by a change of variables

p(u, x; y) =
y

2π(1− u)3/2u1/2

½

� (y − x)2

2u
+

y2

2(1− u)

�−1

−
� (y + x)2

2u
+

y2

2(1− u)

�−1
¾

=
2y
p

u

2π
p

1− u

½

1

(y − x)2(1− u) + y2u
−

1

(y + x)2(1− u) + y2u

¾

=

p

u(1− u)4x y2

π
n

(y − x)2(1− u) + y2u
on

(y + x)2(1− u) + y2u
o .

The statement of the Theorem 1.1 now follows from:

Lemma 2.1. (2.4) holds with G(t, x) defined in (2.6) below.

Proof. Set tδ := ⌈t/δ⌉δ, so that t ≤ tδ ≤ t +δ, and

Fδ(t, y)≤
1
p

utδ

½

e−(y−x)2/2utδ − e−(y+x)2/2utδ
¾

y

(t +δ− utδ)3/2
e−

1

2
y2/(t+δ−utδ)

≤ I(t ≤ δ)
1
p

uδ
e−(y−x)2/(2uδ)

y
�

(1− u)δ
�3/2

e−
1

2
y2/(δ+(1−u)δ)+

I(t > δ)
1
p

ut

½

e−(y−x)2/2utδ − e−(y+x)2/2utδ
¾

y
�

(t +δ)(1− u)
�3/2

e−
1

2
y2/(t(1−u)+δ)

=: I(t ≤ δ)A+ I(t > δ)B.

Since the function z2e−Cz with C > 0 attains its maximum 4e−2/C2 on the interval [0,∞) at

z := 2/C ,

A=
y
p

u(1− u)3

1

δ2
exp

½

−
�

(y − x)2

2u
+

1

2

y2

(2− u)

�

1

δ

¾

≤

y
p

u(1− u)3

�

(y − x)2

2u
+

1

2

y2

(2− u)

�−2

.

Similarly, for t > δ,

B =
y

p

u(1− u)3 t(t +δ)3
e−(y−x)2/2utδ
½

1− e−2x y/utδ
¾

e−
1

2
y2/(t(1−u)+δ)

≤
y
p

u(1− u)3

1

t2
e−(y−x)2/2u(t+δ)

½

1− e−2x y/ut

¾

e−
1

2
y2/(t(1−u)+δ)

≤
y
p

u(1− u)3

1

t2
e−(y−x)2/4ut

½

1− e−2x y/ut

¾

e−
1

2
y2/(t(2−u)).

Hence for δ ∈ (0,1] we have the bound

Fδ(t, y)≤
y
p

u(1− u)3

�

(y − x)2

2u
+

1

2

y2

(2− u)

�−2

I(t ≤ 1)+

y
p

u(1− u)3

1

t2
e−(y−x)2/4ut

½

1− e−2x y/ut

¾

e−
1

2
y2/(t(2−u)) =: G(t, y). (2.6)
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Since for u ∈ (0,1) and x > 0, the quadratic function is lower bounded:

(y − x)2

u
+

y2

(2− u)
≥

x2

2
,

the first function in the right hand side of (2.6) is integrable on R2
+

. Further,

∫ ∞

0

y
p

u(1− u)3

1

t2
e−(y−x)2/4ut

½

1− e−2x y/ut

¾

e−
1

2
y2/(t(2−u))d t

=
y
p

u(1− u)3

½�

(y − x)2

4u
+

y2

2(2− u)

�−1

−
�

(y − x)2

4u
+

y2

2(2− u)
+

2x y

u

�−1¾

=
4yu(2− u)
p

u(1− u)3

½

1

(y − x)2(2− u) + 2y2u
−

1

(y − x)2(2− u) + 2y2u+ 8x y(2− u)

¾

=
32u(2− u)2 x y2/

p

u(1− u)3
n

(y − x)2(2− u) + 2y2u
on

(y − x)2(2− u) + 2y2u+ 8x y(2− u)
o .

The latter function decays as ∝ 1/y2 as y → ∞ and is bounded away from zero, uniformly

in y ≥ 0, and thus is integrable on R+. Since the last term in the right hand side of (2.6) is

nonnegative, by Fubini theorem it is an integrable function on R2
+

for all u ∈ (0,1) and x > 0.

3 A connection to Doob’s h-transform

In this section we show that the random variable Buτ has the same density as the so called scaled

Brownian excursion at the corresponding time, averaged over its length. The latter process is

defined by conditioning in the sense of Doob’s h-transform, and it would be natural to identify this

formal conditioning with the usual conditional probability. While in the analogous discrete time

setting, such identification is evident, its precise justification in our case remains an open problem.

For a fixed time T > 0, let R= (Rt)t≤T be the 3-dimensional Bessel bridge R= (Rt)t≤T , starting at

R0 = x and ending at zero. Namely, R is the radial part4

Rt = ‖Vt‖, t ∈ [0, T], (3.1)

of the 3-dimensional Brownian bridge V = (Vt)t≤T with V0 = v and VT = 0:

Vt = v +Wt −
t

T
(WT + v), t ∈ [0, T],

where v ∈ R3 with ‖v‖= x and W is a standard Brownian motion in R3.

The law of R coincides with the law of the scaled Brownian excursion process, which is defined as

“the Brownian motion, started at x > 0 and conditioned to hit zero for the first time at time T”.

Here the conditioning is understood in the sense of Doob’s h-transform (see Ch. IV, §39, [7], and

[1], [3] for the in depth treatment).

On the other hand, one can speak on the regular conditional measure induced on the space of

Brownian excursions (started from x > 0), given τ = inf{t ≥ 0 : Bt = 0}. More precisely, let E

4‖ · ‖ denotes the Euclidian norm in Rn
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be a subset of continuous functions C[0,∞)(R), such that for all ω ∈ E, ω(0) = x and for each ω

there is a positive number ℓ(ω), called the excursion length, such that ω(t) > 0 for 0 < t < ℓ(ω)

and ω(t) ≡ 0 for all t ≥ ℓ(ω). E together with the smallest σ-algebra E , making all coordinate

mappings measurable, is called the excursion space (see §3, [2] for the brief reference and [1] for

more details). Let µx(T, ·), T ∈ [0,∞) be a probability kernel on the excursion space (E,E ), i.e. a

family of measures such that T 7→ µx(T,A) is a measurable function for all A ∈ E and µx(T, ·) is a

probability measure on E for each T ≥ 0. By definition, µx(T, ·) is a regular conditional probability

of Bt∧τ given τ, if for any bounded and measurable functional F on (E,E ):

Ex F(B·∧τ)I(τ ∈ A) =

∫

A

∫

E

F(ω)µx(s, dω) f (x; s)ds, ∀A∈B(R),

where f (x; t) is the density of τ, defined in (2.1). In particular, for any bounded measurable

function φ and some u ∈ (0,1),

Exφ(Buτ) =

∫ ∞

0

∫

E

φ
�

ω(us)
�

µx(s, dω) f (x; s)ds. (3.2)

We were not able to trace any general result, from which the identification of µx(T, dω) with the

probability νx(T, dω), induced on (E,E ) by the aforementioned Bessel bridge R, could be deduced.

While the latter, of course, is intuitively appealing, its precise justification remains elusive (some

relevant results can be found in [4]). The calculations below show that

∫ ∞

0

∫

E

φ
�

ω(us)
�

νx(s, dω) f (x; s)ds = Exφ(Buτ), (3.3)

indicating in favor of such identification.

For a fixed T > 0 and u ∈ (0,1), the distribution of RuT , i.e. the restriction of νx(T, dω) to the time

t := uT , has a density quT (x; y) with respect to the Lebesgue measure d y , which can be computed

as follows. We have

EVt = v(1− t/T), cov(Vt) = I
t(T − t)

T
,

where I is 3-by-3 identity matrix. Notice that the law of the Bessel bridge R in (3.1) doesn’t

depend on the particular v as long as ‖v‖ = x and it will be particularly convenient to carry out

the calculations for the specific choice v = (x , 0, 0). Fix a constant u ∈ (0,1) and let ξ1,ξ2,ξ3 be

i.i.d. standard Gaussian random variables. Then, for t := uT ,

RuT

d
=

Ç

�
p

Tu(1− u)ξ1 + x(1− u)
�2

+ Tu(1− u)ξ2
2 + Tu(1− u)ξ2

3.

The random variable θ := ξ2
2
+ ξ2

3
has χ2

2
distribution, which is the same as the exponential

distribution with parameter 1/2 and hence

RuT

d
= b

Ç

�

ξ+ a
�2

+ θ , (3.4)

where ξ is written for ξ1 and a := x
p

(1− u)/Tu and b :=
p

(1− u)Tu are defined for brevity.
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The density of (ξ+ a)2 is given by:

f1(z) :=
d

dz
P
�

(ξ+ a)2 ≤ z
�

=
d

dz

∫

p
z

−pz

1
p

2π
e−(x−a)2/2d x =

1

2
p

2π
p

z

�

e−(
p

z−a)2/2 + e−(
p

z+a)2/2
�

.

The density of (ξ+ a)2 + θ is the convolution of f1 and the exponential density with parameter

1/2:

f3(y) :=

∫ y

0

f1(z) f2(y − z)dz =

∫ y

0

1

2
p

2π
p

z

�

e−(
p

z−a)2/2 + e−(
p

z+a)2/2
�1

2
e−1/2(y−z)dz

=

∫

p
y

0

1

2
p

2π

�

e−(z̃−a)2/2 + e−(z̃+a)2/2
�

e−1/2(y−z̃2)dz̃

=
e−a2/2−y/2

2
p

2π

∫

p
y

0

�

ez̃a + e−z̃a
�

dz̃ =
e−a2/2−y/2

p
2π

∫

p
y

0

cosh(z̃a)dz̃

=
e−a2/2−y/2

p
2πa

sinh(
p

ya).

Consequently, the density of
p

(ξ+ a)2 + θ is given by

f4(z) := 2z f3(z
2) =

p
2e−a2/2

p
πa

ze−z2/2 sinh(za),

and, finally, the density of b
p

(ξ+ a)2 + θ is

f5(z) :=
1

b
f4(z/b) =

p
2e−a2/2

p
πab2

ze−z2/2b2

sinh(za/b) =
z

p
2πab2

½

e−(a−z/b)2/2 − e−(a+z/b)2/2

¾

.

Hence by (3.4), RuT has the density

quT (x; y) =
y

p
2πx(1− u)

1
p

Tu(1− u)

½

exp

�

−
1

T

�

x(1− u)− y
�2

2u(1− u)

�

−

exp

�

−
1

T

�

x(1− u) + y
�2

2u(1− u)

�¾

,

We shall abbreviate by writing

C1 =

�

x(1− u)− y
�2

2u(1− u)
, C2 =

�

x(1− u) + y
�2

2u(1− u)
, C3 =

y
p

2πxu1/2(1− u)3/2
.

Then

∫ ∞

0

∫

E

φ
�

ω(ut)
�

νx(t, dω) f (x; t)d t =

∫ ∞

0

φ(y)

∫ ∞

0

qut(x; y) f (x; t)d t

=

∫ ∞

0

φ(y)

∫ ∞

0

C3

1

t1/2

n

e−C1/t − e−C2/t
o x
p

2πt3/2
e−x2/2t d td y =:

∫ ∞

0

φ(y)p(u, x; y)d y
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and by a change of variables,

p(u, x; y) = C3

x
p

2π

∫ ∞

0

n

e−(C1+x2/2)t − e−(C2+x2/2)t
o

t−2d t =

C3

x
p

2π

½

1

C1 + x2/2
−

1

C2 + x2/2

¾

.

A calculation yields,

C1 + x2/2=
(1− u)(x − y)2 + y2u

2u(1− u)
and C2 + x2/2=

(1− u)(x + y)2 + y2u

2u(1− u)
,

and, consequently,

p(u, x; y) =
y

p
2πxu1/2(1− u)3/2

x
p

2π

½

2u(1− u)

(1− u)(x − y)2 + y2u
−

2u(1− u)

(1− u)(x + y)2 + y2u

¾

=
4x y2
p

u(1− u)

π
�

(1− u)(x − y)2 + y2u
	�

(1− u)(x + y)2 + y2u
	 ,

which in view of (3.2) and (1.2), imply (3.3).
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