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Abstract

Let q ≥ 2 be a positive integer, B be a fractional Brownian motion with Hurst index H ∈ (0, 1),
Z be an Hermite random variable of index q, and Hq denote the qth Hermite polynomial. For

any n ≥ 1, set Vn =
∑n−1

k=0 Hq(Bk+1−Bk). The aim of the current paper is to derive, in the case
when the Hurst index verifies H > 1− 1/(2q), an upper bound for the total variation distance
between the laws L (Zn) and L (Z), where Zn stands for the correct renormalization of Vn

which converges in distribution towards Z. Our results should be compared with those obtained
recently by Nourdin and Peccati (2007) in the case where H < 1 − 1/(2q), corresponding to
the case where one has normal approximation.

1 Introduction

Let q ≥ 2 be a positive integer and B be a fractional Brownian motion (fBm) with Hurst index
H ∈ (0, 1). The asymptotic behavior of the q-Hermite power variations of B with respect to
N, defined as

Vn =

n−1∑

k=0

Hq(Bk+1 − Bk), n ≥ 1, (1)

has recently received a lot of attention, see e.g. [9], [10] and references therein. Here, Hq stands

for the Hermite polynomial with degree q, given by Hq(x) = (−1)qex2/2 dq

dxq

(
e−x2/2

)
. We have

H2(x) = x2 − 1, H3(x) = x3 − 3x, and so on. The analysis of the asymptotic behavior of (1)
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is motivated, for instance, by the traditional applications of quadratic variations to parameter
estimation problems (see e.g. [1, 4, 8, 15] and references therein).
In the particular case of the standard Brownian motion (that is when H = 1

2 ), the asymptotic
behavior of (1) can be immediately deduced from the classical central limit theorem. When
H 6= 1

2 , the increments of B are not independent anymore and the asymptotic behavior of
(1) is consequently more difficult to understand. However, thanks to the seminal works of
Breuer and Major [3], Dobrushin and Major [6], Giraitis and Surgailis [7] and Taqqu [14], it is
well-known that we have, as n → ∞:

1. If 0 < H < 1 − 1/(2q) then

Zn :=
Vn

σq,H
√

n

Law−→ N (0, 1). (2)

2. If H = 1 − 1/(2q) then

Zn :=
Vn

σq,H

√
n log n

Law−→ N (0, 1). (3)

3. If H > 1 − 1/(2q) then

Zn :=
Vn

n1−q(1−H)

Law−→ Z ∼ “Hermite random variable”. (4)

Here, σq,H > 0 denotes an (explicit) constant depending only on q and H. Moreover, the
Hermite random variable Z appearing in (4) is defined as the value at time 1 of the Hermite
process, i.e.

Z = IW
q (L1), (5)

where IW
q denotes the q-multiple stochastic integral with respect to a Wiener process W , while

L1 is the symmetric kernel defined as

L1(y1, . . . , yq) =
1

q!
1[0,1]q (y1, . . . , yq)

∫ 1

y1∨···∨yq

∂1KH(u, y1) . . . ∂1KH(u, yq)du,

with KH the square integrable kernel given by (9). We refer to [10] for a complete discussion
of this subject.
When H 6= 1/2, the exact expression of the distribution function (d.f.) of Zn is very compli-
cated. For this reason, when n is large, it is customary to use (2)–(4) as a sort of heuristic
argument, implying that one can always replace the distribution function of Zn with the one
of the corresponding limit. Of course, if one applies this strategy without providing any es-
timate of the error for a fixed n, then there is in principle no reason to believe that such an
approximation of the d.f. of Zn is a good one. To the best of our knowledge, such a problem
has not been considered in any of the works using relations (2)–(4) with statistical applications
in mind (for instance [1, 4, 8, 15]). The current paper, together with [11], seem to be the first
attempt in such a direction.
Recall that the total variation distance between the laws of two real-valued random variables
Y and X is defined as

dTV

(
L (Y ),L (X)

)
= sup

A∈B(R)

∣∣P (Y ∈ A) − P (X ∈ A)
∣∣

where B(R) denotes the class of Borel sets of R. In [11], by combining Stein’s method with
Malliavin calculus (see also Theorem 1.3 below), the following result is shown:
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Theorem 1.1. If H < 1 − 1/(2q) then, for some constant cq,H > 0 depending uniquely on q
and H, we have:

dTV

(
L (Zn),N (0, 1)

)
≤ cq,H





n−1/2 if H ∈ (0, 1
2 ]

nH−1 if H ∈ [ 12 , 2q−3
2q−2 ]

nqH−q+ 1

2 if H ∈ [ 2q−3
2q−2 , 1 − 1

2q )

for Zn defined by (2).

Here, we deal with the remaining cases, that is when H ∈ [1 − 1
2q , 1). Our main result is as

follows:

Theorem 1.2. 1. If H = 1 − 1/(2q) then, for some constant cq,H > 0 depending uniquely
on q and H, we have

dTV

(
L (Zn),N (0, 1)

)
≤ cq,H√

log n
(6)

for Zn defined by (3).

2. If H ∈ (1− 1/(2q), 1) then, for some constant cq,H > 0 depending uniquely on q and H,
we have

dTV

(
L (Zn),L (Z)

)
≤ cq,H n1− 1

2q
−H (7)

for Zn and Z defined by (4).

Actually, the case when H = 1 − 1/(2q) can be tackled by mimicking the proof of Theorem
1.1. Only minor changes are required: we will also conclude thanks to the following general
result by Nourdin and Peccati.

Theorem 1.3. (cf. [11]) Fix an integer q ≥ 2 and let {fn}n≥1 be a sequence of H⊙q. Then
we have

dTV

(
L

(
Iq(fn)

)
,N (0, 1)

)
≤ 2

√

E

(
1 − 1

q
‖DIq(fn)‖2

H

)2

,

where D stands for the Malliavin derivative with respect to X.

Here, and for the rest of the paper, X denotes a centered Gaussian isonormal process on a real
separable Hilbert space H and, as usual, H⊙q (resp. Iq) stands for the qth symmetric tensor
product of H (resp. the multiple Wiener-Itô integral of order q with respect to X). See Section
2 for more precise definitions and properties.
When H ∈ (1− 1/(2q), 1), Theorem 1.3 can not be used (the limit in (4) being not Gaussian),
and another argument is required. Our new idea is as follows. First, using the scaling property
(8) of fBm, we construct, for every fixed n, a copy Sn of Zn that converges in L2. Then, we
use the following result by Davydov and Martynova.

Theorem 1.4. (cf. [5]; see also [2]) Fix an integer q ≥ 2 and let f ∈ H⊙q \ {0}. Then, for
any sequence {fn}n≥1 ⊂ H⊙q converging to f , their exists a constant cq,f , depending only on
q and f , such that:

dTV

(
L

(
Iq(fn)

)
,L

(
Iq(f)

))
≤ cq,f‖fn − f‖1/q

H⊙q .

The rest of the paper is organized as follows. In Section 2, some preliminary results on
fractional Brownian motion and Malliavin calculus are presented. Section 3 deals with the
case H ∈ (1 − 1/(2q), 1), while the critical case H = 1 − 1/(2q) is considered in Section 4.
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2 Preliminaries

The reader is referred to [12] or [13] for any unexplained notion discussed in this section. Let
B = {Bt, t ≥ 0} be a fBm with Hurst index H ∈ (0, 1), that is a centered Gaussian process,
started from zero and with covariance function E(BsBt) = R(s, t), where

R(s, t) =
1

2

(
t2H + s2H − |t − s|2H

)
; s, t ≥ 0.

In particular, it is immediately shown that B has stationary increments and is selfsimilar of
index H. Precisely, for any h, c > 0, we have

{Bt+h − Bh, t ≥ 0} Law
= {Bt, t ≥ 0} and {c−H Bct, t ≥ 0} Law

= {Bt, t ≥ 0}. (8)

For any choice of the Hurst parameter H ∈ (0, 1), the Gaussian space generated by B can be
identified with an isonormal Gaussian process of the type B = {B(h) : h ∈ H}, where the real
and separable Hilbert space H is defined as follows: (i) denote by E the set of all R-valued
step functions on [0,∞), (ii) define H as the Hilbert space obtained by closing E with respect
to the scalar product 〈

1[0,t],1[0,s]

〉
H

= R(t, s).

In particular, with such a notation, one has that Bt = B(1[0,t]).
From now, assume on one hand that B is defined on [0, 1] and on the other hand that the
Hurst index verifies H > 1

2 . The covariance kernel R can be written as

R(t, s) =

∫ s∧t

0

KH(t, r)KH(s, r)dr,

where KH is the square integrable kernel given by

KH(t, s) = Γ

(
H +

1

2

)−1

(t − s)H− 1

2 F

(
H − 1

2
,
1

2
− H,H +

1

2
, 1 − t

s

)
, (9)

F (a, b, c, z) being the classical Gauss hypergeometric function. Consider the linear operator
K∗

H from E to L2([0, 1]) defined by

(K∗
Hϕ)(s) = KH(1, s)ϕ(s) +

∫ 1

s

(
ϕ(r) − ϕ(s)

)
∂1KH(r, s)dr.

For any pair of step functions ϕ and ψ in E , we have 〈K∗
Hϕ,K∗

Hψ〉L2 = 〈ϕ,ψ〉H. As a con-
sequence, the operator K∗

H provides an isometry between the Hilbert spaces H and L2([0, 1]).
Hence, the process W = (Wt)t∈[0,1] defined by

Wt = B
(
(K∗

H)−1(1[0,t])
)

(10)

is a Wiener process, and the process B has an integral representation of the form Bt =∫ t

0
KH(t, s)dWs, because (K∗

H1[0,t])(s) = KH(t, s).
The elements of H may be not functions but distributions. However, H contains the subset |H|
of all measurable functions f : [0, 1] → R such that

∫

[0,1]2
|f(u)||f(v)||u − v|2H−2dudv < ∞.
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Moreover, for f, g ∈ |H|, we have

〈f, g〉H = H(2H − 1)

∫

[0,1]2
f(u) g(v) |u − v|2H−2dudv.

In the sequel, we note H⊗q and H⊙q, respectively, the tensor space and the symmetric tensor
space of order q ≥ 1. Let {ek : k ≥ 1} be a complete orthogonal system in H. Given f ∈ H⊙p

and g ∈ H⊙q, for every r = 0, . . . , p ∧ q, the rth contraction of f and g is the element of
H⊙(p+q−2r) defined as

f ⊗r g =

∞∑

i1=1,...,ir=1

〈f, ei1 ⊗ · · · ⊗ eir
〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir

〉H⊗r .

In particular, note that f ⊗0 g = f ⊗ g and, when p = q, that f ⊗p g = 〈f, g〉H. Since, in
general, the contraction f ⊗r g is not a symmetric element of H⊗(p+q−2r), we define f⊗̃rg as
the canonical symmetrization of f ⊗r g. When f ∈ H⊙q, we write Iq(f) to indicate its qth
multiple integral with respect to B. The following formula is useful to compute the product
of such integrals: if f ∈ H⊙p and g ∈ H⊙q, then

Ip(f)Iq(g) =

p∧q∑

r=0

r!

(
p
r

) (
q
r

)
Ip+q−2r(f⊗̃rg). (11)

Let S be the set of cylindrical functionals F of the form

F = ϕ(B(h1), . . . , B(hn)), (12)

where n ≥ 1, hi ∈ H and the function ϕ ∈ C∞(Rn) is such that its partial derivatives have
polynomial growth. The Malliavin derivative DF of a functional F of the form (12) is the
square integrable H-valued random variable defined as

DF =

n∑

i=1

∂iϕ(B(h1), . . . , B(hn))hi,

where ∂iϕ denotes the ith partial derivative of ϕ. In particular, one has that DsBt = 1[0,t](s)
for every s, t ∈ [0, 1]. As usual, D

1,2 denotes the closure of S with respect to the norm ‖ · ‖1,2,

defined by the relation ‖F‖2
1,2 = E

∣∣F
∣∣2 +E‖DF‖2

H
. Note that every multiple integral belongs

to D
1,2. Moreover, we have

Dt

(
Iq(f)

)
= qIq−1

(
f(·, t)

)

for any f ∈ H⊙q and t ≥ 0. The Malliavin derivative D also satisfies the following chain
rule formula: if ϕ : R

n → R is continuously differentiable with bounded derivatives and if
(F1, . . . , Fn) is a random vector such that each component belongs to D

1,2, then ϕ(F1, . . . , Fn)
is itself an element of D

1,2, and moreover

Dϕ(F1, . . . , Fn) =

n∑

i=1

∂iϕ(F1, . . . , Fn)DFi.
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3 Case H ∈ (1 − 1/(2q), 1)

In this section, we fix q ≥ 2, we assume that H > 1− 1
2q and we consider Z defined by (5) for

W the Wiener process defined by (10). By the scaling property (8) of fBm, remark first that
Zn, defined by (4), has the same law, for any fixed n ≥ 1, as

Sn = nq(1−H)−1
n−1∑

k=0

Hq

(
nH(B(k+1)/n − Bk/n)

)
= Iq(fn), (13)

for fn = nq−1
∑n−1

k=0 1
⊗q
[k/n,(k+1)/n] ∈ H⊙q. In [10], Theorem 1 (point 3), it is shown that the

sequence {Sn}n≥1 converges in L2 towards Z, or equivalently that {fn}n≥1 is Cauchy in H⊙q.
Here, we precise the rate of this convergence:

Proposition 3.1. Let f denote the limit of the Cauchy sequence {fn}n≥1 in H⊙q. We have

E
∣∣Sn − Z

∣∣2 = E
∣∣Iq(fn) − Iq(f)

∣∣2 = ‖fn − f‖2
H⊙q = O(n2q−1−2qH), as n → ∞.

Proposition 3.1, together with Theorem 1.4 above, immediately entails (7) so that the rest of
this section is devoted to the proof of the proposition.

Proof of Proposition 3.1. We have

‖fn‖2
H⊙q = n2q−2

n−1∑

k,l=0

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉qH

= Hq(2H − 1)q n2q−2
n−1∑

k,l=0

(∫ (k+1)/n

k/n

du

∫ (l+1)/n

l/n

dv|u − v|2H−2

)q

. (14)

By letting n go to infinity, we obtain

‖f‖2
H⊙q = Hq(2H − 1)q

∫

[0,1]2
|u − v|2qH−2qdudv

= Hq(2H − 1)q
n−1∑

k,l=0

∫ (k+1)/n

k/n

du

∫ (l+1)/n

l/n

dv|u − v|2qH−2q. (15)

Now, let φ ∈ |H|. We have

〈fn, φ⊗q〉H⊙q = nq−1
n−1∑

l=0

〈1[l/n,(l+1)/n], φ〉qH

= Hq(2H − 1)q nq−1
n−1∑

l=0

(∫ (l+1)/n

l/n

dv

∫ 1

0

duφ(u)|u − v|2H−2

)q

.

By letting n go to infinity, we obtain

〈f, φ⊗q〉H⊙q = Hq(2H − 1)q

∫ 1

0

dv

(∫ 1

0

duφ(u)|u − v|2H−2

)q

.
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Hence, we have

〈f, fn〉H⊙q = Hq(2H − 1)q nq−1
n−1∑

k=0

∫ 1

0

dv

(∫ (k+1)/n

k/n

du|u − v|2H−2

)q

= Hq(2H − 1)q nq−1
n−1∑

k,l=0

∫ (l+1)/n

l/n

dv

(∫ (k+1)/n

k/n

du|u − v|2H−2

)q

. (16)

Finally, by combining (14), (15) and (16), and by using among others elementary change of
variables, we can write:

‖fn − f‖2
H⊙q = Hq(2H − 1)q

n−1∑

k,l=0

{
n2q−2

(∫ (k+1)/n

k/n

du

∫ (l+1)/n

l/n

dv|u − v|2H−2

)q

−2nq−1

∫ (l+1)/n

l/n

dv

(∫ (k+1)/n

k/n

du|u − v|2H−2

)q

+

∫ (k+1)/n

k/n

dw

∫ (l+1)/n

l/n

dz|w − z|2qH−2q

}

= Hq(2H − 1)q n2q−2−2qH
n−1∑

k,l=0

{(∫ 1

0

du

∫ 1

0

dv|k − l + u − v|2H−2

)q

−2

∫ 1

0

dv

(∫ 1

0

du|k − l + u − v|2H−2

)q

+

∫ 1

0

du

∫ 1

0

dv|k − l + u − v|2qH−2q

}

≤ Hq(2H − 1)q n2q−1−2qH
∑

r∈Z

∣∣∣∣∣

(∫ 1

0

du

∫ 1

0

dv|r + u − v|2H−2

)q

−2

∫ 1

0

dv

(∫ 1

0

du|r + u − v|2H−2

)q

+

∫ 1

0

du

∫ 1

0

dv|r + u − v|2qH−2q

∣∣∣∣∣ . (17)

Consequently, to achieve the proof of Theorem 3.1, it remains to ensure that the sum over Z

in (17) is finite. For r > 1, elementary computations give

(∫ 1

0

du

∫ 1

0

dv|r + u − v|2H−2

)q

=
(
2H(2H − 1)

)−q(
(r + 1)2H − 2r2H + (r − 1)2H

)q

=
(
r2H−2 + O(r2H−4)

)q

= r2qH−2q + O(r2qH−2q−2) (18)

and

∫ 1

0

du

∫ 1

0

dv|r + u − v|2qH−2q =
(r + 1)2qH−2q+2 − 2r2qH−2q+2 + (r − 1)2qH−2q+2

(2qH − 2q + 1)(2qH − 2q + 2)

= r2qH−2q + O(r2qH−2q−2). (19)
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Moreover, using the following inequality (for all x ≥ 0):

∣∣(1 + x)2H−1 − 1 − (2H − 1)x
∣∣ = (2H − 1)(2 − 2H)

∫ x

0

du

∫ u

0

dv

(1 + v)3−2H

≤ (2H − 1)(2 − 2H)

∫ x

0

du

∫ u

0

dv = (2H − 1)(1 − H)x2,

we can write
∫ 1

0

dv

(∫ 1

0

du|r + u − v|2H−2

)q

= (2H − 1)−q

∫ 1

0

(
(r + 1 − v)2H−1 − (r − v)2H−1

)q
dv

= (2H − 1)−q

∫ 1

0

(r − v)2qH−q

((
1 +

1

r − v

)2H−1 − 1

)q

dv

=

∫ 1

0

(r − v)2qH−q

(
1

r − v
+ R

( 1

r − v

))q

dv

where the remainder term R verifies |R(u)| ≤ (1 − H)u2. In particular, for any v ∈ [0, 1], we
have

(r − v)

∣∣∣∣R
( 1

r − v

)∣∣∣∣ ≤
1 − H

r − 1
.

Hence, we deduce:

∫ 1

0

dv

(∫ 1

0

du|r + u − v|2H−2

)q

=

∫ 1

0

(r − v)2qH−2q (1 + O(1/r))
q
dv

= r2qH−2q+1 1 − (1 − 1/r)2qH−2q+1

2qH − 2q + 1
(1 + O(1/r))

= r2qH−2q+1(1/r + O(1/r2)(1 + O(1/r))

= r2qH−2q + O(r2qH−2q−1). (20)

By combining (18), (19) and (20), we obtain (since similar arguments also apply to the case
r < −1) that

(∫ 1

0

du

∫ 1

0

dv|r + u − v|2H−2

)q

− 2

∫ 1

0

dv

(∫ 1

0

du|r + u − v|2H−2

)q

+

∫ 1

0

du

∫ 1

0

dv|r + u − v|2qH−2q

is O(|r|2qH−2q−1), so that the sum over Z in (17) is finite. The proof of Proposition 3.1 is
done. ¤

4 Case H = 1 − 1/(2q)

As we already pointed out in the Introduction, the proof of (6) is a slight adaptation of that
of Theorem 1.1 (that is Theorem 4.1 in [11]) which dealt with the case H < 1 − 1/(2q). That
is why we will only focus, here, on the differences between the cases H < 1 − 1/(2q) and
H = 1 − 1/(2q). In particular, we will freely refer to [11] each time we need an estimate
already computed therein.
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From now, fix H = 1 − 1/(2q) and let us evaluate the right-hand side in Theorem 1.3. Once
again, instead of Zn, we will rather use Sn defined by

Sn =
1

σH

√
n log n

n−1∑

k=0

Hq

(
nH(B(k+1)/n − Bk/n)

)
= Iq

(
nq−1

σH

√
log n

n−1∑

k=0

1
⊗q
[k/n,(k+1)/n]

)

in the sequel, in order to facilitate the connection with [11]. First, observe that the covariance
function ρH of the Gaussian sequence

(
nH(B(r+1)/n − Br/n)

)
r≥0

, given by

ρH(r) =
1

2

(
|r + 1|2−1/q − 2|r|2−1/q + |r − 1|2−1/q

)
,

verifies the following straightforward expansion:

ρH(r)q =

(
(1 − 1

2q
)(1 − 1

q
)

)q

|r|−1 + O(|r|−3), as |r| → ∞. (21)

Using n2−1/q〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉H = ρH(k − l), note that

Var(Sn) =
n2q−2

σ2
H log n

n−1∑

k,l=0

E
[
Iq

(
1
⊗q
[k/n,(k+1)/n]

)
Iq

(
1
⊗q
[l/n,(l+1)/n]

)]

=
q!n2q−2

σ2
H log n

n−1∑

k,l=0

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉qH =
q!

σ2
Hn log n

n−1∑

k,l=0

ρH(k − l)q

from which, together with (21), we deduce the exact value of σ2
H :

σ2
H := lim

n→+∞

q!

n log n

n−1∑

k,l=0

ρH(k − l)q = 2q!

(
(2q − 1)(q − 1)

2q2

)q

. (22)

In order to apply Theorem 1.3, we compute the Malliavin derivative of Sn:

DSn =
qnq−1

σH

√
log n

n−1∑

k=0

Iq−1

(
1
⊗q−1
[k/n,(k+1)/n]

)
1[k/n,(k+1)/n].

Hence

‖DSn‖2
H =

q2n2q−2

σ2
H log n

n−1∑

k,l=0

Iq−1

(
1
⊗q−1
[k/n,(k+1)/n]

)
Iq−1

(
1
⊗q−1
[l/n,(l+1)/n]

)
〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉H.

The multiplication formula (11) yields

‖DSn‖2
H =

q2n2q−2

σ2
H log n

q−1∑

r=0

r!

(
q − 1

r

)2

×

×
n−1∑

k,l=0

I2q−2−2r

(
1
⊗q−1−r
[k/n,(k+1)/n]⊗̃1

⊗q−1−r
[l/n,(l+1)/n]

)
〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉r+1

H
.
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We can rewrite

1 − 1

q
‖DSn‖2

H = 1 −
q−1∑

r=0

Ar(n)

where

Ar(n) =

q r!

(
q − 1

r

)2

σ2
H

n2q−2

log n
×

×
n−1∑

k,l=0

I2q−2−2r

(
1
⊗q−1−r
[k/n,(k+1)/n]⊗̃1

⊗q−1−r
[l/n,(l+1)/n]

)
〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉r+1

H
.

For the term Aq−1(n), we have:

1 − Aq−1(n) = 1 − q!

σ2
H log n

n2q−2
n−1∑

k,l=0

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉qH

= 1 − q!

σ2
Hn log n

n−1∑

k,l=0

ρH(k − l)q = 1 − q!

σ2
Hn log n

∑

|r|<n

(n − |r|)ρH(r)q

= 1 − q!

σ2
H log n

∑

|r|<n

ρH(r)q +
q!

σ2
Hn log n

∑

|r|<n

|r|ρH(r)q = O(1/ log n)

where the last estimate comes from the development (21) of ρH and from the exact value (22)
of σ2

H .

Next, we show that for any fixed r ≤ q − 2, we have E|Ar(n)|2 = O(1/ log n). Indeed:

E|Ar(n)|2

= c(H, r, q)
n4q−4

log2 n

n−1∑

i,j,k,l=0

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉r+1
H

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉r+1
H

× 〈1⊗q−1−r
[k/n,(k+1)/n]⊗̃1

⊗q−1−r
[l/n,(l+1)/n],1

⊗q−1−r
[i/n,(i+1)/n] ⊗ 1

⊗q−1−r
[j/n,(j+1)/n]〉H⊗2q−2−2r

=
∑

γ,δ≥0
γ+δ=q−r−1

∑

α,β≥0
α+β=q−r−1

c(H, r, q, α, β, γ, δ)Br,α,β,γ,δ(n)

where c(·) is a generic constant depending only on its arguments and

Br,α,β,γ,δ(n) =
n4q−4

log n2

n−1∑

i,j,k,l=0

〈1[k/n,(k+1)/n],1[l/n,(l+1)/n]〉r+1
H

〈1[i/n,(i+1)/n],1[j/n,(j+1)/n]〉r+1
H

〈1[k/n,(k+1)/n],1[i/n,(i+1)/n]〉αH
〈1[k/n,(k+1)/n],1[j/n,(j+1)/n]〉βH〈1[l/n,(l+1)/n],1[i/n,(i+1)/n]〉γH〈1[l/n,(l+1)/n],1[j/n,(j+1)/n]〉δH

=
1

n2 log2 n

n−1∑

i,j,k,l=0

ρH(k − l)r+1ρH(i − j)r+1ρH(k − i)αρH(k − j)βρH(l − i)γρH(l − j)δ.
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As in [11], when α, β, γ, δ are fixed, we can decompose the sum appearing in Br,α,β,γ,δ(n) as
follows:

∑

i=j=k=l

+




∑

i=j=k
l 6=i

+
∑

i=j=l
k 6=i

+
∑

i=k=l
j 6=i

+
∑

j=k=l
i6=j


 +




∑

i=j,k=l
k 6=i

+
∑

i=k,j=l
j 6=i

+
∑

i=l,j=k
j 6=i




+




∑

i=j,k 6=i
k 6=l,l 6=i

+
∑

i=k,j 6=i
j 6=l,k 6=l

+
∑

i=l,k 6=i
k 6=j,j 6=i

+
∑

j=k,k 6=i
k 6=l,l 6=i

+
∑

j=l,k 6=i
k 6=l,l 6=i

+
∑

k=l,k 6=i
k 6=j,j 6=i


 +

∑

i,j,k,l
are all distinct

where the indices run over {0, 1 . . . , n−1}. Similar computations as in [11] show that the first,
second and third sums are O(1/(n log2 n)); the fourth and fifth sums are O(1/(n1/q log2 n));
the sixth, seventh and eighth sums are O(1/(n2/q log2 n)); the ninth, tenth, eleventh, twelfth,
thirteenth and fourteenth sums are also O(1/(n1/q log2 n)). We focus only on the last sum.
Actually, it is precisely its contribution which will indicate the true order in (6). Once again,
we split this sum into 24 sums:

∑

k>l>i>j

+
∑

k>l>j>i

+ · · · (23)

We first deal with the first one, for which we have

1

(n log n)2

∑

k>l>i>j

ρH(k − l)r+1ρH(i − j)r+1ρH(k − i)αρH(k − j)βρH(l − i)γρH(l − j)δ

P
1

(n log n)2

∑

k>l>i>j

(k − l)−1(i − j)−(r+1)/q(l − i)−(q−r−1)/q

=
1

(n log n)2

∑

k

∑

l<k

(k − l)−1
∑

i<l

(l − i)−(q−r−1)/q
∑

j<i

(i − j)−(r+1)/q

P
1

n log2 n

n−1∑

l=1

l−1
n−1∑

i=1

i−(q−r−1)/q
n−1∑

j=1

j−(r+1)/q
P

1

n log2 n

n−1∑

l=1

l−1n(r+1)/qn1−(r+1)/q
P

1

log n

where the notation an P bn means that supn≥1 |an|/|bn| < +∞. Since the other sums in (23)
are similarly bounded, the fifteenth sum is O(1/ log n). Consequently:

q−2∑

r=0

E[Ar(n)2] = O(1/ log n).

Finally, together with (23), we obtain E
[(

1− 1
q‖DSn‖2

H

)2]
= O(1/ log n) and the proof of (6)

is achieved thanks to Theorem 1.3.

Acknowledgments: We are grateful to an anonymous referee for helpful comments.



Error bounds for power variations of fBm 493

References

[1] A. Begyn. Asymptotic expansion and central limit theorem for quadratic variations of
Gaussian processes. Bernoulli, vol. 13, no. 3, pp. 712–753, 2007. MR2348748

[2] J.-C. Breton. Convergence in variation of the joint laws of multiple Wiener-Itô integrals.
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