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Abstract

It is a classical result of Wigner that for an hermitian matrix with independent entries on
and above the diagonal, the mean empirical eigenvalue distribution converges weakly to the
semicircle law as matrix size tends to infinity. In this paper, we prove analogs of Wigner’s
theorem for random matrices taken from all infinitesimal versions of classical symmetric spaces.
This is a class of models which contains those studied by Wigner and Dyson, along with seven
others arising in condensed matter physics. Like Wigner’s, our results are universal in that
they only depend on certain assumptions about the moments of the matrix entries, but not on
the specifics of their distributions. What is more, we allow for a certain amount of dependence
among the matrix entries, in the spirit of a recent generalization of Wigner’s theorem, due
to Schenker and Schulz-Baldes. As a byproduct, we obtain a universality result for sample
covariance matrices with dependent entries.

1 Introduction

Classical physics-inspired random matrix theory is chiefly concerned with probability measures
on what Freeman Dyson in 1962 called the “threefold way”, namely, the spaces of hermitian,
real symmetric, and quaternion real matrices (or their respective exponentiated, compact ver-
sions). The rationale behind this focus is Dyson’s proof that any hermitian matrix (thought
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of as a truncated Hamiltonian of a quantum system) that commutes with a group of unitary
symmetries and “time reversals” breaks down to these three constituents ([7]), which are, in
structural terms, the tangent spaces to the Riemannian Symmetric Spaces (RSS) of class A,
AI and AII.

During the last decade, theoretical condensed matter physicists have pointed out that matrix
descriptions of systems such as mesoscopic normal-superconducting hybrid structures are out-
side the scope of Dyson’s theorem, and that the tangent spaces to all ten infinite series of
classical RSS may (and do indeed) arise. The deeper reasons are explained in [1, Section 6.4],
[2], and [11]. Some of this material is summarized in [8]. An alternative motivation for the
study of random matrices associated to the classical RSS comes from analytic number theory,
see [13]. Concrete matrix realizations of this “tenfold way” of “symmetry classes” are given in
Section 2 below.

The task of developing random matrix theories for the full “tenfold way”, i.e., studying proba-
bility measures on all ten series of matrix spaces, has been taken up in [8], where the probability
measures enjoy invariance properties that guarantee an explicit analytic expression for the joint
eigenvalue density, and in [5, 6], where the focus is on the compact versions of the classical RSS,
endowed with their natural invariant probability measure. In the present paper, we abandon
invariance properties and turn to analogs of Wigner’s famous result of 1958 ([18]), stating
that for a symmetric matrix with independent entries on and above the diagonal, the mean
empirical eigenvalue distribution converges weakly to the semicircle law as matrix size tends
to infinity. This is a universality result in the sense that it only depends on certain assump-
tions about the moments of the matrix entries, but not on the specifics of their distributions.
In recent years, related universality results for Gaussian fluctuations in Wigner’s set-up have
become available (see [4, 17] and the references therein), but we will restrict our attention to
the law of large numbers level that was considered in Wigner’s fundamental paper.

Actually, our starting point is not the classical version of Wigner’s result, but a recent general-
ization, due to Schenker and Schulz-Baldes ([16]), allowing for a certain amount of dependence
to hold among the matrix entries. Specifically, the authors consider the following set-up: For
each n ∈ N write In := {1, . . . , n} and suppose that I2n = In×In comes with an equivalence rela-
tion ∼n. The entries of the matrix Xn = ( 1√

n
an(p, q))p,q=1,...,n are complex random variables,

with an(p1, q1), . . . , an(pj , qj) independent whenever (p1, q1), . . . , (pj , qj) belong to j distinct

equivalence classes of the relation ∼n. Furthermore, it is required that an(p, q) = an(q, p) for
all n, p, q. In the case that all equivalence classes of ∼n are of the form {(p, q), (q, p)}, one is
back to hermitian matrices with independent entries on and above the diagonal, i.e. to the
situation of Wigner’s theorem. If some equivalence classes are larger, then there is some leeway
for violations of independence. In the framework of Schenker and Schulz-Baldes, the following
conditions on ∼n serve as a less restrictive substitute for independence:

(W1) max
p

#{(q, p′, q′) ∈ I3n : (p, q) ∼n (p′, q′)} = o(n2)

(W2) max
p,q,p′

#{q′ ∈ In : (p, q) ∼n (p′, q′)} ≤ B, where B < ∞ is a constant

(W3) #{(p, q, p′) ∈ I3n : (p, q) ∼n (q, p′) and p 6= p′} = o(n2).

Apart from that, one requires that for all n, p, q, an(p, q) is centered and

E(an(p, q)an(p, q)) = 1. (1)
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Furthermore, a uniform bound on the k-th moments is assumed:

sup
n

max
p,q=1,...,n

E(|an(p, q)|k) < ∞ for all k ∈ N. (2)

For an hermitian matrix M ∈ Cn×n with eigenvalues λ1, . . . , λn write

Ln(M) :=
1

n

n
∑

j=1

δλj
(3)

for the empirical measure of the eigenvalues of M . Then the main theorem of [16] can be
stated as follows:

Theorem 1.1. Under conditions (W1), (W2), (W3), (1), and (2), the measure E(Ln(Xn)),
i.e. the mean empirical eigenvalue distribution, converges weakly to the semicircle law with
density

1

2π
1[−2,2](x)

√

4 − x2. (4)

So one ends up with the same limit distribution as in the independent case. In fact, conditions
(W1), (W2), (W3) arose from a close reading of Wigner’s proof, in order to understand how
much independence is really needed to arrive at the semicircle law. So the approach of Schenker
and Schulz-Baldes is complementary to the route taken in recent work of Anderson and Zeitouni
([3]), where a different dependence structure leads to a limit which is not a semicircle.
To establish analogs of Theorem 1.1 for all ten symmetry classes, we proceed as follows: In
Section 2 we give precise definitions of the matrix spaces in question and introduce some
auxiliary notation for the combinatorics of moment calculations. In Section 3 we treat those
classes for which ELn converges to the semicircle distribution and for which nothing more than
a slight extension of Theorem 1.1 is needed. On the other hand, substantial work has to be done
for the so-called “chiral” classes, which, despite their roots in physics, are related to sample
covariance matrices and hence lead to some relative of the Marčenko-Pastur distribution as
limit for ELn. The main step is to rework the combinatorics of moment convergence to the
Marčenko-Pastur law in the spirit of Schenker and Schulz-Baldes, yielding a universality result
for sample covariance matrices with dependent entries. This is the content of Section 4. In
the final Section 5, this result is applied to the chiral classes.

2 Background and notation

We begin by listing the ten “symmetry classes”, i.e. series of matrix spaces, from which our
matrices are taken. In structural terms, these spaces are of the form ig, where g is the Lie
algebra of a compact classical group, or ip, where p is the −1 eigenspace of a Cartan involution
of g (see [8] for details). The i factor is to make sure that the matrices are hermitian. The
labels A, AI, etc. in the list are those of Lie theory, but no Lie theoretic properties will be
needed in what follows. X∗ denotes the conjugate transpose of a matrix X.

Class A
M

A
n = {X ∈ C

n×n : X hermitian}

Class AI
M

AI
n = {X ∈ R

n×n : X symmetric}
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Class AII

M
AII
n =

{(

X1 X2

−X2 X1

)

:
Xi ∈ Cn×n,X1 hermitian,
X2 skew symmetric

}

Class AIII

M
AIII
n =

{(

0 X
X∗ 0

)

: X ∈ C
s×t

}

Class B/D
M

B/D
n = {X ∈ (iR)n×n : X skew symmetric}

Class BDI

M
BDI
n =

{(

0 X
X∗ 0

)

: X ∈ (iR)s×t

}

Class DIII

M
DIII
n =

{(

X1 X2

X2 −X1

)

: Xi ∈ (iR)n×n skew symmetric

}

Class C

M
C
n =

{(

X1 X2

X2 −X1

)

:
Xi ∈ Cn×n, X1 hermitian,
X2 symmetric

}

Class CI

M
CI
n =

{(

X1 X2

X2 −X1

)

: Xi ∈ R
n×n symmetric

}

Class CII

M
CII
n =

{(

0 X
X∗ 0

)

: X ∈ H
s×t

}

,

where the space Hs×t of quaternionic matrices is embedded into C2s×2t as

H
s×t =

{(

U V
−V U

)

: U, V ∈ C
s×t

}

.

Generically, we write C for any label A, AI,..., CII. We have MC
n ⊂ Cδn×δn with δ = δC = 2 if

C = AII, DIII, C, CI, CII and δ = 1 otherwise. Classes AIII, BDI and CII, the“chiral”classes in
physics terminology (since they are related to Dirac operators, see [9], [11]), are special in that
the shape of the subblocks depends on an extra parameter s, and it is clear that one will have
to control the relative growth of s = s(n) and t(n) = n − s(n) as n → ∞. In fact, their large
n behaviour is quite different from that of the other classes. Consequently, in what follows,
we will treat these classes separately. A, AI, and AII are the classical Wigner-Dyson classes
(underlying GUE, GOE, and GSE, resp.). The remaining classes, arising via Bogolioubov-de
Gennes mean field approximation (see [1, Sec. 6.4]), will be termed Bogolioubov-de Gennes
(BdG) or superconductor classes.
Before getting down to business, let us review some combinatorial notation and facts that will
be useful later on. Write P(n) for the set of all partitions of In = {1, 2, . . . , n}. If p ∈ P(n)
has r blocks, write |p| = r. Define P(i)(n) := {p ∈ P(n) : |p| = i}. If each of the blocks of
p consists of exactly two elements, we say that p is a pair partition and write p ∈ P2(n). For
p ∈ P(n), write ∼p ⊆ In × In for the corresponding equivalence relation. Given p, q ∈ P(n),
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define ∼p ∨ ∼q ⊆ In × In as the smallest equivalence relation which contains ∼p and ∼q. The
partition corresponding to ∼p ∨ ∼q is denoted by p ∨ q.
p ∈ P(n) is called crossing, if there exist p1 < q1 < p2 < q2 in In such that p1 ∼p p2 6∼p

q1 ∼p q2. Otherwise, it is called noncrossing. Write NC(n), NC(i)(n) and NC2(n) for the set
of noncrossing partitions, noncrossing partitions with i blocks, and noncrossing pair partitions
of In, respectively. For sets Ω,Ω′ write F(Ω,Ω′) := {ϕ : Ω → Ω′} and F(k, n) := F(Ik, In).
For p ∈ P(k) write F(p,Ω) for the set of all ϕ ∈ F(Ik,Ω) which are constant on the blocks of
p. Finally, let us give names to two important special pair partitions:

m := {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}} ∈ P2(2k) and

n := {{2, 3}, {4, 5}, . . . , {2k, 1}} ∈ P2(2k).

It is well-known that #NC2(2k) equals the kth Catalan number Ck, which in turn equals the
2kth moment of the semicircular distribution with density given in (4) (whose odd moments
vanish). On the other hand, setting for κ > 0

mk :=

k
∑

i=1

#(NC(i)(k)) κi, (5)

(mk)k∈N is the sequence of moments of the Marčenko-Pastur distribution with density

max{0, (1 − κ)}δ0 +

√

4κ − (x − 1 − κ)2

2πx
1[(1−√

κ)2, (1+
√

κ)2](x).

A reference for these facts is [10] or [12].

3 Wigner-Dyson and Bogolioubov-de Gennes classes

These are the easy cases, because they basically reduce to Theorem 1.1. In fact, one may
interpret the symmetries of a matrix from MC

n as an equivalence relation on pairs of indices,
recalling that in the set-up of Theorem 1.1, if index pairs (p, q), (p′, q′) are equivalent, then the
corresponding random variables an(p, q), an(p′, q′) may be identical. Of course, for C = AII,
DIII, C, CI, CII, the symmetries of MC

n must be realized as equivalence relations on I2n × I2n,
so one obtains the desired theorem on random elements of MC

n by passage to a subsequence
in Theorem 1.1. A more serious caveat is the following: Some of the blocks which make
up matrices from MC

n are skew symmetric, so their diagonal elements vanish, contradicting
condition (1). While we will see that this problem can be circumvented in the cases at hand,
the full blocks of zeroes in the chiral cases make it impossible to apply Theorem 1.1 for them
as well.
To make the set-up for this section precise, let C be a Wigner-Dyson or BdG class, write
δ = δC as in Section 2, JCδn := {(p, q) ∈ I2δn : prp,q(M

C
n) 6= 0}, where prp,q projects each

element of MC
n onto its (p, q)-entry. Consider an equivalence relation ∼δn on I2δn and a random

matrix Xδn = ( 1√
δn

aδn(p, q))p,q=1,...,δn such that the centered complex random variables

aδn(p1, q1), . . . , aδn(pj , qj) are independent whenever (p1, q1), . . . , (pj , qj) belong to j distinct
equivalence classes of the relation ∼δn. Assume that conditions (W1), (W2), (W3) hold, with
Iδn in the place of In, and that the moment condition (2) is satisfied. As to (1), it is required
that it holds for all (p, q) ∈ JCδn. All realizations of the matrix Xδn are supposed to be elements
of MC

n. It is straightforward to verify that this assumption is compatible with conditions (W1),
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(W2), (W3). So we may take the symmetries of the matrices for granted, and have some leeway
for extra dependence between the matrix entries. Under these conditions, there holds

Theorem 3.1. If C is a Wigner-Dyson or Bogolioubov-de Gennes class, E(Lδn(Xδn)) con-
verges weakly to the semicircle law.

It only remains to address the complication that random elements of Mn may have up to 4n
entries which are identically zero. To see that the effect of this complication is asymptotically
negligible, recall from the proof of Theorem 1.1 in [16] that the k-th moment of ELn vanishes
if k is odd and is asymptotically equivalent to

1

nl+1

∑

p∈NC2(2l)

#Sn(p)

if k = 2l is even. Here the set Sn(p) consists of all pairs (ϕ,ψ), ϕ, ψ ∈ F(k, n), with the
following properties:

(i) ψ(j) = ϕ(j + 1) for all j ∈ Ik, where k + 1 is cyclically identified with 1.

(ii)

(ϕ(i), ψ(i)) = (ψ(j), ϕ(j)) if i ∼p j and

(ϕ(i), ψ(i)) 6∼n (ϕ(j), ψ(j)) if i 6∼p j.

For n ∈ N fix En ⊂ I2n with #En = o(n2). Actually, what we have in mind is that En contains
the O(n) diagonal places of skew blocks. For ν ∈ Ik set

S(ν)
n (p) := {(ϕ,ψ) ∈ Sn(p) : (ϕ(ν), ψ(ν)) ∈ En}

and

Sn(p)′ =
⋃

ν∈Ik

S(ν)
n (p).

Then the following lemma makes it possible to neglect the effect of the zero entries on the
diagonals of the blocks:

Lemma 3.2. For p ∈ NC2(2l), #Sn(p)′ = o(nl+1).

Proof. Since #Sn(p)′ ≤ ∑2l
ν=1 #S(ν)

n (p), it suffices to show that for all ν one has #S(ν)
n (p) =

o(nl+1). To this end, we construct an element (ϕ,ψ) ∈ S(ν)
n (p), starting with (ϕ(ν), ψ(ν)) and

proceeding cyclically. By cyclically permuting the index set, we may assume that ν = 1. For
(ϕ(1), ψ(1)) we have o(n2) choices. ϕ(2) is then fixed by property (i). If 1 ∼p 2, then ψ(2)
is fixed by (ii). Otherwise, we have at most n choices. Similarly, for j ≥ 2, once we have
chosen ψ(j − 1), ϕ(j) is fixed, and ψ(j) is either fixed or we have at most n choices for it,
depending on whether i ∼p j for some 1 ≤ i < j or not. The latter case occurs l− 1 times. So

#S(ν)
n (p) ≤ o(n2) × nl−1 = o(nl+1).
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4 Sample covariance matrices

In this section we prove a limit theorem for the mean empirical eigenvalue distribution of
sample covariance matrices with dependence. By these we understand matrices of the form
X∗X, where X admits a certain amount of dependence among its entries, X∗ is the conjugate
transpose of X, and the entries of X are not necessarily Gaussian, but subject to certain
conditions on their moments. In our context, this is preparatory work for the study of the chiral
classes in Section 5, but it is of interest for its own sake. In the case that X has independent
entries, the result is well-known, and we will take the combinatorial proof of Oravecz and Petz
([15]) as starting-point for an analysis in the spirit of Schenker and Schulz-Baldes ([16]).

For n ∈ N let s(n), t(n) ∈ N and suppose that there exist κ, µ ∈]0,∞[ such that limn
s(n)

n =

κ and limn
t(n)
n = µ. The classical case is t(n) = n, but we will need this more gen-

eral set-up in Section 5. Consider an equivalence relation ∼n on Is(n) × It(n) and a ran-

dom matrix Xn = ( 1√
n

an(p, q))p=1,...,s(n),q=1,...,t(n) such that the complex random variables

an(p1, q1), . . . , an(pj , qj) are independent whenever (p1, q1), . . . , (pj , qj) belong to j distinct
equivalence classes of the relation ∼n. We impose the following conditions on ∼n:

(MP1) max
p

#{(q, p′, q′) ∈ It(n) × Is(n) × It(n) : (p, q) ∼n (p′, q′)} = o(n2).

(MP2) max
p,q,p′

#{q′ ∈ It(n) : (p, q) ∼n (p′, q′)} ∨ max
p,q,q′

#{p′ ∈ Is(n) : (p, q) ∼n (p′, q′)} ≤ B, where

B is a finite constant.

(MP3) #{(p, q, q′) ∈ Is(n) × I2t(n) : (p, q) ∼n (p, q′) and q 6= q′} = o(n2) and

#{(p, p′, q) ∈ I2s(n) × It(n) : (p, q) ∼n (p′, q) and p 6= p′} = o(n2).

We assume that (1) and (2) hold. Under these assumptions we will prove the following theorem.

Theorem 4.1. As n → ∞, E(Ln(X∗
nXn)) converges weakly to a probability measure with k-th

moment equal to
k

∑

i=1

#(NC(i)(k)) κiµk−i+1. (6)

If µ = 1, this limit is the Marčenko-Pastur distribution.

We are going prove Theorem 4.1 via the method of moments. So we fix k ∈ N and show that

∫

xk
E(Ln(X∗

nXn))(dx) = E

∫

xkLn(X∗
nXn)(dx) =

1

n
E Tr((X∗

nXn)k) (7)

converges to (6) as n → ∞. To write the trace in (7) in an explicit way, we use the notation
introduced in Section 2. In the course of the technical proofs it will be convenient to identify
the index set I2k with the cyclic group Z/2kZ, i.e., to identify 2k + 1 with 1 and so on.
The starting point for all that follows is the observation that

1

n
Tr((X∗

nXn)k) =
1

nk+1

∑

ϕ∈F(m,s(n))

∑

ψ∈F(n,t(n))

k
∏

ν=1

an(ϕ(2ν − 1), ψ(2ν − 1)) an(ϕ(2ν), ψ(2ν)),

(8)
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with m, n as in Section 2. Let p ∈ P(2k). We say that (ϕ,ψ) ∈ F(m, s(n)) × F(n, t(n)) is
associated to p, and write (ϕ,ψ) ∈ Sn(p), if for all i, j = 1, . . . , 2k there holds

i ∼p j ⇐⇒ (ϕ(i), ψ(i)) ∼n (ϕ(j), ψ(j)). (9)

Writing

Σn(p) :=
∑

(ϕ,ψ)∈Sn(p)

k
∏

ν=1

an(ϕ(2ν − 1), ψ(2ν − 1)) an(ϕ(2ν), ψ(2ν)), (10)

we obtain
1

n
Tr((X∗

nXn)k) =
1

nk+1

∑

p∈P(2k)

Σn(p). (11)

Lemma 4.2. For p ∈ P(2k) one has #Sn(p) ≤ O(n|p|+1).

Proof. We construct an element (ϕ,ψ) ∈ Sn(p), proceeding from 1 to 2k and giving rather
coarse upper bounds on the number of choices in each step. We have s(n) choices for ϕ(1) and
t(n) choices for ψ(1). For ϕ to be constant on the blocks of m, we must have ϕ(2) = ϕ(1). If
1 ∼p 2, then by (MP2) we have at most B choices for ψ(2). Otherwise, we have at most t(n)
choices. Note that ψ(2) = ψ(3), since ψ is supposed to be constant on the blocks of n. In the
general case, for ν = 2, 3, . . . , 2k − 1, one of ϕ(ν), ψ(ν) is fixed, and for the other we have ≤ B
choices if ν ∼p ν′ for some ν′ ∈ Iν−1 or at most s(n)∨ t(n) choices otherwise. This latter case
occurs precisely |p|−1 times. (ϕ(2k), ψ(2k)) is fixed by the requirement that ϕ(2k−1) = ϕ(2k)
and ψ(2k) = ψ(1). In total, we have at most s(n) t(n) (s(n)∨t(n))|p|−1 B2k−(|p|+1) = O(n|p|+1)
choices for (ϕ,ψ).

Lemma 4.3. For p ∈ P(2k), |EΣn(p)| ≤ #Sn(p)ck, with ck independent of n.

Proof. By Hölder’s inequality and (2) one has

∣

∣

∣

∣

∣

E

k
∏

ν=1

an(ϕ(2ν − 1), ψ(2ν − 1)) an(ϕ(2ν), ψ(2ν))

∣

∣

∣

∣

∣

≤
2k
∏

ν=1

E

(

|an(ϕ(ν), ψ(ν))|k
)

1

k ≤ ck < ∞,

with ck independent of n, ϕ and ψ.

Corollary 4.4. EΣn(p) = o(nk+1) unless p ∈ P2(2k).

Proof. If |p| ≤ k − 1, then by Lemmata 4.2 and 4.3, |EΣn(p)| ≤ #Sn(p) ck ≤ O(nk)ck =
o(nk+1). If p contains a block which consists of precisely one element ν0, say, then we have
EΣn(p) = 0, because for any (ϕ,ψ) ∈ Sn(p) the random variable an(ϕ(ν0), ψ(ν0)) is centered
and by construction independent of {an(ϕ(ν), ψ(ν)) : ν ∈ I2k \ {ν0}}. So EΣn(p) vanishes if
|p| ≥ k + 1, or if |p| = k, but p 6∈ P2(2k).

The following lemma is a straightforward adaptation of a key step of [16] to the present context.

Lemma 4.5. If p ∈ P2(2k) is crossing, then #Sn(p) = o(nk+1).



Wigner theorems 409

Proof. Suppose that p contains a nearest neighbour pair, i.e. a block of the form {ν, ν + 1}.
Assume that ν is odd.
If ψ(ν) = ψ(ν + 1), then ψ(ν − 1) = ψ(ν + 2). Writing J = I2k \ {ν, ν + 1}, we see that
(ϕ|J, ψ|J) ∈ Sn(p̃), where p̃ is the partition of J whose blocks are those of p except for {ν, ν+1}.
Given (ϕ̃, ψ̃) ∈ Sn(p̃), there are s(n) choices for ϕ(ν) = ϕ(ν+1), hence s(n) possible extensions
to (ϕ,ψ) ∈ Sn(p), since ψ(ν), ψ(ν + 1) are determined by ψ̃.
If ψ(ν) 6= ψ(ν + 1), then by (MP3) there are only o(n2) choices for the triplet (ϕ(ν) =
ϕ(ν +1), ψ(ν), ψ(ν +1)). As in the proof of Lemma 4.2, we see that there are at most O(nk−1)
choices for the remaining values of ϕ,ψ, since p̃ consists of k − 1 pairs.
Since we may argue analogously for ν even, we have shown that

#Sn(p) ≤ O(n) #Sn(p̃) + o(nk+1). (12)

Since p was assumed to be crossing, iterating this argument yields

#Sn(p) ≤ O(nr) #Sn(p′) + o(nk+1), (13)

where p′ contains no nearest neighbour pair. Upon relabelling, we may regard p′ as an element
of P2(2(k − r)), where k − r ≥ 2. Note that we may have p = p′, whence it is possible that
r = 0.
Let λ be the minimal l > 0 such that there exists ν ∈ I2(k−r) with {ν, ν + l} ∈ p′ (where
addition takes place in Z/2(k − r)Z). Observe that λ ≥ 2. Now, if ν has the property that
{ν, ν + λ} ∈ p′, then all elements of {ν + 1, . . . , ν + λ − 1} are paired with partners outside
{ν, ν +1, . . . , ν +λ}. We find an upper bound for #Sn(p′) as follows. By (MP1), we have s(n)
choices for ϕ(ν) and o(n2) choices for the triplet (ψ(ν), ϕ(ν + λ), ψ(ν + λ)). By construction,
going from left to right through ν + l (l = 1, 2, . . . , λ− 2), either ϕ(ν + l) is fixed and there are
at most t(n) choices for ψ(ν + l), or ψ(ν + l) is fixed and there are at most s(n) choices for
ϕ(ν + l). According to whether ν is even or odd, we must have either ϕ(ν + λ− 1) = ϕ(ν + λ)
and ψ(ν +λ−1) = ψ(ν +λ−2) or ψ(ν +λ−1) = ψ(ν +λ) and ϕ(ν +λ−1) = ϕ(ν +λ−2). So
we have at most O(nλ−1)o(n2) choices for the restrictions of ϕ and ψ to {ν, ν + 1, . . . , ν + λ}.
Going cyclically through the complement of this set, starting with ν + λ + 1, in each step one
of ϕ(ν + λ + l), ψ(ν + λ + l) is fixed, and there are at most B resp. O(n) choices for the other,
depending on whether ν + λ + l is paired with one of the previously considered points or not.
This latter case occurs exactly k − r − λ times.
Putting all this together with (13), we arrive at

#Sn(p) ≤ O(nr) o(nλ+1) O(nk−r−λ) + o(nk+1) = o(nk+1).

Lemma 4.6. For all p ∈ NC2(2k) there holds lp := |p ∨ m| + |p ∨ n| = k + 1, with ∨ as in
Section 2.

Proof. For k = 1, the only (noncrossing pair) partition p ∈ P(2) is {{1, 2}}, which satisfies
lp = 2. Suppose that k ≥ 2 and that the claim is true for k − 1. Note that any p ∈ NC2(2k)
contains a block of the form {ν, ν + 1}. Now consider the partition p̃ of I2k \ {ν, ν + 1}, whose
blocks are those of p except for {ν, ν + 1}. Define m̃, ñ ∈ I2k \ {ν, ν + 1} in the obvious way.
We claim that

lp̃ = lp − 1. (14)
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To see this for ν even, note that in this case {ν, ν +1} is also a block of n. This means that it is
a block of p∨n, hence |p̃∨ ñ| = |p∨n|−1. On the other hand, p∨m has a block which contains
ν − 1, ν, ν + 1, ν + 2. This block does not split on eliminating {ν, ν + 1}, since {ν − 1, ν + 2} is
a block of m̃. So we arrive at |p̃∨ m̃| = |p∨m|. For ν odd, the argument is analogous, yielding
(14). Hence by induction, lp = lp̃ + 1 = ((k − 1) + 1) + 1 = k + 1.

The following is evident:

Lemma 4.7. For p ∈ NC2(2k), each of the blocks of p consists of exactly one odd and exactly
one even number.

Lemma 4.8. #{p ∈ NC2(2k) : |p ∨ m| = j } = #NC(j)(k).

Proof. We may identify P(k) with {p ∈ P(2k) : any block of p is the union of blocks of m}.
So p 7→ p∨m maps P(2k) onto P(k). It is easy to see that if p∨m is crossing, so is p. In fact
NC2(2k) is mapped bijectively onto NC(k). To see this, it suffices to show that p 7→ p ∨ m is
injective, as it is known that #NC(k) = #NC2(2k) (see [14, Remark 9.5]). A block of p ∨ m

is of the form bJ =
⋃

ν∈J{2ν − 1, 2ν} for some J ⊆ Ik. We have to show that there exists
precisely one p̃ ∈ NC2(bJ ) such that p̃ ∨ {{2ν − 1, 2ν} : ν ∈ J} = {bJ}. Since our aim is to
show that a pairing of the elements of bJ with certain properties is uniquely determined, the
embedding of bJ into I2k is irrelevant, and we may assume that bJ = I2r for some r ≤ k. Let
us start by finding a partner for 1. By Lemma 4.7, the partner must be even, 1 ∼p̃ 2s, say.
Assume that s < r. Since we wish to construct a noncrossing p̃, no 1 < ν < 2s can be paired
with any ν′ > 2s. On the other hand, 2s 6∼m 2s + 1, so 2s and 2s + 1 lie in distinct blocks of
p̃∨m, contradicting the requirement that p̃∨m = {I2r}. Consequently, we must have 1 ∼p̃ 2r.
The partner of 2 must be odd. We claim that necessarily 2 ∼p̃ 3. Otherwise the partner
of 2 is 2s − 1, s ≥ 3. Then for p̃ to be noncrossing, it is necessary that {3, 4, . . . , 2s − 2)}
be a union of blocks of p̃. But 2 6∼m 3 and 2s − 2 6∼m 2s − 1. So {3, 4, . . . , 2s − 2)} splits
into at least two distinct blocks of p̃ ∨ m, violating our conditions on p̃. Deleting {2, 3} and
relabelling, we inductively see that p̃ = {{1, 2r}, {2, 3}, {4, 5}, . . . , {2r − 2, 2r − 1}}, hence is
uniquely determined.

Define

S∨
n (p) := {(ϕ,ψ) : ϕ ∈ F(p ∨ m, s(n)), ψ ∈ F(p ∨ n, t(n))}

and observe that S∨
n (p) ⊂ Sn(p). Write

S∧
n (p) := Sn(p) \ S∨

n (p)

and

Σ∨
n(p) :=

∑

(ϕ,ψ)∈S∨

n (p)

k
∏

ν=1

an(ϕ(2ν − 1), ψ(2ν − 1)) an(ϕ(2ν), ψ(2ν)).

Lemma 4.9. For p ∈ NC2(2k), #S∧
n (p) = o(nk+1).

Proof. Since p is noncrossing, we find ν ∈ I2k−1 such that ν ∼p ν + 1. Suppose that ν is odd.
Then for any (ϕ,ψ) ∈ S∧

n (p) we have ϕ(ν) = ϕ(ν + 1). If ψ(ν) 6= ψ(ν + 1), then by condition
(MP3) there are o(n2) possibilities for the triplet (ϕ(ν), ψ(ν), ψ(ν + 1)), and one sees as in
Lemma 4.5 that there are O(nk−1) choices for (ϕ,ψ) on J := I2k \{ν, ν+1}. If ψ(ν) = ψ(ν+1),
then ψ(ν − 1) = ψ(ν + 2). If p̃ is the partition of J induced by p, then (ϕ|J, ψ|J) ∈ S∧

n (p̃). In
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this case, hence, #S∧
n (p) ≤ O(n) #S∧

n (p̃). Putting both cases for ψ(ν), ψ(ν + 1) together, we
obtain

#S∧
n (p) ≤ O(n) #S∧

n (p̃) + o(nk+1).

This was proven for ν odd. In view of the symmetry of (MP3), the proof for ν even is analogous,
with the roles of ϕ and ψ interchanged. Since (ϕ,ψ) ∈ S∧

n (p), iteration of this process will
finally lead to a nearest neighbour pair ν ∼p ν+1 such that ϕ(ν) 6= ϕ(ν+1) or ψ(ν) 6= ψ(ν+1).
So we end up with

#S∧
n (p) ≤ O(nk−1)o(n2) + o(nk+1) = o(nk+1).

Putting the ingredients together, we have that

1

n
E(Tr((X∗X)k)) =

1

nk+1

∑

p∈P(2k)

EΣn(p)

is by Corollary 4.4 and Lemmata 4.3, 4.5, and 4.6 asymptotically equivalent to

1

nk+1

k
∑

j=1

∑

p∈NC2(2k),
|p∨m|=j

EΣn(p). (15)

By Lemmata 4.9 and 4.3 we may replace EΣn(p) by EΣ∨
n(p) in (15). Recall that for (ϕ,ψ) ∈

S∨
n (p), ϕ and ψ are a fortiori constant on the blocks of p. Comparing Lemma 4.7 with (10), one

sees that this implies that given (ϕ,ψ) ∈ S∨
n (p), a block of p corresponds to a matrix element

and its complex conjugate. Invoking (1) and Lemma 4.6, we see that (15) is asymptotically
equivalent to

1

nk+1

k
∑

j=1

∑

p∈NC2(2k),
|p∨m|=j

∑

(ϕ,ψ)∈S∨

n (p)

1 =
1

nk+1

k
∑

j=1

∑

p∈NC2(2k),
|p∨m|=j

s(n)j t(n)k−j+1,

which tends, as n → ∞, to

k
∑

j=1

#{p ∈ NC2(2k) : |p ∨ m| = j} κj µk−j+1 =

k
∑

j=1

#NC(j)(k) κj µk−j+1,

where the last equality follows from Lemma 4.8.

5 The chiral classes

In this section we apply our result about sample covariance matrices to random elements of
the spaces MC

n from Section 2, where C = BDI, AIII or CII. It is convenient to consider the
AIII case first. It consists of matrices of the form

Xn =

(

0 Xn

X∗
n 0

)

∈ C
n×n,
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with Xn ∈ Cs(n)×t(n), hence s(n) + t(n) = n. We assume that limn→∞
s(n)

n = κ ∈]0, 1[, hence

limn→∞
t(n)
n = 1−κ =: µ. Note that this framework is more restrictive than the one considered

in Section 4. But these restrictions naturally arise if one considers Xn as a subblock of an
element of MAIII

n , whence n is the natural parameter for asymptotics. Observe that

Tr

(

0 Xn

X∗
n 0

)k

=

{

0 if k odd
2Tr((X∗

nXn)l) if k = 2l even.
(16)

Assuming that Xn satisfies conditions (MP1), (MP2), (MP3) of Section 4, Theorem 4.1 implies
that as n → ∞, the 2l-th moment of ELn(Xn) converges to

2

l
∑

j=1

#NC(j)(l) κj (1 − κ)l−j+1. (17)

The special case where the entries of Xn take purely imaginary values yields the same limit
for class BDI. Since the extra symmetries of the CII case are compatible with (MP1), (MP2)
and (MP3), we obtain the same limit for this class, too.

In [8], in the special case of chiral random matrices with independent Gaussian entries, the
empirical limit distribution µch,2 of the squared eigenvalues was determined as

|1 − 2κ|δ0 + 1[a,b](x)
1

πx

√

(x − a)(b − x) dx, (18)

where

a = 1 − 2
√

κ(1 − κ), b = 1 + 2
√

κ(1 − κ). (19)

Note that (18) differs from the corresponding formula in [8], since a different definition of Ln

is used in that paper, and since (1) above imposes a condition on complex rather than real
variances. Now, the elegant approach of Haagerup and Thorbjørnsen ([10]) to the moments
of the Marčenko-Pastur distribution can be easily adapted to µch,2, to the effect that the l-th
moment of µch,2 is indeed given by (17). In fact, for l ≥ 1,

∫

xlµch,2(dx) =
1

π

∫ 1+2
√

κ(1−κ)

1−2
√

κ(1−κ)

xl−1
√

4κ(1 − κ) − (x − 1)2 dx

=
4κ(1 − κ)

π

∫ 0

−π

sin2 θ (2
√

κ(1 − κ) cos θ + 1)l−1 dθ

=
2κ(1 − κ)

π

∫ π

−π

sin2 θ (2
√

κ(1 − κ) cos θ + 1)l−1 dθ. (20)

Setting g(θ) = (
√

κ +
√

1 − κ eiθ)l−1 and observing that sin2 θ = 1
2 (1 − cos 2θ), we see that

(20) can be written as
κ(1 − κ)

π

∫ π

−π

Re(1 − ei2θ) |g(θ)|2dθ

or as

2κ(1 − κ)

(

1

2π

∫ π

−π

|g(θ)|2dθ − Re(
1

2π

∫ π

−π

h(θ)k(θ)dθ)

)
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with h(θ) = eiθg(θ), k(θ) = e−iθg(θ). Invoking Parseval’s formula and elementary computa-
tions with binomial coefficients, we obtain

∫

xlµch,2(dx) = 2

l−1
∑

j=0

{

(

l − 1

j

)2

−
(

l − 1

j − 1

)(

l − 1

j + 1

)

}

κj+1(1 − κ)l−j

=
2

l

l
∑

j=1

(

l

j

)(

l

j − 1

)

κj(1 − κ)l+1−j

= 2

l
∑

j=1

#(NC(j)(l)) κj(1 − κ)l+1−j .

A reference for the last equality is [14, Cor. 9.13]. In view of (16), we have

Theorem 5.1. If C is a chiral class, then E(Lδn(Xδn)) converges to a probability measure µch

on R given by

|1 − 2κ|δ0 + 1[a,b](x
2)

2

πx

√

(x2 − a)(b − x2) dx

with a, b as in (19) above.
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