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Abstract

It has been shown that certain types of random walks in random potentials and Brownian
motion in Poissonian potentials undergo a phase transition from sub-ballistic to ballistic be-
havior when the strength of the underlying drift is increased. The ballistic behavior has been
manifested by indicating a limiting area for the normalized motion. In the present article, we
provide a refined description of this limiting area with a further development for the case of
rotation invariant Poissonian potentials.

1 Introduction and preliminaries

In this article, we simultaneously study a discrete and a continuous model of a random motion
evolving under the influence of a nonnegative random potential. In the discrete setting, we
consider a symmetric nearest-neighbor random walk (St)t∈N on Z

d with start at the origin.
The random potential is supposed to be an i.i.d. collection (Vx)x∈Zd of nonnegative, nondegen-
erate random variables with existing dth moment. For convenience, we additionally assume
essinfVx = 0. In the continuous setting, we consider a symmetric brownian motion (St)t∈R+ on
R

d with start at the origin. The potential (Vx)x∈Rd is supposed to be obtained by translating
a fixed nonnegative shape function W at the points of a Poissonian cloud ω =

∑

i δxi
on R

d,
with fixed intensity ν > 0:

Vx(ω)
def
=

∑

i
W (x − xi) for ω =

∑

i
δxi

,

where ω runs over the set of cloud configurations (i.e. simple pure point Radon measures on
R

d) and the nonnegative function W is chosen bounded, measurable, compactly supported
and nondegenerate.
We write P for the probability and E for the expectation associated to the random motion.
The random potential is supposed to be independent of P . Its probability and expectation are
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denoted by P and E, respectively. Thereby, if not explicitly indicated, we do not distinguish
between the discrete and the continuous setting.
The influence of the potential to the random motion is manifested by introducing the so-called
path measures for finite paths. To any drift h ∈ R

d and with ω being a concrete realization of
the potential, they are given by

dQh
t,ω =

1

Zh
t,ω

exp

(

h · St −
t

∑

k=1

VSk
(ω)

)

dP , t ∈ N ,

in the discrete and

dQh
t,ω =

1

Zh
t,ω

exp

(

h · St −

∫ t

0

VSu
(ω) du

)

dP , t ∈ R
+,

in the continuous setting. The normalizations Zh
t,ω are called partition functions, and they are

given by

Zh
t,ω = E

[

exp

(

h · St −

t
∑

k=1

VSk
(ω)

)]

, t ∈ N ,

in the discrete and

Zh
t,ω = E

[

exp

(

h · St −

∫ t

0

VSu
(ω) du

)]

, t ∈ R
+,

in the continuous setting. Again, if not explicitly mentioned, we will not distinguish between
the discrete and the continuous version.
In this definitions, the path measures and the partition functions are random objects again,
depending on the concrete realization of the potential. This approach is called the quenched

setting. It is also convenient to consider the annealed setting, in which the objects are averaged
with respect to the environment. The two settings, at least as far as they are studied here,
can be treated in a very similar way. In particular, all the proofs we perform are identical for
both settings. To avoid repeatings, we thus restrict ourselves to the quenched setting.
A particle moving under the path measures underlies two contrary influences. On the one
hand, it is convenient to stay in regions of small potentials and thus to dislocate only slowly.
On the other hand, the particle is urged to develop in the direction of the drift h, where
the strength of the urge of course increases with the size of h. As a consequence, there is a
transition from a sub-ballistic phase for small drifts, where the displacement of St from the
origin is of order o(t), and a ballistic phase for large drifts, where the displacement of St from
the origin grows of order O(t).
This was first established for the continuous setting by Sznitman (see Chapter 5 of [2]) and
then adapted to the discrete setting by Zerner and Flury in [3], [1]. In the underlying method,
the velocity of dislocation is obtained from a large deviation principle for St/t under the path
measures Qh

t,ω, of which the rate function is connected to the exponential growth rate of the

partition function Zh
t,ω. The transition in the velocity of dislocation then is (partially) brought

back to a transition in the growth rate of Zh
t,ω.

More detailed, it is shown that there exists a family (αλ)λ≥0 of (nonrandom) norms on R
d,

such that, on set of full P-measure, St/t under Q0
t,ω satisfies a large deviation principle with
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convex rate function

I(x)
def
= sup

λ≥0
(αλ(x) − λ) , x ∈ R

d.

On the same set of full P-measure, by an application of Varadhan’s lemma, one then obtains
that

lim
t→∞

log Zh
t,ω

t
= sup

x∈Rd

(h · x − I(x)) , (1)

and that St/t under Qh
t,ω satisfies a large deviation principle with rate function

Ih(y)
def
= I(y) − h · y + sup

x∈Rd

(h · x − I(x)) .

It then is clear that, again on the same set of full P-measure,

dist

(

St

t
, Mh

)

→ 0 in Qh
t,ω probability as t → ∞ , (2)

where the limiting area

Mh
def
=

{

y ∈ R
d : h · y − I(y) = sup

x∈Rd

(h · x − I(x))

}

is a compact set.
The norms (αλ)λ≥0 are the so-called Lyapunov functions or Lyapunov norms. In the discrete
setting, they are characterized by

αλ(x) = − lim
n→∞

1

n
log E

[

exp

(

−

Hnx
∑

k=1

(

λ + VSk
(ω)

)

)

; Hnx < ∞

]

, (3)

where Hnx = inf {k ∈ N0 : Sk = nx} denotes the first hitting time of nx ∈ Z
d. In the contin-

uous setting, the they can be expressed by

αλ(x) = − lim
n→∞

1

n
log E

[

exp

(

−

∫ Hnx

0

(

λ + VSu
(ω)

)

du

)

; Hnx < ∞

]

, (4)

where Hnx = inf {u ∈ R
+ : ‖nx − Su‖ ≤ 1} denotes the first entrance time to the closed unit

ball around nx ∈ R
d. In both settings, the limits exist P-almost surely and in L1(P) and the

map λ 7→ αλ(x), to any fixed x ∈ R
d \ {0}, is continuous, concave and strictly increasing with

limλ→∞ αλ(x) = ∞ (Proposition 4 and page 272 in [3] and Theorem 2.5 and Proposition 2.9
in Chapter 5 of [2]).
The transition from sub-ballistic to ballistic behavior is specified by the dual norms

α∗
λ(ℓ)

def
= sup

x6=0

(

ℓ · x

αλ(x)

)

, ℓ ∈ R
d.

It is easily seen that (α∗
λ)λ≥0 is indeed a family of norms again. Also, to any fixed ℓ ∈ R

d \{0},
the map λ 7→ 1/α∗

λ(ℓ) inherits the property of being continuous, concave and strictly increasing
with limλ→∞ 1/α∗

λ(ℓ) = ∞.
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Still according to the references mentioned above, we finally have the following characterization
of the phase transition:

For α∗
0(h) < 1, sup

x∈Rd

(h · x − I(x)) = 0 and Mh = {0}. (5)

For α∗
0(h) > 1, sup

x∈Rd

(h · x − I(x)) > 0 and, as a consequence, 0 /∈ Mh. (6)

The aim of this article is to improve the picture of the ballistic phase by the following refined
description of the limiting area Mh.

Proposition 1. For h ∈ R
d with α∗

0(h) > 1, we have

y ∈ Mh ⇐⇒

{

h · y = αλ(h)(y) ,
I(y) = αλ(h)(y) − λ(h) ,

(7)

where λ(h) > 0 is the unique number with α∗
λ(h)(h) = 1.

The condition h · y = αλ(h)(y) indicates the possible directions for S(t) to evolve. That is, the
sites in Mh lie in the half-lines from the origin to one of the points in which the hyperplane
{x ∈ R

d : h·x = 1} touches the closed unit ball {x ∈ R
d : αλ(h)(x) ≤ 1}, where the existence of

such a touching point is guaranteed by the choice of λ(h). The condition I(y) = αλ(h)(y)−λ(h),
on the other hand, specifies the possible speed of the dislocation in such a direction (i.e. the
possible distance from the origin of y ∈ Mh in a certain half-line). To make this point more
clear, we consider the right and the left derivatives

α̇+
λ (x)

def
= lim

ε↓0

αλ+ε(x) − αλ(x)

ε
and α̇−

λ (x)
def
= lim

ε↓0

αλ(x) − αλ−ε(x)

ε
,

which exist by concavity. By the definition of I, we then have I(y) = αλ(h)(y)−λ(h) if and only

if α̇−
λ(h)(y) ≥ 1 ≥ α̇+

λ(h)(y), which again, by scalar linearity inherited from αλ(h), is equivalent
to

α̇−
λ(h)(ey) ≥

1

‖y‖
≥ α̇+

λ(h)(ey) , (8)

where ey
def
= y/‖y‖.

Observe also that (7) implies

sup
x∈Rd

(h · x − I(x)) = λ(h) , (9)

which, since λ(h) > 0, then leads to the ballistic characterization in (6).

We now have a closer look at the continuous setting in the case where the shape function W
is invariant under rotations, i.e. when

W (x) = W ′(‖x‖) ∀x ∈ R
d, (10)

for a suitable function W ′. In that case, for any rotation ϕ on R
d, we have

Vx(ω) = Vϕ(x)(ϕ(ω)) ∀x ∈ R
d, (11)
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where ϕ(ω)
def
=

∑

i δϕ(xi) for ω =
∑

i δxi
, and we thus obtain

exp

(

−

∫ Hnx

0

(

λ + VSu

)

du

)

1{Hnx<∞} dP ⊗ dP

= exp

(

−

∫ Hnx

0

(

λ + Vϕ(Su)

)

du

)

1{Hnx<∞} dP ⊗ dPϕ−1 (12)

= exp

(

−

∫ Hnϕ(x)

0

(

λ + VSu

)

du

)

1{Hnϕ(x)<∞} dPϕ−1 ⊗ dPϕ−1 (13)

for any x ∈ R
d. As a consequence, since dPϕ−1 = dP and dPϕ−1 = dP, we see that the

rotation invariance is transmitted to the Lyapunov norms (αλ)λ≥0 by their representation in
(4). That is, to any fixed λ, we have

αλ(x)

‖x‖
= const. ∀x ∈ R

d \ {0}. (14)

In that situation, we find an even simpler description of the limiting area Mh. To do this, we
consider the derivatives

∂+
h λ(h)

def
= lim

t↓1

λ(th) − λ(h)

t − 1
and ∂−

h λ(h)
def
= lim

t↑1

λ(h) − λ(th)

1 − t
.

The limits exist by convexity, which e.g. is obtained from (9), and ∂±
h λ(h) = ▽λ(h) ·h wherever

λ(h) is differentiable.

Corollary 2. In the continuous setting with rotation invariant shape function W , for h ∈ R
d

with α∗
0(h) > 1 , we have

Mh =

{

teh :
∂−

h λ(h)

‖h‖
≤ t ≤

∂+
h λ(h)

‖h‖

}

, (15)

where eh = h/‖h‖.

Observe that the description of the limiting area in (15), by some further rotation invariance
arguments, reduces to

Mh = {▽λ(h)} (16)

wherever the gradient ▽λ(h) exists (i.e. where ∂+
h λ(h) = ∂−

h λ(h)).

Proof of Corollary 2. By the definition of α∗
λ(h) and the rotation property in (14), we have

α∗
λ(h)(h) =

h · y

αλ(h)(y)
⇐⇒ y ∈ {th : t ≥ 0} , (17)

which, since α∗
λ(h)(h) = 1, is equivalent to

αλ(h)(y) = h · y ⇐⇒ y ∈ {th : t ≥ 0} . (18)

From Proposition 1 and in view of (8), we thus obtain

Mh =
{

th : 1/α̇−
λ(h)(h) ≤ t ≤ 1/α̇+

λ(h)(h)
}

. (19)



398 Electronic Communications in Probability

Moreover, since (18) in particular implies ‖h‖2 = αλ(h)(h), we have

2‖h‖2 = ▽

(

‖h‖2
)

· h = ▽αλ(h)(h) · h = αλ(h)(h) + α̇±
λ(h)(h) ∂±

h λ(h) , (20)

and therefore

∂±
h λ(h) =

2‖h‖2 − αλ(h)(h)

α̇±
λ(h)(h)

=
‖h‖2

α̇±
λ(h)(h)

, (21)

which completes the proof.

2 Proof of the main result

Let D
def
=

{

x ∈ R
d : I(x) < ∞

}

denote the effective domain of I. In the continuous setting, as
is shown in Lemma 4.1 in Chapter 5 of [2], we have D = R

d. In the discrete setting, on the
other hand, D is bounded and equals the closed unit ball of the 1-norm (see e.g. equation (66)
in [3]). Thereby, I (as a convex rate function) is continuous when restricted to D.
In order to prove Proposition 1, the crucial point is to evaluate the derivatives

∂+
x I(x)

def
= lim

t↓1

I(tx) − I(x)

t − 1
, x ∈ D◦,

∂−
x I(x)

def
= lim

t↑1

I(x) − I(tx)

1 − t
, x ∈ D \ {0} ,

where the existence of the limits is guaranteed by convexity. To this purpose, we introduce

λ+
x

def
= inf {λ ≥ 0 : α̇+

λ (x) < 1} ,

λ−
x

def
= sup {λ > 0 : α̇−

λ (x) > 1} ∨ 0 .

Observe that λ+
x (respectively λ−

x ) is the largest (respectively smallest) transition point from
nondecreasing to nonincreasing behavior for the map λ 7→ αλ(x) − λ, and that consequently

λ+
x = max {λ ≥ 0 : I(x) = αλ(x) − λ} , (22)

λ−
x = min {λ ≥ 0 : I(x) = αλ(x) − λ} , (23)

for all x ∈ D◦.

Lemma 3. We have

∂+
x I(x) = αλ

+
x
(x) , x ∈ D◦, (24)

∂−
x I(x) = αλ

−

x
(x) , x ∈ D \ {0} , (25)

where α∞(x)
def
= limλ→∞ αλ(x) = ∞ for x 6= 0.

Proof. We start with (24). From the characterization of λ+
x in (22), we obtain

∂+
x I(x) = lim

t↓1

αλ
+
tx

(tx) − λ+
tx − αλ

+
x
(x) + λ+

x

t − 1

= lim
t↓1

αλ
+
tx

(tx) − αλ
+
tx

(x)

t − 1
− lim

t↓1

λ+
tx − λ+

x

t − 1
−

αλ
+
tx

(x) − αλ
+
x
(x)

t − 1
. (26)
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It is easily seen that limt↓1 λ+
tx = λ+

x and

lim
t↓1

αλ
+
tx

(tx) − αλ
+
tx

(x)

t − 1
= lim

t↓1
αλ

+
tx

(x) = αλ
+
x
(x) . (27)

What remains to show is that the second limit in (26) is zero. To this end, observe that the
concavity of αλ(x) in λ implies

α̇+

λ
+
x

(x)
(

λ+
tx − λ+

x

)

≥ αλ
+
tx

(x) − αλ
+
x
(x) ≥ α̇−

λ
+
tx

(x)
(

λ+
tx − λ+

x

)

. (28)

Observe also that 1 ≥ α̇+

λ
+
x

(x) and, since either λ−
tx = λ+

tx (and thus α̇−

λ
+
tx

(tx) = α̇−

λ
−

tx

(tx) ≥ 1)

or λ−
tx < λ+

tx and α̇−
λ (tx) = 1 for λ−

tx < λ ≤ λ+
tx,

α̇−

λ
+
tx

(x) =
1

t
α̇−

λ
+
tx

(tx) ≥
1

t
. (29)

We therefore have

0 ≤
λ+

tx − λ+
x

t − 1
−

αλ
+
tx

(x) − αλ
+
x
(x)

t − 1
≤

(

λ+
tx − λ+

x

) 1 − 1
t

t − 1
, (30)

where

lim
t↓1

(

λ+
tx − λ+

x

) 1 − 1
t

t − 1
= lim

t↓1

λ+
tx − λ+

x

t
= 0 . (31)

That is, the second limit in (26) is zero, which completes the proof of (24).

It remains to show (25), which (by the convexity of I) though easily follows from (24) by

∂−
x I(x) = lim

t↑1
∂+

txI(tx) = lim
t↑1

αλ
+
tx

(tx) = αλ
−

x
(x) , (32)

where at the last step, we used limt↑1 λ+
tx = λ−

x .

Before stepping to the proof of Proposition 1, we have a closer look at the limiting behavior
of I on its effective domain D. In the continuous setting, we have

lim
s→∞

∂−
sxI(sx)

s
= ∞ (33)

for all x ∈ R
d \ {0} as follows from Lemma 4.1 in Chapter 5 of [2]. In the discrete setting, the

analogous behavior is not a priori guaranteed. There, in view of (25), it remains the possibility
that

lim
t↑1

∂−
tyI(ty)

t
= ∂−

y I(y) < ∞ (34)

for y ∈ ∂D if and only if λ−
y < ∞ and

α̇−
λ (y) = 1 ∀λ > λ−

y . (35)
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Proof of Proposition 1. The existence and uniqueness of λ(h), as well as the property λ(h) > 0,
are plain by the assumption α∗

0(h) > 1 and the above mentioned properties of λ 7→ 1/α∗
λ(ℓ).

It thus remains to show (7).
By scalar linearity and continuity, there exists e with ‖e‖ = 1, such that

1 = α∗
λ(h)(h) = sup

x: ‖x‖=1

(

h · x

αλ(h)(x)

)

=
h · e

αλ(h)(e)
. (36)

Since λ 7→ αλ(e) is strictly increasing, the right derivative α̇+
λ(h)(e) is strictly positive. We

thus can set z = e/α̇+
λ(h)(e). By (36) and scalar linearity, we have

h · z = αλ(h)(z) . (37)

In addition, since λ 7→ αλ(z) is concave and α̇+
λ(h)(z) = 1, the map λ 7→ αλ(z) − λ is nonde-

creasing for λ ≤ λ(h) and nonincreasing for λ > λ(h), such that

I(z) = αλ(h)(z) − λ(h) . (38)

From (37) and (38), we thus obtain

λ(h) = h · z − I(z) ≤ sup
x∈Rd

(h · x − I(x)) . (39)

Suppose now y ∈ Mh and therefore y 6= 0. If y ∈ D◦, we necessarily have

∂−
y I(y) ≤ h · y ≤ ∂+

y I(y) . (40)

Lemma 3 then implies that, by continuity, there exists λ ∈ [λ−
y , λ+

y ], such that

αλ(y) = h · y . (41)

If we are in the discrete setting and y ∈ ∂D, which is possible if ∂−
y I(y) < ∞ only, there also

exists λ ∈ [λ−
y ,∞) such that (41) is true. Moreover, from the bounds of λ, respectively from

(35) if y ∈ ∂D in the discrete setting, we obtain

I(y) = αλ(y) − λ . (42)

Now, since λ 7→ α∗
λ(h) is nonincreasing, (41) implies λ ≤ λ(h). After all, we thus have shown

λ(h)
(39)

≤ sup
x∈Rd

(h · x − I(x)) = h · y − I(y)
(41)(42)

= λ ≤ λ(h) , (43)

such that the left-to-right implication of (7) now is given by (41), (42) and λ = λ(h), and the
right-to-left implication follows from λ(h) = supx∈Rd (h · x − I(x)).
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