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Abstract

We show that for all p > pc(Z
d) percolation parameters, the probability that the cluster of the

origin is finite but has at least t vertices at distance one from the infinite cluster is exponentially
small in t. We use this to give a short proof of the strongest version of the important fact that
the isoperimetric profile of the infinite cluster basically coincides with the profile of the original
lattice. This implies, e.g., that simple random walk on the largest cluster of a finite box [−n, n]d

with high probability has L∞-mixing time Θ(n2), and that the heat kernel (return probability)
on the infinite cluster a.s. decays like pn(o, o) = O(n−d/2). Versions of these results have been
proven by Benjamini and Mossel (2003), Mathieu and Remy (2004), Barlow (2004) and Rau
(2006). For general infinite graphs, we prove that anchored isoperimetric properties survive
supercritical percolation, provided that the probability of the cluster of the origin being finite
with large boundary decays rapidly; this is the case for a large class of graphs when p is close to
1. As an application (with the help of some entropy inequalities), we give a short conceptual
proof of a theorem of Angel, Benjamini, Berger and Peres (2006): the infinite percolation
cluster of a wedge in Z

3 is a.s. transient whenever the wedge itself is transient.

1 Introduction and results

Isoperimetric inequalities on finite and infinite graphs are indispensable in studying the be-
havior of simple random walk (SRW) on the graph [39, 46, 35]. Most importantly, a good
isoperimetric profile implies fast mixing on a finite graph, or fast heat kernel decay on an
infinite graph. It is important, from mathematical and physical points of view, to understand
how robust these properties are under perturbations of the graph. A standard question is as
follows: consider supercritical Bernoulli(p) edge-percolation on a transitive finite or infinite
graph, then perform SRW on the giant or an infinite percolation cluster, respectively. Do the
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most important properties of SRW survive percolation? See the books [18, 31] for background
on percolation.

On Z
d and its finite boxes, there is a large literature on this topic; the main results are

the transience of the infinite cluster [19], the right d-dimensional heat kernel decay and fast
mixing [9, 34, 5], and scaling to Brownian motion [40, 11, 33]. For general transitive infinite
graphs, the program was started by [8]. For finite graphs other than boxes of Z

d, only SRW
on the giant component of the Erdős-Rényi random graph G(n, p) has been understood fully
[7, 17]. See [37] for a recent survey on isoperimetry and SRW on percolation clusters.

In the Appendix of [14], our main discovery was that survival of the so-called anchored
isoperimetry for infinite clusters can be deduced from an exponential decay of the probability
that the cluster of the origin is finite but has a large boundary. This exponential decay has
been proved only for large enough p values; in fact, on Z

d, when d ≥ 3 and p ∈ (pc, 1 − pc),
only a stretched exponential decay holds. In the present note, we prove exponential decay on
Z

d, for all p > pc, for a modified event, in which the boundary is not only large, but touches
the infinite cluster at many places. Then, by refining a bit the main idea of [14, Appendix],
we prove survival of d-dimensional anchored isoperimetry. A good isoperimetic profile for the
giant cluster of [−n, n]d will also follow, implying a strong mixing time result and d-dimensional
heat kernel decay.

In a connected bounded degree infinite graph G(V,E), for S ⊂ V , the edge boundary
∂ES is the set of edges of G with one endpoint in S, the other in V \ S. Similarly, the inner
vertex boundary ∂iV S is the set of vertices that are in S but have a neighbor outside S,
while ∂oV S := ∂iV (V \ S) is the outer vertex boundary. If it does not matter which

boundary we are considering, we will drop the subscripts E, V, i, o. Furthermore, let S
G

be
the union of S with all the finite connected components of G \ S; if S is finite and connected,

then so is this closure S = S
G

. The frontier of S is defined by ∂+S := ∂S, with the possible
variations on E, V, i, o. For two percolation clusters, C1 and C2, a touching edge is an edge
of G in ∂EC1∩∂EC2. The number of such edges will be denoted by τ(C1,C2). For supercritical
percolation on Z

d, the a.s. unique infinite cluster is denoted by C∞, while the cluster of the
origin by Co. Our new percolation result is the following:

Theorem 1.1. For d ≥ 2 and any p > pc(Z
d), there exists a c1 = c1(d, p) > 0 such that

Pp

(

m ≤ |Co| < ∞ and τ(Co,C∞) ≥ t
)

≤ exp
(

−c1 max{m1−1/d, t}
)

. (1.1)

Setting t = 0 in (1.1), the stretched exponential decay we get is a sharp classical result,
due to Kesten and Zhang [25] combined with the Grimmett-Marstrand theorem [20]. Hence
the exponential decay in t is the novelty here. Nevertheless, our proof will be a modification
of [25], so it naturally gives the exp(−c1m

1−1/d) part, as well. Moreover, (1.1) can probably
be best understood from the perspective of [25]. They prove the stretched exponential decay
by showing that although for p ∈ (pc, 1 − pc) the frontier |∂+Co| and the volume |Co| are of
the same order, Θ(m), there still exists a finite N = N(p) such that the frontier of the set of
vertices at distance at most N from Co is of size Θ(m1−1/d), and the probability of having
such a large Co is already exponential in this size. Therefore, having τ(Co,C∞) ≥ t ≫ m1−1/d

means that C∞ penetrates deep inside Co, going through tunnels of width less than N . As we
will show, this has an exponentially small probability in t.

On nonamenable transitive graphs, there is conjecturally always an interval of p values for
which there are a.s. infinitely many infinite clusters, see [31]. For this case, [21] conjectured
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that no two infinite clusters can have infinitely many touching edges. This was recently proved
by Timár [42] by an ingenious use of the Mass Transport Principle for unimodular transitive
graphs (e.g. all Cayley graphs). His argument might give some explicit decay for the probability
that two neighboring vertices of an arbitrary unimodular transitive graph are in different
clusters with at least t touching edges, but getting the exponential decay rate in this general
setting seems hard.

We use our Theorem 1.1 to prove the following sharp isoperimetric inequality:

Theorem 1.2. For d ≥ 2 and p > pc(Z
d), there are constants α(d, p) > 0 and c2(d, p) > 0

such that for the infinite cluster C∞ = C , and for the edge frontier ∂+
C

S := EC (S
C

,C \ S
C

)
inside C ,

Pp

(

∃S connected : o ∈ S ⊂ C ,M ≤ |S| < ∞,
|∂+

C
S|

|S|1−1/d
≤ α

)

≤ exp
(

−c2M
1−1/d

)

. (1.2)

Considering only connected sets S that contain a fixed origin o is a natural restriction, since
C∞ has arbitrary large pieces with bad isoperimetry — but they are typically far away from
o. The following notion, introduced in [41] and [8], is a general formulation of this idea. Take
a connected bounded degree infinite graph G(V,E), with a fixed o ∈ V (G), and a positive
function ψ(·) with limx→∞ ψ(x) = ∞. We say that G satisfies an anchored ψ-isoperimetric
inequality if

0 < ι∗ψ(G) := lim
n→∞

inf

{ |∂S|
ψ(|S|) : o ∈ S ⊂ V (G), S is connected, n ≤ |S| < ∞

}

. (1.3)

It is easy to see that the quantity ι∗ψ(G) does not depend on the choice of the basepoint o. The
property ι∗ψ(G) > 0 is denoted by IP∗

ψ, and, because of the bounded degrees, we can equally
use ∂ = ∂E or ∂ = ∂V . For ψ(x) = x, this property is usually called anchored expansion
(or weak nonamenability), and for ψ(x) = x1−1/d, we speak of d-dimensional anchored
isoperimetry IP∗

d. Many probabilistic implications of isoperimetric inequalities remain true
with this anchored version. Thomassen proved in [41] that if IP∗

ψ holds with some function ψ
that satisfies

∞
∑

k=1

ψ(k)−2 < ∞, (1.4)

then the graph contains a transient subtree, and so is transient itself. In particular, IP∗
2+ε

suffices for transience. Lyons, Morris and Schramm [30] recently found a very nice few line proof
of a refinement of Thomassen’s result, resembling a converse to the Nash-Williams criterion;
see also [31]. Virág proved in [45] the conjecture of [8] that any bounded degree graph G
with anchored expansion has a non-amenable subgraph, and this subgraph is “dense” enough
to ensure positive speed of SRW on G. On the other hand, it is not known if IP∗

d alone
implies the usual d-dimensional heat kernel decay pn(o, o) = O(n−d/2). For more details and
references see [37].

From Theorem 1.2, the Borel-Cantelli lemma immediately implies that C∞ a.s. satisfies
IP∗

d. Moreover, we will also easily deduce the following isoperimetric profile:

Corollary 1.3. For all p > pc(Z
d) there exist c3(d, p) > 0, α(d, p) > 0 and (for almost all

percolation configurations ω) an integer N(ω) such that for all n > N(ω), all connected subsets

S ⊆ C∞ ∩ [−n, n]d with size |S| ≥ c3 (log n)
d

d−1 have |∂C∞
S| ≥ α|S|1−1/d.
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Conditioned on o ∈ C∞, the walk on C∞ started at o cannot leave [−n, n]d in n steps, so
plugging this isoperimetric profile into the infinite graph heat kernel version of the Lovász-
Kannan bound [29], proved by Morris and Peres [35], immediately gives that SRW on C∞ has
return probabilities pn(o, o) = O(n−d/2), for all n > N(ω). We will also prove the following
finite version, which, in conjunction with the L∞-version of the Lovász-Kannan bound, again
from [35], implies that SRW on the largest cluster of [−n, n]d has L∞-mixing time Θ(n2). The
example of an infinite versus a finite depth regular tree shows that Corollary 1.4 does not
formally follow from Theorem 1.2; nevertheless, the proofs of Theorems 1.1 and 1.2 can be
modified to fit the finite case.

Corollary 1.4. Let C be the largest cluster in percolation with p > pc(Z
d) on the finite box

[−n, n]d. Then ∃ c′3(d, p) > 0 and α′(d, p) > 0 such that, with probability tending to 1, for all

connected subsets S ⊆ C with size c′3 (log n)
d

d−1 ≤ |S| ≤ |C |/2, we have |∂C S| ≥ α′|S|1−1/d.

Corollary 1.4 was first announced by Benjamini and Mossel [9], but there were some gaps
in their renormalization argument moving from p values close to 1 to all p > pc(Z

d). (These
gaps seem repairable to us). A suboptimal bound pn(o, o) = O(n−d/2(log n)6d+14) was derived
in [24], while the true on-diagonal heat kernel and L∞-mixing time results were proved by
Mathieu and Remy [34]. However, their isoperimetry results are weaker than ours. Barlow
[5] proved the great result that a.s., for all large times n > Nx,y(ω), the heat kernel on C∞

satisfies

a1n
−d/2 exp(−b1‖x − y‖2

1/n) ≤ pn(x, y) ≤ a2n
−d/2 exp(−b2‖x − y‖2

1/n),

with constants ai, bi depending on d and p, and random variables Nx,y having at most a
stretched exponential tail. Barlow did not state the sharp isoperimetric profile explicitly, but
it can be deduced from his results (as shown to us by N. Berger). Refining the approach of
[34], the preprint [38] proves our Corollary 1.3 for S ⊆ C∞ ∩ [−n, n]d with size |S| ≥ cnγ ,
arbitrary c, γ > 0 and large enough n. Given the lengths of [34, 5, 38], we find our short proof
of Theorem 1.2 and its corollaries very attractive. Independently, M. Biskup has recently also
constructed a short proof of Theorem 1.2 and Corollary 1.3, along lines more similar to [9]
than to our work. His proof appears in [12], which paper shows that if the edges of Z

d are
given i.i.d. random conductances with a large tail at 0, then, in d ≥ 5, the heat kernel decay is
Θ(n−2); that is, the original decay Θ(n−d/2) does not survive this type of random perturbation.
Such “anomalous” decay also happens when we move from supercritical to critical percolation:
[6] shows that the heat kernel decay on the incipient infinite cluster of oriented percolation on
high dimensional Z

d is Θ(n−2/3). An analogous result for SRW on the critical Erdős-Rényi
graph is proved in [36].

Our proof of Theorem 1.1 uses percolation renormalization, a method presently not avail-
able on other infinite graphs. However, for many graphs, for p close to 1, it is easy to show a
result even stronger than (1.1), namely,

Pp

(

|Co| < ∞, |∂+
ECo| = n

)

≤ ̺n (1.5)

with ̺ = ̺(p) < 1 and all large n. This is the case, e.g., for Cayley graphs of finitely presented
groups; see Theorem 4.1 below. The method of [14, Appendix] then implies the following:

Theorem 1.5. Suppose that G satisfies IP∗
ψ with some ψ ր ∞, and the exponential de-

cay (1.5) holds for some p. Then p-a.s. on the event that the open cluster Co is infinite, Co

satisfies IP∗
ψ.
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As an application, we give a conceptual proof for a strengthening of the Grimmett-Kesten-
Zhang theorem [19] of the transience of C∞ in Z

3: survival of transience in more subtle
situations. For an increasing positive function h(·), the wedge Wh is the subgraph of Z

3

induced by the vertices V (Wh) = {(x, y, z) : x ≥ 0 and |z| ≤ h(x)}. Terry Lyons [32] proved
that Wh is transient iff

∞
∑

j=1

1

jh(j)
< ∞ . (1.6)

For example, (1.6) holds for h(j) = logr j iff r > 1. Now, the following holds.

Theorem 1.6 (Angel, Benjamini, Berger, Peres [1]). The unique infinite percolation cluster of
a wedge Wh ⊂ Z

3 for any p > pc(Wh) = pc(Z
3) is a.s. transient if and only if Wh is transient.

The evolution of this result is that [10] gave a new proof of [19], and then, by sharpening
those methods, Häggström and Mossel [22] verified the claim under the stronger condition
∑∞

j=1
1

j
√

h(j)
< ∞, and asked whether Theorem 1.6 holds. We prove Theorem 1.6 under an

additional mild concavity-type condition on h(·) that keeps technicalities to the minimum:

Proposition 1.7. If h(·) satisfies Lyons’ condition (1.6) and there exists γ > 0 such that
h(δx) ≥ γδh(x) for all δ ∈ [0, 1], then Wh satisfies some IP∗

ψ with Thomassen’s condition
(1.4).

The key step in the proof of this result is a projection type isoperimetric inequality in the
wedge Wh, similar to the Loomis-Whitney inequality [28], which we show using some simple
entropy inequalities. It was Han [23] and Shearer [15] who first proved entropy inequalities
analogous to such isoperimetric inequalities, but it is unclear who noticed first that these are
really the same results. See [4] for a concise treatment.

Given Proposition 1.7, our general Theorem 1.5 implies survival of transience for p close
to 1. Transience, unlike isoperimetry, is monotone w.r.t. adding edges and vertices, so we can
extend this result for all p > pc using a standard renormalization argument, and do not need a
sophisticated result like Theorem 1.1 showing the survival of isoperimetry itself for all p > pc.

Organization of paper. Section 2 proves the percolation result Theorem 1.1. Section 3
reaps its consequences to isoperimetry, Theorem 1.2 and Corollaries 1.3 and 1.4. Section 4
shows that (1.5) holds for many graphs, and proves Theorem 1.5. Finally, Section 5 deals with
transient wedges.

Some open problems. There are many intriguing questions in the field. Does the giant
cluster on the hypercube {0, 1}n have mixing time polynomial in n? What is the heat kernel
decay on the incipient infinite cluster of critical percolation on Z

d? On an infinite transitive
graph G, do transience, positive or zero speed, or certain heat kernel decay survive percolation
for all p > pc(G)? Does the analogue of our Theorem 1.1 hold on any transitive graph G?
Does IP∗

d itself imply the heat kernel bound pn(o, o) ≤ O(n−d/2)? For a discussion of these
and further questions, see [37].

Acknowledgments. I am grateful to Noam Berger, Marek Biskup and Yuval Peres for
discussions and encouragement, to Russ Lyons for asking if my method in [14, Appendix]

could work for transient wedges, and to Pierre Mathieu and Ádám Timár for comments on
the manuscript.
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2 Proof of the exponential cluster repulsion

We fix a positive integer N , whose p-dependent value will be determined later. We regard NZ
d

as a graph naturally isomorphic to the lattice Z
d, i.e., with adjacency relation ‖x − y‖1 = N .

We will also use NZ
d
∗, the graph where adjacency is defined by ‖x − y‖∞ = N . We will use

boxes of the form B3N/4(Nx) := {y ∈ Z
d : ‖y − Nx‖∞ ≤ 3N/4}, for x ∈ Z

d. These will
be called blocks. The set of blocks will be thought of as the vertices of a graph naturally
identified with NZ

d.
The reason for considering two different adjacency relations are the following facts. While

(a) is trivial from the definitions, the also quite innocent-looking (b) and (c) require careful
proofs, which were executed in [16, Lemma 2.1]. Recently, Timár [44] found a much simpler
and more general proof. Recall the definitions of the closure S and the different boundaries
∂S from the Introduction.

(a) For any finite Z
d-connected set A, the vertex frontiers ∂+

iV A and ∂+
oV A are finite cutsets:

any Z
d-path connecting a vertex of A to a vertex of Z

d \A intersects both frontiers ∂+
V A.

(b) The vertex frontiers ∂+
V A need not be Z

d-connected, but for d ≥ 2 they are both Z
d
∗-

connected.

(c) Consider the finite box Bn := [−n, n]d, and a connected A ⊆ Bn. Let Ai be the connected
components of Bn \ A. Then all the vertex boundaries ∂V (Bn)Ai are Z

d
∗-connected.

As usual in renormalization, given a percolation configuration inside a block, we call the
block good if it has a cluster connecting all its (d−1)-dimensional faces, while all other clusters
have diameter less than N/5. The basic result of static renormalization is that the probability
that a given block is good tends to 1 as N → ∞ [18, Section 7.4]. Blocks not good will be
called bad.

From now on, we assume that o 6∈ C∞ and that the diameter of Co is at least N . For any
given cluster C , a block B is called C -substantial if C ∩ B has a connected component of
diameter at least N/5. The set of C -substantial blocks will be denoted by C N ; note that this
is a connected subset of NZ

d. Now, we color a block B red if it is Co-substantial but it has
a neighbor that is not Co-substantial. In other words, the set of red blocks, denoted by R,
equals ∂iV (C N

o ). Furthermore, we color a block blue if it is both Co- and C∞-substantial.
The set of blue blocks is B. Clearly, each pair of touching vertices is contained in at least one
blue block, and in at most 2d. A block can be both red and blue. See Figure 1. Observe that
a colored block is never good: on one hand, being blue implies the existence of two disjoint
components of large diameter; on the other hand, in a good block B that is Co-substantial,
Co must connect all the (d − 1)-dimensional faces, which makes all the neighboring blocks
Co-substantial, hence B cannot be red. Our main claim is the following:

Lemma 2.1. On the event Am,t := {|Co| = m and τ(Co,C∞) ≥ t}, the set R ∪ B of colored
blocks has an NZ

d
∗-connected subset of size ≥ c4(N, d)max{m1−1/d, t}, contained in the box

Bm(o).

Proof. We will first define P, a large NZ
d
∗-connected set that will be mostly colored. Then we

will remove its uncolored parts and repair the resulting holes by adding some colored blocks,
so that the augmented set P∗ will be fully colored, NZ

d
∗-connected, and large.

Firstly, by Fact (b) above, the frontier ∂+
iV (C N

o ) ⊆ R is connected in NZ
d
∗, and is of size

at least c5(d)m1−1/d/Nd, by the standard isoperimetric inequality in Z
d. Secondly, consider
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a block both red and blue 

a pure blue block

the cluster of the origin

the infinite cluster

a pure red block

Figure 1: The clusters Co, C∞ and the sets R, B.

C N
o ∩ C N

∞ . This set contains B, whose size is at least t/(2N)d. Now take the union

P := ∂+
iV (C N

o ) ∪
(

C N
o ∩ C

N
∞

)

.

The set C N
o ∩ C N

∞ can have several NZ
d-connected components, but, by Fact (a), each com-

ponent intersects ∂+
iV (C N

o ), which is an NZ
d
∗-connected set by (b). Therefore, the union P is

NZ
d
∗-connected, and its size is at least max{c5(d)m1−1/d/Nd, t/(2N)d}.
However, P may contain some uncolored blocks, listed as U1, . . . , Uk. See the left side of

Figure 2. The set of all uncolored blocks in NZ
d form connected components in NZ

d: the
infinite component NZ

d \ C N
o , and some finite ones, each separated from infinity by the red

cutset ∂+
iV (C N

o ). Those finite components that contain at least one of the Ui’s will be listed
as U1, . . . ,Uℓ. Clearly, each Ui is in one of the Uj ’s. We claim that

P
∗ :=

(

P \ {Uj}k
j=1

)

∪
(

ℓ
⋃

j=1

∂+
oV Uj

)

=

ℓ
⋃

j=1

(

(P \ Uj) ∪ ∂+
oV Uj

)

is an NZ
d
∗-connected subset of R∪ B. See the right side of Figure 2.

For each j, the frontier ∂+
oV Uj is a part of the boundary of an uncolored component, hence

colored. Thus P∗ ⊆ R ∪ B; however, it is less clear that it is NZ
d
∗-connected. On the other

hand, ∂+
oV Uj is NZ

d
∗-connected by Fact (b), therefore P∗∗ :=

⋃ℓ
j=1

(

(P\Uj)∪∂+
oV Uj

)

is NZ
d
∗-

connected. However, maybe it is smaller than P∗. We will show in the next paragraph that
P∩Uj cannot have any colored blocks, which implies P∩Uj = P∩Uj . Thus P\Uj = P\Uj

and P∗ = P∗∗, which proves the claim that P∗ is NZ
d
∗-connected.

Assume, on the contrary, that P ∩ Uj has some colored block D. Since Uj is disjoint

from ∂+
iV (C N

o ), we have P ∩ Uj ⊆ C N
o ∩ C N

∞ , hence this colored D is C∞-substantial, and
hence it is blue (it might at the same time be red). Thus there is a C N

o -path connecting D
to ∂+

iV (C N
o ), and a C N

∞ -path connecting D to infinity. Both of these paths must intersect the
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inside
N

uncolored blocks components 1 and 2

components of 

uncolored blocks

outer vertex frontiers
, and theird in 

 of

Figure 2: The NZ
d
∗-connected set P copied from Figure 1.

uncolored cutset ∂+
iV Uj ; let Fα ∈ C N

α ∩ ∂+
iV Uj , where α ∈ {o,∞}. Since F∞ is uncolored but

C∞-substantial, it is non-Co-substantial. On the other hand, Fo is Co-substantial. Both Fα’s
are in the NZ

d-connected set Uj , hence, on any path connecting Fo and F∞ inside Uj there
exists a Co-substantial block F ∗ that has a non-Co-substantial neighbor. But then F ∗ should
be red by definition, while it is in Uj , hence uncolored — a contradiction.

Thus we have P∗, an NZ
d
∗-connected subset of R∪B, which contains all the colored blocks

of P, hence its size is also at least max{c5(d)m1−1/d/Nd, t/(2N)d}. That it is inside the box
Bm(o) is clear from |Co| = m. Therefore, the lemma is proved.

Proof of Theorem 1.1. Our Lemma 2.1 says that Am,t implies that the set of bad blocks
contains an NZ

d
∗-connected subset of size at least c4(N, d)max{m1−1/d, t} which is contained

in Bm(o). Whether a block is bad is independent of all the blocks which are not adjacent to it
in NZ

d
∗. Therefore, a usual Peierls-argument for the graph NZ

d
∗ (see, e.g., [25], or Part (i) of

Theorem 4.1 below) gives that if the probability for a block to be bad is less than some ε > 0
whose value depends only on the graph structure Z

d
∗, then the probability of Am,t is less than

exp
(

−c1(N, d)max{m1−1/d, t}
)

. As mentioned above, the point of renormalization is exactly
that the probability of a block being bad is less than any ε > 0 if N is large enough, thus the
proof of Theorem 1.1 is complete.

3 Proof of the d-dimensional isoperimetric inequalities

Proof of Theorem 1.2. We will denote the infinite percolation cluster C∞ simply by C . For

a connected subgraph S ⊆ C ⊆ Z
d, denote ∂̃C S := EZd(S

C
,C \ S

C
), the set of edges in

Z
d with one endpoint in S, the other in the unique infinite component of C \ S. Note that

∂̃C S ∩ E(C ) = ∂+
C

S, i.e., ∂+
C

S is the set of edges in ∂̃C S that are open and hence belong to
C . Consider now the events

X (m, t, s) := {∃S connected : o ∈ S ⊂ C , |S| = m, |∂̃C S| = t, |∂+
C

S| = s}.

Our goal is to bound from above the quantity

Pp

(

∃S conn. : o ∈ S ⊂ C , |S| ≥ M,
|∂+

C
S|

|S|1−1/d
≤ α

)

=
∑

m≥M

⌊αm1−1/d⌋
∑

s=1

m
∑

t=s

Pp(X (m, t, s)). (3.1)
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For the events
Y(m, t) := {|Co| = m and τ(Co,C∞) = t},

our Theorem 1.1 says that, for some c = c(d, p) > 0,

Pp(Y(m, t)) ≤ exp
(

−cmax{m1−1/d, t}
)

. (3.2)

Given a configuration ω ∈ X (m, t, s) and a corresponding set S ∋ o, define a new configuration
F (ω, S) ∈ Y(m, t) by redeclaring the edges in ∂+

C
S to be closed. For a given ω′ ∈ Y(m, t),

there are
(

t
s

)

pre-images (ω, S) under F . For each ω ∈ X there is at least one S, hence, writing
Q = p

1−p > 1,

Pp(X (m, t, s)) ≤
(

t

s

)

Qs
Pp(Y(m, t)). (3.3)

Combining (3.2) and (3.3) will give an upper bound on (3.1). The summations over s and t
in (3.1) can be rewritten as

⌊αm1−1/d⌋
∑

t=1

t
∑

s=1

Pp(X (m, t, s)) +

m
∑

t=⌊αm1−1/d⌋+1

⌊αm1−1/d⌋
∑

s=1

Pp(X (m, t, s)) = S1 + S2.

We have S1 ≤ ∑⌊αm1−1/d⌋
t=1 (1 + Q)t exp

(

−cmax{m1−1/d, t}
)

. For α = α(d, p) small enough,

this is at most exp
(

−(c/2)m1−1/d
)

. To bound S2, we are using the straightforward estimate

αn
∑

s=1

(

βn

s

)

Qs ≤ exp
(

α
(

1 + log(β/α) + log Q
)

n
)

for β ≥ α, (3.4)

applied with n = m1−1/d and t = βn. If α = α(d, p) is small enough, then α(1 + log(β/α) +
log Q) < (c/2)β, hence S2 ≤ ∑m

t=⌊αm1−1/d⌋+1 exp
(

−(c/2)t
)

. Putting together our bounds on

S1 and S2, we get that (3.1) is at most exp
(

−c′M1−1/d
)

for some c′ = c′(d, p).

Remark. The decay rate in (1.2) is sharp for a simple reason. Take r ∈ Z
+, an edge er ∈

∂E [−r, r]d, some 0 < ρ < Pp(o ∈ C∞), and consider the event Ar :=
{

o ∈ C∞, er ∈ E(C∞),

|C∞ ∩ [−r, r]d| > ρrd
}

. Then Pp(Ar) > c > 0. For ω ∈ Ar, define ω̂ by redeclaring all of

∂E [−r, r]d ∩E(C∞) but er to be closed. By counting preimages and the cost of redeclaration,
the set Âr of ω̂’s has probability at least exp(−Crd−1), and on Âr, the connected set S :=
C∞ ∩ [−r, r]d has |S| > ρrd but |∂+

C
S| = 1.

Proof of Corollary 1.3. Consider percolation on the infinite lattice Z
d. Then, by Theorem 1.2

and a union bound, Pp

(

∃x ∈ [−n, n]d and S connected : x ∈ S ⊂ C∞, |S| ≥ M,
|∂+

C
S|

|S|1−1/d ≤ α
)

is at most (2n)d exp
(

−c2M
1−1/d

)

. If M ≥ c3(log n)
d

d−1 with c3 > (d + 2)/c2(d, p), then this
probability is at most O(1/n2), so the Borel-Cantelli lemma finishes the proof.

Proof of Corollary 1.4. We first need a finite box version of Theorem 1.1. For this, consider
two disjoint clusters C1,C2 ⊆ Bn = [−n, n]d with m ≤ |C1| ≤ |C2| and τ(C1,C2) ≥ t.
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For simplicity, we assume that n is divisible by N , and define the red set R using C1,
and the blue set B using C1 and C2, analogously to what we did in Section 2. We have
R,B ⊆ NBn/N . Now let ∆ := ∂+C2

iV (C1) be the set of vertices in C1 that have a neighbor in
the connected component of Bn \ C1 that contains C2. Consider ∆N ⊆ NBn/N . By Fact (c)

above, ∆N is an NZ
d
∗-connected subset of R, and, similarly to Fact (a), it is easy to see that

each NZ
d-connected component of C N

1 ∩ C N
2 intersects ∆N . Furthermore, by the finite box

isoperimetric inequalities of [13] or [16], the size of ∆N is at least c(N, d)m1−1/d. (This is the
step that works for Z

d but would break down on a finite ball of a regular tree.) Therefore, our
new

P := ∆N ∪
(

C N
1 ∩ C

N
2

)

is again an NZ
d
∗-connected set of size at least c(N, d)max{m1−1/d, t}. Exactly as before, the

corresponding set P∗ is a large NZ
d
∗-connected subset of R∪B. Finally, renormalization gives

that for p > pc(Z
d), the probability of having disjoint clusters C1,C2 with m ≤ |C1| ≤ |C2|

and τ(C1,C2) ≥ t is at most Cnd exp
(

−c1(N, d)max{m1−1/d, t}
)

.
Plugging this into the proof of Theorem 1.2, we get: with probability going to 1, for any sub-

set S of the giant cluster C such that both S and C \S are connected, and c′3(d, p) (log n)
d

d−1 ≤
|S| ≤ |C \S|, we have |∂C S|

|S|1−1/d ≥ α′(d, p). We have to extend this result to all connected subsets

S that are large enough. This is exactly the content of the not very hard Lemma 2.6 of [9],
and we are done.

4 Survival of anchored isoperimetry on general graphs

Consider a bounded degree infinite graph G, with a fixed vertex o. Let qn(G) be the number
of minimal edge cutsets of cardinality n separating o from infinity. Assume that

κ(G) := lim sup
n→∞

qn(G)1/n < ∞, (4.1)

which quantity does not depend on the basepoint o. (4.1) is known to be satisfied in many
situations: when G is the Cayley graph of a finitely presented group that is not a finite
extension of Z, or is quasi-isometric to such a Cayley graph [3, 43]; when G is a planar graph
with polynomial growth and isoperimetric dimension bigger than 1 [26]; when G has anchored
expansion [14]. We will see that transient wedges of Z

3 also satisfy (4.1). And why is this
useful for us?

Theorem 4.1. Consider edge-percolation on a bounded degree infinite graph G(V,E).

(i) If κ(G) < ∞, then pc(G) ≤ 1 − 1/κ(G), and the exponential decay (1.5) holds for p >
1 − 1/κ(G).

(ii) Suppose that G satisfies IP∗
ψ with some ψ ր ∞, and that the exponential decay (1.5)

holds for some p. Then p-almost surely on the event that the open cluster Co is infinite, Co

satisfies IP∗
ψ.

Proof. Part (i) is a standard Peierls argument. For any p > 1 − 1/κ(G) fixed, let ε ∈
(0, 1/κ − 1 + p), and N is so large that qn(G) < (κ + ε)n for all n > N . Then the expected
number of minimal edge cutsets of size n with all edges being closed is qn(G)(1−p)n < (1−ε2)n.
This expectation is an upper bound on the probability of having any such cutset, hence (1.5) is
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proved. Moreover, if N is large enough, then the probability of having any closed cutset of size
larger than N is strictly less than 1. Now, κ < ∞ easily implies the existence of some integer r
such that the ball of radius r around o has |∂+

EBr(o)| > N . With positive probability, this ball
is not separated from infinity. But the event {Br(o) ⊆ Co} is independent from this separation,
and it has positive probability, so both events together occur with positive probability, and
then Co is infinite.

Part (ii) can be proved following the Appendix of [14] almost verbatim. In the language of
our above proof of Theorem 1.2, the argument is as follows. Consider the events

X (m, s) := {|Co| = ∞, and ∃S connected : o ∈ S ⊂ C , |∂+
ES| = m, |∂+

C
S| = s},

Y(m) := {|Co| < ∞, |∂+
ECo| = m}.

Now, for ω ∈ X (m, s) with s ≤ αm, and a corresponding S ∋ o, we redeclare the edges in ∂+
C

S
to be closed, and get F (ω, S) = ω′ ∈ Y(m). Therefore,

∑

s≤αm

Pp(X (m, s)) ≤
∑

s≤αm

(

m

s

)

Qs
Pp(Y(m)). (4.2)

To bound Pp(Y(m)) from above, we use (1.5) in place of (3.2). On the other hand, for any
ε > 0, if α is small enough, then αm

(

m
αm

)

Qαm < (1 + ε)m. Thus we get an exponential decay

for (4.2), and the Borel-Cantelli lemma gives a positive lower bound on the ratios |∂+
C

S|/|∂+
ES|.

Now, for an arbitrary connected set o ∈ S ⊂ C , we can take its closure S
C

inside the graph C .

It is easy to see that |∂+
C

(

S
C )

|/|∂+
E

(

S
C )

| ≤ |∂C S|/|∂ES|, which implies that IP∗
ψ survives.

5 Percolation on transient wedges

Proof of Proposition 1.7. Consider a connected subset S in Wh, containing the origin o, of
volume |S| = v and boundary |∂ES| = w. We are going to show that there exist a constant
c = c(Wh) ∈ (0, 1) and some k = k(S) ∈ Z

+ such that

w ≥ c
√

h(k)v (5.1)

and

w ≥ v/k . (5.2)

We claim that these imply

w ≥ c
√

vf(v) , where f(v) := h
(

√

v/h(
√

v)
)

.

Indeed, if k ≥
√

v/h(
√

v), then the monotonicity of h implies h(k)v ≥ f(v)v, and the claim

follows from (5.1). If k ≤
√

v/h(
√

v), then v/k ≥
√

vh(
√

v) ≥
√

vf(v), so the claim follows
from (5.2).

That is, Wh satisfies IP∗
ψ with ψ(v) =

√

vf(v). So the last thing we need for (1.4) is that
∑∞

k=1(vf(v))−1 < ∞. Our condition h(δx) ≥ γδh(x) implies h(
√

v) ≤ C
√

v with C = h(1)/γ.

These and the monotonicity of h give (γ/
√

C)h(v1/4) ≤ h
(

v1/4/
√

C
)

≤ h
(
√

v/h(
√

v)
)

. On
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the other hand, by a change of variables, (1.6) implies
∑∞

v=1(vh(v1/4))−1 < ∞, and we are
done.

Remark. Note here that the seemingly natural choice ψ(v) :=
√

vh(v) does not work, as can
be easily checked, e.g., for h(x) = xα, any α ∈ (0, 1].

We still need to prove (5.1) and (5.2). For this, we will use some simple entropy inequalities.
For random variables ξ, η with values in a finite set A, their entropy and conditional entropy
are

H(ξ) :=
∑

a∈A

P(ξ = a) log
1

P(ξ = a)
and H(ξ | η) := H(ξ, η) − H(η) ,

where H(ξ, η) is the entropy of the r.v. (ξ, η). We will be using two basic inequalities: entropy
is maximized by the uniform measure, i.e., H(ξ) ≤ log |A|, and H(ξ | η, ζ) ≤ H(ξ | η).

Consider the projections Px, Py, Pz in the three coordinate directions of Z
3. Given S ⊂ Wh,

we use the notation S(x, y, ·) := S ∩ (x, y, Z) for the sections of S. Let wx := |Px(S)|,
wy := |Py(S)|, and wz :=

∣

∣

{

(x, y) ∈ Pz(S) : |S(x, y, ·)| < |Wh(x, y, ·)| = 2h(x) + 1
}∣

∣. Note
that w ≥ wx + 2wy + wz.

Let (X,Y,Z) be a uniform random point of S. Note that H(X,Y,Z) = log v, while
H(Y,Z) ≤ log wx and H(X,Z) ≤ log wy. On the other hand, from the basic properties of
conditional entropy, one easily gets H(Y,Z) + H(X,Z) ≥ H(X,Y,Z) + H(Z). This gives

wx wy ≥ v exp(H(Z)) . (5.3)

Now we let k := v/(wx + wz). In the proof below, this quantity will play the role of some sort
of weighted average size of S in the x direction. Since w ≥ wx + wz, we obviously have (5.2).
The key step now will be to show that

H(Z) ≥ log
(

c′ h(k)
)

(5.4)

for some c′ = c′(Wh) > 0, because then (5.3) and the inequality between the geometric and
arithmetic means imply wx + wy ≥ 4

√

v c′ h(k), and then (5.1) follows immediately.
Decompose S into Sfull := {(x, y, z) ∈ S : |S(x, y, ·)| = 2h(x) + 1}| and Smiss := S \ Sfull,

with sizes vfull + vmiss = v. Denote kfull := |Sfull|/|Px(Sfull)| ≥ vfull/wx. If (Yfull, Zfull) is
picked uniformly in Px(Sfull), and ξfull := |Sfull(·, Yfull, Zfull)|, then Eξfull = kfull, while the
r.v. |Sfull(·, Y, Z)| conditioned on (X,Y,Z) ∈ Sfull is the size-biased version of ξfull. Therefore,

P

(

|Sfull(·, Y, Z)| ≤ εkfull

∣

∣

∣
(X,Y,Z) ∈ Sfull

)

=
∑

j≤εkfull

jP(ξfull = j)

Eξfull
≤ εP(ξfull ≤ εkfull) ≤ ε ,

for any ε > 0. It follows immediately that

P
(

X ≤ εkfull

∣

∣ (X,Y,Z) ∈ Sfull

)

≤ ε . (5.5)

Similarly, if we let hmiss := |Smiss|/|Pz(Smiss)| = vmiss/wz, then

P

(

|Smiss(X,Y, ·)| ≤ εhmiss

∣

∣

∣
(X,Y,Z) ∈ Smiss

)

≤ ε . (5.6)

Denoting ν := vfull/v and ρ := wx/(wx + wz), we have kfull = (ν/ρ) k and hmiss = (1 −
ν)/(1− ρ) k. Introducing the r.v. ζ := |S(X,Y, ·)|, the inequalities (5.5) and (5.6) translate to

P
(

ζ ≤ h(δk) | (X,Y,Z) ∈ Sfull

)

≤ ρ

ν
δ , and P

(

ζ ≤ δk | (X,Y,Z) ∈ Smiss

)

≤ 1 − ρ

1 − ν
δ ,
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for any δ > 0. Since h(δk) ≤ δk, these together give

P
(

ζ ≤ h(δk)
)

≤ δ . (5.7)

Finally, notice that this concentration result and our condition h(δx) ≥ γδh(x) imply

H(Z) ≥ H(Z | X,Y ) = E(log h(ζ)) ≥
∑

j≥1

1

2j
log h(k/2j)

≥
∑

j≥1

log
(

γh(k)
)

2j
−

∑

j≥1

j log 2

2j
≥ log h(k) − C ,

and (5.4) is proved.

Proof of Theorem 1.6 with the extra assumption on h(·). Because of the translation invariance
in the y direction and the amenability of Wh, we can have only one infinite cluster a.s., at
any p; see [31]. The fact that pc(Wh) = pc(Z

3) whenever (1.6) holds will be clear from what
follows.

One direction is standard: if Wh is recurrent, then any subgraph of it is also such, by
Rayleigh’s monotonicity principle [31]. Conversely, when Wh is transient: from Proposition 1.7
we now that Wh has IP∗

ψ with some ψ satisfying Thomassen’s condition (1.4). Furthermore,
(4.1) holds, by the following argument. Firstly, let G be the graph whose vertices are the edges
of Wh, and two such edges are adjacent in G if they have some endpoints that are Z

3
∗-adjacent.

Each degree in G is at most a constant D, and any minimal edge-cutset in Wh separating o
from infinity is a connected subgraph of G. Secondly, if the distance in Wh of an edge-cutset
from the origin is at least t, then its cardinality is at least t, because of its intersection with
the plane (x, y, 0) ⊂ Wh. Altogether, the number of edge-cutsets of size n is at most O(n3)∆n,
hence κ(Wh) < ∞, indeed. Theorem 4.1 now gives that the infinite cluster at p > 1−1/κ(Wh)
also satisfies IP∗

ψ, and thus it is transient.
Now we want to extend this result for any p > pc(Z

3); this will be almost the same as in [1].
Recall the definitions of a block, a good block and a C -substantial block from Section 2,
w.r.t. an integer N = N(p). Let Wh(N) be the set of blocks that are contained in Wh; we will
think of Wh(N) as a subgraph of NZ

3 ≃ Z
3 or NZ

3
∗ ≃ Z

3
∗. The monotonicity of h implies that

Wh(N) is infinite and connected for any N . Again, Wh(N) has at most one infinite cluster at
any p, and Wh(N) satisfies the same IP∗

ψ as Wh.
In Section 2 we used that the probability for a block to be good is at least 1−ε for N large.

A stronger statement is the Antal-Pisztora renormalization lemma [2, Proposition 2.1], which
also follows from the general Liggett-Schonmann-Stacey domination theorem [27]. Applied
to Wh, it says that for all p > pc(Z

3) and ε > 0 there is an N so that the process P̃p,N

of good blocks stochastically dominates Bernoulli(1 − ε) percolation P1−ε,N on Wh(N), and
the C∞-substantial blocks form a unique infinite component on Wh(N)∗, denoted by C∞(N).
Moreover, the a.s. transience of C∞ on Wh under Pp would follow from the a.s. transience of

C∞(N) under P̃p,N .
It is not difficult to see that the cutset exponent (4.1) satisfies κ((Wh(N)∗) = κ((Wh)∗) <

∞, for any fixed N and h. The same holds for the vertex cutset exponent κV that can be
defined analogously. Given p > pc(Z

3), take N so large that P̃p,N dominates P1−ε,N site
percolation on Wh(N), where 1 − 1/κV ((Wh)∗) < 1 − ε < 1. Then, by Theorem 4.1, we have
a unique infinite Bernoulli(1 − ε)-cluster on Wh(N)∗, which is transient if h satisfies (1.6).
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Rayleigh’s monotonicity principle implies that C∞(N) is also transient, so, finally, C∞ is such,
too.
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[21] O. Häggström, Y. Peres and R. H. Schonmann. Percolation on transitive graphs
as a coalescent process: Relentless merging followed by simultaneous uniqueness.
In: Perplexing Problems in Probability (M. Bramson and R. Durrett, ed.), pages
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