SPECTRAL GAP FOR THE INTERCHANGE PROCESS IN A BOX

BEN MORRIS ${ }^{1}$
Department of Mathematics, University of California, Davis CA 95616. email: morris@math.ucdavis.edu

Submitted May 5, 2008, accepted in final form June 4, 2008
AMS 2000 Subject classification: 60J25
Keywords: spectral gap, interchange process

Abstract

We show that the spectral gap for the interchange process (and the symmetric exclusion process) in a d-dimensional box of side length L is asymptotic to π^{2} / L^{2}. This gives more evidence in favor of Aldous's conjecture that in any graph the spectral gap for the interchange process is the same as the spectral gap for a corresponding continuous-time random walk. Our proof uses a technique that is similar to that used by Handjani and Jungreis, who proved that Aldous's conjecture holds when the graph is a tree.

1 Introduction

1.1 Aldous's conjecture

This subsection is taken (with minor alterations) from David Aldous's web page. Consider an n-vertex graph G which is connected and undirected. Take n particles labeled $1,2, \ldots, n$. In a configuration, there is one particle at each vertex. The interchange process is the following continuous-time Markov chain on configurations. For each edge (i, j), at rate 1 the particles at vertex i and vertex j are interchanged.
The interchange process is reversible, and its stationary distribution is uniform on all n ! configurations. There is a spectral gap $\lambda_{\mathrm{IP}}(G)>0$, which is the absolute value of the largest non-zero eigenvalue of the transition rate matrix. If instead we just watch a single particle, it performs a continuous-time random walk on G (hereafter referred to simply as "the continuoustime random walk on $\left.G^{\prime \prime}\right)$, which is also reversible and hence has a spectral gap $\lambda_{\mathrm{RW}}(G)>0$. Simple arguments (the contraction principle) show $\lambda_{\mathrm{IP}}(G) \leq \lambda_{\mathrm{RW}}(G)$.

Problem. Prove $\lambda_{\mathrm{IP}}(G)=\lambda_{\mathrm{RW}}(G)$ for all G.
Discussion. Fix m and color particles $1,2, \ldots, m$ red. Then the red particles in the interchange process behave as the usual exclusion process (i.e., m particles performing the continuous-time

[^0]random walk on G, but with moves that take two particles to the same vertex suppressed). But in the finite setting, the interchange process seems more natural.

1.2 Results

Aldous's conjecture has been proved in the case where G is a tree [7] and in the case where G is the complete graph [5]; see also [12]. In this note we prove an asymptotic version of Aldous's conjecture for G a box in \mathbf{Z}^{d}. We show that if B_{L} denotes a box of side length L in \mathbf{Z}^{d} then

$$
\frac{\lambda_{\mathrm{IP}}\left(B_{L}\right)}{\lambda_{\mathrm{RW}}\left(B_{L}\right)} \rightarrow 1
$$

as $L \rightarrow \infty$.

Remark: After completing a draft of this paper, I learned that Starr and Conomos had recently obtained the same result (see [14]). Their proof uses a similar approach, although the present paper is somewhat shorter.
Connection to simple exclusion. Our result gives a bound on the spectral gap for the exclusion process. The exclusion process is a widely studied Markov chain, with connections to card shuffling [16, 1], statistical mechanics [8, 13, 2, 15], and a variety of other processes (see e.g., $[10,6]$); it has been one of the major examples behind the study of convergence rates for Markov chains (see, e.g., [6, 3, 16, 1]). Our result implies that the spectral gap for the symmetric exclusion process in B_{L} is asymptotic to π^{2} / L^{2}. The problem of bounding the spectral gap for simple exclusion was studied in Quastel [13] and a subsequent independent paper of Diaconis and Saloff-Coste [3]. Both of these papers used a comparison to BernoulliLaplace diffusion (i.e., the exclusion process in the complete graph) to obtain a bound of order $1 / d L^{2}$. Diaconis and Saloff-Coste explicitly wondered whether the factor d in the denominator is necessary; in the present paper we show that it is not.

2 Background

Consider a continuous-time Markov chain on a finite state space W with a symmetric transition rate matrix $Q(x, y)$. The spectral gap is the minimum value of $\alpha>0$ such that

$$
\begin{equation*}
Q f=-\alpha f \tag{1}
\end{equation*}
$$

for some $f: W \rightarrow \mathbf{R}$. The spectral gap governs the asymptotic rate of convergence to the stationary distribution. Define

$$
\mathcal{E}(f, f)=\frac{1}{2|W|} \sum_{x, y \in W}(f(x)-f(y))^{2} Q(x, y)
$$

and define

$$
\operatorname{var}(f)=\frac{1}{|W|} \sum_{x \in W}(f(x)-\mathbf{E}(f))^{2}
$$

where

$$
\mathbf{E}(f)=\frac{1}{|W|} \sum_{x \in W} f(x)
$$

If f is a function that satisfies $Q f=-\lambda f$ for some $\lambda>0$, then

$$
\begin{equation*}
\lambda=\frac{\mathcal{E}(f, f)}{\operatorname{var}(f)} \tag{2}
\end{equation*}
$$

Furthermore, if α is the spectral gap then for any non-constant $f: W \rightarrow \mathbf{R}$ we have

$$
\begin{equation*}
\frac{\mathcal{E}(f, f)}{\operatorname{var}(f)} \geq \alpha \tag{3}
\end{equation*}
$$

Thus the spectral gap can be obtained by minimizing the left hand side of (3) over all nonconstant functions $f: W \rightarrow \mathbf{R}$.

3 Main result

Before specializing to the interchange process, we first prove a general proposition relating the eigenvalues of a certain function of a Markov chain to the eigenvalues of the Markov chain itself. Let X_{t} be a continuous-time Markov chain on a finite state space W with a symmetric transition rate matrix $Q(x, y)$. Let T be another space and let $g: W \rightarrow T$ be a function on W such that if $g(x)=g(y)$ and $U=g^{-1}(u)$ for some u, then $\sum_{u^{\prime} \in U} Q\left(x, u^{\prime}\right)=\sum_{u^{\prime} \in U} Q\left(y, u^{\prime}\right)$. Note that $g\left(X_{t}\right)$ is a Markov chain. Let W^{\prime} denote the collection of subsets of W of the form $g^{-1}(u)$ for some $u \in T$. We can identify the states of $g\left(X_{n}\right)$ with elements of W^{\prime}. Let Q^{\prime} denote the transition rate matrix for $g\left(X_{n}\right)$. Note that if $U, U^{\prime} \in W^{\prime}$, with $U=g^{-1}(u)$ for some $u \in T$ and $U \neq U^{\prime}$, then $Q^{\prime}\left(U, U^{\prime}\right)=\sum_{y \in U^{\prime}} Q(u, y)$.
We shall need the following proposition, which generalizes Lemma 2 of [7].
Proposition 1. Let X_{t}, g and Q^{\prime} be as defined above. Suppose $f: W \rightarrow \mathbf{R}$ is an eigenvector of Q with corresponding eigenvalue $-\lambda$ and define $h: W^{\prime} \rightarrow \mathbf{R}$ by $h(U)=\sum_{x \in U} f(x)$. Then $Q^{\prime} h=-\lambda h$. That is, either h is an eigenvector of Q^{\prime} with corresponding eigenvalue $-\lambda$, or h is identically zero.

Proof: Note that for all $U^{\prime} \in W^{\prime}$ we have

$$
\begin{aligned}
\left(Q^{\prime} h\right)\left(U^{\prime}\right) & =\sum_{U \in W^{\prime}} h(U) Q^{\prime}\left(U, U^{\prime}\right) \\
& =\sum_{U \in W^{\prime}} \sum_{x \in U} f(x) \sum_{y \in U^{\prime}} Q(x, y) \\
& =\sum_{y \in U^{\prime}}(Q f)(y) \\
& =-\lambda \sum_{y \in U^{\prime}} f(y) \\
& =-\lambda h\left(U^{\prime}\right)
\end{aligned}
$$

so $Q^{\prime} h=-\lambda h$.

The following Lemma is a weaker version of Aldous's conjecture. The proof is similar to the proof of Theorem 1 in [7].

Lemma 2. Let G be a connected, undirected graph with vertices labeled $1, \ldots, n$. For $2 \leq k \leq n$ let G_{k} be the subgraph of G induced by the vertices $1,2, \ldots, k$. Let $\lambda_{\mathrm{RW}}\left(G_{k}\right)$ be the spectral gap for the continuous-time random walk on G_{k}, and define $\alpha_{k}=\min _{2 \leq j \leq k} \lambda_{\mathrm{RW}}\left(G_{j}\right)$. Then

$$
\lambda_{\mathrm{IP}}(G) \geq \alpha_{n}
$$

Proof: Our prooof will be by induction on the number of vertices n. The base case $n=2$ is trivial, so assume $n>2$. Let W and Q be the state space and transition rate matrix, respectively, for the interchange process on G. Let $f: W \rightarrow \mathbf{R}$ be a function that satisfies $Q f=-\lambda f$. We shall show that $\lambda \geq \alpha_{n}$. Note that a configuration of the interchange process can be identified with a permutation π in S_{n}, where if particle i is in vertex j, then $\pi(i)=j$. For positive integers m and k with $m, k \leq n$, we write $f(\pi(m)=k)$ for

$$
\sum_{\pi: \pi(m)=k} f(\pi)
$$

We consider two cases.

Case 1: For some m and k we have $f(\pi(m)=k) \neq 0$. Define $h: V \rightarrow \mathbf{R}$ by $h(j)=$ $f(\pi(m)=j)$. Then h is not identically zero, and using Proposition 1 with g defined by $g(\pi)=\pi(m)$ gives that if Q^{\prime} is the transition rate matrix for continuous time random walk on G, then $Q^{\prime} h=-\lambda h$. It follows that λ is an eigenvalue of Q^{\prime} and hence $\lambda \geq \lambda_{\mathrm{RW}}(G)=\alpha_{n}$.

Case 2: For all m and k we have $f(\pi(m)=k)=0$. Define the suppressed process as the interchange process with moves involving vertex n suppressed. That is, the Markov chain with the following transition rule:

For every edge e not incident to n, at rate 1 switch the particles at the endpoints of e.
For $1 \leq k \leq n$, let $W_{k}=\left\{\pi \in W: \pi^{-1}(n)=k\right\}$. Note that the W_{k} are the irreducible classes of the suppressed process, and that for each k the restriction of the suppressed process to W_{k} can be identified with the interchange process on G_{n-1}. For k with $1 \leq k \leq n$, define

$$
\mathcal{E}_{k}(f, f)=\frac{1}{2(n-1)!} \sum_{\pi_{1}, \pi_{2} \in W_{k}}\left(f\left(\pi_{1}\right)-f\left(\pi_{2}\right)\right)^{2} Q\left(\pi_{1}, \pi_{2}\right)
$$

and define

$$
\operatorname{var}_{k}(f)=\frac{1}{(n-1)!} \sum_{\pi \in W_{k}} f(\pi)^{2}
$$

(Note that for every k we have $\sum_{\pi \in W_{k}} f(x)=0$.)
By the induction hypothesis, the spectral gap for the interchange process on G_{n-1} is at least α_{n-1}. Hence for every k with $1 \leq k \leq n$ we have

$$
\mathcal{E}_{k}(f, f) \geq \alpha_{n-1} \operatorname{var}_{k}(f) \geq \alpha_{n} \operatorname{var}_{k}(f)
$$

It follows that

$$
\begin{align*}
n!\mathcal{E}(f, f) & \geq \frac{1}{2} \sum_{k=1}^{n} \sum_{\pi_{1}, \pi_{2} \in W_{k}}\left(f\left(\pi_{1}\right)-f\left(\pi_{2}\right)\right)^{2} Q\left(\pi_{1}, \pi_{2}\right) \tag{4}\\
& =\sum_{k=1}^{n}(n-1)!\mathcal{E}_{k}(f, f) \tag{5}\\
& \geq \sum_{k=1}^{n} \alpha_{n}(n-1)!\operatorname{var}_{k}(f) \tag{6}\\
& =\alpha_{n} \sum_{k=1}^{n} \sum_{\pi \in W_{k}} f(\pi)^{2} \tag{7}\\
& =\alpha_{n} n!\operatorname{var}(f) \tag{8}
\end{align*}
$$

Combining this with equation (2) gives $\lambda \geq \alpha_{n}$.

Remark: Theorem 2 is optimal if the vertices are labeled in such a way that $\lambda_{\mathrm{RW}}\left(G_{k}\right)$ is nonincreasing in k, in which case it gives $\lambda_{\mathrm{IP}}(G)=\lambda_{\mathrm{RW}}(G)$. Since any tree can be built up from smaller trees (with larger spectral gaps), we recover the result proved in [7] that $\lambda_{\mathrm{IP}}(T)=\lambda_{\mathrm{RW}}(T)$ if T is a tree.

Our main application of Lemma 2 is the following asymptotic version of Aldous's conjecture in the special case where G is a box in \mathbf{Z}^{d}.

Corollary 3. Let $B_{L}=\{0, \ldots, L\}^{d}$ be a box of side length L in \mathbf{Z}^{d}. Then the spectral gap for the interchange process on B_{L} is asymptotic to π^{2} / L^{2}.

Proof: In order to use Lemma 2 we need to label the vertices of B_{L} in some way. Our goal is to label in such a way that for every k the quantity $\lambda_{\mathrm{RW}}\left(G_{k}\right)$ (i.e., the spectral gap corresponding to the subgraph of B_{L} induced by the vertices $\left.1, \ldots, k\right)$ is not too much smaller than $\lambda_{\mathrm{RW}}\left(B_{L}\right)$. So our task is to build B_{L}, one vertex at a time, in such a way that the spectral gaps of the intermediate graphs don't get too small.
We shall build B_{L} by inductively building B_{L-1} and then building B_{L} from B_{L-1}. Since $\lambda_{\mathrm{RW}}\left(B_{L}\right) \downarrow 0$, it is enough to show that

$$
\frac{\beta_{L}}{\lambda_{\mathrm{RW}}\left(B_{L}\right)} \rightarrow 1
$$

where β_{L} is the minimum spectral gap for any intermediate graph between B_{L-1} and B_{L}.
For a graph H, let $V(H)$ denote the set of vertices in H. For $j \geq 0$, let $\mathcal{L}_{j}=\{0, \ldots, j\}$ be the line graph with $j+1$ vertices. Define $\gamma_{L}=\lambda_{\mathrm{RW}}\left(\mathcal{L}_{L}\right)$. It is well known that γ_{L} is decreasing in L and asymptotic to π^{2} / L^{2} as $L \rightarrow \infty$. It is also well known that if H and H^{\prime} are graphs and \times denotes Cartesian product, then $\lambda_{\mathrm{RW}}\left(H \times H^{\prime}\right)=\min \left(\lambda_{\mathrm{RW}}(H), \lambda_{\mathrm{RW}}\left(H^{\prime}\right)\right)$. Since $B_{L}=\mathcal{L}_{L}^{d}$, it follows that $\lambda_{\mathrm{RW}}\left(B_{L}\right)=\gamma_{L}$.
We construct B_{L} from B_{L-1} using intermediate graphs H_{0}, \ldots, H_{d}, where for k with $1 \leq k \leq d$ we define $H_{k}=\mathcal{L}_{L}^{k} \times \mathcal{L}_{L-1}^{d-k}$. Note that $H_{0}=B_{L-1}$ and $H_{d}=B_{L}$. We obtain H_{k} from H_{k-1} by adding vertices to lengthen H_{k-1} by one unit in direction k. The order in which the vertices in $V\left(H_{k}\right)-V\left(H_{k-1}\right)$ are added is arbitrary.

Fix k with $1 \leq k \leq d$, and define $G^{\prime}=G^{\prime}(L, k)$ as follows. Let

$$
V^{\prime}=V\left(H_{k}\right), \quad E^{\prime}=\left\{(u, v): \text { either } u \text { or } v \text { is a vertex in } H_{k-1}\right\}
$$

and let $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$. It is well known and easily shown that if H is a graph, then adding edges to H cannot decrease $\lambda_{\mathrm{RW}}(H)$, nor can removing pendant edges. Since each intermediate graph \tilde{G} between H_{k-1} and H_{k} can be obtained from G^{\prime} by adding edges and removing pendant edges, it follows that for any such graph \tilde{G} we have $\lambda_{\mathrm{RW}}(\tilde{G}) \geq \lambda_{\mathrm{RW}}\left(G^{\prime}\right)$. Thus, it is enough to bound $\lambda_{\mathrm{RW}}\left(G^{\prime}\right)$ from below. We shall show that for any $\epsilon>0$ we have $\lambda_{\mathrm{RW}}\left(G^{\prime}(L, k)\right) \geq(1-\epsilon) \gamma_{L}$ if L is sufficiently large.
Let e_{k} be the unit vector in direction k. Let

$$
S=V\left(H_{k-1}\right) ; \quad \partial S=V^{\prime}-S
$$

Let X_{t} be the continuous-time random walk on G^{\prime}, with transition rate matrix Q. Fix f : $V^{\prime} \rightarrow \mathbf{R}$ with $Q f=-\lambda f$ for some $\lambda>0$. For $x \in \mathbf{Z}^{d}$, let $g_{k}(x)$ denote the component of x in the k th coordinate. Note that $g_{k}\left(X_{t}\right)$ is the continuous-time random walk on \mathcal{L}_{L}. Let Q^{\prime} be the transition rate matrix for $g_{k}\left(X_{t}\right)$. Proposition 1 implies that if $h:\{0, \ldots, L\} \rightarrow \mathbf{R}$ is defined by $h(j)=\sum_{\substack{x \in V^{\prime} \\ g_{k}(x)=j}} f(x)$, then $Q^{\prime} h=-\lambda h$. Thus if $\lambda<\gamma_{L}$, then g is identically zero and hence $\sum_{x \in S} f(x)=0$. Define

$$
\mathcal{E}(f, f)=\frac{1}{2\left|V^{\prime}\right|} \sum_{x, y \in V^{\prime}}(f(x)-f(y))^{2} Q(x, y)
$$

and let $\mathcal{E}_{S}(f, f)$ be defined analogously, but with only vertices in S included in the sum. Note that $\mathcal{E}(f, f) \geq \mathcal{E}_{S}(f, f)$. Since $\sum_{x \in S} f(x)=0$, we have

$$
\begin{equation*}
\frac{\mathcal{E}_{S}(f, f)}{\sum_{x \in S} f(x)^{2}} \geq \lambda_{\mathrm{RW}}\left(H_{k-1}\right) \geq \gamma_{L} \tag{9}
\end{equation*}
$$

where the second inequality follows from the fact that H_{k-1} is a Cartesian product of d graphs, each of which is either \mathcal{L}_{L-1} or \mathcal{L}_{L}.
Fix $\epsilon>0$ and let M be a positive integer large enough so that $\left(1-4 M^{-1}\right)^{-1} \leq(1-\epsilon)^{-1 / 2}$. For each $x \in \partial S$, say that x is good if there is a $y \in S$ such that $x=y+i e_{k}$ for some $i \leq M$ and $|f(y)| \leq|f(x)| / 2$. Otherwise say that x is bad. Let \mathcal{G} and \mathcal{B} denote the set of good and bad vertices, respectively, in ∂S. Note that if x is bad and $M \leq L$ then $f(x)^{2} \leq$ $\frac{4}{M} \sum_{j=1}^{M} f\left(x-j e_{k}\right)^{2}$. Summing this over bad x gives

$$
\begin{equation*}
\sum_{x \in \mathcal{B}} f(x)^{2} \leq \frac{4}{M} \sum_{x \in V^{\prime}} f(x)^{2} \tag{10}
\end{equation*}
$$

Note that if x is good, then there must be an $x^{\prime} \in S$ of the form $x-i e_{k}$ such that $\mid f\left(x^{\prime}\right)-$ $f\left(x^{\prime}+e_{k}\right) \mid>f(x) / 2 M$. It follows that

$$
\begin{equation*}
\frac{\mathcal{E}(f, f)}{\sum_{x \in \mathcal{G}} f(x)^{2}} \geq 1 / 4 M^{2} \tag{11}
\end{equation*}
$$

Since $V^{\prime}=S \cup \mathcal{B} \cup \mathcal{G}$, combining equations (11), (9) and (10) gives

$$
\sum_{x \in V^{\prime}} f(x)^{2} \leq\left(\gamma_{L}^{-1}+4 M^{2}\right) \mathcal{E}(f, f)+4 M^{-1} \sum_{x \in V^{\prime}} f(x)^{2}
$$

and hence

$$
\begin{equation*}
\sum_{x \in V^{\prime}} f(x)^{2} \leq\left(1-4 M^{-1}\right)^{-1}\left(\gamma_{L}^{-1}+4 M^{2}\right) \mathcal{E}(f, f) \tag{12}
\end{equation*}
$$

Recall that $\left(1-4 M^{-1}\right)^{-1} \leq(1-\epsilon)^{-\frac{1}{2}}$, and note that since $\gamma_{L} \rightarrow 0$ as $L \rightarrow \infty$, we have $\gamma_{L}^{-1}+4 M^{2} \leq(1-\epsilon)^{-\frac{1}{2}} \gamma_{L}^{-1}$ for sufficiently large L. Combining this with equation (12) gives

$$
\frac{\mathcal{E}(f, f)}{\sum_{x \in V^{\prime}} f(x)^{2}} \geq(1-\epsilon) \gamma_{L}
$$

for sufficiently large L. It follows that $\lambda_{\mathrm{RW}}\left(G^{\prime}\right) \geq(1-\epsilon) \gamma_{L}$ for sufficiently large L and so the proof is complete.

References

[1] Benjamini, I., Berger, N., Hoffman, C., and Mossel, E. Mixing times of the biased card shuffling and the asymmetric exclusion process. Preprint. MR2135733
[2] Cancrini, N. and Martinelli, F. (2000) On the spectral gap of Kawasaki dynamics under a mixing condition revisited. Journal of Math. Phys. 41, 1391-1423. MR1757965
[3] Diaconis, P. and Saloff-Coste, L. (1993). Comparison Theorems for reversible Markov chains. Ann. Appl. Prob. 3, 696-730. MR1233621
[4] Diaconis, P. and Saloff-Coste, L. (1996). Logarithmic Sobolev Inequalities for Finite Markov Chains, Ann. Appl. Prob. 6, 695-750. MR1410112
[5] Diaconis, P. and Shahshahani, M. (1981). Generating a random permutation with random transpositions. Z. Wahrsch. Verw. Geb. 57, 159-179. MR0626813
[6] Fill, J. (1991). Eigenvalue bounds on convergence to stationarity for nonreversible Markov chains with an application to the exclusion processes. Ann. Appl. Prob. 1, 62-87. MR1097464
[7] Handjani, S. and Jungreis, D.(1996). Rate of convergence for shuffling cards by transpositions. J. Theor. Prob. 9, 983-993. MR1419872
[8] Kipnis, C., Olla, S., and Waradhan, S. (1989). Hydrodynamics and large deviations for simple exclusion processes. Comm. Pure Appl. Math. 42, 115-137. MR0978701
[9] Lee, T.-Y. and Yau, H.-T. (1998). Logarithmic Sobolev inequality for some models of random walk. Ann. Prob. 26, 1855-1873. MR1675008
[10] Liggett, T.M. Interacting Particle Systems. Springer, 1985. Grundlehren der mathematischen Wissenschaften; 276. MR0776231
[11] Lu, S. and Yau, H-T (1993). Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics. Comm. Math. Phys. 156, no. 2, 399-433. MR1233852
[12] Nachtergaele, B. and Starr, S. Ordering of energy levels in Heisenberg models and applications. In Joachim Asch and Alain Joye (Eds.), "Mathematical Physics of Quantum Mechanics: Selected and refereed lectures from QMath9", Lecture notes in Physics, Vol 690. Springer, 2006. MR2234909
[13] Quastel, J (1992). Diffusion of color in the simple exclusion process. Comm. Pure Appl. Math., XLV, 623-679. MR1162368
[14] Starr, S. and Conomos, M. Asymptotics of the spectral gap for the interchange process on large hypercubes. Preprint. http://front.math.ucdavis.edu/0802.1368
[15] Thomas, L.E. (1980). Quantum Heisenberg ferromagnets and stochastic exclusion processes. Journal of Math. Phys. 21, 1921-1924. MR0575630
[16] Wilson, D. Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Prob., to appear. MR2023023
[17] Yau, Horng-Tzer (1997). Logarithmic Sobolev inequality for generalized simple exclusion processes. Probab. Theory Related Fields 109 (1997), 507-538. MR1483598

[^0]: ${ }^{1}$ RESEARCH SUPPORTED BY SLOAN FELLOWSHIP AND NSF GRANT DMS-0707144.

