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Abstract

Metric entropy of the class of probability distribution functions on [0, 1] with a k-monotone
density is studied through its connection with the small ball probability of k-times integrated
Brownian motions.

1 Introduction

In statistical consultation, one is often confronted with the problem that a client shows a graph
of a certain observed frequency distribution and asks, “What theoretical probability distribu-
tion would fit this observed distribution?” This question becomes mathematically meaningful
once one specifies the family of densities to consider and the distance to measure the deviation
between the real density and the estimator of the density (Groeneboom (1985)). To answer
such a question, non-parametric estimators, such as the Maximum Likelihood Estimator, are
often used. It is well known that the rate of convergence of an estimator depends on the
richness of the function class. In particular, it depends on the metric entropy of the function
class. Thus, it is of interest to study the metric entropy of various shape-constrained function
classes that have statistical significance.
For a bounded set T in a metric space equipped with distance d, the metric ε-entropy of T is
defined as the logarithm of the minimum covering number, i.e, log N(ε, T, d), where

N(ε, T, d) := min

{
m : there exist t1, t2, . . . , tm such that T ⊂

m⋃

k=1

{t ∈ T : d(t, ti) < ε}
}

.

Metric entropy was first introduced by A. N. Kolmogorov and has been extensively studied
and applied in approximation theory, geometric functional analysis, probability theory, and

1RESEARCH SUPPORTED BY NSF GRANT DMS-0405855

121

DOI: 10.1214/ECP.v13-1357

1

http://dx.doi.org/10.1214/ECP.v13-1357


122 Electronic Communications in Probability

complexity theory, etc.; e.g., see the books by Kolmogorov and Tihomirov (1961), Lorentz
(1966), Carl and Stephani (1990), Edmunds and Triebel (1996). Among many beautiful results
are the duality theorem (Tomczak-Jaegermann (1987), Artstein et.al (2004)), and the small
ball probability connection (Kuelbs and Li (1993), Li and Linde (1999)), which will be used in
this paper. Nevertheless, the estimate of metric entropy for specific function classes remains
difficult, especially the lower bound estimate, which often requires a construction of a well-
separated subset.
In this paper, we study the metric entropy estimate of a class of shape-constrained functions
called k-monotone functions. k-monotone functions have been studied since at least the 1950s;
for example, Williamson (1956) gave a characterization of k-monotone functions on (0,∞)
in 1956. In recent years, there has been a lot of interest in statistics regarding this class of
functions. We refer the recent paper by Balabdaoui and Wellner (2004) and the references
therein for recent results and their statistical applications.
A function on a bounded interval, say [0, 1], is said to be m-monotone if (−1)kf (k)(x) is non-
negative, non-increasing, and convex for 0 ≤ k ≤ m − 2 if m ≥ 2, and f(x) is non-negative,
non-increasing if m = 1. Let us note that in dealing with the metric entropy of this function
class under Lp norms, 1 ≤ p < ∞, we can always assume that the functions are differentiable
infinitely many times by using the the following basic lemma.

Lemma 1.1. m-monotone C∞ functions are dense in m-monotone functions under Lp norm,
1 ≤ p < ∞.

Proof. The idea of the proof is simple. Basically, we can approximate a continuous function f
by f ∗K for some C∞ kernel K without changing the m-monotonicity. However, this requires
an extension of f to a larger interval containing [0, 1] while maintaining the m-monotonicity,
which is not immediately clear for m ≥ 2. Thus, we give a detailed proof for the case m ≥ 2.
If f is m-monotone on [0, 1] for m ≥ 2, then, by definition, (−1)m−2f (m−2) is non-negative
increasing and convex. For any ε > 0, we can find a piecewise linear non-negative increasing
convex function gm−2, such that ‖(−1)m−2f (m−2) − gm−2‖p < ε. Extend gm−2 to R, so that
gm−2 is supported on [−1, 1], and once restricted on [−1, 1], gm−2 is a continuous non-negative
increasing convex function. Let Kε be a C∞(−∞,∞) kernel supported on [0, 1] such that

‖gm−2 − hm−2‖Lp[0,1] ≤ ε,

where hm−2 = gm−2 ∗ Kε. Clearly hm−2 ∈ C∞. Because for each fixed x ∈ supp(Kε) ⊂ [0, 1],
gm−2(t − x) is a non-negative, increasing and convex function of t, and

hm−2(t) =

∫
∞

−∞

gm−2(t − x)Kε(x)dx =

∫ 1

0

gm−2(t − x)Kε(x)dx,

we see that hm−2 is also a non-negative, increasing and convex function on [0, 1].
Now, define

hm−3(t) := (−1)m−3f (m−3)(1) +

∫ 1

t

hm−2(x)dx.

Because

(−1)m−3f (m−3)(t) − hm−3(t) =

∫ 1

t

[
(−1)m−2f (m−2)(x) − hm−2(x)

]
dx,

we have ∥∥∥(−1)m−3f (m−3) − hm−3

∥∥∥
p
≤

∥∥∥(−1)m−2f (m−2) − hm−2

∥∥∥
p
≤ 2ε.
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Repeating this process, we can obtain an m-monotone C∞ function h0 such that ‖f − h0‖p ≤
2ε.

In view of Lemma 1.1, we will simply say for convenience that a function is m-monotone if
(−1)kf (k)(x) ≥ 0 for all 0 ≤ k ≤ m.

Our main result is the following

Theorem 1.2. Let Mm be the class of probability distribution functions on [0, 1] with an
m-monotone density function. Then

log N(ε,Mm, ‖ · ‖2) ≍ ε−1/(m+1).

where a ≍ b means a = O(b) and b = O(a) as ε → 0+.

This is a generalization of a result due to Van de Geer (1991) based on the earlier work of
Birman and Solomjak (1967) (see also Van der Vaart and Wellner (1996); Theorem 2.7.5) which
dealt with the case m = 0. The elegance of this paper is the method, which reveals a precise
connection with the small deviation probability of m-times integrated Brownian motions. Blei
at. al (2007) contains another application of this method.)

2 A Characterization

First, we need a characterization of the function class Mm. Recall that Williamson (1956)
proved that a function g is k-monotone on (0,∞) if and only if there exists a non-decreasing
function γ bounded at 0 such that

g(x) =

∫
∞

0

(1 − tx)k−1
+ dγ(t), x > 0

where y+ = y1(0,∞)(y). The following theorem gives a similar characterization for the function
class Mm.

Theorem 2.1. A function F (x) is a probability distribution function on [0, L] with a m-
monotone density if and only if it is of the form

F (x) = 1 −
[
a1(L − x) + a2(L − x)2 + · · · + am(L − x)m +

∫ L

x

(
1 − x

t

)m

dµ(t)

]
, (1)

where a1, a2, ..., am ≥ 0, µ is a non-negative measure on [0, L], and

a1L + a2L
2 + · · · + amLm + ‖µ‖ = 1.

Proof. Suppose F is a probability distribution function on [0, L] with an m-monotone density.
Then

(−1)mF (m)(t) = (−1)mf (m−1)(t)
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is non-decreasing. Thus, dµ(t) := (−1)mtm

m! dF (m)(t) defines a non-negative measure on [0, L].
Repeatedly using integration by parts gives

∫ L

x

(
1 − x

t

)m

dµ(t) =

∫ L

x

(x − t)m

m!
dF (m)(t)

=
m∑

k=1

F (k)(L)

k!
(x − L)k + F (L) − F (x)

=
m∑

k=1

(−1)kF (k)(L)

k!
(L − x)k + 1 − F (x).

Let ak = (−1)k−1F (k)(L)
k! . Then ak ≥ 0, and we have

F (x) = 1 −
[
a1(L − x) + a2(L − x)2 + · · · + am(L − x)m +

∫ L

x

(
1 − x

t

)m

dµ(t)

]
.

It remains to prove that a1L + a2L
2 + · · · + amLm + ‖µ‖ = 1. Note that by repeatedly using

integration by parts, we also have

‖µ‖ =

∫ L

0

(−1)mtm

m!
dF (m)(t)

= F (L) − F (0) −
m∑

k=1

(−1)k−1 F (k)(L)

k!
Lk

= 1 − (a1L + a2L
2 + · · · + amLm).

This proves that F can be expressed as (1). The other direction is trivial.

The proof of Theorem 2.1 also gives the following

Corollary 2.2. A function f is an integrable m-monotone function on [0, L] if and only if it
can be expressed as

f(x) = a1 + a2(L − x) + · · · + am(L − x)m−1 +

∫ L

x

m

t

(
1 − x

t

)m−1

dµ(t),

where a1, a2, ..., am ≥ 0, and µ is a non-negative measure. Furthermore,

a1L +
a2

2
L2 +

a3

3
L3 + · · · + am

m
Lm + ‖µ‖ =

∫ L

0

f(x)dx.

Remark 2.3. Corollary 2.2 is an extension of the following result of Williamson (See Balab-
daoui and Wellner (2004); Lemma 2.1): a function g is an integrable m-monotone function on
(0,∞) if and only if it is of the form

g(x) =

∫
∞

x

m(t − x)m−1

tm
dµ(t),

where µ is a finite measure on (0,∞).
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3 Proof of the Main Result

We denote by Qm the class of functions on [0, 1] of the form

1 −
∫ 1

x

(
1 − x

t

)m

dµ(t),

where µ(t) is a non-negative measure with total variation bounded. We also denote by Pm

the class of polynomials of the form a1(1 − x) + · · · + am(1 − x)m, with a1, a2, ..., am ≥ 0 and
a1 + · · · + am ≤ 1. Then Theorem 2.1 implies that Qm ⊂ Mm ⊂ Qm + Pm. Thus,

N(ε,Qm, ‖ · ‖2) ≤ N(ε,Mm, ‖ · ‖2) ≤ N(ε/2,Qm, ‖ · ‖2)N(ε/2,Pm, ‖ · ‖2). (2)

On the other hand, it is easy to see that

N(ε,Pm, ‖ · ‖2) ≤
(
1 +

m

ε

)m

. (3)

Indeed, the set

{a1(1 − x) + · · · + am(1 − x)m : ai ∈ {1/N, 2/N, ..., N/N}, 1 ≤ i ≤ m}

forms an m/N -net of Pm, and there are only Nm elements in this set. By choosing N = ⌈m/ε⌉,
inequality (3) follows. Substituting (3) into (2), we obtain

log N(ε,Mm, ‖ · ‖2) ≍ log N(ε,Qm, ‖ · ‖2),

provided that we show log N(ε,Qm, ‖ · ‖2) ≍ ε−α for some α > 0.
To estimate the covering number N(ε,Qm, ‖ · ‖2), we introduce an auxiliary function class

Q̃m that consists of all the functions on [0, 1] that can be expressed as 1−
∫ 1

x
(1− x/t)mdν(t),

where ν is a signed measure on [0, 1] with total variation bounded by 1. The benefit of using

this auxiliary function class is that Q̃m has a certain useful symmetry, which will become clear
later in the proof.
It is clear that Qm ⊂ Q̃m. So, N(ε,Qm, ‖ · ‖2) ≤ N(ε, Q̃m, ‖ · ‖2). On the other hand, if

F ∈ Q̃m, then there exists a signed measure ν with total variation bounded by 1, such that

F (x) = 1 −
∫ 1

x

(
1 − x

t

)m

dν(t).

Let µ1 := ν+ and µ2 := ν−. We have

F (x) = 1 −
∫ 1

x

(
1 − x

t

)m

dν(t)

=

[
1 −

∫ 1

x

(
1 − x

t

)m

dµ1(t)

]
−

[
1 −

∫ 1

x

(
1 − x

t

)m

dµ2(t)

]
+ 1.

This means that for any F ∈ Q̃m, there exist F1, F2 ∈ Qm such that F (x) = F1(x)−F2(x)+1

for all x ∈ [0, 1], or Q̃m ⊂ Qm −Qm + 1. This immediately implies that

N(ε, Q̃m, ‖ · ‖2) ≤ N(ε/2,Qm, ‖ · ‖2)
2.
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Hence,
log N(ε,Qm, ‖ · ‖2) ≍ log N(ε, Q̃m, ‖ · ‖2),

provided that log N(ε, Q̃m, ‖ · ‖2) is of the order ε−α for some α > 0, which will be proved
later.
To estimate log N(ε, Q̃m, ‖ · ‖2), we notice that for any two functions F1, F2 ∈ L2[0, 1], by
Parseval’s identity,

‖F1 − F2‖2
2 =

∞∑

n=1

〈F1 − F2, φn〉2 ,

where {φn}∞n=1 is an orthonormal basis of L2[0, 1]. Thus, the covering number N(ε, Q̃m, ‖ · ‖2)
is the same as the covering number N(ε, S, ‖ · ‖l2), where

S = {(a1, a2, ...) : an = 〈F, φn〉 , n ∈ N, F ∈ Q̃m}.

Of course, N(ε, S, ‖ · ‖l2) is the same as N(ε, T, ‖ · ‖l2), where

T =

{
(a1, a2, ...) : an = 〈F, φn〉 , n ∈ N, F (x) =

∫ 1

x

(
1 − x

t

)m

dµ(t), ‖µ‖ ≤ 1

}
.

Note that T is a symmetric convex subset of l2. (The purpose of introducing the auxiliary

function class Q̃m is to create this symmetry.)
By the duality theorem of metric entropy (Tomczak-Jaegermann (1987), Artstein et.al (2004)),
provided that either side of the relation below is of the order ε−α for some α > 0,

log N(ε, T, ‖ · ‖l2) ≍ log N(ε,D2, ‖ · ‖T◦), (4)

where D2 is the unit ball of l2 and ‖ · ‖T◦ is a norm induced by the set

T ◦ =

{
(x1, x2, ...) ∈ R

∞ : sup
(t1,t2,...)∈T

∣∣∣∣∣

∞∑

i=1

xiti

∣∣∣∣∣ ≤ 1

}
.

Now, let us take a closer look at the set T . Note that by changing the order of integration, we
can write

〈F, φn〉 =

∫ 1

0

∫ 1

x

(
1 − x

t

)m

dµ(t) φn(x)dx

=

∫ 1

0

∫ t

0

(
1 − x

t

)m

φn(x)dx dµ(t).

Thus, T is the absolute convex hull of the set

{
(a1(t), a2(t), ...) : an(t) =

∫ t

0

(
1 − x

t

)m

φn(x)dx, n = 1, 2, ...; t ∈ [0, 1]

}
.

Next, we relate T to an m-times integrated Brownian motion. Let W (t), t ∈ [0, 1] be the
Brownian motion on [0, 1]. Writing W (t) in a canonical expansion, we have

W (t)
d
=

∞∑

n=1

∫ t

0

φn(x)dx · ξn, (5)
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where ξn are independent N(0, 1) random variables. Let Bm be an m-times integrated Brow-
nian motion, i.e.,

Bm(t) =

∫ t

0

∫ x1

0

∫ x2

0

· · ·
∫ xn−1

0

W (xn)dxn · · · dx3dx2dx1.

By using the canonical expansion (5) and changing the order of integration, we have

Bm(t) =

∫ t

0

(t − x)mdW (x)

=

∞∑

n=1

∫ t

0

(t − x)mφn(x)dx · ξn.

Thus,

Bm(t)

tm
=

∞∑

n=1

∫ t

0

(
1 − x

t

)m

φn(x)dx · ξn.

Note that the right hand side is exactly the inner product of the vector (ξ1, ξ2, ...) and a vector
in the set T . Thus,

T ◦ =

{
(ξ1, ξ2, ...) ∈ R

∞ : sup
t∈[0,1]

∣∣∣∣
Bm(t)

tm

∣∣∣∣ ≤ 1

}
.

We will use the connection between metric entropy and small ball probability to estimate
log N(ε,D2, ‖·‖T◦). By a general connection between small ball probability and metric entropy
discovered by Kuelbs and Li (1993) and completed in Li and Linde (1999), the covering number
N(ε,D2, ‖ · ‖T◦) is connected with the Gaussian measure of {x ∈ R

∞ : ‖x‖T◦ ≤ ε}, that is,
the small ball probability P(supt∈[0,1] |Bm(t)/tm| ≤ ε}. The precise connection is as follows:

log N(ε,D2, ‖ · ‖T◦) ≍ ε−α if and only if log P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε) ≍ −ε−
2α

2−α . (6)

Therefore, it remains to estimate log P(supt∈[0,1] |Bm(t)/tm| ≤ ε).
It is clear that

log P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε) ≤ log P( sup
t∈[0,1]

|Bm(t)| ≤ ε). (7)

On the other hand, by the Weak Gaussian Correlation Inequality (Li (1999), Schechtman

et.al (1998)) and the scaling property of m-times integrated Brownian motion that Bm(ct)
d
=

cm+1/2Bm(t), we have for any 0 < λ < 1

P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε) ≥ P( sup
t∈[0,δ]

|Bm(t)/tm| ≤ λε) · P( sup
t∈[δ,1]

|Bm(t)/tm| ≤
√

1 − λ2ε)

= P( sup
s∈[0,1]

|Bm(s)/sm| ≤ δ−1/2λε) · P( sup
t∈[δ,1]

|Bm(t)/tm| ≤
√

1 − λ2ε)

≥ P( sup
s∈[0,1]

|Bm(s)/sm| ≤ δ−1/2λε) · P( sup
t∈[0,1]

|Bm(t)| ≤ δm
√

1 − λ2ε).
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By choosing δ = m
4m+2 and λ = 2

√
δ, we have

P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε) ≥ P( sup
t∈[0,1]

|Bm(t)/tm| ≤ 2ε) · P( sup
t∈[0,1]

|Bm(t)| ≤ mm

2m(2m + 1)m+1/2
ε).

By iteration, we have

log P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε) ≥ C log P( sup
t∈[0,1]

|Bm(t)| ≤ cε)

for some constants C > 0 and 0 < c < 1, which, together with (7), implies

log P( sup
t∈[0,1]

|Bm(t)| ≤ ε) ≍ log P( sup
t∈[0,1]

|Bm(t)/tm| ≤ ε), (8)

provided that the right-hand-side is of the order −ε−β for some β > 0.
However, it was proved in Chen and Li (1999) that

− log P( sup
t∈[0,1]

|Bm(t)| ≤ ε) ≍ ε−
2

2m+1 . (9)

Putting (4), (6), (8) and (9) together, we conclude that

log N(ε,Mm, ‖ · ‖2) ≍ ε−
1

m+1 .

4 Some Remarks

In statistical applications, one may also want to consider the metric entropy of m-monotone
densities. That is, m-monotone functions on [0, 1] satisfying ‖g‖1 = 1 with m ≥ 1. If we
denote this class of functions by Dm, then a similar argument gives

log N(ε,Dm, ‖ · ‖2) ≍ ε−
1
m .

Also note that for the class of m-monotone functions on [0, 1], even if we only consider the
functions with continuous f (m), we generally cannot assume f (m) to be bounded. One might
think that by restricting f (m) to be bounded by a certain number, one would obtain a smaller
metric entropy. However, through a similar argument one can show that the metric entropy
of the subclass of m-monotone function on [0, 1] with |f (k)| ≤ 1 for all k ≤ m has order ε−1/m

as well.
Let us also remark that instead of requiring (−1)kf (k) ≥ 0 for all 1 ≤ k ≤ m, one can require
(−1)εkf (k) ≥ 0 for all 1 ≤ k ≤ m, where εk ∈ {0, 1}. We call such a class of functions as a
general m-monotone class. We note that not only the same result as Theorem 1.2 holds for
that class, but also that the same argument works. Indeed, if in the definition of m-times
integrated Brownian motion

Bm(t) =

∫ t

0

∫ x1

0

∫ x2

0

· · ·
∫ xn−1

0

W (xn)dxn · · · dx3dx2dx1,

we replace some of the integral limits “from 0 to xi” by “from xi to 1”, we obtain a general
m-times integrated Brownian motion B̃m, which was introduced in Gao et.al (2003). By
interchanging the order of integration, a general m-times integrated Brownian motion can then
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be expressed as
∫ 1

0
K(t, s)dW (s) for some kernel K(t, s). By properly choosing the integral

limits (either from 0 to xi, or from xi to 1) in the definition of B̃m, we can make

(−1)εk
∂(k)

∂tk
K(t, s) ≤ 0.

Denoting Q(t) =
∫ s

0
K(t, s)ds, one can characterize the class of probability distribution func-

tions on [0, 1] with a general m-monotone density as in Theorem 2.1, and argue that the
problem of estimating the metric entropy of the function class under the L2 norm becomes the
problem of estimating the small ball probability of B̃m(t)/Q(t) under the supremum norm,
which eventually leads to the problem of estimating the small ball probability of general m-
times integrated Brownian motion. However, it was recently proved by Gao and Li (2006)
that

log P( sup
t∈[0,1]

|B̃m(t)| ≤ ε) ≍ log P( sup
t∈[0,1]

|Bm(t)| ≤ ε),

for all general m-times integrated Brownian motions. Thus, we conclude that Theorem 1.1
continues to hold if Mm is replaced by the class of probability distribution functions with a
general m-monotone density on [0, 1].

Acknowledgement: The author thanks Professor Jon Wellner for bringing the author’s at-
tention to the k-monotone class of functions and explaining its statistical significance. Thanks
also go to the referee for many valuable suggestions.
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