
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 26 (2021), article no. 68, 1–81.
ISSN: 1083-6489 https://doi.org/10.1214/21-EJP637

Zeros of smooth stationary Gaussian processes*

Michele Ancona† Thomas Letendre‡

Abstract

Let f : R → R be a stationary centered Gaussian process. For any R > 0, let νR
denote the counting measure of {x ∈ R | f(Rx) = 0}. Under suitable assumptions
on the regularity of f and the decay of its correlation function at infinity, we derive
the asymptotics as R→ +∞ of the central moments of the linear statistics of νR. In
particular, we derive an asymptotics of order R

p
2 for the p-th central moment of the

number of zeros of f in [0, R]. As an application, we prove a functional Law of Large
Numbers and a functional Central Limit Theorem for the random measures νR. More
precisely, after a proper rescaling, νR converges almost surely towards the Lebesgue
measure in weak-∗ sense. Moreover, the fluctuation of νR around its mean converges
in distribution towards the standard Gaussian White Noise. The proof of our moments
estimates relies on a careful study of the k-point function of the zero point process
of f , for any k > 2. Our analysis yields two results of independent interest. First, we
derive an equivalent of this k-point function near any point of the large diagonal in Rk,
thus quantifying the short-range repulsion between zeros of f . Second, we prove a
clustering property which quantifies the long-range decorrelation between zeros of f .
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1 Introduction

Let Z denote the zero set of a smooth centered stationary Gaussian process f on R.
A classical problem in probability is to understand the number of zeros of f in a growing
interval, that is the asymptotics of Card(Z ∩ [0, R]) as R→ +∞. This problem has a long
history, starting with the articles of Kac [23] and Rice [33] who computed the mean
number of zeros of f in an interval. We refer to Section 1.6 below for further discussion
of related works.

In this paper, we compute the large R asymptotics of the central moments of any
order of Card(Z ∩ [0, R]), under suitable conditions on f . The starting point of our
analysis is the Kac–Rice formula, which allows to write the k-th factorial moment of
Card(Z ∩ [0, R]) as the integral over [0, R]k of the k-point function of the random point
process Z. Most of the paper is devoted to the study of this k-point function ρk, that we
believe to be of independent interest. A priori, ρk is only well-defined on Rk \∆k, where
∆k denotes the large diagonal in Rk. We prove that ρk vanishes along ∆k, which is the
sign of a repulsion between the zeros of f . In fact, we characterize this repulsion by
deriving an equivalent of ρk(x) as x→ y, for any y ∈ ∆k. We also prove that ρk satisfies a
clustering property if the correlation function of the process f decays fast enough. This
clustering property can be interpreted as a clue that zeros of f in two disjoint intervals
that are far from one another are quasi-independent. Our main tool in the study of ρk
and its singularities are the divided differences associated with f . We believe that the
methods we develop below regarding these divided differences can have applications
beyond the scope of this paper.

1.1 Linear statistics associated with the zeros of a Gaussian process

Let us introduce quickly the object of our study. More details are given in Section 2
below. Let f : R → R be a stationary centered Gaussian process of class C1. Let
κ : x 7→ E[f(0)f(x)] denote the correlation function of f . We assume that f is normalized
so that κ(0) = 1 = −κ′′(0) (see Section 2.2). The zero set Z = f−1(0) is then almost
surely a closed discrete subset of R (see Lemma 2.12).

We denote by ν =
∑
x∈Z δx the counting measure of Z, where δx is the unit Dirac

mass at x. Let φ : R→ R, we denote by 〈ν , φ〉 =
∑
x∈Z φ(x) whenever this makes sense.

Besides, for any R > 0, we denote by φR : x 7→ φ( xR ). Finally, for any A ⊂ R, we denote
by 1A the indicator function of A. Then, for any R > 0, we have:

Card(Z ∩ [0, R]) =
〈
ν ,1[0,R]

〉
=
〈
ν , (1[0,1])R

〉
.

More generally, we can consider the asymptotics of 〈ν , φR〉 as R→ +∞, where φ : R→ R

is a nice enough test-function. It turns out that the dual point of view is more relevant,
and this is the one we adopt in this paper: instead of integrating φR over Z, we consider
the integral of a fixed test-function φ over homothetical copies of Z. Let R > 0, we
denote by ZR = {x ∈ R | f(Rx) = 0} and by νR =

∑
x∈ZR δx its counting measure. Then,

for all φ : R→ R, we have 〈ν , φR〉 = 〈νR , φ〉. In particular, Card(Z ∩ [0, R]) =
〈
νR ,1[0,1]

〉
.

Quantities of the form 〈νR , φ〉 are called the linear statistics of νR. In the following, we
study the large R asymptotic distribution of the random measure νR, mostly through the
central moments of its linear statistics.

1.2 Moments asymptotics

Our first theorem describes the large R asymptotics of the central moments of the
linear statistics 〈νR , φ〉 of the random measure νR. To the best of our knowledge, this
is the first result of this kind for Gaussian processes on R, even in the simplest case of
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〈
νR ,1[0,1]

〉
= Card (Z ∩ [0, R]). We will consider the following quantities, that are slightly

more general.

Definition 1.1 (Central moments). Let p > 2 be an integer and let R > 0. For any
test-functions φ1, . . . , φp, we denote by

mp(νR)(φ1, . . . , φp) = E

[
p∏
i=1

(
〈νR , φi〉 − E[〈νR , φi〉]

)]
,

whenever the right-hand side makes sense. In particular, mp(νR)(φ, . . . , φ) equals
mp(〈νR , φ〉), the p-th central moment of 〈νR , φ〉, when this quantity is well-defined.
When p = 2, we use the standard notation Var(〈νR , φ〉) instead of m2(〈νR , φ〉).

In this paper, we use the following class of test-functions. Note that this class contains,
among others, the indicator functions of bounded intervals and the continuous functions
decreasing fast enough at infinity.

Definition 1.2 (Test-function). We say that a measurable function φ : R → R is a test-
function if φ is integrable, essentially bounded and continuous almost everywhere with
respect to the Lebesgue measure.

In order to say something about central moments, we need to make some assumptions
on the random process f . These assumptions are further discussed in Section 2.2, and
in Appendix A where we build examples of processes satisfying these conditions. For
now, let us just give one concrete example. The hypotheses of all the theorems in the
present paper are satisfied by the so-called Bargmann–Fock process. This process is the
centered stationary Gaussian process on R whose correlation function is x 7→ e−

1
2x

2

. See
Appendix A for more details, especially Example A.4.

Notation 1.3 (Ck-norms). Let k ∈ N and let g : R→ R be a Ck-function such that g and
all its derivatives of order at most k are bounded on R. For any η > 0, we denote by:

‖g‖k,η = sup
{∣∣∣g(l)(x)

∣∣∣ ∣∣∣ 0 6 l 6 k, |x| > η
}
,

where g(l) stands for the l-th derivative of g. If η = 0, we simply denote ‖g‖k,0 by ‖g‖k.

If f is a Cp-process, then its correlation function satisfies κ ∈ C2p(R). Moreover, by
Cauchy-Schwarz’s Inequality, κ(k) is bounded for all k ∈ {0, . . . , 2p}. Hence ‖κ‖k,η is
well-defined for any k ∈ {0, . . . , 2p} and η > 0. We refer to Section 2.2 for more details.

Definition 1.4 (Partitions). Let A be a non-empty finite set, a partition of the set A is
a family I = {I1, . . . , Im} of non-empty disjoint subsets of A such that

⊔m
i=1 Ii = A. We

denote by PA (resp. Pk) the set of partitions of A (resp. {1, . . . , k}). A partition into
pairs of A is a partition I ∈ PA such that Card(I) = 2 for all I ∈ I. We denote by
PPA, (resp. PPk) the set of partitions into pairs of A (resp. {1, . . . , k}). We also use the
convention that P∅ = {∅} = PP∅.

Notation 1.5 (Gaussian moments). For all p ∈ N, we denote by µp the p-th moment of a
centered Gaussian variable of variance 1. Recall that we have µp = Card(PPp), that is

µp = 2−
p
2 p!
(
p
2 !
)−1

if p is even, and µp = 0 if p is odd.

Theorem 1.6 (Central moments asymptotics). Let p > 2 be an integer. Let f be a
normalized stationary centered Gaussian Cp-process and let κ denote its correlation
function. We assume that, ‖κ‖p,η = o(η−4p) as η → +∞. For all R > 0, we denote by νR
the counting measure of {x ∈ R | f(Rx) = 0}.

Let φ1, . . . , φp be test-functions in the sense of Definition 1.2. Then, as R→ +∞, we
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have:

mp(νR)(φ1, . . . , φp) =
∑

{{ai,bi}|16i6 p
2}∈PPp

p
2∏
i=1

m2(νR)(φai , φbi) + o(R
p
2 ).

In particular, if φ is a test-function then, as R→ +∞, we have:

mp (〈νR , φ〉) = µp Var(〈νR , φ〉)
p
2 + o(R

p
2 ).

Remark 1.7. If p is odd, then PPp = ∅ and µp = 0. In this case, only the term o(R
p
2 )

remains on the right-hand side of the asymptotics in Theorem 1.6. On the other hand, if p
is even, then PPp 6= ∅ and µp > 0. In this latter case, the leading terms in the asymptotics
of Theorem 1.6 are of order R

p
2 for generic test-functions, see Proposition 1.11 below.

Note however that we obtain o(R
p
2 ) if, for example, the (φi)16i6p are pairwise orthogonal

for the L2 inner product defined by the Lebesgue measure.

In order to interpret this result, let us describe the expectation and the covariance
structure of the linear statistics of νR. First, we describe the expectation of νR for any
fixed R > 0. Note that Proposition 1.8 below is a natural extension of the results of
Kac [23] and Rice [33], who computed the expectation of Card (Z ∩ [0, R]). Recall that
a Radon measure is a continuous linear form on

(
C0
c (R), ‖·‖∞

)
, the space of compactly

supported continuous functions equipped with the sup-norm.

Proposition 1.8 (Expectation of the linear statistics). Let f be a normalized stationary
centered Gaussian C1-process. Let R > 0 and let νR denote the counting measure of
{x ∈ R | f(Rx) = 0}. Let φ : R→ R be a Borel-measurable function. If φ is non-negative
or Lebesgue-integrable then,

E[〈νR , φ〉] =
R

π

∫ +∞

−∞
φ(x) dx.

In particular, as Radon measures E[νR] = R
π dx, where dx stands for the Lebesgue

measure of R.

Remark 1.9. If φ : R → R is Lebesgue-integrable we can apply Proposition 1.8 to |φ|.
This proves that, for all R > 0, almost surely 〈νR , |φ|〉 < +∞. Thus, the random variable
〈νR , φ〉 is almost surely well-defined. Moreover |〈νR , φ〉| 6 〈νR , |φ|〉, so that 〈νR , φ〉 is an
integrable random variable, and it makes sense to consider its expectation.

Remark 1.10. In this paper, we consider quantities of the form 〈ν , φ〉 =
∑
x∈Z φ(x),

where Z is discrete. If φ is only defined up to modifications on a negligible set, these
quantities are ill-defined. However, let νR be is as in Proposition 1.8 and let φ1 and
φ2 be test-functions such that φ1 = φ2 almost everywhere. By Proposition 1.8, we
have E[〈νR , |φ1 − φ2|〉] = 0, so that 〈νR , |φ1 − φ2|〉 = 0 almost surely. This implies
〈νR , φ1〉 = 〈νR , φ2〉 almost surely, since |〈νR , φ1〉 − 〈νR , φ2〉| 6 〈νR , |φ1 − φ2|〉.

The following result gives the large R asymptotics of the covariance of 〈νR , φ1〉 and
〈νR , φ2〉, where φ1 and φ2 are test-functions (see Definition 1.2). To the best of our
knowledge, this result was only known for φ1 = φ2 = 1[0,1] until now, see [15, Theorem 1].
Note that the positivity of the leading constant σ in not proved in [15].

Proposition 1.11 (Covariances asymptotics). Let f be a normalized stationary centered
Gaussian C2-process and let κ denote its correlation function. We assume that κ and κ′′

are square-integrable and that ‖κ‖2,η tends to 0 as η → +∞.
Then there exists σ > 0 such that, for any test-functions φ1 and φ2 we have:

m2(νR)(φ1, φ2) = Rσ2

∫ +∞

−∞
φ1(x)φ2(x) dx+ o(R) (1.1)
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as R→ +∞. Moreover, we have:

σ2 =
1

π
+

2

π2

∫ +∞

0

(
1− κ(t)2 − κ′(t)2

(1− κ(t)2)
3
2

(√
1− a(t)2 + a(t) arcsin(a(t))

)
− 1

)
dt, (1.2)

where a : (0,+∞)→ [−1, 1] is the map defined by a : t 7→ κ(t)κ′(t)2 − κ(t)2κ′′(t) + κ′′(t)

1− κ(t)2 − κ′(t)2
.

Remark 1.12. The fact that σ > 0 is non-trivial. It is proved in Section 4.2, using the
Wiener–Itô expansion of Card (Z ∩ [0, R]) derived in [26]. In Corollary 4.8, we obtain the
following explicit lower bound:

σ2 >
1

π2

∫ +∞

0

(κ(z) + κ′′(z))2 dz > 0.

If we consider the Bargmann–Fock process fBF , that is if κ : x 7→ e−
1
2x

2

, the previous
lower bound gives σ2

BF > (2π3)−
1
2 ' 0.12 . . . . In [17, Proposition 3.1 and Remark 1],

Dalmao computed σ2
BF up to a factor 1

π . Using his result, we get σ2
BF ' 0, 18 . . . . Note

that these values are smaller than 1
π , hence the integral on the right-hand side of

Equation (1.2) is negative.

1.3 Clustering for the k-point functions

Let p > 2 be an integer and let f be as above a normalized centered stationary
Gaussian process. The first step in the proof of our moments asymptotics (Theorem 1.6)
is to derive a tractable integral expression of the central moments mp(νR)(φ1, . . . , φp)

that we want to estimate. Using the Kac–Rice formula (see Proposition 3.6), we write
mp(νR)(φ1, . . . , φp) as a linear combination of terms of the form∫

Rk
ΦR(x)ρk(x) dx, (1.3)

where 1 6 k 6 p and Φ : Rk → R is an integrable function built from the (φi)16i6p. In
this equation, the function ρk is the Kac–Rice density of order k (cf. Definition 3.1). In
order to give some meaning to this density, notice that it coincides with the k-point
function of the random point process Z = f−1(0), see Lemma 3.11. By this we mean
that, for any x = (xi)16i6k ∈ Rk such that ρk(x) is well-defined, we have:

1

(2ε)k
E

[
k∏
i=1

Card (Z ∩ [xi − ε, xi + ε])

]
−−−→
ε→0

ρk(x).

The core of the proof of Theorem 1.6 is to understand the large R asymptotics of
integrals of the form (1.3). This leads to a detailed study of the Kac–Rice densities
(ρk)k∈N∗ . Given k ∈ N∗, Definition 3.1 allows to define ρk(x) for any x = (xi)16i6k

such that the Gaussian vector (f(xi))16i6k is non-degenerate. In particular, if the
correlation function κ of f tends to 0 at infinity, as in Theorem 1.6 and Proposition 1.11,
the ergodicity of f implies that ρk is well-defined on Rk \ ∆k, where we denoted by
∆k =

{
(x1, . . . , xk) ∈ Rk

∣∣ ∃i, j ∈ {1, . . . , k}, i 6= j and xi = xj
}

the large diagonal in Rk

(cf. Lemma 2.10 for more details). In general, ρk is a continuous symmetric function
defined on some symmetric open subset of Rk \∆k, see Lemmas 3.5 and 3.9.

Interpreting ρk as the k-point function of Z, some of the intermediate results in the
proof of Theorem 1.6 appear to be of independent interest. Theorems 1.13 and 1.14
below are analogous to the main results of [30], where Nazarov and Sodin studied the
k-point function of a Gaussian Entire Function. Note however that our methods are
completely different. In particular, we do not require any form of analyticity.
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Theorem 1.13 (Vanishing order of the k-point function). Let k ∈ N∗, let f be a normalized
stationary centered Gaussian Ck-process. Let y = (yi)16i6k ∈ Rk and let I ∈ Pk be the
partition defined by:

∀i, j ∈ {1, . . . , k}, yi = yj ⇐⇒ ∃I ∈ I, {i, j} ⊂ I.

For any I ∈ I, we denote by |I| the cardinality of I and by yI ∈ R the common value of the
(yi)i∈I . Let us assume that the Gaussian vector

(
f (i)(yI)

)
I∈I,06i<|I| is non-degenerate

and denote by

`(y) =

∏
I∈I

|I|−1∏
i=0

i!

|I|!

 E
[∏

I∈I
∣∣f (|I|)(yI)

∣∣|I|∣∣∣∀I ∈ I,∀i ∈ {0, . . . , |I| − 1}, f (i)(yI) = 0
]

(2π)
k
2 det

(
Var
((
f (i)(yI)

)
I∈I,06i<|I|

)) 1
2

,

(1.4)

where E
[∏

I∈I
∣∣f (|I|)(yI)

∣∣|I|∣∣∣∀I ∈ I,∀i ∈ {0, . . . , |I| − 1}, f (i)(yI) = 0
]

stands for the con-

ditional expectation of
∏
I∈I

∣∣f (|I|)(yI)
∣∣|I| given that f (i)(yI) = 0 for all I ∈ I and

i ∈ {0, . . . , |I| − 1}.
Then, there exists a neighborhood U of y in Rk such that the k-point function ρk of

f−1(0) is well-defined on U \∆k and, as x→ y with x = (xi)16i6k ∈ U \∆k, we have:∏
I∈I

∏
{(i,j)∈I2|i<j}

1

|xi − xj |

 ρk(x) −−−→
x→y

`(y).

Moreover, if
(
f (i)(yI)

)
I∈I,06i6|I| is non-degenerate, then `(y) > 0.

If the process f is of class Ck and such that κ(x) −−−−−→
x→+∞

0, then the non-degeneracy

conditions in Theorem 1.13 are satisfied for all y ∈ Rk (cf. Lemma 2.10 below). In this
case, ρk is well-defined on Rk \∆k, and `(y) is positive for any y ∈ Rk. If y ∈ Rk \∆k,
the partition associated with y is I = {{i} | 1 6 i 6 k} ∈ Pk. Then, `(y) = ρk(y) (see
Equation (1.4) and Definition 3.1) and Theorem 1.13 only states that ρk is continuous at y
and that ρk(y) > 0. If y ∈ ∆k, Theorem 1.13 shows that ρk(x) −−−→

x→y
0. In particular, under

the assumption that κ tends to 0 at infinity, the k-point function of Z can be uniquely
extended into a continuous function on Rk that vanishes exactly on ∆k. In this case, the
last part of the theorem gives the vanishing order of ρk near any point of the diagonal.
The fact that ρk vanishes along ∆k is interpreted as the sign of a short-range repulsion
between zeros of f . The estimates of Theorem 1.13 quantify this phenomenon.

Let us now consider the long-range correlations between zeros of f . We still concern
ourselves with the case where κ tends to 0 at infinity. Let A and B be two non-empty
disjoint intervals of R. If A and B are far enough from one another, the values of f on A
are essentially uncorrelated with those of f on B. It is then reasonable to expect the
point processes Z ∩A and Z ∩B to be roughly independent. The independence of Z ∩A
and Z ∩B would imply that ρk+l(x, y) = ρk(x)ρl(y) for any k, l ∈ N∗, any x ∈ Ak \∆k and
any y ∈ Bl \∆l. The following result shows that a relation of this form holds, up to an
error term.

Theorem 1.14 (Clustering for k-point functions). Let k ∈ N∗, let f be a normalized
stationary centered Gaussian Ck-process whose correlation function κ is such that
‖κ‖k,η −−−−−→η→+∞

0. For any l ∈ {1, . . . , k}, let ρl denote the l-point function of f−1(0).

Then, there exists C > 0 such that for all x = (xi)16i6k ∈ Rk \∆k we have:

0 6 ρk(x) 6 C
∏

16i<j6k

min (|xi − xj | , 1) .
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Moreover, for all η > 1, for all I ∈ Pk, for all x = (xi)16i6k ∈ Rk \∆k satisfying:

∀I, J ∈ I such that I 6= J, ∀i ∈ I, ∀j ∈ J, |xi − xj | > η,

we have: ∏
I∈I

ρ|I|(xI) = ρk(x)
(

1 +O
(

(‖κ‖k,η)
1
2

))
,

where the constant involved in the error term O
(

(‖κ‖k,η)
1
2

)
does not depend on η, I

nor x. Here, we denoted by |I| the cardinality of I and by xI = (xi)i∈I , for all I ∈ I.

An important new idea in the proof of Theorems 1.13 and 1.14 is that we derive a
whole family of new expressions for the k-point functions ρk, indexed by the partitions
of {1, . . . , k}. For any point x ∈ Rk, at least one of these expressions is uniformly non-
degenerate in a neighborhood of x. Then, studying ρk is mostly a matter of choosing the
right expression, depending on the domain we are considering. These new expressions
are introduced and studied in Section 6, using the divided differences introduced in
Section 5. A key idea is that divided differences allow to replace the random vector
(f(xi))16i6k, appearing the original expression of ρk(x1, . . . , xk), by another Gaussian
vector which is never degenerate even on the diagonal. We will discuss these ideas
further in Section 1.5 below.

1.4 Law of large numbers and central limit theorem

As an application of the moments estimates of Theorem 1.6, we prove a strong Law
of Large Numbers and a Central Limit Theorem. These theorems hold in the large R
limit, for the linear statistics 〈νR , φ〉 with φ a test-function (cf. Definition 1.2), but also
for the random measures νR.

Remark 1.15. Under the hypotheses of Proposition 1.11, we immediately obtain a weak
Law of Large Number for the linear statistics by applying Markov’s Inequality and using
the variance estimates of Proposition 1.11. That is, for any test-function φ, for all ε > 0,
we have:

P

(∣∣∣∣ 1

R
〈νR , φ〉 −

1

π

∫
R

φ(x) dx

∣∣∣∣ > ε

)
= O

(
R−1

)
.

In fact, if the correlation function κ of f decays fast enough, we can combine the
moments estimates of Theorem 1.6 with Markov’s Inequality and the Borel–Cantelli
Lemma to obtain the following.

Theorem 1.16 (Strong Law of Large Numbers). Let p ∈ N∗ and f be a normalized
stationary centered Gaussian C2p-process whose correlation function κ is such that
‖κ‖2p,η = o(η−8p) as η → +∞. Let (Rn)n∈N be a sequence of positive numbers that
satisfies

∑
n∈NR

−p
n < +∞.

Then, for any test-function φ, the following holds almost surely:

1

Rn
〈νRn , φ〉 −−−−−→

n→+∞

1

π

∫
R

φ(x) dx.

Moreover, we have 1
Rn
νRn −−−−−→

n→+∞
1
π dx almost surely in the weak-∗ sense.

Let us now recall some classical definitions before stating our Central Limit Theorem.

Notation 1.17 (Gaussian distributions). Let n > 1 and let Λ be a positive semi-definite
square matrix of size n. We denote by N (0,Λ) the centered Gaussian distribution of
variance Λ in Rn. We denote by X ∼ N (0,Λ) the fact that distribution of the random
vector X ∈ Rn is N (0,Λ).
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Definition 1.18 (Schwartz space). A function φ : R→ R is said to be fast-decreasing if
it satisfies φ(x) = O(|x|−k) as |x| → +∞, for all k ∈ N. The Schwartz space S(R) is the
space of C∞ functions φ such that φ and all its derivatives are fast-decreasing. Finally,
we denote by S ′(R) the space of tempered generalized functions.

Remark 1.19. • In this paper, we use the terminology “generalized function” instead
of “distribution” to avoid any possible confusion with the distribution of a random
variable.

• Recall that S ′(R) is indeed the topological dual of S(R), for some topology that we
do not recall here.

• We refer to [8] for details about the definition of random elements of S ′(R) and the
notion of convergence in distribution in this space.

Definition 1.20 (White Noise). The standard Gaussian White Noise W is a random
element of S ′(R) whose distribution is characterized by:

∀φ ∈ S(R), 〈W ,φ〉 ∼ N
(

0, ‖φ‖2L2

)
,

where 〈· , ·〉 is the canonical pairing between S ′(R) and S(R), and ‖φ‖L2 =
(∫
R
φ(x)2 dx

) 1
2

is the L2-norm of φ.

Theorem 1.21 (Central Limit Theorem). Let f be a normalized stationary centered
Gaussian process of class C∞ and let us assume that its correlation function satisfies
κ ∈ S(R). Let σ > 0 be the constant defined by Equation (1.2).

For any test-function φ (in the sense of Definition 1.2), we have the following conver-
gence in distribution:

1

R
1
2σ

(
〈νR , φ〉 −

R

π

∫
R

φ(x) dx

)
−−−−−→
R→+∞

N
(

0, ‖φ‖2L2

)
.

Moreover, the following holds in distribution in S ′(R):

1

R
1
2σ

(
νR −

R

π
dx

)
−−−−−→
R→+∞

W,

where W is the standard Gaussian White Noise and dx is the Lebesgue measure of R.

The fact that almost surely νR ∈ S ′(R) for all R > 0 is not obvious. This is proved in
Lemma 3.12 as a consequence of Proposition 1.8, see Section 3.3.

1.5 Sketch of proof

In this section, we discuss the main ideas of the proofs of our main results (Theo-
rems 1.6, 1.13 and 1.14). First, let us outline the proof of Theorem 1.6 assuming the
results of Theorem 1.14. The starting point of the proof is the Kac–Rice formula, see
Proposition 3.6 below. It allows to write the non-central moments of the linear statistics
associated with the random measure νR as follows:

E

[
k∏
i=1

〈νR , φi〉

]
=

∫
Rk

(
k∏
i=1

φi

(xi
R

))
ρk(x1, . . . , xk) dx1 . . . dxk, (1.5)

where (φi)16i6k are test-functions satisfying the hypotheses of Theorem 1.6 and ρk is
the function defined by Definition 3.1 below. Here we are cheating a bit: Equation (1.5)
is false and the k-th non-central moment on the left-hand side should be replaced be the
so-called k-th factorial moment for this relation to hold. However, the k-th non-central
moment can be expressed in terms of the factorial moments of order at most k by some
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combinatorics, so that a more complicated version of Equation (1.5) holds. Dealing
with these combinatorics is one of the difficulties of the proof of Theorem 1.6 given in
Section 7. For the sake of clarity, in this sketch of proof we will not give more details
about this, and simply pretend that Equation (1.5) holds. This is enough to understand
the main ideas of the proof.

Under the hypotheses of Theorem 1.6, for any k ∈ {1, . . . , p} the density ρk is well-
defined from Rk \∆k to R, but it is a priori singular along ∆k. As discussed in Section 1.3,
the Kac–Rice density ρk is equal to the k-point function of the zero point process of f . By
the first point in Theorem 1.14, it admits a unique continuous extension to Rk which is
bounded. In particular, the right-hand side of Equation (1.5) is well-defined and finite.
Let A ⊂ {1, . . . , p}, we denote by |A| its cardinality. Moreover, for any x = (xi)16i6p ∈ Rp,
we denote by xA = (xi)i∈A. Then, using Equation (1.5), we can write mp(νR)(φ1, . . . , φp)

as:

mp(νR)(φ1, . . . , φp) =

∫
Rp

(
p∏
i=1

φi

(xi
R

))
Fp(x) dx, (1.6)

where,
Fp : x 7−→

∑
A⊂{1,...,p}

(−1)p−|A|ρ|A|(xA)
∏
i/∈A

ρ1(xi). (1.7)

See Lemma 7.3 for the rigorous statement corresponding to Equation (1.6). Note that
we only use the notation Fp in the present section. In Section 7, this function is the one
denoted by FImin(p).

Apart from proving Theorem 1.14, the main difficulty in the proof of our moments
estimates is to understand the large R asymptotics of the integral appearing in Equa-
tion (1.6). In order to do so, we cut Rp into pieces as follows. Let η > 0, for any
x = (xi)16i6p ∈ Rp, we denote by Gη(x) the graph whose set of vertices is {1, . . . , p} and
such that there is an edge between i and j if and only if i 6= j and |xi − xj | 6 η. We
denote by Iη(x) ∈ Pp the partition defined by the connected components of Gη(x). This
partition encodes how the components of x are clustered in R, at scale η. Finally, for
any I ∈ Pp, we denote by RpI,η = {x ∈ Rp | Iη(x) = I}. We have Rp =

⊔
I∈Pp R

p
I,η, so

that it is enough to understand the contribution of each RpI,η to the integral appearing in
Equation (1.6).

Since we are interested in the asymptotics as R→ +∞, we choose a scale parameter
η(R) that depends on R. The most convenient choice for η is the following. Under the
hypotheses of Theorem 1.6, there exists a function α such that, setting η : R 7→ R

1
4α(R),

we have the following as R → +∞: η(R) → +∞, α(R) → 0 and ‖κ‖p,η(R) = o(R−p). In

particular, the error term in Theorem 1.14 becomes o(R−
p
2 ). Then, the contribution

of RpI,η(R) to (1.6) depends on the combinatorics of I, and one of the following three
situations occurs.

1. The partition I contains a singleton, say {p} ∈ I. This means that if x ∈ RpI,η(R),

then xp is far from the other components of x, at scale η(R). In this case, for each
A ⊂ {1, . . . , p−1}, we regroup the terms indexed by A and At{p} in Equation (1.7).
Using the clustering property of Theorem 1.14, these two terms cancel each other
out, up to an error term of order o(R−

p
2 ). Summing over A ⊂ {1, . . . , p − 1},

we obtain Fp(x) = o(R−
p
2 ) uniformly on RpI,η(R). This implies that RpI,η(R) only

contributes o(R
p
2 ) to (1.6).

2. If I does not contain any singletons, we denote by a the number of pairs in I and
by b the number of elements of I of cardinality at least 3. In the second situation
we consider, we assume that b > 1. In this case, we prove that the contribution
of RpI,η(R) to (1.6) is O(Ra+bη(R)p−2a−b). This bound is obtained by using the
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clustering property of Theorem 1.14 in a way similar to what we did in the previous
case. The dissymmetry between the pairs and the other elements of I comes from
the integrability of the function z 7→ F2(0, z) on R. This dissymmetry is crucial in
the following. Using the relation η(R) = R

1
4α(R) and 2a+ 3b 6 p, we have:

Ra+bη(R)p−2a−b = O(R
p
2α(R)p−2a−b).

Since b > 1, we have 2a+ b < p and the previous term is o(R
p
2 ). Once again, RpI,η(R)

only contributes o(R
p
2 ) to (1.6).

3. The last situation is when I =
{
{ai, bi}

∣∣ 1 6 i 6 p
2

}
is a partition into pairs, which

can only happen if p is even. In this case, the clustering property of Theorem 1.14

implies that Fp(x) =
∏ p

2
i=1 F2(xai , xbi) + o(R−

p
2 ), uniformly on RpI,η(R). This implies

that the contribution of RpI,η(R) to (1.6) equals:

p
2∏
i=1

∫
R2

φai

( x
R

)
φbi

( y
R

)
F2(x, y) dxdy + o(R

p
2 ) =

p
2∏
i=1

m2(νR)(φai , φbi) + o(R
p
2 ).

We conclude the proof of Theorem 1.6 by summing up over I ∈ Pp the contributions of
each RpI,η(R) to the integral in Equation (1.6). Note that the leading term comes from
the pieces indexed by partitions into pairs.

Let us now consider the proofs of Theorems 1.13 and 1.14. In this sketch of proof,
we assume that the correlation function κ of f tends to 0 at infinity. This ensures that ρk
is well-defined on Rk \∆k. By Definition 3.1, for any x = (xi)16i6k ∈ Rk \∆k we have

ρk(x) = (2π)−
k
2Nk(x)Dk(x)−

1
2 , where Dk(x) is the determinant of the variance matrix

of (f(x1), . . . , f(xk)) and Nk(x) is the conditional expectation of
∏k
i=1 |f ′(xi)| given that

f(x1) = · · · = f(xk) = 0. The density ρk is a priori singular along the large diagonal
∆k ⊂ Rk, since Dk vanishes along ∆k. The main problem here is to understand to
behavior of ρk, that is of Nk and Dk, near ∆k. This is what we focus on in the remainder
of this section. Once this is done, the clustering result of Theorem 1.14 is a (non-trivial)
consequence of the decay at infinity of κ and its derivatives.

Our study of Nk and Dk near ∆k relies on the use of the divided differences associated
with the process f . Let us explain our strategy on the simplest non-trivial case, that is
for D2. A direct computation, using the Taylor expansion of κ around 0, shows that, in
the setting of this paper, we have D2(x, y) ∼ (y − x)2 as y → x. This proof is very simple,
but its extension to 3 points or more seems intractable. Here is another proof of the
same result that can be generalized to k > 3. If y 6= x, we can write:(

f(x)

f(y)

)
=

(
1 0

1 y − x

)(
f(x)

f(y)−f(x)
y−x

)
. (1.8)

As y → x, we have
(
f(x), f(y)−f(x)

y−x

)
−→ (f(x), f ′(x)). By stationarity and normalization

of f , the matrix Var(f(x), f ′(x)) is the identity. Hence, taking the determinant of the
variance of (1.8), we recover D2(x, y) ∼ (y − x)2 as y → x.

In Equation (1.8), by stationarity, normalization and regularity of f , the Gaussian

vector
(
f(x), f(y)−f(x)

y−x

)
is uniformly non-degenerate in a neighborhood of ∆2. Thus, the

degeneracy of (f(x), f(y)) along ∆2 is completely accounted for by the degeneracy of the
matrix

(
1 0
1 y−x

)
, whose coefficients are deterministic polynomial in (y − x). The divided

differences generalize this situation to any number of points. By definition of the divided
differences ([f ]j(x1, . . . , xj))16j6k associated with f and x = (xi)16i6k ∈ Rk \ ∆k (see
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Section 5.1), we have: f(x1)
...

f(xk)

 = M(x)

 [f ]1(x1)
...

[f ]k(x1, . . . , xk)

 ,

where the coefficients of the matrix M(x) are deterministic polynomials in (xj − xi)i<j .
In fact, detM(x) =

∏
16i<j6k(xj − xi) and we have:

(
[f ]1(x1), [f ]2(x1, x2), . . . , [f ]k(x1, . . . , xk)

)
−−−−−−−−→
x→(z,z,...,z)

(
f(z), f ′(z), . . . ,

f (k−1)(z)

(k − 1)!

)
.

Our hypotheses ensure that the Gaussian vector on the right-hand side is non-degenerate.
Denoting by D > 0 the determinant of its variance, this proves that, as x→ (z, z, . . . , z),
we have Dk(x) ∼ D

∏
16i<j6k(xj−xi)2. Note that D does not depend on z, by stationarity.

A refinement of this argument shows that Nk(x) ∼ N
∏

16i<j6k(xj − xi)2 for some N > 0.
Hence, as x→ (z, z, . . . , z) we have:

ρk(x) ∼ N

(2π)
k
2D

1
2

∏
16i<j6k

|xj − xi| .

The previous discussion explains how the divided differences allow to understand
the apparent singularity of ρk near {(z, z, . . . , z) | z ∈ R} ⊂ Rk, which is the stratum of
smallest dimension in ∆k. Near other strata, the situation is more intricate, yet tractable
by similar methods. The key point is that, using the divided differences associated with f ,
we define a family of alternative expressions of ρk indexed by the partitions of {1, . . . , k},
see Definition 6.14. Then, for any y ∈ Rk, we prove the local estimate of Theorem 1.13 by
choosing the right expression of ρk, depending on how the components of y are clustered.
Precisely, we use the expression indexed by the partition I0(y) defined previously, see
also Definition 6.2.

1.6 Related works

The study of the zeros of a Gaussian process goes back to Kac [23], who obtained a
formula for the mean number of roots of some Gaussian polynomials in an interval. This
was generalized to other Gaussian processes by Rice [33]. The mean number of zeros in
an interval of any continuous stationary Gaussian process was computed by Ylvisaker,
see [35]. The proofs of Kac and Rice rely on an integral formula for the mean number
of zeros. Extensions of their work lead to what are now called the Kac–Rice formulas.
Modern references for these are [2] and [6], but formulas of this kind already appear
in [13].

Among other things, Kac–Rice formulas were used to derive conditions for the
finiteness of the moments of the number of zeros of Gaussian processes. Geman derived
a necessary and sufficient condition for the finiteness of the second moment in [22].
The case of higher moments was studied by Cuzick in [14, 16]. Note that [16] already
uses divided differences in order to obtain criteria for the finiteness of the moments
of the number of zeros of a Gaussian process. The results of [16] do not apply to the
Bargmann–Fock field, whose correlation function is z 7→ e−

1
2 z

2

, and which is one of our
main example in this paper (cf. Example A.4). Much more recently, a necessary condition
for the finiteness of the moment of order p was derived in [5]. We emphasize that the
methods developed in the present paper allow to prove the finiteness of the higher
moments of the number of zeros of a Gaussian process in an interval under three simple
conditions: stationarity, sufficient regularity of the process, and fast enough decay at
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infinity of the correlation function and its first derivatives. While being easy to state and
rather general, these conditions are quite strong and probably far from necessary.

In [15], Cuzick studied the asymptotic variance as R→ +∞ of the number of zeros
of a stationary Gaussian process f in [0, R]. He obtained the same asymptotics as in
Proposition 1.11 for φ1 = 1[0,1] = φ2, under slightly weaker conditions. However, he did
not prove the positivity of the constant σ (cf. Equation (1.2)). Assuming that σ > 0, he
also derived a Central Limit Theorem for Card(Z ∩ [0, R]) as R→ +∞. Piterbarg proved
similar results and the positivity of σ under different assumptions, see [32, Theorem 3.5]
for example.

In [27], Kratz and Leòn developed a method for proving Central Limit Theorems
for level functionals of Gaussian processes. In particular, it should allow to prove
Theorem 1.21 under weaker hypotheses than those we gave. The method of [27] is
completely different and relies on the Wiener–Itô expansion of the functional under study.
The Wiener–Itô expansion of Card(Z ∩ [0, R]) was computed in [26]. The same proof
should yield the expansion of 〈νR , φ〉 for any Lebesgue-integrable φ. The results of Kratz–
Leòn also show that the variance of Card(Z ∩ [0, R]) is equivalent to σ2R as R→ +∞, for
some σ > 0. In Section 4.2, we use the result of [26] to derive the lower bound on σ2

mentioned in Remark 1.12. Let us mention that, very recently, Lachièze-Rey [28] proved
that:

lim inf
R→+∞

1

R
Var(Card(Z ∩ [0, R])) > 0,

under essentially no hypothesis on the process f . This implies the positivity of σ2 in
Proposition 1.11. The present paper partially overlaps with [28] since we obtained
independently a similar lower bound for σ2 by the same method, see [28, Section 4] and
Corollary 4.8 below.

The references cited previously are concerned with the number of zeros of f in an
interval. More generally, a lot of them consider the number of crossings, or up-crossings,
of a level by f in an interval. For an in depth survey of the existing literature on the
subject we refer to [25].

A special case of [31, Theorem 1] gives the strong Law of Large Numbers for the
number of zeros of a stationary Gaussian process f in [0, R], under weaker assumptions
than Theorem 1.16. Nazarov and Sodin also studied the k-point functions of the point
process defined by the complex zeros of a Gaussian Entire Function, see [30]. Theo-
rems 1.13 and 1.14 are analogous to the main results of [30], but for the real zeros of
a stationary Gaussian process. We stress that our techniques are different from those
of [30]. In particular, in [30] the authors require the analiticity of the Gaussian process
and use techniques from complex analysis, such as the Residue Theorem, whereas we
only require our Gaussian fields to be Ck in order to obtain a clustering property of the
k-point function.

The k-point functions ρk of the real zeros of the Bargmann–Fock process were studied
by Do and Vu. In [18, Lemma 9], they proved that the ρk satisfy a clustering property
similar to Theorem 1.14, with an exponentially small error term. They also derived the
vanishing order of the ρk along the diagonal, see [18, Lemma 10]. Their methods build
on the work of [30] and also relies on complex analysis. In particular, it is paramount in
their work that the Bargmann–Fock is the restriction to R of a Gaussian Entire Function.

In both [30] and [18], the authors deduce from their clustering result a Central
Limit Theorem for the (compactly supported) linear statistics of the point processes they
study. Their proofs rely on the cumulants method. This strategy was generalized in [10,
Theorem 13], where the authors show that a strong clustering property of the kind of
Theorem 1.14, with a fast-decreasing error term, implies a Central Limit Theorem for
the compactly supported linear statistics of the underlying point process. Note that one
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can not deduce the moments estimates of Theorem 1.6 from this kind of results, even
when the correlation function κ lies in S(R).

Under the hypotheses of Theorem 1.6, Markov’s Inequality implies the concentration
in probability of 1

R Card(Z ∩ [0, R]), more generally of the normalized linear statistics,
around its mean at polynomial speed in R. Under stronger assumptions, in [7], the
authors proved a large deviation result for 1

R Card(Z ∩ [0, R]), that is concentration
around the mean at exponential speed in R. Their proof relies on the existence of
an analytic extension of f to horizontal strips in the complex plane. Note that the
Bargmann–Fock process satisfies the hypotheses of [7, Theorem 1.1].

In this paper, we study the zeros of a stationary Gaussian process in an interval of
size R as R → +∞. In [4], we studied the real zeros of a Gaussian section of the d-th
tensor power of an ample line bundle over a real algebraic curve, as d→ +∞. The model
of Gaussian section considered in [4] is known as the complex Fubini–Study ensemble
and was introduced in [21]. It is the real analogue of the complex model studied by
Shiffman–Zelditch in [34] and subsequent papers. The idea to study the random measure
associated with the zero set of a Gaussian section already appears in [34]. In [12], the
authors study the scaling limit of the k-point function of the complex zero set of a random
section in their model. They also relate this function with the non-central moments of
the linear statistics associated with these complex zeros.

In [4], we derived the large d asymptotics for the central moments of the linear
statistics associated with the real zero set of a Gaussian section of degree d in the
complex Fubini–Study ensemble. These results are the counterpart of Theorems 1.6,
1.16 and 1.21 in this context. Note that [4, Theorem 1.12] generalizes the variance
estimate derived by Letendre–Puchol in [29], in the case where the ambient dimension
is 1. Its proof relies on results of Ancona, who proved the counterpart of Theorem 1.14
in [3, Theorems 4.1 and 5.7 and Proposition 4.2]. However, note that Theorems 1.14 and
1.13 are more precise than their counterparts in [3]. For example, [3, Theorem 5.7] says
that the k-point function ρk vanishes along the diagonal ∆k, while in Theorem 1.13 we
also compute the vanishing order of ρk along the diagonal ∆k, also giving conditions on
the process f for which this vanishing order is sharp. As explained in the last paragraph
of Section 1.5, one of the fundamental parts of studying the k-point function is finding
good expression for ρk(x), depending on how the components of x are clustered. The
expressions used in the present article are different from those used in [3] (one should
compare the expression appearing in Definition 6.14 with the one in [3, Proposition
5.21]). The new expressions used in the present paper turn out to be more precise for
estimating ρk along the diagonal. The results of [3, 4] apply to the number of real roots
of a Kostlan polynomial of degree d, see [24]. In this case, the variance asymptotics and
the Central Limit Theorem were proved by Dalmao [17].

To conclude this section, let us mention that the setting of the present paper is related
with that of [3, 4, 21, 29]. Indeed, the Bargmann–Fock process introduced previously
is the universal local scaling limit, as d→ +∞, of a random section of degree d in the
complex Fubini–Study ensemble. See [4] for more details.

1.7 Organization of the paper

The content of this paper is organized as follows. In Section 2, we introduce our
framework and the random measures νR we are interested in. We also introduce some
useful notations that will appear throughout the paper. In Section 3, we recall the Kac–
Rice formulas. As first applications, we prove that the Kac–Rice density ρk is the k-point
function of the random point process Z and Proposition 1.8. Section 4 is dedicated to
the proof of the covariance estimates of Proposition 1.11. In Section 5, we introduce
the divided differences associated with a function and study the distribution of the
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divided differences associated with a stationary Gaussian process. In Section 6, we
use the divided differences to derive alternative expressions of the Kac–Rice densities.
In particular, we prove Theorem 1.13 in Section 6.3 and Theorem 1.14 in Section 6.7.
Section 7 is concerned with the proof of Theorem 1.6 and Section 8 is concerned with the
proofs of the limit Theorems 1.16 and 1.21. This paper also contains three appendices.
In Appendix A, we build examples of Gaussian processes satisfying the hypotheses of
our main theorems. Appendix B contains the proofs of some auxiliary results related to
the proof of Proposition 1.11. Finally, Appendix C is dedicated to the proof of a lemma
pertaining to the regularity of the Kac–Rice densities.

2 Framework

In this section, we introduce the random measures we are interested in. First, in
Section 2.1, we introduce some notations related to partitions of finite sets and diagonals
in Cartesian products. In Section 2.2, we introduce properly the random processes we
are interested in and their correlation functions. Finally, in Section 2.3, we prove that the
vanishing locus of the processes introduced in Section 2.2 is almost surely well-behaved
(see Lemma 2.12), and we introduce several counting measures associated with this
random set.

2.1 Partitions, products and diagonal inclusions

Let us first introduce some notations that will be useful throughout the paper. Recall
that we already defined the set PA (resp. Pk) of partitions of a finite set A (resp. of
{1, . . . , k}) and the set PPA (resp. PPk) of its partitions into pairs (see Definition 1.4).

Notations 2.1. Let A be a finite set and let Z be any set.

• We denote by Card(A) or by |A| the cardinality of A.

• We denote by ZA the Cartesian product of |A| copies of Z, indexed by the elements
of A.

• A generic element of ZA is denoted by xA = (xa)a∈A, or more simply by x. If B ⊂ A
we denote by xB = (xa)a∈B.

• Let (φa)a∈A be functions on Z, we denote by φA = �a∈Aφa the function on ZA

defined by: φA(xA) =
∏
a∈A φa(xa), for all xA = (xa)a∈A ∈ ZA. If A is of the form

{1, . . . , k} with k ∈ N∗, we use the simpler notation φ = φA.

Definition 2.2 (Diagonals). Let A be a non-empty finite set, we denote by ∆A the large
diagonal of RA:

∆A =
{

(xa)a∈A ∈ RA
∣∣ ∃a, b ∈ A such that a 6= b and xa = xb

}
.

Moreover, for all I ∈ PA, we denote by

∆A,I =
{

(xa)a∈A ∈ RA
∣∣ ∀a, b ∈ A, (xa = xb ⇐⇒ ∃I ∈ I such that a ∈ I and b ∈ I)

}
.

If A = {1, . . . , k}, we use the simpler notations ∆k = ∆A and ∆k,I = ∆A,I .

Definition 2.3 (Diagonal inclusions). Let A be a non-empty finite set and let I ∈ PA. The
diagonal inclusion ιI is the function from RI to RA defined by: for all xI = (xI)I∈I ∈ RI ,
ιI(xI) = y

A
= (ya)a∈A, where for all I ∈ I, for all a ∈ I, we set ya = xI .

Remark 2.4. With the previous definitions, we have RA =
⊔
I∈PA ∆A,I and similarly

∆A =
⊔
I∈PA\{Imin(A)}∆A,I , where we denoted Imin(A) = {{a} | a ∈ A} (this notation

comes from the fact that Imin(A) is the minimum of PA for some partial order, see
Definition 6.3). Moreover, for all I ∈ PA, the map ιI is a smooth diffeomorphism from
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RI \∆I onto ∆A,I ⊂ RA. Note that ∆A,Imin(A) is the configuration space RA \∆A of |A|
distinct points in R. In the following, we avoid using the notation ∆A,Imin(A) and use
RA \∆A instead.

Remark 2.5. Let y ∈ Rk, the partition I defined in Theorem 1.13 is the unique I ∈ Pk
such that y ∈ ∆k,I . With the notations of Theorem 1.13, there exists (yI)I∈I ∈ RI \∆I
such that y = ιI((yI)I∈I).

Let Z ⊂ R be a closed discrete subset. In particular, for any K ⊂ R compact, Z ∩K
is finite. As in the introduction, we denote by ν =

∑
x∈Z δx the counting measure of Z.

More generally, for any non-empty finite set A, we can define the counting measure of
ZA ⊂ RA.

Definition 2.6 (Counting measures). Let Z ⊂ R be closed and discrete and let A be a
non-empty finite set. We denote by:

νA =
∑
x∈ZA

δx and ν[A] =
∑

x∈ZA\∆A

δx,

where δx is the unit Dirac mass at x ∈ RA and ∆A is defined by Definition 2.2. These
counting measures act on a function φ : RA → R as follows:

• if φ > 0 or
∑
x∈ZA |φ(x)| < +∞ then

〈
νA , φ

〉
=
∑
x∈ZA φ(x),

• if φ > 0 or
∑
x∈ZA\∆A

|φ(x)| < +∞ then
〈
ν[A] , φ

〉
=
∑
x∈ZA\∆A

φ(x),

Quantities of the form
〈
νA , φ

〉
(resp.

〈
ν[A] , φ

〉
) are called the linear statistics of νA

(resp. ν[A]). As usual, if A = {1, . . . , k}, we denote νk = νA and ν[k] = ν[A].

Note that νA (resp. ν[A]) defines a Radon measure on RA, that is a continuous linear
form on

(
C0
c (RA), ‖·‖∞

)
, the space of compactly supported continuous functions on RA

equipped with the sup-norm. Note also that the measure νA and ν[A] are completely char-
acterized by the linear statistics

{〈
νA , φ

〉 ∣∣ φ ∈ C0
c (RA)

}
and

{〈
ν[A] , φ

〉 ∣∣ φ ∈ C0
c (RA)

}
respectively.

Lemma 2.7. Let Z ⊂ R be closed and discrete and let A be a non-empty finite set. Using
the notations introduced above, we have νA =

∑
I∈PA(ιI)∗ν

[I].

Proof. Recall that RA =
⊔
I∈PA ∆A,I . Then, we have:

νA =
∑
x∈ZA

δx =
∑
I∈PA

 ∑
x∈ZA∩∆A,I

δx

 .

Let I ∈ PA, recall that ιI defines a smooth diffeomorphism from RI \ ∆I onto ∆A,I .
Moreover, ιI(ZI \∆I) = ZA ∩∆A,I (see Definition 2.2 and 2.3). Hence,∑

x∈ZA∩∆A,I

δx =
∑

y∈ZI\∆I

διI(y) =
∑

y∈ZI\∆I

(ιI)∗δy = (ιI)∗ν
[I].

2.2 Stationary Gaussian processes and correlation functions

In this section, we introduce the random processes we study and how they are
normalized. Let f : R→ R be a stationary centered Gaussian process. By stationary, we
mean that, for all t ∈ R, the process x 7→ f(x+ t) is distributed as f . Let K : R2 → R be
the correlation kernel of f , defined by K : (x, y) 7→ E[f(x)f(y)]. Since f is centered, its
distribution is characterized by K. Let κ : x 7→ K(0, x) denote the correlation function
of f . The stationarity of f is equivalent to the fact that K(x, y) = κ(y − x) for all
(x, y) ∈ R2. Note that, since K is symmetric, then κ is an even function.
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Definition 2.8 (Cp-process). Let p ∈ N ∪ {∞}, we say that f is a process of class Cp (or
a Cp-process) if its trajectories are almost surely of class Cp.

Let us assume that f is of class Cp, for some p ∈ N ∪ {∞}. For all k ∈ {0, . . . , p} we
denote by f (k) the k-th derivative of f . We also use the usual notations f ′ = f (1) and
f ′′ = f (2). Then, for all m ∈ N∗, for all x1, . . . , xm ∈ R, for all k1, . . . , km ∈ {0, . . . , p},
the random vector (f (kj)(xj))16j6m is a centered Gaussian vector in Rm. Let us denote
by ∂1 (resp. ∂2) the partial derivative with respect to the first (resp. second) variable
for functions from R2 to R. For all k and l in {0, . . . , p}, the partial derivative ∂k1∂

l
2K is

well-defined and continuous on R2. Moreover, κ is of class C2p and, for all k, l ∈ {0, . . . , p},
for all x, y ∈ R, we have:

E
[
f (k)(x)f (l)(y)

]
= ∂k1∂

l
2K(x, y) = (−1)kκ(k+l)(y − x). (2.1)

In particular, the variance matrix of (f (kj)(xj))16j6m is
(
∂ki1 ∂

kj
2 K(xi, xj)

)
16i,j6m

. This

material is standard. We refer the interested reader to [31, Appendix A.2 and A.3] for
more details.

Let us now assume that f is a C1-process. If κ(0) = 0, then for all x ∈ R, almost
surely f(x) = 0. Then, almost surely, f is continuous and for all x ∈ Q, f(x) = 0.
Hence f is almost surely the zero function. Similarly, if κ′′(0) = 0 then f ′ is almost
surely the zero function. Hence f is almost surely constant, equal to f(0) ∼ N (0, κ(0)).
These degenerate situations are well-understood, and we will not consider them in the
following. That is, we assume that Var(f(0)) = κ(0) > 0 and Var(f ′(0)) = −κ′′(0) > 0.
Without loss of generality, up to replacing f by:

x 7−→ 1√
κ(0)

f

(√
− κ(0)

κ′′(0)
x

)
,

we may assume that κ(0) = 1 = −κ′′(0).

Definition 2.9 (Normalization). We say that a stationary centered Gaussian process f of
class C1 is normalized if its correlation function κ satisfies κ(0) = 1 = −κ′′(0).

In the rest of this paper, unless otherwise specified, the random process f is always
assumed to be a normalized stationary centered Gaussian process at least of class C1.

Recall that, in Theorems 1.6 and 1.14, we consider a normalized Gaussian Ck-process
f whose correlation function κ satisfies some form of decay at infinity, as well as its first
derivatives. In the remainder of this section, we discuss these conditions. Let us first
check that they make sense. Let l ∈ {0, . . . , k}, for all x ∈ R we have:

κ(2l)(x)2 = E
[
f (l)(0)f (l)(x)

]2
6 E

[
f (l)(0)2

]
E
[
f (l)(x)2

]
6 κ(2l)(0)2,

and, if l < k,

κ(2l+1)(x)2 = E
[
f (l+1)(0)f (l)(x)

]2
6 E

[
f (l+1)(0)2

]
E
[
f (l)(x)2

]
6 κ(2l+2)(0)κ(2l)(0).

Hence, κ and all its derivatives of order at most 2k are bounded on R. Recalling
Notation 1.3, this means that ‖κ‖l,η is well-defined for any l ∈ {0, . . . , 2k} and η > 0.

Moreover, the previous inequalities show that ‖κ‖2k = max
{
κ(2l)(0)

∣∣ 0 6 l 6 k
}
. Note

that asking for ‖κ‖k,η to decay at some rate as η → +∞, is just a way to require that
κ and all its derivatives of order at most k decay at said rate at infinity. For example,
taking into account the parity of κ, the hypothesis that ‖κ‖k,η −−−−−→η→+∞

0 in Theorem 1.14

is equivalent to asking that κ(k)(x) −−−−−→
x→+∞

0 for all l ∈ {0, . . . , k}.
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The fact that κ tends to 0 infinity ensures the non-degeneracy of the finite-dimensional
marginal distributions of the process f . Let us make this statement precise.

Lemma 2.10 (Non-degeneracy of the marginals). Let p ∈ N and let f be a stationary
centered Gaussian process of class Cp whose correlation function is denoted by κ. Let us
assume that κ(x) −−−−−→

x→+∞
0. Let m ∈ N∗, let x1, . . . , xm ∈ R and let k1, . . . , km ∈ {0, . . . , p}

be such that the couples ((xj , kj))16j6m are pairwise distinct. Then, the random vector(
f (kj)(xj)

)
16j6m

is a non-degenerate centered Gaussian vector in Rm.

Proof. Let us just sketch the proof here. The details are given in Appendix A.2. The
condition that κ tends to 0 at infinity implies that the process f is ergodic, which
is equivalent to the fact that its spectral measure has no atom. In particular, the
spectral measure of f has an accumulation point. This condition is enough to ensure the
non-degeneracy of

(
f (kj)(xj)

)
16j6m

as soon as the couples ((xj , kj))16j6m are pairwise
distinct.

We conclude this section by making a few remarks about the content of this section
and its relation to the hypotheses of Theorem 1.13.

Remark 2.11. Let f be a normalized stationary centered Gaussian process and let κ
denote its correlation function.

• Since κ is even, κ′(0) = 0. In particular, for all x ∈ R, the random vector (f(x), f ′(x))

is a standard Gaussian vector in R2. That is, for all x ∈ R, f(x) and f ′(x) are
independent N (0, 1) variables.

• Let x, y ∈ R be such that x 6= y, the determinant of the variance matrix of
(f(x), f(y)) equals 1− κ(y − x)2. Hence, this Gaussian vector is degenerate if and
only if |κ(y − x)| = 1. By Cauchy–Schwarz’s inequality, we have |κ(x)| 6 κ(0) = 1

for all x ∈ R. Thus, for k = 2, the first non-degeneracy condition in Theorem 1.13
is equivalent to the fact that |κ(x)| < 1 for any x 6= 0.

• Let k ∈ N∗, if f is of class Ck then, by Lemma 2.10, the fact κ(x) −−−−−→
x→+∞

0 is enough

to ensure that f satisfies the hypotheses of Theorem 1.13 at any point y ∈ Rk. This
condition is sufficient but not necessary, see Lemma A.2 below.

2.3 Zeros of stationary Gaussian processes

Let us now introduce more precisely the random sets we study. Let f be a normalized
centered stationary Gaussian process and let us denote by Z = f−1(0) its vanishing
locus.

Lemma 2.12. Let f : R→ R be a normalized centered stationary Gaussian process and
let Z = f−1(0). Then, almost surely, Z is a closed discrete subset of R.

Proof. The process f is almost surely of class C1. By Bulinskaya’s Lemma (see [6, Propo-
sition. 1.20]), since f(x) ∼ N (0, 1) for all x ∈ R, we have that f vanishes transversally
almost surely. That is, almost surely, for all x ∈ R such that f(x) = 0 we have f ′(x) 6= 0.
Then, Z is almost surely a closed 0-dimensional submanifold of R. Equivalently, Z is
almost surely a closed discrete subset of R.

Definition 2.13. Let R > 0.

• We set ZR = 1
RZ = {x ∈ R | f(Rx) = 0}.

• Let νR =
∑
x∈ZR δx (resp. ν =

∑
x∈Z δx) denote the counting measure of ZR

(resp. Z).

• As in Definition 2.6, for any non-empty finite set A, we denote by νA (resp. ν[A]) the
counting measure of the random set ZA (resp. ZA \∆A).
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In this paper, we study the asymptotic distribution of νR as R → +∞ through the
asymptotics of its linear statistics 〈νR , φ〉, where φ : R→ R is a nice enough function.

Notations 2.14. As in Section 1, we will use the following notations.

• Let Φ : RA → R, for any R > 0 we set ΦR : x 7→ φ( xR ). In particular, if φ : R → R,
we have 〈νR , φ〉 = 〈ν , φR〉.

• Let A be a subset of some set B, we denote by 1A : B → R the indicator function
of A. For example, if A ⊂ R, we have Card(Z ∩A) = 〈ν ,1A〉.

Remark 2.15. Let k ∈ N∗, then ν[k] is the counting measure of Zk \∆k. Let B be a Borel
subset of R, we denote by NB = Card(Z∩B) = 〈ν ,1B〉. The k-th factorial moment of NB
is defined as the expectation of N [k]

B = NB(NB − 1) · · · (NB − k + 1). As explained in [6,

p. 58], we have N [k]
B =

〈
ν[k] ,�ki=11B

〉
=
〈
ν[k] ,1Bk

〉
, hence E

[〈
ν[k] ,1Bk

〉]
is the k-th

factorial moment of Card(Z ∩B). We will see below that this quantities are well-defined
in [0,+∞].

3 Kac–Rice formulas and mean number of zeros

In this section, we state the so-called Kac–Rice formulas, that are one of the tools
in the proofs of Theorem 1.6 and Propositions 1.8 and 1.11. The Kac–Rice formulas
are recalled in Section 3.1. In Section 3.2, we related the Kac–Rice density introduced
in Definition 3.1 with the k-point function of the random set Z = f−1(0) defined in
Section 2.3. Then, in Section 3.3, we prove Proposition 1.8.

3.1 Kac–Rice formulas

In this section, we recall the Kac–Rice formulas (see Proposition 3.6). A standard ref-
erence for this material is [6, Chapters 3 and 6], see also [2, Chapter 11]. Note however
that formulas of this kind already appear in the work of Cramér and Leadbetter [13].

First, we need to introduce the Kac–Rice densities associated with a non-degenerate
Gaussian process of class C1.

Definition 3.1 (Kac–Rice densities). Let f be a centered Gaussian C1-process. Let k ∈ N∗
and let x = (xi)16i6k ∈ Rk. We denote by

Dk(x) = det (Var(f(x1), . . . , f(xk))) . (3.1)

If (f(x1), . . . , f(xk)) is non-degenerate, i.e. if Dk(x) 6= 0, we denote by

Nk(x) = E

[
k∏
i=1

|f ′(xi)|

∣∣∣∣∣∀i ∈ {1, . . . , k}, f(xi) = 0

]
, (3.2)

the conditional expectation of |f ′(x1)| · · · |f ′(xk)| given that f(x1) = · · · = f(xk) = 0, and
by

ρk(x) =
Nk(x)

(2π)
k
2Dk(x)

1
2

. (3.3)

We refer to ρk as the Kac–Rice density of order k associated with f .

Remark 3.2. By Lemma 2.10, if κ(x) −−−−−→
x→+∞

0 then, for all k ∈ N∗ the Kac–Rice density

ρk is well-defined on Rk \∆k. Note however that Dk always vanishes along ∆k.

Example 3.3. Let f be a normalized Gaussian process (see Definition 2.9)

• For all x ∈ R, f(x) and f ′(x) are independent N (0, 1) variables (see Remark 2.11).

Hence, D1(x) = Var(f(x)) = 1 and N1(x) = E[|f ′(x)|] =
√

2
π . Thus, ρ1 is constant

equal to 1
π .
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• Let κ denote the correlation function of f . We have D2(x, y) = 1 − κ(y − x)2 for
all (x, y) ∈ R2. Hence ρ2 is well-defined on R2 \∆2 if and only if |κ(x)| < 1 for all
x ∈ R \ {0}.

Notation 3.4 (Symmetric group). Let A be a non-empty finite set, we denote by SA

the group of permutations of A. For all σ ∈ SA and x = (xa)a∈A ∈ RA, we denote by
σ · x = (xσ(a))a∈A. If A = {1, . . . , k}, we denote Sk = SA for simplicity.

Lemma 3.5 (Symmetry). Let k ∈ N∗, we have Dk(σ ·x) = Dk(x) for all x ∈ Rk. Moreover,
if Dk(x) 6= 0, then Nk(σ · x) = Nk(x) and ρk(σ · x) = ρk(x).

Proof. Let σ ∈ Sk and let Σ denote the linear map x 7→ σ · x. For all x ∈ Rk, we have:

Dk(σ·x) = det Var
(
f(xσ(1)), . . . , f(xσ(k))

)
= det Var(Σ (f(x1), . . . , f(xk))) = det(Σ)2Dk(x).

Since the matrix of Σ in the canonical basis of Rk is a permutation matrix, det(Σ)2 = 1.
This proves that Dk is symmetric on Rk.

If Dk(x) 6= 0, the first point shows that Dk(σ · x) 6= 0, so that Nk(x), Nk(σ · x),
ρk(x) and ρk(σ · x) are well-defined. To conclude the proof it is enough to check that
Nk(σ · x) = Nk(x). This follows from the definition of Nk, see Equation (3.2).

We can now state the Kac–Rice formula itself.

Proposition 3.6 (Kac–Rice formula). Let f be a centered Gaussian process of class C1

and let Z denote its zero set. Let k ∈ N∗ and let ν[k] be the counting measure of Zk \∆k.
Let U be an open subset of Rk such that, for all x ∈ U \∆k, Dk(x) 6= 0 (cf. Definition 3.1).
Let Φ : Rk → R be a Borel function supported in U satisfying one of the following
conditions:

• the function Φ is non-negative;

• the function Φρk is Lebesgue-integrable on Rk;

• the random variable
〈
ν[k] ,Φ

〉
is integrable.

Then we have:

E
[〈
ν[k] ,Φ

〉]
=

∫
x∈Rk

Φ(x)ρk(x) dx,

where dx denote the Lebesgue measure of Rk.

Proof. We refer to [6, Theorem 3.2] for a proof of this result (see also [6, Theorem 6.2
and 6.3]). Our statement of the Kac–Rice formula differs from those that can be found
in [6]. Let us comment upon the differences.

In [6], the authors are concerned with the so-called factorial moments of the number
of zeros of f in some Borel set B ⊂ R. As we already explained in Remark 2.15, the k-th
factorial moment of Card(Z ∩B) is E

[〈
ν[k] ,1Bk

〉]
. Hence, Azaïs and Wschebor state and

prove Proposition 3.6 in the case where Φ is the indicator function 1Bk , where B is an
interval in [6, Theorem 3.2] and a Borel set in [6, Theorem 6.2 and 6.3]. Their proofs
can be adapted to deal with a Borel function Φ. Alternatively, once the result is proved
for the indicator function of a Borel set, it also holds for simple functions. Then, we
conclude by approximating the positive and negative part of Φ by simple functions and
applying Beppo Levi’s Monotone Convergence Theorem.

Remark 3.7. The only place where we use the Kac–Rice formula with U 6= Rk is the
proof of Lemma 3.11, where we prove that ρk coincides with the k-point function of Z.
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Remark 3.8. We prove below that, if f is of class Ck and its correlation function κ is such
that ‖κ‖k,η tends to 0 as η → +∞, then the function ρk is bounded (see Theorem 1.14).
In this case, the second condition in Proposition 3.6 can be replaced by the Lebesgue-
integrability of Φ on Rk. In particular, this implies that for any integrable function
Φ : Rk → R the random variable

〈
ν[k] ,Φ

〉
is almost surely well-defined.

3.2 Kac–Rice density and k-point functions

In this section, we show that the Kac–Rice density ρk introduced in Definition 3.1 is
in fact the k-point function of the point process Z = f−1(0) introduced in Section 2.3.
First, we need to prove the continuity of ρk.

Lemma 3.9 (Continuity). Let f be a centered Gaussian process of class C1. For all
k ∈ N∗, the maps Dk, Nk and ρk appearing in Definition 3.1 are continuous on their
domains of definition.

Proof. Let k ∈ N∗, for all x = (xi)16i6k ∈ Rk, let us denote by Xk(x) = (f(xi))16i6k and
Yk(x) = (f ′(xi))16i6k. Then, (Xk(x), Yk(x))x∈Rk is a continuous centered Gaussian field
with values in R2k. We write the variance matrix of (Xk(x), Yk(x)) by square blocks of
size k as: (

Θk(x)
t
Ξk(x)

Ξk(x) Ωk(x)

)
,

where Θk, Ξk and Ωk are continuous on Rk. Then, Dk = det(Θk) is continuous on Rk.
If x ∈ Rk is such that Dk(x) 6= 0, then Yk(x) given that Xk(x) = 0 is a well-defined

centered Gaussian vector of variance matrix Λk(x) = Ωk(x)−Ξk(x)Θk(x)−1 t
Ξk(x) (see [6,

Proposition 1.2]). Note that Λk is continuous on {x ∈ Rk | Dk(x) 6= 0}. Then,

Nk(x) = E

[
k∏
i=1

|Zi(x)|

]
,

where (Z1(x), . . . , Zk(x)) ∼ N (0,Λk(x)). That is, Nk(x) = Πk(Λk(x)), where Πk is the
map defined in Definition C.1. Since Πk is continuous (see Corollary C.3), the function
Nk is continuous on {x ∈ Rk | Dk(x) 6= 0}, and so is ρk.

Let us now consider a normalized centered stationary Gaussian process f which is C1.
By Lemma 2.12, its zero set Z is a discrete closed subset of R almost surely. That is Z is
random point process in R.

Definition 3.10 (k-point function). Let x = (xi)16i6k ∈ Rk \ ∆k, the value at x of the
k-point function of a random point process Z is defined as:

lim
ε→0

1

(2ε)k
E

[
k∏
i=1

Card (Z ∩ [xi − ε, xi + ε])

]
,

if this limit is well-defined.

We can now make precise our claim that ρk is the k-point function of Z.

Lemma 3.11. Let k ∈ N∗ and let f be a normalized centered stationary Gaussian C1-
process. Let us denote by Z the vanishing locus of f . Then, for all x = (xi)16i6k ∈ Rk
such that Dk(x) 6= 0, we have:

1

(2ε)k
E

[
k∏
i=1

Card (Z ∩ [xi − ε, xi + ε])

]
−−−→
ε→0

ρk(x),

where ρk is the function appearing in Definition 3.1.
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Proof. Since Dk(x) 6= 0, by continuity of Dk (see Lemma 3.9) there exists a neighborhood
U of x such that Dk does not vanish on U . Note that this implies U ⊂ Rk \∆k.

Let ε 6= 0. Without loss of generality, we can assume ε to be positive and small enough
that

∏k
i=1[xi − ε, xi + ε] ⊂ U ⊂ Rk \∆k. In particular, the intervals ([xi − ε, xi + ε])16i6k

are pairwise disjoint. Let C denote the cube [−1, 1]k. Using the notations introduced in
Definition 2.13 and Notations 2.14, we have:

k∏
i=1

Card (Z ∩ [xi − ε, xi + ε]) = Card
(
Zk ∩ (x+ εC)

)
=
〈
νk ,1x+εC

〉
=
〈
ν[k] ,1x+εC

〉
,

since x+ εC does not intersect ∆k. The function ρk is well-defined and continuous on U .
Then, by the Kac–Rice formula of order k (see Proposition 3.6), we have:

1

(2ε)k
E

[
k∏
i=1

Card (Z ∩ [xi − ε, xi + ε])

]
=

1

(2ε)k

∫
x+εC

ρk(y) dy −−−→
ε→0

ρk(x),

since x+ εC has volume (2ε)k and ρk is continuous at x.

3.3 Proof of Proposition 1.8: expectation of the linear statistics

A first application of the Kac–Rice formulas (cf. Proposition 3.6) is the computation
of the expectation of the linear statistics 〈νR , φ〉 (see Section 2.3), where R > 0 and
φ : R→ R is either non-negative or integrable. In this section, we address this problem
and prove Proposition 1.8.

Proof of Proposition 1.8. Let R > 0 and let φ : R→ R be non-negative or integrable. By
definition of νR and φR (see Section 2.3), we have E[〈νR , φ〉] = E[〈ν , φR〉]. We apply
the Kac–Rice formula for k = 1, bearing in mind that ρ1 is constant equal to 1

π (see
Example 3.3). We obtain:

E[〈νR , φ〉] = E[〈ν , φR〉] = E
[〈
ν[1] , φR

〉]
=

1

π

∫ +∞

−∞
φR(x) dx =

R

π

∫ +∞

−∞
φ(x) dx.

For all φ ∈ C0
c (R) we have: 〈E[νR] , φ〉 = E[〈νR , φ〉] =

〈
R
π dx , φ

〉
. Hence, E[νR] = R

π dx.

As explained in Remark 1.9, applying Proposition 1.8 for the positive function |φ|
allows to prove that, if φ is integrable then, for all R > 0, 〈νR , φ〉 is almost surely well-
defined. We can do a bit better than that. For example, let E denote the following space
of functions:

E =

{
φ : R→ R Lebesgue-measurable

∣∣∣∣ ∃C > 0,∃α > 1,∀x ∈ R, |φ(x)| 6 C

1 + |x|α
}
.

For all C > 0 and α > 1, we denote by ψC,α : x 7→ C
1+|x|α , from R to R. By Proposition 1.8,

for all C > 0 and α > 1 such that C ∈ Q and α ∈ Q, we have 〈ν , ψC,α〉 < +∞ almost
surely. Hence, almost surely, for all φ ∈ E , we have 〈ν , |φ|〉 < +∞. A function φ belongs
to E if and only if it is bounded and φ(x) = O(|x|−α) as |x| → +∞, for some α > 1. Thus,
if φ ∈ E , then φR ∈ E for all R > 0. Finally, we obtain that, almost surely, for all φ ∈ E , for
all R > 0, we have 〈ν , |φR|〉 < +∞, i.e. 〈νR , φ〉 = 〈ν , φR〉 is well-defined. Of course, in
this example, the family {ψC,α | C > 0, α > 1} can be replaced by any countable family
of non-negative integrable functions. The same idea shows that νR almost surely defines
a tempered distribution.

Lemma 3.12. Using the same notations as in Proposition 1.8, almost surely, for all R > 0

we have νR ∈ S ′(R).
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Proof. We recalled the definitions of S(R) and S ′(R) in Definition 1.18. For all φ ∈ S(R),
we denote by C(φ) = maxx∈Rn

∣∣(1 + x2)φ(x)
∣∣. Note that φ 7→ C(φ) is one of the norms

defining the topology of S(R). In particular, C(φ)→ 0 as φ→ 0 in S(R).
Let ψ : x 7→ 1

1+x2 . By Proposition 1.8, almost surely 〈ν , ψ〉 < +∞. Let us consider a
fixed realization of ν in the full probability event such that 〈ν , ψ〉 < +∞. For all R > 0

and all φ ∈ S(R) we have:

〈νR , |φ|〉 = 〈ν , |φR|〉 6 C(φR) 〈ν , ψ〉 6 C(φ)R2 〈ν , ψ〉 .

On the one hand, this shows that 〈νR , φ〉 is well-defined. On the other hand, for all R > 0,

|〈νR , φ〉| 6 C(φ)R2 〈ν , ψ〉 −−−→
φ→0

0.

Thus the linear form φ 7→ 〈νR , φ〉 is continuous on S(R), i.e. νR ∈ S ′(R).

4 Proof of Proposition 1.11: asymptotics of the covariances

This section is concerned with the proof of Proposition 1.11. In all this section, we
consider a Gaussian process f satisfying the hypotheses of Proposition 1.11, that is
f is a normalized stationary centered Gaussian C2-process. Moreover, the correlation
function κ of f is such that κ and κ′′ are square-integrable functions that tend to 0 at
infinity.

First, in Section 4.1, we prove that the asymptotics given in Equation (1.1) holds.
Then, we prove the positivity of the constant σ (see Equation (1.2)) in Section 4.2.

4.1 Asymptotics of the covariances

In this section, we prove that Equation (1.1) in Proposition 1.11 holds. The content
of this section is close to what can already be found in the literature, for example in
the work of Cuzick [15]. The main difference is that we added test-functions φ1 and
φ2 in Equation (1.1), where other authors generally consider the case φ1 = φ2 = 1[0,1].
However, some of the notations and auxiliary results of this section will also be used in
the proof of Theorem 1.6 (see Section 7.5). Besides, the proof of (1.1) is a good toy-model
for the proof of Theorem 1.6, which is another reason to write it in full here.

We first introduce a density function F (see Definition 4.1) and state some of its
properties in Lemmas 4.2 and 4.3. The proofs of these lemmas are postponed until
Appendix B. Then we establish Equation (1.1).

Since κ tends to 0 at infinity, by Lemma 2.10, the Kac–Rice density ρ2 is well-defined
onR2\∆2 (see Remark 3.2). Moreover, since f is stationary, we have ρ2(x, x+z) = ρ2(0, z)

for all z 6= 0 (see Definition 3.1).

Definition 4.1. We denote by F : z 7→ ρ2(0, z)− 1
π2 from R \ {0} to R.

Note that, for all x 6= y, we have ρ2(x, y) − ρ1(x)ρ1(y) = F (y − x). It is possible to
compute a somewhat more explicit expression of F .

Lemma 4.2. For all z > 0, we have:

F (z) = F (−z) =
1

π2

(
1− κ(z)2 − κ′(z)2

(1− κ(z)2)
3
2

(√
1− a(z)2 + a(z) arcsin(a(z))

)
− 1

)
,

where a(z) =
κ(z)κ′(z)2 − κ(z)2κ′′(z) + κ′′(z)

1− κ(z)2 − κ′(z)2
∈ [−1, 1].

Proof. See Appendix B.1.
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Lemma 4.3. Under the hypotheses of Proposition 1.11, we have:

F (z) −−−→
z→0

− 1

π2
and F (z) −−−−−→

|z|→+∞
0.

Moreover, the function F is Lebesgue-integrable on R.

Proof. See Appendix B.2.

Assuming that Lemmas 4.2 and 4.3 hold, we can now prove the first part of Proposi-
tion 1.11. An important step is the following lemma, which will also appear in the proof
of Theorem 1.6.

Lemma 4.4. Under the hypotheses of Proposition 1.11, for all R > 0 we have:

m2(νR)(φ1, φ2) =

∫
R2

φ1

( x
R

)
φ2

( y
R

)
F (y − x) dx dy +

R

π

∫
R

φ1(x)φ2(x) dx,

where F is the function introduced in Definition 4.1.

Proof. Let R > 0 and let φ1 and φ2 be two Lebesgue-integrable functions such that φ2 is
essentially bounded and continuous almost everywhere. Note that φ1φ2 is integrable.
By Remark 1.9, the random variables 〈νR , φ1〉, 〈νR , φ2〉 and 〈νR , φ1φ2〉 are almost surely
well-defined and integrable. Using the Notations 2.1, we have φR = (φ1)R � (φ2)R and:

m2(νR)(φ1, φ2) = E[〈νR , φ1〉 〈νR , φ2〉]− E[〈νR , φ1〉]E[〈νR , φ2〉]
= E

[〈
ν2 , φR

〉]
− E[〈ν , (φ1)R〉]E[〈ν , (φ2)R〉]

= E
[〈
ν[2] , φR

〉]
+ E[〈ν , (φ1φ2)R〉]− E[〈ν , (φ1)R〉]E[〈ν , (φ2)R〉] .

The middle term in the previous expression equals E[〈νR , φ1φ2〉] = R
π

∫
R
φ1(x)φ2(x) dx,

by Proposition 1.8. We compute the other two terms by the Kac–Rice formulas of order 1

and 2. By Lemma 3.9, ρ2 is continuous on R2 \∆2. By Lemma 4.3 and Definition 4.1,
the function ρ2 is bounded on R2 \∆2. Thus, φRρ2 is Lebesgue-integrable on R2. Then,
by Lemma 2.10, the hypotheses of Proposition 3.6 are satisfied. Recalling that ρ1 is
constant equal to 1

π (see Example 3.3), we obtain:

E
[〈
ν[2] , φR

〉]
− E[〈ν , (φ1)R〉]E[〈ν , (φ2)R〉]

=

∫
R2

φ1

( x
R

)
φ2

( y
R

)
(ρ2(x, y)− ρ1(x)ρ1(y)) dxdy

=

∫
R2

φ1

( x
R

)
φ2

( y
R

)
F (y − x) dxdy.

Proof of Equation (1.1). Under the hypotheses of Proposition 1.11, we apply Lemma 4.4,
which yields:

m2(νR)(φ1, φ2) =

∫
R2

φ1

( x
R

)
φ2

( y
R

)
F (y − x) dx dy +

R

π

∫
R

φ1(x)φ2(x) dx.

By a change of variable, we obtain:∫
R2

φ1

( x
R

)
φ2

( y
R

)
F (y − x) dxdy = R

∫
R2

φ1(x)φ2

(
x+

z

R

)
F (z) dxdz.

Let us define g : (x, z) 7→ φ1(x)φ2(x)F (z) and gR : (x, z) 7→ φ1(x)φ2

(
x+ z

R

)
F (z) for all

R > 0. Since φ2 is continuous almost everywhere, gR simply converges toward g almost
everywhere on R2. Besides, for all (x, z) ∈ R2 we have:

|gR(x, z)| 6 ‖φ2‖∞ |φ1(x)| |F (z)| ,
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where ‖φ2‖∞ stands for the essential supremum of φ2. Since φ1 and F are integrable on
R (see Lemma 4.3), the right-hand side is integrable on R2. By Lebesgue’s Dominated
Convergence Theorem, we get:∫

R2

φ1(x)φ2

(
x+

z

R

)
F (z) dx dz −−−−−→

R→+∞

(∫
x∈R

φ1(x)φ2(x) dx

)(∫
z∈R

F (z) dz

)
.

Putting together everything we have done so far, as R→ +∞, we have:

m2(νR)(φ1, φ2) = R

(∫ +∞

−∞
φ1(x)φ2(x) dx

)(
1

π
+

∫ +∞

−∞
F (z) dz

)
+ o(R).

Finally, by Lemma 4.2 and Equation (1.2), we have: 1
π +

∫ +∞
−∞ F (z) dz = σ2, hence the

result.

4.2 Positivity of the leading constant

The goal of this section is to conclude the proof of Proposition 1.11, by proving that
σ2 > 0, see Corollary 4.8 below. Recall that σ2 is given by Equation (1.2) and that σ is its
non-negative square root. It is not clear from its expression that σ2 is positive. Indeed,
Equation (1.2) can be rewritten (cf. Section 4.1) as:

σ2 =
1

π
+ 2

∫ +∞

0

F (z) dz,

where F is defined by Definition 4.1. The function F is not non-negative since it tends
to − 1

π2 as z → 0 (see Lemma 4.3). In fact, on several examples 2
∫ +∞

0
F (z) dz < 0 and

we would need to compare this integral with − 1
π in order to deduce the positivity of σ2

from the previous expression.
Our proof does not use Equation (1.2), but relies on the Wiener–Itô expansion of〈

νR ,1[0,1]

〉
derived by Kratz–Leòn in [26]. It is not necessary to know about these

Wiener–Itô expansions to understand what follows, and we refer the interested reader
to [26].

Proposition 4.5. Let f be a normalized centered stationary Gaussian C2-process and
let Z denote its zero set. Then, for any R > 0, there exists a square-integrable centered
random variable XR such that:

Card (Z ∩ [0, R]) =
R

π
+

1

2π

∫ R

0

f ′(x)2 − f(x)2 dx+XR.

Moreover,

∫ R

0

f ′(x)2 − f(x)2 dx is a square-integrable centered random variable and we

have:

E

[(∫ R

0

f ′(x)2 − f(x)2 dx

)
XR

]
= 0.

Remark 4.6. One can check that, since f is normalized (see Definition 2.9), we have:

E

[∫ R

0

f(x)2 dx

]
=

∫ R

0

E
[
f(x)2

]
dx =

∫ R

0

dx = R

and, by Cauchy–Schwarz’s Inequality:

E

(∫ R

0

f(x)2 dx

)2
 =

∫ R

0

∫ R

0

E
[
f(x)2f(y)2

]
dxdy 6

(∫ R

0

E
[
f(x)4

] 1
2 dx

)2

= 3R2.
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Thus
∫ R

0
f(x)2 dx is square-integrable of mean R. Similarly,

∫ R
0
f ′(x)2 dx is square-

integrable of mean R. Hence the difference of these terms is indeed square-integrable
and centered.

Proof of Proposition 4.5. This result is a simplified version of [26, Proposition 1]. Note
that this result holds for a normalized process f whose correlation function κ satisfies
κ(4)(0) < +∞ (see [26, Condition (1), p. 238]). Here, our process f is of class C2, hence
this condition is satisfied.

Let us denote by NR = Card(Z ∩ [0, R]). Kratz and Leòn prove that an expansion of
the form:

NR = E[NR] +
∑
q>1

NR[q]

holds in the space of L2-random variables, where the (NR[q])q>1 are uncorrelated cen-
tered random variables. Using Proposition 1.8 and setting XR =

∑
q>2NR[q], we have:

NR =
R

π
+NR[1] +XR,

where NR[1] and XR are centered L2-random variables such that E
[
NR[1] XR

]
= 0.

Then, [26, Proposition 1] gives an expression of NR[q], for all q > 0. In particular, we
have:

NR[1] = a0b2(0)

∫ R

0

H2(f(x))H0(f ′(x)) dx+ a2b0(0)

∫ R

0

H0(f(x))H2(f ′(x)) dx.

Here H0(X) = 1 and H2(X) = X2 − 1 are the Hermite polynomials of degree 0 and 2

respectively, a0 =
√

2
π and a2 = 1√

2π
by [26, Lemma 2], b0(0) = 1√

2π
and b2(0) = 1√

8π

by [26, Proposition 1]. Finally, a direct computation yields:

NR[1] =
1

2π

∫ R

0

f ′(x)2 − f(x)2 dx.

Lemma 4.7. Let f be a normalized centered stationary Gaussian C2-process and let κ
denote its correlation function. We assume that κ and κ′′ are square-integrable and that
κ(x)κ′(x)→ 0 as x→ +∞. Then,

1

R
Var

(∫ R

0

f ′(x)2 − f(x)2 dx

)
−−−−−→
R→+∞

4

∫ +∞

0

(κ(x) + κ′′(x))
2

dx.

Proof. As explained in Remark 4.6,
∫ R

0
f ′(x)2−f(x)2 dx is square-integrable and centered.

For all R > 0, we have:

Var

(∫ R

0

f ′(x)2 − f(x)2 dx

)
=E

(∫ R

0

f ′(x)2 − f(x)2 dx

)2


=

∫ R

0

∫ R

0

E
[
f ′(x)2f ′(y)2

]
− E

[
f ′(x)2f(y)2

]
− E

[
f(x)2f ′(y)2

]
+ E

[
f(x)2f(y)2

]
dx dy.

By Wick’s Formula (see [2, Lemma 11.6.1]), if (X,Y ) is a centered Gaussian vector in R2,
then we have E

[
X2Y 2

]
= E

[
X2
]
E
[
Y 2
]

+ 2E[XY ]
2. For example, using the stationarity

and normalization of f , we have:

E
[
f(x)2f(y)2

]
= E

[
f(x)2

]
E
[
f(y)2

]
+ 2E[f(x)f(y)]

2
= 1 + 2κ(y − x)2.
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Applying Wick’s Formula to (f(x), f(y)), (f(x), f ′(y)), (f ′(x), f(y)) and (f ′(x), f ′(y)) yields:

Var

(∫ R

0

f ′(x)2 − f(x)2 dx

)
= 2

∫ R

0

∫ R

0

κ′′(y − x)2 − 2κ′(y − x)2 + κ(y − x)2 dxdy

= 2

∫ R

0

(∫ R−x

−x
κ′′(z)2 − 2κ′(z)2 + κ(z)2 dz

)
dx

= 2R

∫ 1

0

(∫ R(1−x)

−Rx
κ′′(z)2 − 2κ′(z)2 + κ(z)2 dz

)
dx.

Integrating by parts, we have:∫ R(1−x)

−Rx
κ′(z)2 dz = κ(R(1− x))κ′(R(1− x))− κ(−Rx)κ′(−Rx)−

∫ R(1−x)

−Rx
κ(z)κ(z)′′ dx,

so that∫ R(1−x)

−Rx
κ′′(z)2 − 2κ′(z)2 + κ(z)2 dz =

∫ R(1−x)

−Rx
(κ(z) + κ′′(z))

2
dz

+ κ(R(1− x))κ′(R(1− x))− κ(−Rx)κ′(−Rx).

Recall that κκ′ tends to 0 at infinity and that κ is even. Letting R→ +∞ in the previous
equation, we obtain for any x ∈ (0, 1):∫ R(1−x)

−Rx
κ′′(z)2 − 2κ′(z)2 + κ(z)2 dz −−−−−→

R→+∞

∫ +∞

−∞
(κ(z) + κ′′(z))

2
dz,

where the right-hand side is finite since both κ and κ′′ are square-integrable. By
Lebesgue’s Dominated Convergence Theorem, we get:

1

R
Var

(∫ R

0

f ′(x)2 − f(x)2 dx

)
−−−−−→
R→+∞

4

∫ +∞

0

(κ(z) + κ′′(z))
2

dz.

In this last step the dominating function is constant on [0, 1] equal to:

2 ‖κ‖21 +

∫ +∞

−∞
(κ(z) + κ′′(z))2 dz.

The following corollary proves the positivity of σ2 and concludes the proof of Proposi-
tion 1.11.

Corollary 4.8 (Explicit lower bound on σ2). Let f be a normalized centered stationary
centered Gaussian C2-process and let κ denote its correlation function. Under the
hypotheses of Proposition 1.11, the constant σ2 defined by Equation (1.2) satisfies:

σ2 >
1

π2

∫ +∞

0

(κ(z) + κ′′(z))
2

dz > 0.

Proof. Let Z denote the zero set of f and let ν denote its counting measure, as in
Section 2.3. As we already said, we have: Card(Z ∩ [0, R]) =

〈
ν ,1[0,R]

〉
=
〈
νR ,1[0,1]

〉
.

We use the asymptotics given by Equation (1.1) with φ1 = φ2 = 1[0,1]. Note that this
asymptotics was already proved to hold, in Section 4.1. Then, as R→ +∞,

m2(νR)(1[0,1],1[0,1]) = Var
(〈
νR ,1[0,1]

〉)
= Rσ2 + o(R).

EJP 26 (2021), paper 68.
Page 27/81

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP637
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Zeros of smooth stationary Gaussian processes

That is, 1
R Var(Card(Z ∩ [0, R])) −−−−−→

R→+∞
σ2.

By Proposition 4.5, we have:

Var(Card(Z ∩ [0, R])) >
1

4π2
Var

(∫ R

0

f ′(x)2 − f(x)2 dx

)
.

We divide by R and let R→ +∞. By Lemma 4.7, we have:

σ2 = lim
R→+∞

1

R
Var(Card(Z ∩ [0, R])) >

1

π2

∫ +∞

0

(κ(z) + κ′′(z))
2

dz.

In order to conclude the proof, we need to check that the right-hand side of the
previous equation is positive. It is clearly non-negative. If it were zero, then κ would be
an even function of class C2 such that κ(0) = 1, κ′(0) = 0 and ∀z > 0, κ(z) + κ′′(z) = 0.
That is we would have κ(z) = cos(z) for all z ∈ R. This would contradict our hypotheses
on κ, for example the fact that κ(z) −−−−−→

z→+∞
0. Thus,

∫ +∞

0

(κ(z) + κ′′(z))
2

dz > 0.

5 Divided differences

In this section, we introduce another important tool that we will use in the proofs of
Theorems 1.6, 1.13 and 1.14: the divided differences. The divided differences associated
with a point x ∈ Rp and a function f ∈ Cp(R) are coefficients of the Hermite interpolation
polynomial of f at x (see Definition 5.6 below). As such, they are an important object in
polynomial approximation and are well-studied. In Section 5.1, we define the divided
differences and the related Hermite interpolation polynomials. In Section 5.2, we state
the properties of the divided differences that we are interested in. Most of the material of
these two sections is classical and can be found in the survey [19]. Finally, in Section 5.3,
we study the distribution of the divided differences associated with a stationary centered
Gaussian process.

5.1 Hermite interpolation and divided differences

The goal of this section is to define the so-called divided differences associated with
a point x ∈ Rp and a function f ∈ Cp−1(R). First we define the evaluation at x ∈ Rp and
introduce some useful notations. Then we define the Hermite interpolation polynomial
of f at x and the associated divided differences in Definition 5.6.

Definition 5.1 (Evaluation map). Let p ∈ N∗ and let x = (xi)16i6p ∈ Rp. For all
i ∈ {1, . . . , p} we denote by ci(x) = Card {j ∈ {1, . . . , i− 1} | xj = xi}. We denote by
evx : Cp−1(R)→ Rp the evaluation map defined by:

evx : f 7−→
(
f (ci(x))(xi)

ci(x)!

)
16i6p

.

Example 5.2. If x = (xi)16i6p ∈ Rp\∆p, then evx : f 7→ (f(x1), . . . , f(xp)) is the classical
evaluation map at the points (xi)16i6p. On the diagonal, we also evaluate derivatives of
f : if x = (y1, . . . , y1, . . . , ym, . . . , ym), where the (yj)16j6m are distinct and yj is repeated
kj + 1 times, then p =

∑m
j=1(kj + 1) and

evx : f 7−→
(
f(y1), f ′(y1), . . . ,

f (k1)(y1)

k1!
, . . . , f(ym), f ′(ym), . . . ,

f (km)(ym)

km!

)
.
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More generally, with the notations of Section 2.1, let I ∈ Pp, let y = (yI)I∈I ∈ RI \∆I
and let x = ιI(y) ∈ ∆p,I . Then, for any f ∈ Cp−1(R), we have:

evx(f) =

(
f (i)(yI)

i!

)
I∈I,06i<|I|

.

Definitions 5.3 (Newton polynomials). Let p ∈ N∗ and let x = (xi)16i6p ∈ Rp.

• We denote by Rp−1[X] the space of polynomials in X of degree at most p− 1.

• For all j ∈ {0, . . . , p − 1}, we denote by P jx =
∏j
l=1(X − xl) the j-th Newton

polynomial associated with x.

• Let M(x) denote the matrix of the restriction of evx to Rp−1[X], in the basis
(P 0
x , . . . , P

p−1
x ) of Rp−1[X] and the canonical basis of Rp (see Example 5.10.1 below).

Lemma 5.4. Let p ∈ N∗ and let x = (xi)16i6p ∈ Rp. The matrix M(x) =
(
Mij(x)

)
1,6i,j6p

is lower triangular and, for all i ∈ {1, . . . , p}, we have:

Mii(x) =
∏

{k∈{1,...,i−1}|xk 6=xi}

(xi − xk).

Moreover, if 1 6 j < i 6 p, the coefficient Mij(x) vanishes when ci(x) > j (cf. Defini-
tion 5.1), and is an homogeneous polynomial of degree j − 1 − ci(x) in (xi − xl)16l<j

when ci(x) < j.

Proof. Let x = (xi)16i6p ∈ Rp and let i, j ∈ {1, . . . , p}. By definition of M(x), we have

Mij(x) =
(P j−1
x )(ci(x))(xi)

ci(x)!
.

If i < j, then Card{l < j | xl = xi} > ci(x) + 1. Hence, xi is a root of P j−1
x of multiplicity

at least ci(x) + 1, and (P j−1
x )(ci(x))(xi) = 0. Thus M(x) is lower triangular. Then, if i = j,

we have
P j−1
x = (X − xi)ci(x)

∏
k∈K

(X − xk),

where K = {k ∈ {1, . . . , i− 1} | xk 6= xi}. Hence, Mii(x) =
∏
k∈K(xi − xk) as claimed.

Let us now assume that j < i. If ci(x) > j, since P j−1
x has degree j − 1 we have

(P j−1
x )(ci(x)) = 0, and Mij(x) = 0. If ci(x) < j, then (P j−1

x )(ci(x)) is a sum of terms which
are products of exactly j − 1 − ci(x) factors of the form (X − xl), where 1 6 l < j.
Thus Mij(x) is some homogeneous polynomial of degree j − 1 − ci(x) evaluated on
(xi − xl)16l<j .

Corollary 5.5. For all x ∈ Rp, the restriction of evx is an isomorphism from Rp−1[X]

to Rp.

Proof. By Lemma 5.4, the matrix M(x) of this linear map is lower triangular and its
diagonal coefficients are non-zero.

We can now define the Hermite interpolation polynomial of f at x ∈ Rp and the
divided difference [f ]p(x). The meaning of the name “divided difference” is not obvious
in the following definition. The terminology will become clearer after we explained how
to compute these divided differences recursively (see Lemma 5.12 below).

Definition 5.6 (Divided differences). Let p ∈ N∗ and let x ∈ Rp. By Corollary 5.5,
for any f ∈ Cp−1(R) there exists a unique πfx ∈ Rp−1[X] such that evx(πfx) = evx(f).
This polynomial is called the Hermite interpolation polynomial of f at x. The divided
difference [f ]p(x) is defined as its leading coefficient.
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The following lemma shows that the divided differences are the coordinates of the
Hermite interpolation polynomial in the basis of the Newton polynomials defined above,
see Definitions 5.3.

Lemma 5.7. Let p ∈ N∗ and let x = (xi)16i6p ∈ Rp. For all f ∈ Cp−1(R), we have:

πfx =

p∑
j=1

[f ]j(x1, . . . , xj)P
j−1
x .

Proof. We prove this result by induction on p ∈ N∗. If p = 1, for any continuous f , the
polynomial πfx is constant equal to f(x1). Hence, πfx = [f ]1(x1)P 0

x where [f ]1 = f .
Let us assume that the result holds for p ∈ N∗. Let x = (xi)16i6p+1 ∈ Rp+1, we denote

by x̃ = (xi)16i6p. Note that for any f ∈ Cp(R), the components of evx̃(f) are the first p
components of evx(f). Then, by Lemma 5.4, we have evx̃(P px ) = 0. Hence,

evx̃
(
πfx − [f ]p+1(x)P px

)
= evx̃(πfx) = evx̃(f).

Moreover, by Definition 5.6, the polynomial πfx − [f ]p+1(x)P px has degree at most p− 1.
Thus, πfx − [f ]p+1(x)P px = πfx̃ =

∑p
j=1[f ]j(x1, . . . , xj)P

j−1
x , where the second equality is

given by the induction hypothesis. This concludes the induction step and the proof.

Definition 5.8 (Divided differences evaluation map). Let p ∈ N∗ and x = (xi)16i6p ∈ Rp,
we denote by [ev]x : Cp−1(R)→ Rp the linear map defined by

[ev]x : f 7−→ ([f ]j(x1, . . . , xj))16j6p .

Lemma 5.9. Let p ∈ N∗, for all x ∈ Rp we have M(x)[ev]x = evx, where evx is as in
Definition 5.1 and M(x) is defined by Definitions 5.3.

Proof. Let x ∈ Rp and let f ∈ Cp−1(R). By Lemma 5.7, the components of [ev]x(f) are the
coordinates of the polynomial πfx in the basis (P jx)16j6p of Rp−1[X]. Then, by definition
of M(x) and πfx , we have:

M(x)[ev]x(f) = evx(πfx) = evx(f).

Example 5.10. We conclude this section by giving some examples.

1. Let f ∈ C1(R) and (x1, x2) ∈ R2 \∆2, we have M(x) =

(
1 0

1 x2 − x1

)
. Hence

(
[f ]1(x1)

[f ]2(x1, x2)

)
= M(x)−1

(
f(x1)

f(x2)

)
=

(
1 0
−1

x2−x1

1
x2−x1

)(
f(x1)

f(x2)

)
=

(
f(x1)

f(x2)−f(x1)
x2−x1

)
.

2. Let p ∈ N∗, let x = (xi)16i6p ∈ Rp and let f ∈ Cp−1(R). If there exists z ∈ R such

that xi = z for all i ∈ {1, . . . , p}, then evx(f) =
(
f(z), . . . , f

(p−1)(z)
(p−1)!

)
and M(x) is the

identity matrix of size p. Then, πfx is the Taylor polynomial of degree p− 1 of f at z

and [f ]j(x1, . . . , xj) = f(j−1)(z)
(j−1)! , for all j ∈ {1, . . . , p}.

3. Let p ∈ N∗ and (xi)16i6p ∈ Rp \∆p. Let f ∈ Cp(R) be such that [f ]j(x1, . . . , xj) = 0

for all j ∈ {1, . . . , p}. Let i ∈ {1, . . . , p}, we denote by x = (x1, . . . , xp, xi) ∈ Rp+1. By
Lemma 5.7, we have πfx = [f ]p+1(x1, . . . , xp, xi)

∏p
j=1(X − xj). Hence,

f ′(xi) = (πfx)′(xi) = [f ]p+1(x1, . . . , xp, xi)
∏

j∈{1,...,p}\{i}

(xi − xj).
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5.2 Properties of the divided differences

Let us now derive some interesting properties of the divided differences defined in
Definition 5.6. They will be useful in Section 6, to obtain new expressions of the Kac–Rice
densities (cf. Definition 3.1) and prove clustering results for these densities.

Recall that we denoted by σ · x the action of σ ∈ Sp on x ∈ Rp by permutation of the
indices (see Notation 3.4).

Lemma 5.11 (Symmetry). Let p ∈ N∗ and f ∈ Cp−1(R). For all x ∈ Rp and all σ ∈ Sp,
we have πfσ·x = πfx . In particular [f ]p(σ · x) = [f ]p(x), that is the function [f ]p : Rp → R is
symmetric.

Proof. Let x ∈ Rp. By Remark 2.4, there exists a unique I ∈ Pp such that x ∈ ∆p,I .
Moreover, there exists a unique y = (yI)I∈I ∈ RI \∆I such that x = ιI(y). By Defini-
tion 5.6, the polynomial πfx is the only element of Rp−1[X] such that(πfx − f)(i)(yI) = 0

for all I ∈ I and all i < |I|. The set {(yI , |I|) | I ∈ I} is invariant under the action of σ
on x by permutation of the components. Hence πfσ·x = πfx and, looking at the leading
coefficients, we have [f ]p(σ · x) = [f ]p(x).

The following result shows that the divided differences can be computed recursively,
at least if the interpolation points x1, . . . , xp ∈ R are distinct. It also explains the name
“divided differences”.

Lemma 5.12 (Inductive definition). Let p ∈ N∗, let f ∈ Cp(R) and x = (xi)16i6p+1 ∈ Rp+1

be such that xp 6= xp+1. Then, we have:

[f ]p+1(x) =
[f ]p(x1, . . . , xp−1, xp+1)− [f ]p(x1 . . . , xp−1, xp)

xp+1 − xp
.

Proof. Let σ ∈ Sp+1 be defined by σ(p) = p + 1, σ(p + 1) = p and σ(i) = i for all
i ∈ {1, . . . , p− 1}. Using Notation 3.4, by Lemmas 5.7 and 5.11, we have:

0 = πfx − πfσ·x =

p+1∑
j=1

[f ]j(x1, . . . , xj)P
j−1
x −

p+1∑
j=1

[f ]j(xσ(1), . . . , xσ(j))P
j−1
σ·x .

We have P j−1
σ·x = P j−1

x for j ∈ {1, . . . , p}. Moreover, [f ]j(xσ(1), . . . , xσ(j)) = [f ]j(x1 . . . , xj)

for all j ∈ {1, . . . , p+ 1} \ {p}. Hence, only the terms of index p and p+ 1 do not cancel
out in the previous sums. Dividing by P p−1

x =
∏p−1
i=1 (X − xi) = P p−1

σ·x , we obtain:

(xp+1−xp)[f ]p+1(x1, . . . , xp, xp+1)+[f ]p(x1, . . . , xp−1, xp+1)− [f ]p(x1 . . . , xp−1, xp) = 0.

Notation 5.13. Let p ∈ N∗ and x = (xi)16i6p, we denote by xmin = min{xi | 1 6 i 6 p}
and by xmax = max{xi | 1 6 i 6 p}.
Lemma 5.14 (Rolle’s Property). Let p ∈ N∗ and f ∈ Cp−1(R). For all x = (xi)16i6p ∈ Rp,
there exists ξ ∈ [xmin, xmax] such that [f ]p(x) = f(p−1)(ξ)

(p−1)! .

Proof. Let x ∈ Rp. There exist y1 < · · · < ym and k1, . . . , km ∈ N such that, for all
j ∈ {1, . . . ,m}, exactly kj + 1 components of x are equal to yj . With these notations,
xmin = y1 and xmax = ym. By Definition 5.6, (f − πfx) has at least p zeros in [xmin, xmax],
counted with multiplicity. More precisely, ∀j ∈ {1, . . . ,m}, ∀k ∈ {0, . . . , kj}, we have
(f − πfx)(k)(yj) = 0.

For all j ∈ {1, . . . ,m − 1}, there exists zj ∈ (yj , yj+1) such that (f − πfx)′(zj) = 0,
by Rolle’s Theorem. Hence (f − πfx)′ has at least p − 1 zeros in [xmin, xmax], namely
z1, . . . , zm−1 with multiplicity 1, and yj with multiplicity kj − 1, for all j ∈ {1, . . . ,m}.
Iterating this procedure, for all k ∈ {0, . . . , p−1}, the function (f−πfx)(k) has at least p−k
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zeros in [xmin, xmax], counted with multiplicity. In particular, there exists ξ ∈ [xmin, xmax]

such that:

(f − πfx)(p−1)(ξ) = f (p−1)(ξ)− (p− 1)![f ]p(x) = 0.

Lemma 5.15 (Continuity). If f ∈ Cp−1(R), then the function [f ]p : Rp → R is continuous.

Proof. We prove this result by induction on p. If p = 1, then [f ]1 = f is continuous on R.
Let us now that the result holds for some p ∈ N∗ and let f ∈ Cp(R). Using Lemma 5.12

and the induction hypothesis, [f ]p+1 is continuous on {(x1, . . . , xp+1) ∈ Rp+1 | xp 6= xp+1}.
By symmetry (see Lemma 5.11), this map is in fact continuous at any point (xi)16i6p+1

such that xi 6= xj for some i, j ∈ {1, . . . , p + 1}. In order to conclude the proof, it is
enough to prove that, for all z ∈ R,

[f ]p+1(x) −−−−−−−−→
x→(z,z,...,z)

[f ]p+1(z, . . . , z).

We have seen in Example 5.10.2 that [f ]p+1(z, . . . , z) = f(p)(z)
p! . Let x ∈ Rp+1, by

Lemma 5.14, there exists ξ ∈ [xmin, xmax] such that [f ]p+1(x) = f(p)(ξ)
p! . As x→ (z, . . . , z),

we have xmin → z and xmax → z. The conclusion follows from the continuity of f (p).

Remark 5.16. Let p ∈ N∗ and f ∈ Cp(R), for all x = (xi)16i6p+1 ∈ Rp we have:

[f ]p+1(x) = lim
z→xp+1

[f ]p(x1, . . . , xp−1, z)− [f ]p(x1, . . . , xp−1, xp)

z − xp
. (5.1)

If xp 6= xp+1, this is follows from Lemma 5.12 and the continuity of [f ]p (see Lemma 5.15).
If xp = xp+1 this follows from the first case and the continuity of [f ]p+1. Thus, one can
define the divided differences recursively as follows: if f ∈ C0(R) then [f ]1 = f , and
if f ∈ Cp(R) the map [f ]p+1 : Rp+1 → R is defined by Equation (5.1). This definition is
equivalent to Definition 5.6.

Lemma 5.17 (Regularity). Let p ∈ N∗ and let k ∈ N, if f ∈ Cp+k−1(R) then [f ]p : Rp → R

is of class Ck. Moreover, for all k1, . . . , kp ∈ N such that k1 + · · · + kp 6 k, for all
x = (xi)16i6p ∈ Rp, we have:

1

k1! . . . kp!

∂k1+···+kp [f ]p

∂xk11 . . . ∂x
kp
p

(x) = [f ]p+k1+···+kp(x1, . . . , x1, . . . , xp, . . . , xp), (5.2)

where each xj is repeated kj + 1 times on the right-hand side.

Proof. We prove this result by induction on k. The case k = 0 is given by Lemma 5.15.
For k = 1, let p ∈ N∗ and let f ∈ Cp(R). By Lemmas 5.12 and 5.15 (see also

Remark 5.16, Equation (5.1)), the map [f ]p admits a continuous partial derivative with
respect to the p-th variable, given by:

∂[f ]p
∂xp

: (x1, . . . , xp) 7→ [f ]p+1(x1, . . . , xp, xp).

The symmetry of the divided differences (see Lemma 5.11) yields that [f ]p is of class C1,
with partial derivatives given by Equation (5.2).

Let k ∈ N∗ and let us assume that the result holds for k and any p ∈ N∗. Let p ∈ N∗
and let f ∈ Cp+k(R). Using the case k = 1, the map [f ]p is C1 and its partial derivatives
of order 1 are given by Equation (5.2). The induction hypothesis shows that [f ]p+1 is of
class Ck, hence [f ]p is of class Ck+1. The induction hypothesis also shows that the partial
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derivatives of order at most k of [f ]p are given by (5.2). Let k1, . . . , kp ∈ N be such that
k1 + · · ·+ kp = k and let i ∈ {1, . . . , p}. We have:

∂

∂xi

(
1

k1! . . . kp!

∂k1+···+kp [f ]p

∂xk11 . . . ∂x
kp
p

)
=

∂

∂xi
(x 7→ [f ]p+k(x1, . . . , x1, . . . , xp, . . . , xp)) ,

where each xj is repeated kj + 1 times on the right-hand side. Using the case k = 1 for
[f ]p+k proves that the partial derivatives of order k + 1 of [f ]p satisfy Equation (5.2).

We conclude this section by stating facts that provide some insight on divided differ-
ences. Let p ∈ N∗ and let x = (xi)16i6p ∈ Rp \∆p, for all f ∈ Cp−1(R), we have:

[f ]p(x) =

p∑
i=1

f(xi)
∏

l∈{1,...,p}\{i}

1

xi − xl

This formula is proved by induction on p ∈ N∗, using Lemma 5.12 in the induction step.
Taking partial derivatives in the previous formula and using Lemma 5.17 allows to derive
an expression of [f ]p(x) for any p ∈ N∗, any x = (xi)16i6p ∈ Rp and any f ∈ Cp−1(R).
One obtains that [f ]p(x) is a linear combination of the f (k)(xi) with i ∈ {1, . . . , p} and
k < Card{j ∈ {1, . . . , p} | xj = xi}. The coefficients of this linear combination are rational
functions in (xi − xj)16j<i6p, independent of f . This can already be deduced from the
fact that [f ]p(x) is the last coordinate of M(x)−1 evx(f) and the expression of M(x) (see
Definitions 5.3 and Lemmas 5.4 and 5.9).

5.3 Double divided differences and correlation function

In the previous two sections, we defined and studied the divided differences of
some regular enough function. The upshot is to consider the divided differences of
the Gaussian process f that we are interested in. Since the evaluation [ev]x is linear,
[ev]x(f) is a centered Gaussian vector. The goal of this section is to compute and study
its variance.

Let K : R2 → R denote the correlation kernel of f . In order to compute the
coefficients of the variance matrix of [ev]x(f), we need to take divided differences of K
with respect to the first variable, then take divided differences of the result with respect
to the second variable. If f was not stationary, this would require to develop a notion of
“partial divided differences” and prove parametric versions of the regularity results of
Section 5.2. This can be done but is a bit cumbersome. Since we consider stationary
processes in this paper, we can avoid these complications and only consider divided
differences associated with the correlation function κ : x 7→ K(0, x). We need however to
introduce some additional notations.

Let κ : R → R and let K : R2 → R be defined by K : (z, w) 7→ κ(w − z). If κ is Cp−1

then, for all y ∈ R, the map K(·, y) : z 7→ K(z, y) is of class Cp−1. In particular, the
divided differences [K(·, y)]k are well-defined for all k ∈ {1, . . . , p}.
Definition 5.18. Let p ∈ N∗, let k ∈ {1, . . . , p} and let κ ∈ Cp−1(R). For all x ∈ Rk and
all y ∈ R, we denote by [κ](k,1)(x, y) = [K(·, y)]k(x), where K : (z, w) 7→ κ(w − z).
Lemma 5.19. Let p ∈ N∗ and κ ∈ Cp−1(R). Let k ∈ {1, . . . , p}, for all x = (xi)16i6k ∈ Rk,
for all y ∈ R, we have:

[κ](k,1)(x, y) = (−1)k−1[κ]k(y − x1, . . . , y − xk).

Proof. Let K : (z, w) 7→ κ(w − z). By Definition 5.6, [κ](k,1)(x, y) = [K(·, y)]k(x) is the

leading coefficient of πK(·,y)
x . Now, recalling Definition 5.1, we have:

evx(πK(·,y)
x ) = evx(K(·, y)) =

(
1

ci(x)!
∂ci(x)K
∂xci(x)

(xi, y)
)

16i6k
=
(

(−1)ci(x) κ
(ci(x))(y−xi)

ci(x)!

)
16i6k

,
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and π
K(·,y)
x is the only polynomial in Rk−1[X] satisfying this condition. On the other

hand, let us denote by y − x = (y − x1, . . . , y − xk) ∈ Rk. For all i ∈ {1, . . . , k}, we have
ci(y − x) = ci(x). Then, πκy−x(y −X) ∈ Rk−1[X] satisfies:

evx(πκy−x(y −X)) =
(

(−1)ci(x)

ci(x)! (πκy−x)(ci(x))(y − xi)
)

16i6k
=
(

(−1)ci(x) κ
(ci(x))(y−xi)

ci(x)!

)
16i6k

.

Thus πK(·,y)
x = πκy−x(y −X), and its leading coefficient equals (−1)k−1[κ]k(y − x).

A consequence of Lemma 5.19 is that, if κ ∈ Cp−1(R) and k ∈ {1, . . . , p}, then for
all x ∈ Rk the function [κ](k,1)(x, ·) : w 7→ [κ](k,1)(x,w) is of class Cp−k from R to R (see
Lemma 5.17). In particular, its the divided differences of order at most p − k + 1 are
well-defined, and the following makes sense.

Definition 5.20 (Double divided differences). Let p ∈ N∗ and let κ ∈ Cp−1(R). Let k and
l ∈ N∗ be such that k + l 6 p+ 1, we denote by [κ](k,l) : Rk ×Rl → R the map defined by
[κ](k,l)(x, y) =

[
[κ](k,1)(x, ·)

]
l
(y) for all x ∈ Rk and y ∈ Rl.

Thanks to Lemma 5.14, we can give bounds on the double divided differences
[κ](k,l)(x, y). This is the object of the following result.

Lemma 5.21. Let k and l ∈ N∗ and let κ ∈ Ck+l−2(R), for all x = (xi)16i6k ∈ Rk and all
y = (yj)16j6l ∈ Rl, we have:∣∣[κ](k,l)(x, y)

∣∣ 6 max
{∣∣∣κ(k+l−2)(ξ)

∣∣∣ ∣∣∣ ymin − xmax 6 ξ 6 ymax − xmin

}
.

Proof. Since [κ](k,l)(x, y) =
[
[κ](k,1)(x, ·)

]
l
(y), there exists w0 ∈ [ymin, ymax] such that:

[κ](k,l)(x, y) =
1

(l − 1)!

∂(l−1)

∂w(l−1) |w=w0

[κ](k,1)(x,w),

by Lemma 5.14. Then, by Lemma 5.19 and Lemma 5.17, we have:

[κ](k,l)(x, y) =
(−1)k−1

(l − 1)!

∂(l−1)

∂w(l−1) |w=w0

[κ]k(w − x1, . . . , w − xk)

= (−1)k−1
∑

l1+···+lk=l−1

1

l1! . . . lk!

∂l−1[κ]k

∂xl11 . . . ∂x
lk
k

(w0 − x1, . . . , w0 − xk)

= (−1)k−1
∑

l1+···+lk=l−1

[κ]k+l−1(w0 − x1, . . . , w0 − x1, . . . , w0 − xk, . . . , w0 − xk),

where the last two sums are indexed by {(l1, . . . , lk) ∈ Nk | l1 + · · ·+ lk = l− 1}, and each
w0 − xi is repeated exactly li + 1 times in the term indexed by (l1, . . . , lk) on the last line.

Let (l1, . . . , lk) ∈ Nk be such that l1 + · · · + lk = l − 1. By Lemma 5.14 there exists
ξ(l1,...,lk) ∈ R such that:

ymin − xmax 6 w0 − xmax 6 ξ(l1,...,lk) 6 w0 − xmin 6 ymax − xmin,

and

[κ]k+l−1(w0 − x1, . . . , w0 − x1, . . . , w0 − xk, . . . , w0 − xk) =
κ(k+l−2)(ξ(l1,...,lk))

(k + l − 2)!
,

where each term w0 − xi is repeated li + 1 times on the right-hand side. Thus,∣∣[κ](k,l)(x, y)
∣∣ 6 max

{∣∣∣κ(k+l−2)(ξ)
∣∣∣ ∣∣∣ ymin − xmax 6 ξ 6 ymax − xmin

}
provided that Card

{
(l1, . . . , lk) ∈ Nk

∣∣ l1 + · · ·+ lk = l − 1
}
6 (k+ l− 2)!. This cardinal is

the dimension of the space of homogeneous polynomials of degree (l − 1) in k variables.
Thus, it is equal to

(
k+l−2
k−1

)
6 (k + l − 2)!.
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The double divided differences [κ](k,l) will appear in the coefficients of the variance
matrix of the Gaussian vector [ev]x(f). The key step in this direction is the following
lemma. It also shows how to compute efficiently [κ](k,l) from the values of κ and its
derivatives. Finally, Lemma 5.22 shows that taking divided differences in the x variable
then in the y variable gives the same result as the converse, which is hinted by the
notation but is not obvious from the definition.

Lemma 5.22. Let p ∈ N∗ and let k, l ∈ N∗ be such that k + l 6 p + 1. Let κ ∈ Cp−1(R),
for all x = (xi)16i6k ∈ Rk and y = (yj)16j6l ∈ Rl we have:(

[κ](i,j)(x1, . . . , xi, y1, . . . , yj)

)
16i6k
16j6l

=

M(x)−1

(
(−1)ci(x)κ(ci(x)+cj(y))(yj − xi)

ci(x)!cj(y)!

)
16i6k
16j6l

t
M(y)−1,

where ci(·) is as in Definition 5.1 and M(·) is as in Definitions 5.3. In particular,[
[κ](k,1)(x, ·)

]
l
(y) = [κ](k,l)(x, y) =

[
[κ](1,l)(·, y)

]
k

(x).

Proof. Let K : (z, w) 7→ κ(w − z). We denote by C(x, y) the matrix(
(−1)ci(x)κ(ci(x)+cj(y))(yj − xi)

ci(x)!cj(y)!

)
16i6k
16j6l

=

(
1

ci(x)!cj(y)!

∂ci(x)+cj(y)K

∂zci(x)∂wcj(y)
(xi, yj)

)
16i6k
16j6l

.

The j-th column of C(x, y) equals:

1

cj(y)!

∂cj(y)

∂wcj(y) |w=yj

(
1

ci(x)!

∂ci(x)K

∂zci(x)
(xi, w)

)
16i6k

=
1

cj(y)!

∂cj(y)

∂wcj(y) |w=yj
evx (K(·, w)) .

Then, by Lemma 5.9, the j-th column of M(x)−1C(x, y) is:

1

cj(y)!

∂cj(y)

∂wcj(y) |w=yj
[ev]x(K(·, w)) =

(
1

cj(y)!

∂cj(y)

∂wcj(y) |w=yj
[K(·, w)]i(x1, . . . , xi)

)
16i6k

=

(
1

cj(y)!

∂cj(y)[κ](i,1)

∂wcj(y)
(x1, . . . , xi, yj)

)
16i6k

.

This shows that the i-th row of M(x)−1C(x, y) equals
t
evy

(
[κ](i,1)(x1, . . . , xi, ·)

)
. Then,

the i-th row of M(x)−1C(x, y)
t
M(y)−1 equals:

t(
M(y)−1 evy

(
[κ](i,1)(x1, . . . , xi, ·)

))
=

t
[ev]y

(
[κ](i,1)(x1, . . . , xi, ·)

)
=
([

[κ](i,1)(x1, . . . , xi, ·)
]
j

(y1, . . . , yj)
)

16j6l

=
(
[κ](i,j)(x1, . . . , xi, y1, . . . , yj)

)
16j6l

.

This proves that the coefficients of M(x)−1C(x, y)
t
M(y)−1 are as claimed.

By the previous computation the bottom-right coefficient of M(x)−1C(x, y)
t
M(y)−1

equals
[
[κ](k,1)(x, ·)

]
l
(y) = [κ](k,l)(x, y). This reflects the fact that we first multiplied

C(x, y) by M(x)−1 on the left, thus acting on each column of C(x, y) and taking divided
differences in the x variables, then we multiplied the result by

t
M(y)−1 on the right, thus

acting on the rows and taking divided differences in the y variables. If we first multiply
C(x, y) by

t
M(y)−1 on the right then multiply the result by M(x)−1 on the left, we first
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act on the rows of C(x, y) then on the columns of C(x, y)
t
M(y)−1. In this case, we start

by computing divided differences in the y variables, then we take divided differences
in the x variables. The same kind of computation as above shows that the bottom-right
coefficient of M(x)−1C(x, y)

t
M(y)−1 equals

[
[κ](1,l)(·, y)

]
k

(x). Thus, the desired relation
is just a consequence of the associativity of the matrix product.

We conclude this section by studying the distribution of the divided differences
associated with a regular enough Gaussian process. Note that the following result shows
that, if κ is the correlation function of a Cp−1 Gaussian process, then [κ](k,l) is continuous
on Rk ×Rl, for all k, l ∈ {1, . . . , p}.
Lemma 5.23 (Distribution of divided differences). Let p ∈ N∗, let f be a stationary
centered Gaussian process of class Cp−1 and let κ denote the correlation function of f .
The map x 7→ [ev]x(f) from Rp to itself defines a continuous centered Gaussian field. Its
distribution is characterized by the fact that for all k, l ∈ {1, . . . , p}, for all x ∈ Rk and

y ∈ Rl, E
[
[f ]k(x)[f ]l(y)

]
= [κ](k,l)(x, y). Moreover, the distribution of ([ev]x(f))x∈Rp is

invariant under the diagonal action of R on Rp by translation. That is, for all t ∈ R, we
have

(
[ev]x+(t,...,t)(f)

)
x∈Rp = ([ev]x(f))x∈Rp in distribution.

Proof. Since [ev]x is linear for all x ∈ Rp, the finite-dimensional marginal distributions
of the field ([ev]x(f))x∈Rp are centered and Gaussian. By Lemma 5.17, since f is almost
surely Cp−1, then x 7→ [ev]x(f) is almost surely continuous. Thus, ([ev]x(f))x∈Rp is
a continuous centered Gaussian field, and characterizing its distribution amounts to
computing the variance matrix of [ev]x(f) and [ev]y(f) for any x, y ∈ Rp.

Recall that, since f is of class Cp−1, its correlation function κ is at least C2p−2. Let
x = (xi)16i6p and y = (yj)16j6p ∈ Rp, by Lemmas 5.9 and 5.22, the variance matrix of
[ev]x(f) and [ev]y(f) equals:

E
[
[ev]x(f)

t
[ev]y(f)

]
= M(x)−1E

[
evx(f)

t
evy(f)

]
t
M(y)−1

= M(x)−1

(
(−1)ci(x)κ(ci(x)+cj(y))(yj − xi)

ci(x)!cj(y)!

)
16i,j6p

t
M(y)−1

=
(

[κ](i,j)(x1, . . . , xi, y1, . . . , yj)

)
16i,j6p

where M(x) (resp. M(y)) is defined in Definitions 5.3, and is invertible by Lemma 5.4.

Equivalently, we have E
[
[f ]k(x)[f ]l(y)

]
= [κ](k,l)(x, y) for any x ∈ Rk and y ∈ Rl with

1 6 k, l 6 p.
By Lemma 5.4, for all x ∈ Rp and all t ∈ R, we have M(x+ (t, . . . , t)) = M(x). Hence,

using Lemma 5.9,

[ev]x+(t,...,t)(f) = M(x)−1 evx+(t,...,t)(f).

The stationarity of f implies that (evx+(t,...,t)(f))x∈Rp = (evx(f))x∈Rp in distribution.
Thus, ([ev]x+(t,...,t)(f))x∈Rp is distributed as

(
M(x)−1 evx(f)

)
x∈Rk = ([ev]x(f))x∈Rk . One

can also check this distributional invariance directly on the expression of the variance

matrix E
[
[ev]x(f)

t
[ev]y(f)

]
above.

6 Kac–Rice densities revisited and clustering

The purpose of this section is to derive alternative expressions for the Kac–Rice
density ρk defined by Equation (3.3). The upshot is to be able to choose the nicest
of these expressions depending on the point x ∈ Rk we are considering. These new
expressions use the divided differences introduced in Section 5. In particular, the divided
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differences allow us to replace (f(x1), . . . , f(xk)) in Equation (3.3) by another Gaussian
vector which is never degenerate, even on the diagonal. We also study the properties of
ρk using these new expressions. This allows us to prove Theorems 1.13 and 1.14.

In Section 6.1, we define a nice partition of Rk that we use in the following. In
Section 6.2, we derive the alternative expressions of the Kac–Rice densities that we are
interested in, using the formalism of divided differences introduced in Section 5. The
main result of Section 6.2 is Proposition 6.23. In Section 6.3, we deduce Theorem 1.13
from Proposition 6.23. In Section 6.4, we introduce notations allowing to study the
distribution of the random vectors appearing in the definition of ρk. Then, we study the
clustering properties of the Kac–Rice densities in Sections 6.5, 6.6 and 6.7. We prove
Theorem 1.14 in Section 6.7. Several results of this section will also be useful in the
proof of Theorem 1.6 in Section 7.

6.1 Graph partitions

In this section, given a finite set A 6= ∅ and a scale parameter η > 0, we define a
partition of the Cartesian product RA into disjoint pieces. These pieces are indexed by
the set PA of partitions of A. In order to do this, we first need to define the graph and
the partition associated with a point x ∈ RA and the scale parameter η. Along the way,
we also endow PA with a partially ordered set structure.

Definition 6.1. Let A be a non-empty finite set and let η > 0. For any x = (xa)a∈A ∈ RA,
we define a graph Gη(x) as follows:

• the vertices of Gη(x) are the elements of A;

• two vertices a and b ∈ A are joined by an edge of Gη(x) if and only if a 6= b and
|xa − xb| 6 η.

We are not interested in the graph Gη(x) itself, but rather in the partition of A defined
by its connected components. This partition encodes how the components (xa)a∈A of x
are clustered in R, at scale η. An example of this construction is given on Figure 1 below.

Definition 6.2. Let A be a non-empty finite set and η > 0. We define Iη : RA → PA as
follows: for all x = (xa)a∈A ∈ RA, Iη(x) is the partition of A given by the connected
components of Gη(x). That is a and b ∈ A belong to the same element of Iη(x) if and
only if they are in the same connected component of Gη(x). An element I ∈ Iη(x), or
equivalently the set {xi | i ∈ I}, is called a cluster of components of x at scale η.

x1 x2 x4 x5 x3x6

η

(a) A configuration x = (x1, . . . , x6) ∈ R6. The circle
shows the points at distance at most η from x4.

1 2 3 4 5 6

(b) The graph Gη(x) associated with the config-
uration x and the distance η on the left.

Figure 1: Example of a configuration of six points in R. The partition Iη(x) defined by η
and x = (x1, . . . , x6) is Iη(x) = {{1, 2, 4}, {3, 6}, {5}} ∈ P6.

Let us now define a partial order 6 on the set PA of partitions of A.

Definition 6.3 (Partial order on partitions). Let A be a non-empty finite set and let
I,J ∈ PA. We denote J 6 I if J is finer than I, that is for all J ∈ J , there exists I ∈ I
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such that J ⊂ I. We denote by J < I the fact that J 6 I and I 6= J .

One can check that 6 is a partial order on PA such that I 7→ |I| is decreasing. It
admits a minimum equal to {{a} | a ∈ A}, and a maximum equal to {A}.
Notation 6.4. Let A 6= ∅ be a finite set, we denote the minimum (resp. maximum) of
(PA,6) by Imin(A) = {{a} | a ∈ A} (resp. Imax(A) = {A}). If A is of the form {1, . . . , k},
we use the simpler notation Imin(k) for Imin(A) (resp. Imax(k) for Imax(A)).

Let A be a non-empty finite set and let I,J ∈ PA. We have J 6 I if and only if every
I ∈ I is obtained as the disjoint union of elements of J . Equivalently, for all I ∈ I, the
set {J ∈ J | J ⊂ I} is a partition of I. This justifies the introduction of the following
notation, that will be used in Sections 6.4 and 6.5.

Notation 6.5 (Induced partition). Let A 6= ∅ be a finite set and let I,J ∈ PA be such
that J 6 I. For all I ∈ I, we denote by JI = {J ∈ J | J ⊂ I} ∈ PI . Note that if J 6 I in
PA, we have J =

⊔
I∈I JI .

Lemma 6.6. Let A be a non-empty finite set, for all x ∈ RA the map η 7→ Iη(x) is
non-decreasing from [0,+∞) to PA.

Proof. Let x ∈ RA and let 0 6 η 6 η′. Let a, b ∈ A, if a and b belong to the same cluster
of Iη(x), then they are in the same connected component of Gη(x) by definition. Every
edge of Gη(x) is also an edge of Gη′(x), by Definition 6.1. Hence a and b belong to the
same cluster of Iη′(x). Thus Iη(x) 6 Iη′(x).

Definition 6.7. Let A be a non-empty finite set, let η > 0 and let I ∈ PA. We define:

RAI,η =
{
x ∈ RA

∣∣ Iη(x) = I
}
.

Remark 6.8. The sets RAI,η we just defined satisfy the following properties.

• For any A 6= ∅ and any η > 0, we can partition RA as follows: RA =
⊔
I∈PA R

A
I,η.

• Let η > 0, let I ∈ PA and let (xa)a∈A ∈ RAI,η. For any cluster I ∈ I and any i, j ∈ I,
we have: |xi − xj | 6 (|I| − 1)η 6 |A| η.

Example 6.9. Let A 6= ∅ be a finite set and let x = (xa)a∈A ∈ RA. If η = 0, then i and j
are in the same cluster of I0(x) if and only if xi = xj . That is, for all I ∈ PA, we have
RAI,0 = ∆A,I (see Definition 2.2). In particular, the partition I appearing in Theorem 1.13
is I0(y).

Lemma 6.10. Let A be a non-empty finite set, let I ∈ PA and let I, J ∈ I be such that
I 6= J . Let η > 0, for any x = (xa)a∈A ∈ RAI,η, we have either (xJ)min > (xI)max + η or
(xJ)max < (xI)min − η (see Notations 2.1 and 5.13).

Proof. We can write I = {i1, . . . , i|I|} in such a way that:

(xI)min − η < xi1 6 xi2 6 . . . 6 xi|I| < (xI)max − η.

Moreover, since Iη(x) = I, we have xik+1
− xik 6 η for all k ∈ {1, . . . , |I| − 1}. Let j ∈ J ,

if we had xj ∈ [(xI)min − η, (xI)max + η], there would exists i ∈ I such that |xi − xj | 6 η.
This would contradict the fact that i and j are in different clusters of components of x
at scale η. Hence, for all j ∈ J , we have either xj > (xI)max + η or xj < (xI)min − η.
Symmetrically, for all i ∈ I, we have either xi > (xJ)max + η or xi < (xJ)min − η.

If we had both (xJ)min < (xI)min − η and (xJ)max > (xI)max + η, we would have, for
all i ∈ I, xi ∈ [(xJ)min, (xJ)max], which is absurd. Hence, either (xJ)min > (xI)max + η or
(xJ)max < (xI)min − η.
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6.2 Kac–Rice densities revisited

The goal of this section is to derive new expressions of the Kac–Rice density ρk
(cf. Definition 3.1), in terms of divided differences studied in Section 5. This is done in
Proposition 6.23 below.

In all this section, we denote by A a non-empty finite set and by f a normalized
stationary centered Gaussian process which is at least of class C1.

Definition 6.11 (Evaluation map associated with a partition). Let x = (xa)a∈A ∈ RA.
Using the notations of Section 2.1, for any I ∈ PA we denote by evIx : C|A|−1(R)→ R|A|

the linear map defined by evIx : f 7→ ([ev]xI (f))I∈I , where [ev]x is defined in Definition 5.8.

Remark 6.12. Given I ∈ PA, we need to fix an ordering of I and an ordering of each
I ∈ I for evIx to be well-defined. Here and throughout the paper, we implicitly assume
that such orderings are fixed whenever necessary. The precise choice of these orderings
will be of no consequence.

Example 6.13. Let us give some examples.

1. If I = {{1, 3}, {2, 4, 5}} ∈ P5 and x = (xi)16i65, for all f ∈ C4(R) we have:

evIx(f) = ([f ]1(x1), [f ]2(x1, x3), [f ]1(x2), [f ]2(x2, x4), [f ]3(x2, x4, x5)) .

2. For all x = (xa)a∈A ∈ RA, we have ev
Imin(A)
x : f 7→ (f(xa))a∈A, where Imin(A) is as

in Notation 6.4.

3. If I = Imax(A) = {A}, then for all x ∈ RA, we have ev
{A}
x = [ev]x after choosing

some ordering of A. In particular, we have M(x) ev
{A}
x = evx by Lemma 5.7.

4. More generally, let I ∈ PA. Let us choose an ordering of each I ∈ I, and let us
also choose an ordering of I, say I = {Ii | 1 6 i 6 |I|}. This yields an ordering
of A such that if a ∈ Ii and b ∈ Ij with i < j then a < b, and whose restriction to
any I ∈ I coincides with the ordering of I we fixed. Using this ordering, we can
identify A with {1, . . . , |A|}. Then, for all x ∈ RA \∆A, we have:M(xI1)

. . .

M(xI|I|)

 evIx = evx . (6.1)

Note that Equation (6.1) holds independently of our choices or orderings of I and
each I ∈ I, as long as they are consistent from one term to the other.

Recall that the Kac–Rice densities were defined by Definition 3.1. One of the key
ideas in this paper is that we can find alternative expressions of ρk (see Equation (3.3)).
These alternative expressions are indexed by I ∈ Pk (see Definition 6.14 below). Then,
we are to choose the right I, that is the right expression for ρk, depending on the point
x ∈ Rk at which we want to evaluate ρk.

Definition 6.14 (Kac–Rice densities associated with a partition). Let A be a non-empty
finite set and let f be a centered Gaussian process of class C|A|. Let I ∈ PA, for all
x = (xa)a∈A ∈ RA, we denote by

DI(x) = det
(
Var
(
evIx(f)

))
. (6.2)

Moreover, if evIx(f) is non-degenerate, i.e. if DI(x) 6= 0, we denote by:

NI(x) = E

[∏
I∈I

∏
i∈I

∣∣[f ]|I|+1(xI , xi)
∣∣∣∣∣∣∣evIx(f) = 0

]
, (6.3)
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the conditional expectation of
∏
I∈I

∏
i∈I
∣∣[f ]|I|+1(xI , xi)

∣∣ given that evIx(f) = 0. Finally
we denote by:

ρI(x) =

∏
I∈I

∏
{(i,j)∈I2|i6=j}

|xi − xj |
1
2

 NI(x)

(2π)
|A|
2 DI(x)

1
2

. (6.4)

Remark 6.15. This definition requires some comments.

• Both DI(x) and NI(x) only depend on the joint distribution of the divided differ-
ences {

[f ]j(xa1 , . . . , xaj )
∣∣ 1 6 j 6 |A|+ 1 and a1, . . . , aj ∈ A

}
. (6.5)

By Lemma 5.23, this distribution is a centered Gaussian. This remains true after
conditioning on evIx(f) = 0, as soon as evIx(f) is non-degenerate. In particular,
DI(x), NI(x) and ρI are well-defined.

• By Lemma 5.23, the joint distribution of the divided differences (6.5) is invariant
by diagonal translation. In particular, for any x ∈ Rp and any t ∈ R we have
DI(x+ (t, . . . , t)) = DI(x), NI(x+ (t, . . . , t)) = NI(x) and ρI(x+ (t, . . . , t)) = ρI(x).

• The definitions ofDI(x), NI(x) and ρI(x) do not depend on the orderings we choose
on I and on each I ∈ I. This is not obvious, and will be proved in Lemmas 6.17
and 6.19 below.

Lemma 6.16 (Continuity). If f is of class C|A|, then for all I ∈ PA, the maps DI , NI and
ρI are continuous on their domains of definition.

Proof. The proof is similar to that of Lemma 3.9. Let I ∈ PA, for all x = (xa)a∈A ∈ RA,
we denote by XI(x) = evIx(x) and by YI(x) =

(
[f ]|I|+1(xI , xi)

)
I∈I,i∈I . By Lemma 5.23,

(XI(x), YI(x))x∈RA is a continuous centered Gaussian field with values in R2|A|. We write
the variance matrix of (XI(x), YI(x)) by square blocks of size |A| as:(

ΘI(x)
t
ΞI(x)

ΞI(x) ΩI(x)

)
,

where ΘI , ΞI and ΩI are continuous on RA. Then, DI = det(ΘI) is continuous on RA.
If x ∈ RA is such that DI(x) 6= 0, then YI(x) given that XI(x) = 0 is a well-defined

centered Gaussian variable, whose variance matrix ΛI(x) = ΩI(x)−ΞI(x)ΘI(x)−1 t
ΞI(x)

depends continuously on x. Then, NI(x) = Π|A|(ΛI(x)), where Π|A| is defined by
Definition C.1. By Corollary C.3, Π|A| is continuous. Hence NI is continuous on
{x ∈ RA | DI(x) 6= 0}, and so is ρI .

Lemma 6.17. Let us assume that f is C|A|. Let I ∈ PA, for all x = (xa)a∈A ∈ RA we
have:

D|A|(x) =

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |

DI(x), (6.6)

where D|A| is the symmetric function defined by Equation (3.1). In particular, DI(x) is
independent of the ordering on I and of the ordering on each I ∈ I used to define evIx .

Proof. Let I ∈ PA. As in Example 6.13.4, we choose an ordering of each I ∈ I and an
ordering of I, say I = {Ii | 1 6 i 6 |I|}. This defines an ordering of A, that coincides with
the one on each I ∈ I and such that if i < j then the elements of Ii are smaller than those
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of Ij . Let us identify A with {1, . . . , |A|} using this ordering. For all x = (xa) ∈ RA \∆A,
we have: M(xI1)

. . .

M(xI|I|)

 evIx(f) = evx(f) = (f(x1), . . . , f(x|A|)). (6.7)

Taking the determinant of the variance of these random vectors, we obtain:

D|A|(x) =

 |I|∏
j=1

det
(
M(xIj )

)2DI(x) =

(∏
I∈I

det
(
M(xI)

)2)
DI(x).

Let I ∈ I and let us assume that I = {i1, . . . , i|I|}. Since x /∈ ∆A, by Lemma 5.4 we have

det(M(xI))
2 =

|I|∏
j=1

j−1∏
l=1

(xij − xil)2 =
∏

16l<j6|I|

(xij − xil)2 =
∏

{(i,j)∈I2|i 6=j}

|xi − xj | .

This proves Equation (6.6) for any x ∈ RA \∆A. Since RA \∆A is dense in RA and both
sides of Equation (6.6) are continuous functions (see Lemmas 3.9 and 6.16), this relation
holds for all x ∈ RA.

By Lemma 3.5, the function D|A| is symmetric on R|A|. Hence the left-hand side
of Equation (6.6) does not depend on the ordering of A we used to identify A and
{1, . . . , |A|}. Let DI(x) be defined for all x ∈ RA by Equation (6.2), and let D̃I(x) be
defined similarly but with other choices of ordering on I or on some I ∈ I. Using
Equation (6.6), for all x ∈ RA \∆A, we have:

DI(x) =

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |

−1

D|A|(x) = D̃I(x).

Indeed the middle term does not depend on the ordering of I, nor on the orderings of
each I ∈ I. Then DI = D̃I , since these are continuous functions on RA that coincide on
a dense subset.

Corollary 6.18. Let us assume that f ∈ C|A|. Let I,J ∈ PA be such that J 6 I, then for
all x = (xa)a∈A we have:

DJ (x) =

∏
I∈I

∏
{(J,J ′)∈J 2

I |J 6=J′}

∏
(i,j)∈J×J′

|xi − xj |

DI(x),

where for all I ∈ I, we denoted by JI = {J ∈ J | J ⊂ I} ∈ PI , as in Notation 6.5.

Proof. By Lemma 6.17, for all x = (xa)a∈A ∈ RA we have:∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |

DI(x) =

∏
J∈J

∏
{(i,j)∈J2|i 6=j}

|xi − xj |

DJ (x)

=

∏
I∈I

∏
J∈JI

∏
{(i,j)∈J2|i 6=j}

|xi − xj |

DJ (x).

Thus, the result is true for all x ∈ RA \∆A. Since this set is dense in RA and since DI
and DJ are continuous (see Lemma 6.16), this concludes the proof.
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Lemma 6.19. Let us assume that f is C|A|. Let I ∈ PA, for all x = (xa)a∈A ∈ RA such
that D|A|(x) 6= 0, we have:

N|A|(x) =

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |

NI(x), (6.8)

where N|A| is the symmetric function defined by Equation (3.2). Moreover, for all x ∈ RA
such that DI(x) 6= 0, NI(x) is independent of the ordering on I and of the ordering on
each I ∈ I.

Proof. Let I ∈ PA, as in the proof of Lemma 6.17, we assume that I = {Ii | 1 6 i 6 |I|}
is ordered, as well as each I ∈ I. This defines an ordering of A that we use to identify A
and {1, . . . , |A|}. By Lemma 3.5, neither the condition D|A|(x) 6= 0 nor the left-hand side
of Equation (6.8) depend on a choice of ordering of A.

Let x ∈ RA, if DI(x) = 0, then D|A|(x) = 0, by Lemma 6.17. Conversely, if x is such
that DI(x) 6= 0, by continuity of DI (see Lemma 6.17) there exists a neighborhood U of x
on which DI does not vanish. By Lemma 6.17, for all y ∈ U \∆A, we have D|A|(y) 6= 0.
Thus {x ∈ RA | D|A|(x) 6= 0} is a dense subset of {x ∈ RA | DI(x) 6= 0}. In particular,
both N|A| and NI are well-defined on {x ∈ RA | D|A|(x) 6= 0} ⊂ RA \∆A.

Let x = (xa)a∈A ∈ RA be such that D|A|(x) 6= 0. Since D|A|(x) 6= 0 we have x /∈ ∆A.
Then, as in the proof of Lemma 6.17, Equation (6.7) holds under the identification of
A and {1, . . . , |A|}. By Lemma 5.4, for all j ∈ {1, . . . , |I|} the matrix M(xIj ) is invertible.

Hence, it is equivalent to condition on f(x1) = · · · = f(x|A|) = 0 and on evIx(f) = 0. Thus,

N|A|(x) = E

[∏
I∈I

∏
i∈I
|f ′(xi)|

∣∣∣∣∣evIx(f) = 0

]
.

Let I = {i1, . . . , i|I|} ∈ I. The condition evIx(f) = 0 implies that [ev]xI (f) = 0, that is
[f ]j(xi1 , . . . , xij ) = 0 for all j ∈ {1, . . . , |I|}. Under this condition, by Example 5.10.3, we
have:

f ′(xi) = [f ]|I|+1(xi1 , . . . , xi|I| , xi)
∏

16j6|I|
ij 6=i

(xi − xij ) = [f ]|I|+1(xI , xi)
∏

j∈I\{i}

(xi − xj),

for all i ∈ I. Hence,

∏
i∈I
|f ′(xi)| =

(∏
i∈I

∣∣[f ]|I|+1(xI , xi)
∣∣) ∏

{(i,j)∈I2|i 6=j}

|xi − xj |

 .

This proves that Equation (6.8) holds for all x ∈ RA such that D|A|(x) 6= 0.

Let NI(x) be defined by Equation (6.3) and let ÑI be defined similarly but with other
choices of ordering on I or on some I ∈ I. Recall that the function N|A| is symmetric by
Lemma 3.5. Using Equation (6.8), for all x ∈ RA such that D|A|(x) 6= 0 we have:

NI(x) =

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |−1

N|A|(x) = ÑI(x),

since the middle term does not depend on our choices of orderings on I and on each
I ∈ I. By Lemmas 6.16 and 6.17, both NI and ÑI are defined and continuous on
{x ∈ Rk | DI(x) 6= 0}. They coincide on the dense subset {x ∈ Rk | D|A|(x) 6= 0}, hence
everywhere.
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Corollary 6.20. Let us assume that f ∈ C|A|. Let I,J ∈ PA be such that J 6 I, then for
all x = (xa)a∈A such that DJ (x) 6= 0, we have:

NJ (x) =

∏
I∈I

∏
{(J,J ′)∈J 2

I |J 6=J′}

∏
(i,j)∈J×J′

|xi − xj |

NI(x),

where for all I ∈ I, JI = {J ∈ J | J ⊂ I} ∈ PI , as in Notation 6.5.

Proof. Let x = (xa)a∈A ∈ RA be such that DJ (x) 6= 0. By Corollary 6.18, we have
DI(x) 6= 0 and both NJ (x) and NI(x) are well-defined. Then, by Lemma 6.19,∏

I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |

NI(x) =

∏
J∈J

∏
{(i,j)∈J2|i 6=j}

|xi − xj |

NJ (x)

=

∏
I∈I

∏
J∈JI

∏
{(i,j)∈J2|i 6=j}

|xi − xj |

NJ (x).

Thus, the result is true for all x ∈ RA \ ∆A such that DJ (x) 6= 0. Since NI and
NJ are continuous (see Lemma 6.16) and {x ∈ RA \ ∆A | DJ (x) 6= 0} is dense in
{x ∈ RA | DJ (x) 6= 0}, this concludes the proof.

Recall that, in Theorems 1.6 and 1.14, we consider a normalized stationary centered
Gaussian process f whose correlation function κ tends to 0 at infinity. In particular, it
satisfies the hypotheses of Lemma 2.10.

Lemma 6.21 (Positivity). Let us assume that f is of class C|A| and that its correlation
function κ is such that κ(x) −−−−−→

x→+∞
0. Let x ∈ RA and let us denote by I = I0(x). Then

DI(x) > 0 and NI(x) > 0.

Proof. Let x ∈ RA and let I = I0(x) ∈ PA be the partition defined by Definition 6.2. Since
x ∈ RAI,0 = ∆A,I , there exists y = (yI)I∈I ∈ RI\∆I such that x = ιI(y) (see Definition 2.3
and Remark 2.4). Let I ∈ I, we have xI = (yI , . . . , yI) ∈ RI . Then, by Definition 6.11 and

Example 5.10.2, we have [ev]xI (f) =
(
f(i)(yI)

i!

)
06i<|I|

and evIx(f) =
(
f(i)(yI)

i!

)
I∈I,06i<|I|

.

Since κ tends to 0 at infinity, this Gaussian vector is non-degenerate by Lemma 2.10,
that is DI(x) > 0.

The previous expression of evIx(f) shows that the condition evIx(f) = 0 is equivalent
to: ∀I ∈ I, ∀i ∈ {0, . . . , |I| − 1}, f (i)(yI) = 0. For all i ∈ I, by Example 5.10.2 we have:

[f ]|I|+1(xI , xi) = [f ]|I|+1(yI , . . . , yI) =
f (|I|)(yI)

|I|!
.

Hence,

NI(x) =

(∏
I∈I
|I|!−|I|

)
E

[∏
I∈I

∣∣∣f (|I)|(yI)
∣∣∣|I|∣∣∣∣∣∀I ∈ I,∀i ∈ {0, . . . , |I| − 1}, f (i)(yI) = 0

]
.

(6.9)
Let us denote by U = (f (i)(yI))I∈I,06i<|I| and by V = (f (|I|)(yI))I∈I . Since κ(x) −−−−−→

x→+∞
0,

by Lemma 2.10 the centered Gaussian vector (U, V ) is non-degenerate. Let us denote

by

(
A tB

B C

)
its block variance matrix. The variance matrix of V given that U = 0 is
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C −BA−1 tB, see [6, Proposition 1.2]. Note that C −BA−1 tB is the Schur complement
of A. In particular,

det

(
A tB

B C

)
= det(A) det(C −BA−1 tB) > 0.

Thus, the distribution of V given that U = 0 is a non-degenerate centered Gaussian.
Hence it admits a positive density with respect to the Lebesgue measure of RI . Finally,
by Equation (6.9) we have NI(x) > 0, which concludes the proof.

Corollary 6.22 (Vanishing locus). Let us assume that f is of class C|A| and κ(x) −−−−−→
x→+∞

0.

Let I ∈ PA, for all x ∈ RA, DI(x) = 0 if and only if there exist i ∈ I ∈ I and j ∈ J ∈ I
such that I 6= J and xi = xj . Moreover, if DI(x) 6= 0 we have NI(x) > 0. In particular,
we have D{A}(x) > 0 and N{A}(x) > 0 for all x ∈ RA.

Proof. Let I ∈ PA, by Corollary 6.18, for all x ∈ RA we have:

DI(x) = D{A}(x)
∏

{(I,J)∈I2|I 6=J}

∏
(i,j)∈I×J

|xi − xj | . (6.10)

Let x ∈ RA, we already know that D{A}(x) > 0. If D{A}(x) = 0, then by Equation (6.10)
we would have DI(x) = 0 for all I ∈ PA. Since we assumed that κ(x) −−−−−→

x→+∞
0, this

would contradict the result of Lemma 6.21. Hence, for all x ∈ RA, we have D{A}(x) > 0.
Then, Equation (6.10) shows that DI(x) = 0 if and only if there exist i ∈ I ∈ I and
j ∈ J ∈ I such that I 6= J and xi = xj .

Similarly, let x ∈ RA. Since D{A}(x) > 0, we know that N{A}(x) is well-defined and
non-negative. For all I ∈ PA such that DI(x) 6= 0, we have:

NI(x) = N{A}(x)
∏

{(I,J)∈I2|I 6=J}

∏
(i,j)∈I×J

|xi − xj | , (6.11)

by Corollary 6.20. If we had N{A}(x) = 0, we would have NI(x) = 0 for all I ∈ PA
such that DI(x) > 0, which would contradict Lemma 6.21. Thus, N{A}(x) > 0 for all
x ∈ RA. Finally, by Equations (6.10) and (6.11), if I ∈ PA is such that DI(x) 6= 0, then
NI(x) > 0.

We can now state the main result of this section.

Proposition 6.23 (Equality of Kac–Rice densities). Let f be a normalized stationary
centered Gaussian process whose correlation function tends to 0 at infinity. Let A be a
non-empty finite set and us assume that f is of class C|A|. Then, ρ{A} is a well-defined
continuous map from RA to R such that for all x ∈ RA, for all I ∈ PA, if DI(x) 6= 0 then
ρ{A}(x) = ρI(x). Moreover, ρ{A}(x) = 0 if and only if x ∈ ∆A.

In particular, if f is of class Ck with k ∈ N∗, then the Kac–Rice density ρk (see
Definition 3.1) can be uniquely extended into a continuous map from Rk to R whose
vanishing locus is ∆k. Moreover, for all x ∈ Rk, for all I ∈ Pk such that DI(x) 6= 0, we
have ρk(x) = ρI(x).

Proof. Let A 6= ∅ be a finite set and let us assume that f is C|A|. By Corollary 6.22, the
maps N{A} and ρ{A} are well-defined from RA to R. By Lemma 6.16 and Equation (6.4),
these maps are continuous on RA and ρ{A} vanishes along ∆A. In fact, by Corollary 6.22,
we have ρ{A}(x) = 0 if and only if x ∈ ∆A.

Let I ∈ PA, by Corollary 6.22, for all x ∈ RA \ ∆A we have DI(x) 6= 0. Then, by
Corollaries 6.18 and 6.20, for all x ∈ RA \∆A, ρI(x) = ρ{A}(x). Since ρI and ρ{A} are
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continuous and RA \∆A is dense in RA, we have ρI(x) = ρ{A}(x) for any x ∈ RA such
that ρI(x) is well-defined.

Let k ∈ N∗ and let us assume that f is of class Ck. The map ρk of Equation (3.3) is
equal to the map ρImin(k) of Definition 6.14, where Imin(k) = {{i} | 1 6 i 6 k}. Applying
the first point of Proposition 6.23 with A = {1, . . . , k} and setting Imax(k) = {{1, . . . , k}},
we obtain:

ρk(x) = ρImin(k)(x) = ρImax(k)(x),

for all x ∈ Rk \∆k. Then ρImax(k) is the desired continuous extension of ρk to Rk. It is
necessarily unique by density of Rk \∆k in Rk.

Remark 6.24. Given any ordering of A, we can identify A and {1, . . . , |A|}. Then,
assuming that κ tends to 0 at infinity, we have ρ{A}(x) = ρImin(A)(x) = ρ|A|(x) for any
x ∈ RA \∆A. Then, by Lemma 3.5, the map ρ{A} is symmetric on RA \∆A, hence on RA

by continuity. Moreover, for all I ∈ PA, the function ρI does not depend on the choices
of ordering of I and of each I ∈ I, by Lemmas 6.17 and 6.19.

6.3 Proof of Theorem 1.13: vanishing order of the k-point function

In this section we prove Theorem 1.13. This result is a consequence of Lemmas 6.16,
6.17 and 6.19, that were proved in the previous section.

Proof of Theorem 1.13. Let k ∈ N∗ and let f be a normalized stationary centered
Gaussian Ck-process. Let Z = f−1(0) be the point process of the zeros of f . Let
y = (yi)16i6k ∈ Rk and let I = I0(y) ∈ Pk. Recalling Definition 6.2, this partition is the
only one such that, for any i, j ∈ {1, . . . , k}, we have (yi = yj) ⇐⇒ (∃I ∈ I, {i, j} ⊂ I).
As in Theorem 1.13 and Remark 2.5, we have y ∈ ∆I,k and there exists a unique
(yI)I∈I ∈ RI \∆I such that y = ιI ((yI)I∈I). It is characterized by the fact that yI is the
common value of the (yi)i∈I , for all I ∈ I.

Let us assume that (f (i)(yI))I∈I,06i<|I| is non-degenerate. As already discussed
in the proof of Lemma 6.21, this is equivalent to the non-degeneracy of evIy (f), see
Definition 5.1 and Example 5.2.2, hence DI(y) > 0. By Lemma 6.16, there exists a
neighborhood U of y in Rk such that DI(x) > 0 for all x ∈ U . By Lemma 6.17, for all
x ∈ U \∆k we have Dk(x) > 0, so that the Kac–Rice density ρk is well-defined on U \∆k

(cf. Definition 3.1). Then, by Lemma 3.11, the k-point function of the point process Z is
well-defined and equal to ρk on U \∆k.

By Lemmas 6.17 and 6.19, for any x ∈ U \∆k, we have:

ρk(x) =
Nk(x)

(2π)
k
2Dk(x)

1
2

=

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |
1
2

 NI(x)

(2π)
p
2DI(x)

1
2

By continuity of DI and NI on U (cf. Lemma 6.16), we have∏
I∈I

∏
{(i,j)∈I2|i<j}

1

|xi − xj |

 ρk(x) −−−→
x→y

NI(y)

(2π)
p
2DI(y)

1
2

,

and it is enough to check that the right-hand side of the previous equation equals `(y)

(cf. Equation (1.4)) to prove the first part of Theorem 1.13.

Let I ∈ I, for all i ∈ I, we have yi = yI . Hence, evIy (f) =
(
f(i)(yI)

i!

)
I∈I,06i<|I|

and

DI(y) = det Var
(
evIy (f)

)
=

∏
I∈I

|I|−1∏
i=0

1

i!

2

det Var

((
f (i)(yI)

)
I∈I,06i<|I|

)
. (6.12)
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Combining Equations (6.12) and (6.9), we have (2π)−
p
2NI(y)DI(y)−

1
2 = `(y), as ex-

pected.

Let us now assume that (f (i)(yI))I∈I,06i6|I| is non-degenerate. Proceeding as in the
proof of Lemma 6.21, this condition ensures that NI(y) > 0. Hence, `(y) > 0, which
concludes the proof.

6.4 Variance and covariance matrices

In this section, we study the distribution of the random vectors appearing in the
definitions of the functions DI , NI and ρI (see Definition 6.14). We introduce notations
for their variance and covariance matrices that will be used in the proof of Theorem 1.14.
Then, we derive some estimates for the coefficients of these matrices. In all this section,
we denote by A a non-empty finite set and by f a C|A| Gaussian process which is assumed
to be stationary centered and normalized. Moreover, we denote by κ the correlation
function of f .

Let I ∈ PA and x ∈ RA, using the same notations as in the proof of Lemma 6.16
above, we denote by XI(x) and YI(x) ∈ R|A| the following centered Gaussian vectors:

XI(x) = evIx(f), (6.13)

YI(x) =
(
[f ]|I|+1(xI , xi)

)
I∈I,i∈I , (6.14)

We also denote by: (
ΘI(x)

t
ΞI(x)

ΞI(x) ΩI(x),

)
(6.15)

the variance matrix of (XI(x), YI(x)), by blocks of size |A|. Finally, if DI(x) 6= 0, i.e. if
ΘI(x) is invertible, we denote by ΛI(x) the variance of YI(x) given that XI(x) = 0. By [6,
Proposition 1.2], we have:

ΛI(x) = ΩI(x)− ΞI(x)ΘI(x)−1 t
ΞI(x). (6.16)

Note that XI , YI , ΘI , ΞI , ΩI and ΛI depend on how we order I and each I ∈ I, but
recall that DI , NI and ρI do not (cf. Lemmas 6.17 and 6.19).

We have ΘI(x) = Var(XI(x)) = Var
(
evIx(f)

)
. By Definition 6.11, we can write ΘI(x)

as a block matrix indexed by the elements of I: ΘI(x) = (ΘIJ(xI , xJ))I,J∈I , where for
any I, J ∈ I,

ΘIJ(xI , xJ) = E
[
[ev]xI (f)

t
[ev]xJ (f)

]
=
(
E
[
[f ]k(xi1 , . . . , xik)[f ]l(xj1 , . . . , xjl)

])
16k6|I|
16l6|J|

.

In this last equation, we denoted by i1, . . . , i|I| (resp. j1, . . . , j|J|) the elements of I
(resp. J). By Lemma 5.23, we finally obtain that:

ΘIJ(xI , xJ) =
(
[κ](k,l)(xi1 , . . . , xik , xj1 , . . . , xjl)

)
16k6|I|
16l6|J|

, (6.17)

where [κ](k,l) is the double divided differences introduced in Definition 5.20. Similarly, we
write ΞI(x) = (ΞIJ(xI , xJ))I,J∈I , ΩI(x) = (ΩIJ(xI , xJ))I,J∈I and ΛI(x) = (ΛIJ(x))I,J∈I
by blocks, where for all I and J ∈ I:

ΞIJ(xI , xJ) =
(
[κ](|I|+1,l)(xI , xik , xj1 , . . . , xjl)

)
16k6|I|
16l6|J|

, (6.18)

ΩIJ(xI , xJ) =
(
[κ](|I|+1,|J|+1)(xI , xik , xJ , xjl)

)
16k6|I|
16l6|J|

, (6.19)
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and, if DI(x) 6= 0,

ΛIJ(x) = ΩIJ(x)− (ΞIK(xI , xK))K∈I ΘI(x)−1
(

t
ΞJL(xJ , xL)

)
L∈I

. (6.20)

Note that, unlike ΘIJ , ΞIJ and ΩIJ , the function ΛIJ depends a priori on all the
components of x. Note also that the diagonal blocks are such that, for any I ∈ I,
ΘII(xI , xI) = Θ{I}(xI), ΞII(xI , xI) = Ξ{I}(xI) and ΩII(xI , xI) = Ω{I}(xI).

Notation 6.25 (Sup-norm). Let U = (Uij) be a matrix, we denote by ‖U‖∞ = maxi,j |Uij |
its sup-norm.

Recall that we defined the norms ‖·‖k,η and ‖·‖k, for k ∈ N and η > 0, in Notation 1.3.

Lemma 6.26. For any I ∈ PA and any point x ∈ RA we have ‖ΘI(x)‖∞ 6 ‖κ‖2|A|,
‖ΞI(x)‖∞ 6 ‖κ‖2|A| and ‖ΩI(x)‖∞ 6 ‖κ‖2|A|.

Proof. Let us prove this result for ΘI(x). It is enough to prove that for all I, J ∈ I, we
have ‖ΘIJ(xI , xJ)‖∞ 6 ‖κ‖2|A|. Let I, J ∈ I, let k ∈ {1, . . . , |I|} and let l ∈ {1, . . . , |J |}.
By Lemma 5.21, ∣∣[κ](k,l)(xi1 , . . . , xik , xj1 , . . . , xjl)

∣∣ 6 ‖κ‖k+l−2 6 ‖κ‖2|A| .

Thus, by Equation (6.17), we have ‖ΘIJ(xI , xJ)‖∞ 6 ‖κ‖2|A|. The proof is similar for
ΞI(x) and ΩI(x), using Equations (6.18) and (6.19).

Lemma 6.27. For any I ∈ PA and any point x ∈ RA such that DI(x) 6= 0, we have
‖ΛI(x)‖∞ 6 ‖κ‖2|A|.

Proof. Since ΛI(x) is a variance matrix, by the Cauchy–Schwarz Inequality it is enough
to prove that its diagonal coefficients are bounded by ‖κ‖2|A|.

Since ΘI(x) is a variance matrix of determinant DI(x), if DI(x) 6= 0 then ΘI(x) is
symmetric and positive definite. Then ΘI(x)−1 is also symmetric and positive definite,
so that the diagonal coefficients of ΞI(x)ΘI(x)−1 t

ΞI(x) are non-negative. Indeed these
diagonal coefficients are of the form ZΘI(x)−1 tZ, where Z is one of the rows of ΞI(x).

Thus, by Equation (6.16), the diagonal coefficients of ΛI(x) are non-negative and
bounded from above by the corresponding diagonal coefficients of ΩI(x). Finally,
‖ΛI(x)‖∞ 6 ‖ΩI(x)‖∞ and the conclusion follows from Lemma 6.26.

Corollary 6.28. There exists C > 0 such that, for all I ∈ PA, for all x ∈ RA such that
DI(x) 6= 0, we have |NI(x)| 6 C.

Proof. We use the notations of Appendix C, in particular Definition C.1. Let I ∈ PA,
for all x ∈ RA such that DI(x) 6= 0, we have NI(x) = Π|A|(ΛI(x)). By Lemma 6.27, the
map ΛI takes values in the compact ball of center 0 and radius ‖κ‖2|A|, in the space of
symmetric matrices endowed with ‖·‖∞. By Corollary C.3, the map Π|A| is continuous on
this ball, hence bounded. Thus NI is bounded on {x ∈ RA | DI(x) 6= 0}. The conclusion
follows from the finiteness of PA.

Lemma 6.29. Let I,J ∈ PA be such that J 6 I and let us denote I = {I1, . . . , I|I|}. For
all i ∈ {1, . . . , |I|}, we denote by Ji = JIi (see Notation 6.5) for simplicity. Then, for all
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η > 0, for all x ∈ RAI,η we have:∥∥∥∥∥∥∥∥∥∥
ΘJ (x)−


ΘJ1

(xI1) 0 · · · 0

0 ΘJ2
(xI2)

. . .
...

...
. . .

. . . 0

0 · · · 0 ΘJ|I|(xI|I|)


∥∥∥∥∥∥∥∥∥∥
∞

6 ‖κ‖|A|,η ,

∥∥∥∥∥∥∥∥∥∥
ΞJ (x)−


ΞJ1

(xI1) 0 · · · 0

0 ΞJ2(xI2)
. . .

...
...

. . .
. . . 0

0 · · · 0 ΞJ|I|(xI|I|)


∥∥∥∥∥∥∥∥∥∥
∞

6 ‖κ‖|A|,η ,

and ∥∥∥∥∥∥∥∥∥∥
ΩJ (x)−


ΩJ1(xI1) 0 · · · 0

0 ΩJ2
(xI2)

. . .
...

...
. . .

. . . 0

0 · · · 0 ΩJ|I|(xI|I|)


∥∥∥∥∥∥∥∥∥∥
∞

6 ‖κ‖|A|,η .

The statement of Lemma 6.29 may seem a little obscure, so let us start by commenting
upon it. In the following, we only consider ΘJ (x), but the cases of ΞJ (x) and ΩJ (x) are
similar.

If J = I, then Ji = {I ∈ I | I ⊂ Ii} = {Ii} for all i ∈ {1, . . . , |I|}. In this case, using

the block decomposition of ΘI(x), we have ΘI(x) =
(

ΘIiIj (xIi , xIj )
)

16i,j6|I|
and, by

definition, ΘJi(xIi) = Θ{Ii}(xIi) = ΘIiIi(xIi , xIi). Then, Lemma 6.29 simply states that
the sup-norms of the off-diagonal blocks ΘIiIj (xIi , xIj ) with i 6= j are bounded by ‖κ‖|A|,η
on RAI,η. This can be deduced from Lemmas 5.21 and 6.10.

It turns out that this result remains true if we refine I by considering some J 6 I.
In this case, for each i ∈ {1, . . . , |I|} we need to replace {Ii} by another partition of Ii,
namely Ji. Then, ΘJ (x) can be written as a block matrix whose diagonal blocks are
the ΘJi(xIi) with i ∈ {1, . . . , |I|}. The proof of Lemma 6.29 in this general case is again
a matter of bounding the sup-norm of the off-diagonal blocks in this decomposition
of ΘJ (x).

Proof of Lemma 6.29. We only give a formal proof of the first inequality. The proofs of
the other two inequalities are similar.

Let J 6 I, using the same notations as in Equation (6.17), for all x ∈ RA we have
ΘJ (x) = (ΘIJ(xI , xJ))I,J∈J , where we fixed some ordering of J . Note that, in the
statement of Lemma 6.29, we implicitly assume that J is ordered in such a way that if
I ∈ Ji and J ∈ Jj with i < j, then I comes before J .

Let us regroup the blocks of ΘJ (x) according to I. For any k and l ∈ {1, . . . , |I|}
we denote by Θkl(x) = (ΘIJ(xI , xJ))I∈Jk,J∈Jl . Then ΘJ (x) = (Θkl(x))16k,l6|I|. Further-
more, for any k ∈ {1, . . . , |I|}, we have:

Θkk(x) = (ΘIJ(xI , xJ))I,J∈Jk = ΘJk(xIk).

Hence, it is enough to prove that ‖Θkl(x)‖∞ 6 ‖κ‖|A|,η, for any k and l ∈ {1, . . . , |I|} such

that k 6= l and any x ∈ RAI,η.
Let k, l ∈ {1, . . . , |I|} be distinct, let η > 0 and let x ∈ RAI,η. Let I = {i1, . . . , i|I|} ∈ Jk

and J = {j1, . . . , j|J|} ∈ Jl, since I and J are disjoint subsets of A we have |I|+ |J | 6 |A|.
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Then, by Equation (6.17), we have:

ΘIJ(xI , xJ) =
(
[κ](p,q)(xi1 , . . . , xip , xj1 , . . . , xjq )

)
16p6|I|
16q6|J|

.

By Lemma 5.21, for all p ∈ {1, . . . , |I|} and all q ∈ {1, . . . , |J |}, we have:∣∣[κ](p,q)(xi1 , . . . , xip , xj1 , . . . , xjq )
∣∣ 6 max

06m6|A|
sup

(xJ )min−(xI)max6ξ6(xJ )max−(xI)min

∣∣∣κ(m)(ξ)
∣∣∣ ,

where we used the facts that p+ q − 2 6 |I|+ |J | 6 |A| and:

(xI)min 6 min{xi1 , . . . , xip}, (xI)max > max{xi1 , . . . , xip},
(xJ)min 6 min{xj1 , . . . , xjq}, (xJ)max > max{xj1 , . . . , xjq}.

Since I ∈ Jk, we have I ⊂ Ik so that (xI)min > (xIk)min and (xI)max 6 (xIk)max. Similarly,
we have (xJ)min > (xIl)min and (xJ)max 6 (xIl)max. Hence,

(xIl)min − (xIk)max 6 (xJ)min − (xI)max 6 (xJ)max − (xI)min 6 (xIl)max − (xIk)min.

Since x ∈ RAI,η, by Lemma 6.10, either (xIl)min− (xIk)max > η or (xIl)max− (xIk)min 6 −η.
In the first case, we have [(xJ)min − (xI)max, (xJ)max − (xI)min] ⊂ [η,+∞), while in the
second we have [(xJ)min − (xI)max, (xJ)max − (xI)min] ⊂ (−∞,−η]. In both cases, using
the parity of κ and its derivatives, we get:∣∣[κ](p,q)(xi1 , . . . , xip , xj1 , . . . , xjq )

∣∣ 6 ‖κ‖|A|,η ,
for all p ∈ {1, . . . , |I|} and all q ∈ {1, . . . , |J |}. Thus, ‖ΘIJ(xI , xJ)‖∞ 6 ‖κ‖|A|,η for all
I ∈ Jk and J ∈ Jl. Finally, ‖Θkj(x)‖∞ 6 ‖κ‖|A|,η, which concludes the proof.

Corollary 6.30. There exists C > 0 such that, for all I,J ∈ PA such that J 6 I, for all
η > 0, for all x ∈ RAI,η we have:∣∣∣∣∣DJ (x)−

∏
I∈I

DJI (xI)

∣∣∣∣∣ 6 C ‖κ‖2|A|,η .
Proof. Let I,J ∈ PA be such that J 6 I, and let us denote by I1, . . . , I|I| the elements
of I. As in Lemma 6.29, let us denote Ji = JIi for all i ∈ {1, . . . , |I|}.

Let η > 0. By Lemma 6.29, for all x ∈ RAI,η we have:

DJ (x) = det ΘJ (x) =

|I|∏
i=1

det ΘJi(xIi) +O
(
‖κ‖2|A|,η

)
=
∏
I∈I

DJI (xI) +O
(
‖κ‖2|A|,η

)
.

Moreover, by Lemma 6.26, the coefficients of ΘJ (x) are bounded by ‖κ‖2|A|. Hence, the

constant implied in the error term O
(
‖κ‖2|A|,η

)
depends only on κ and |A|.

6.5 Denominator clustering

The purpose of this section is to study the clustering properties of the denominators
DI of the Kac–Rice densities ρI (recall Definition 6.14), where I is a partition of some
finite set A. In all this section, we consider a finite set A 6= ∅ and some C|A| Gaussian
process f whose correlation function is denoted by κ. Recall that κ is of class C2|A| with
bounded derivatives of any order up to 2 |A|, and that its norm ‖κ‖|A|,η is defined by
Notation 1.3 for any η > 0. We assume that f is stationary centered and normalized, and
that κ tends to 0 at infinity.
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Lemma 6.31. Let η > 0, there exists ε{A},η > 0 such that ∀x ∈ RA{A},η, D{A}(x) > ε{A},η.

Proof. By Lemma 6.17, the definition of D{A} does not depend on how we ordered the
elements of A. That is D{A} is a symmetric function on RA. Without loss of generality,
let us order the elements of A, say A = {ai | 1 6 i 6 |A|}.

Let η > 0 and let x = (xa)a∈A. As explained in Remark 6.15, we have:

D{A}(x) = D{A}(xa1 , . . . , xa|A|) = D{A}(0, xa2 − xa1 , . . . , xa|A| − xa1).

Moreover, by Definition 6.7, for all i ∈ {2, . . . , |A|} we have |xai − xa1 | 6 |A| η (see also
Remark 6.8). By Lemma 6.16 and Corollary 6.22, the function D{A} is continuous and
positive on the compact set {0} × [− |A| η, |A| η]|A|−1. Hence, there exists ε{A},η > 0 such
that D{A}(x) > ε{A},η for all x ∈ RA{A},η.

Lemma 6.32 (Uniform lower bound). Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Then, for all

η > 0, there exists εη > 0 such that ∀I ∈ PA, ∀x ∈ RAI,η, DI(x) > εη.

Proof. Let us prove that for all I ∈ PA the following statement is true:

for all η > 0, there exists εI,η > 0 such that ∀x ∈ RAI,η, DI(x) > εI,η. (6.21)

Since PA is finite, the conclusion follows by setting εη = min{εI,η | I ∈ PA} for all η > 0.
Recall that we defined a partial order 6 on PA in Definition 6.3, and that the maximum

of (PA,6) is Imax(A) = {A}. We will prove that (6.21) holds for any I ∈ PA by a backward
induction on I ∈ PA. If I = Imax(A) = {A}, then (6.21) holds by Lemma 6.31, so we
already took care of the base case.

Let J ∈ PA \ {Imax(A)} and let us assume that (6.21) holds for any I ∈ PA such
that J < I. Let η > 0 and let τ > η. If x ∈ RAJ ,η, then by Lemma 6.6 we have
Iτ (x) > Iη(x) = J . Hence,

RAJ ,η = RAJ ,η ∩

( ⊔
I∈PA

RAI,τ

)
=
⊔
I∈PA

(
RAJ ,η ∩RAI,τ

)
=
⊔
I>J

(
RAJ ,η ∩RAI,τ

)
. (6.22)

Let x ∈ RAJ ,η ∩RAJ ,τ , that is the components of x form clusters that are encoded by J ,
the points of a given cluster are at distance of order η from one another, and two distinct
clusters are further apart than τ . Since x ∈ RAJ ,τ , applying Corollary 6.30 with I = J ,
we get:

DJ (x) =
∏
J∈J

D{J}(xJ) +O
(
‖κ‖2|A|,τ

)
. (6.23)

Let J ∈ J , applying Lemma 6.31 with A = J , there exists ε{J},η > 0 such that D{J}
is bounded from below by ε{J},η on RJ{J},η. Since x ∈ RAJ ,η, we have xJ ∈ RJ{J},η and
D{J}(xJ) > ε{J},η. Now, let us assume τ > η to be large enough for the error term in
Equation (6.23) to be bounded by 1

2

∏
J∈J ε{J},η. This is possible because ‖κ‖|A|,τ tends

to 0 as τ → +∞. Then, for all x ∈ RAJ ,η ∩RAJ ,τ , we have DJ (x) > 1
2

∏
J∈J ε{J},η > 0.

Let I ∈ PA be such that J < I. By Corollary 6.18, for all x ∈ RA we have:

DJ (x) =

∏
I∈I

∏
{(J,J ′)∈J 2

I |J 6=J′}

∏
(i,j)∈J×J′

|xi − xj |

DI(x).

Let x ∈ RAJ ,η ∩ RAI,τ , where τ > η is the one we chose previously. Using the induction
hypothesis (6.21) for I, there exits εI,τ > 0 such that DI is bounded from below by εI,τ
on RAI,τ . In particular, DI(x) > εI,τ . Moreover, let J and J ′ ∈ J be such that J 6= J ′,
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then for all i ∈ J and j ∈ J ′ we have |xi − xj | > η. Hence, DJ (x) > ηα(I,J )εI,τ > 0,
where

α(I,J ) =
∑
I∈I

∑
{(J,J ′)∈J 2

I |J 6=J′}

|J | |J ′| =
∑
I∈I

(∑
J∈JI

|J |

)2

−
∑
J∈JI

|J |2


=
∑
I∈I
|I|2 −

∑
J∈J
|J |2 > 0.

We set

εJ ,η = min

{
1

2

∏
J∈J

ε{J},η

}
∪
{
ηα(I,J )εI,τ | I > J

}
> 0.

Then, by Equation (6.22), for all x ∈ RAJ ,η we have DJ (x) > εJ ,η. Thus (6.21) holds
for J , which concludes the induction step and the proof.

Lemma 6.33 (Denominator clustering). Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Let η > 1,

let I,J ∈ PA be such that J 6 I and let x ∈ RAJ ,1 ∩RAI,η, we have:∏
I∈I

DJI (xI) = DJ (x)
(

1 +O
(
‖κ‖2|A|,η

))
,

where JI is defined as in Notation 6.5 for all I ∈ I. Moreover, the constant implied in
the error term does not depend on η, I,J nor x ∈ RAJ ,1 ∩RAI,η.

Proof. Let η > 1, let I,J ∈ PA be such that J 6 I and let x ∈ RAJ ,1 ∩ RAI,η. Since
x ∈ RAJ ,1 we have DJ (x) > ε1, where ε1 > 0 is given by Lemma 6.32. By Corollary 6.30,
since x ∈ RAI,η, we have:∣∣∣∣∏I∈I DJI (xI)

DJ (x)
− 1

∣∣∣∣ 6 C ‖κ‖2|A|,η
DJ (x)

6
C ‖κ‖2|A|,η

ε1
,

where C > 0 is independent of I, J , η and x. This yields the result.

Remark 6.34. In Lemma 6.33, we deal with x ∈ RAJ ,1 ∩RAI,η where η > 1 and J 6 I. It
means that components of x whose indices lie in the same cluster of J are at distance
less than 1, while components whose indices lie in different clusters of I are further
away than η.

One could be under the impression that the hypothesis that J 6 I is restrictive. In
fact it is not since, if x ∈ RAI,η with η > 1, then by Lemma 6.6 we have I1(x) 6 Iη(x) = I.
In particular, for any η > 1 and any I ∈ PA we have:

RAI,η = RAI,η ∩
⊔
J∈PA

RAJ ,1 =
⊔
J∈PA

(
RAJ ,1 ∩RAI,η

)
=
⊔
J6I

(
RAJ ,1 ∩RAI,η

)
.

6.6 Numerator clustering

Let us now consider the clustering properties of the numerators NI of the Kac–Rice
densities introduced in Definition 6.14. In this section, we aim to prove a result similar
to Lemma 6.33 for these functions. This is achieved in Lemma 6.40 below. Once again,
in all this section A is a non-empty finite set, and f is a normalized stationary centered
C|A| Gaussian process, whose correlation function κ tends to 0 at infinity.

First, we study the variance matrix of the Gaussian vector appearing in the definition
of NI . Given I ∈ PA and x ∈ RA such that DI(x) 6= 0, recall that YI(x) given that
XI(x) = 0 is a well-defined centered Gaussian vector in R|A| of variance matrix ΛI(x)

(see Equations (6.13), (6.14) and (6.16)).
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Lemma 6.35. Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Let I = {I1, . . . , I|I|} ∈ PA and

let J ∈ PA be such that J 6 I. For all i ∈ {1, . . . , |I|}, we denote by Ji = JIi (see
Notation 6.5) for simplicity. Then, for all η > 1, for all x ∈ RAJ ,1 ∩RAI,η we have:

ΛJ (x) =


ΛJ1(xI1) 0 · · · 0

0 ΛJ2(xI2)
. . .

...
...

. . .
. . . 0

0 · · · 0 ΛJ|I|(xI|I|)

+O
(
‖κ‖|A|,η

)
,

where the error term does not depend on η, I, J nor x ∈ RAJ ,1 ∩RAI,η.

Proof. First, let us consider ΘJ (see Equation (6.15)). By Lemma 6.26, for any x ∈ RA,
the symmetric matrix ΘJ (x) belongs to the compact ball B of center 0 and radius ‖κ‖2|A|,
for the sup-norm. For all x ∈ RAJ ,1, we have det (ΘJ (x)) = DJ (x) > ε1, where ε1 > 0 is

given by Lemma 6.32. Hence, ΘJ (x) belongs to B ∩ det−1([ε1,+∞)), which is a compact
set of invertible matrices. By continuity of the inverse on this compact set, there exists
C > 0, depending only on ‖κ‖2|A| and ε1, such that for all x ∈ RAJ ,1,

∥∥ΘJ (x)−1
∥∥
∞ 6 C.

Let η > 1 and let x ∈ RAJ ,1 ∩RAI,η. Since J 6 I, by Lemma 6.29, we have:
ΘJ1

(xI1) 0 · · · 0

0 ΘJ2(xI2)
. . .

...
...

. . .
. . . 0

0 · · · 0 ΘJ|I|(xI|I|)

 = ΘJ (x) +O
(
‖κ‖|A|,η

)

= ΘJ (x)
(

Id|A|+O
(
‖κ‖|A|,η

))
,

where Id|A| stands for the identity matrix of size |A|. Note that we used the fact that
ΘJ (x)−1 is bounded to get the second equality, and that the error terms are independent
of I, J , η and x. Using once again the boundedness of ΘJ (x)−1, we obtain after taking
the inverse:

ΘJ1
(xI1)−1 0 · · · 0

0 ΘJ2
(xI2)−1 . . .

...
...

. . .
. . . 0

0 · · · 0 ΘJ|I|(xI|I|)
−1

 = ΘJ (x)−1
(

Id|A|+O
(
‖κ‖|A|,η

))

= ΘJ (x)−1 +O
(
‖κ‖|A|,η

)
,

where the error terms are uniform in η, I, J and x.
In order to conclude the proof, we start from the definition of ΛJ (x) (see Equa-

tion (6.16)) and use the previous estimates for ΘJ (x)−1. We also use the estimates
of Lemma 6.29 for ΞJ (x) and ΩJ (x), as well as the uniform boundedness of ΞJ (see
Lemma 6.26) and ΘJ (x)−1. We obtain:

ΛJ (x) =


ΛJ1

(xI1) 0 · · · 0

0 ΛJ2(xI2)
. . .

...
...

. . .
. . . 0

0 · · · 0 ΛJ|I|(xI|I|)

+O
(
‖κ‖|A|,η

)
,

where the error term does not depend on η > 1, nor on I and J ∈ PA such that J 6 I,
nor on x ∈ RAJ ,1 ∩RAI,η.
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Recall that NI(x) = Π|A|(ΛI(x)), where Π|A| is the function defined by Definition C.1.
The estimate of Lemma 6.35 allows to derive the following additive estimate.

Lemma 6.36. Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Let η > 1, let I,J ∈ PA be such

that J 6 I and let x ∈ RAJ ,1 ∩RAI,η, we have:

NJ (x) =
∏
I∈I

NJI (xI) +O

((
‖κ‖|A|,η

) 1
2

)
,

where the error term does not depend on η, I, J nor x ∈ RAJ ,1 ∩RAI,η.

Proof. Let η > 1, let I,J ∈ PA be such that J 6 I and let x ∈ RAJ ,1 ∩ RAI,η. Since
x ∈ RAJ ,1, we have DJ (x) > ε1 > 0 (see Lemma 6.32), so that NJ (x) is well-defined.
Similarly, for any I ∈ I, we have xI ∈ RIJI ,1, so that NJI (xI) is also well-defined.

Let us denote by I1, . . . , I|I| the elements of I. For all i ∈ {1, . . . , |I|}, we set Ji = JIi ,
and we denote by:

Λ̃J (x) =


ΛJ1

(xI1) 0 · · · 0

0 ΛJ2
(xI2)

. . .
...

...
. . .

. . . 0

0 · · · 0 ΛJ|I|(xI|I|)

 .

By Definitions 6.14 and C.1 and the definition of ΛJ (x) (see the beginning of Section 6.4),
we have NJ (x) = Π|A| (ΛJ (x)). Let (Zi)16i6|A| ∼ N (0, Λ̃J (x)) in R|A|, we have in the
same way:

Π|A|(Λ̃J (x)) =

|I|∏
i=1

E

 |Ii|∏
j=1

∣∣Z|I1|+|I2|+···+|Ii−1|+j
∣∣ =

|I|∏
i=1

Π|Ii|(ΛJi(xIi)) =
∏
I∈I

NJI (xI).

By Lemma 6.35, we have
∥∥∥ΛJ (x)− Λ̃J (x)

∥∥∥
∞

= O(‖κ‖|A|,η). Moreover, we have

‖ΛJ (x)‖∞ = O(‖κ‖2|A|) by Lemma 6.27, so that both ΛJ (x) and Λ̃J (x) lie in a ball

of center 0 and radius O
(
‖κ‖2|A|

)
in the space of symmetric matrices. Note that the

constant implied in these estimates is independent of η, I, J and x. By Corollary C.3,
the map Π|A| is 1

2 -Hölder on compact sets. Hence, there exists C > 0, depending only
on |A| and κ, such that:∣∣∣∣∣NJ (x)−

∏
I∈I

NJI (xI)

∣∣∣∣∣ =
∣∣∣Π|A|(ΛJ (x)−Π|A|(Λ̃J (x))

∣∣∣
6 C

∥∥∥ΛJ (x)− Λ̃J (x)
∥∥∥ 1

2

∞

= O

((
‖κ‖|A|,η

) 1
2

)
,

where the constant implied in the error term does not depend on η, I, J nor x.

Corollary 6.37. Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Let η > 1 and let I ∈ PA, for all

x ∈ RAI,η, we have:

NI(x) =
∏
I∈I

N{I}(xI) +O

((
‖κ‖|A|,η

) 1
2

)
,

where the constant implied in the error term does not depend on η, I nor x ∈ RAI,η.
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Proof. Let η > 1 and let I ∈ PA. Let x ∈ RAI,η and let us denote by J = I1(x). By
Lemma 6.6, we have J 6 I. Applying Lemma 6.36 and Corollary 6.20, we get:∏

I∈I

∏
{(J,J ′)∈J 2

I |J 6=J′}

∏
(i,j)∈J×J′

|xi − xj |

∣∣∣∣∣NI(x)−
∏
I∈I

N{I}(xI)

∣∣∣∣∣ = O

((
‖κ‖|A|,η

) 1
2

)
,

where the constant implied in the error term does not depend on η, I, J nor x. Since
x ∈ RAJ ,1, if i ∈ J ∈ J and j ∈ J ′ ∈ J with J 6= J ′ then |xi − xj | > 1. Hence,∏

I∈I

∏
{(J,J ′)∈J 2

I |J 6=J′}

∏
(i,j)∈J×J′

|xi − xj |

 > 1.

This yields the result.

In the remainder of this section, we show that the additive estimate of Corollary 6.37
yields a multiplicative estimate similar to the one derived in Lemma 6.33. The key step is
to prove that NI(x) is bounded from below by a positive constant of the relevant domain.

Lemma 6.38. Let η > 0, there exists ε′{A},η > 0 such that ∀x ∈ RA{A},η, N{A}(x) > ε′{A},η.

Proof. The proof is similar to that of Lemma 6.31. Note that N{A} is a well-defined
continuous positive function on RA, by Lemma 6.16 and Corollary 6.22.

Let η > 0. Using the stationarity of f (see Remark 6.15), it is enough to prove that
there exists ε′{A},η > 0 such that N{A}(x) > ε′{A},η for all x ∈ {0} × [− |A| η, |A| η]|A|−1.
This is true, by compactness of this set.

Lemma 6.39 (Uniform lower bound). Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Then, for all

η > 1, there exists ε′η > 0 such that ∀I ∈ PA, ∀x ∈ RAI,η, NI(x) > ε′η.

Proof. The proof is similar to that of Lemma 6.32. We prove by a backward induction on
(PA,6) that for any I ∈ PA the following statement is true:

for all η > 1, there exists ε′I,η > 0 such that ∀x ∈ RAI,η, NI(x) > ε′I,η. (6.24)

Then we set ε′η = min
{
ε′I,η

∣∣ I ∈ PA} > 0, which is the lower bound we are looking for.
The base case of the induction is for I = Imax(A) = {A}. It is given by Lemma 6.38.
The induction step is similar to the induction step in the proof of Lemma 6.32. In

Lemma 6.32, the two key elements are the additive estimate of Equation (6.23) and the
relation given by Corollary 6.18. Here, the analogous results are the additive estimate of
Corollary 6.37 and the relation given by Corollary 6.20.

Lemma 6.40 (Numerator clustering). Let us assume that ‖κ‖|A|,η −−−−−→η→+∞
0. Let η > 1,

let I,J ∈ PA be such that J 6 I and let x ∈ RAJ ,1 ∩RAI,η, we have:∏
I∈I

NJI (xI) = NJ (x)

(
1 +O

((
‖κ‖|A|,η

) 1
2

))
,

where the error term does not depend on η, I,J nor x ∈ RAJ ,1 ∩RAI,η.

Proof. Since, x ∈ RAJ ,1 ∩RAI,η, we have:∏
I∈I

NJI (xI) = NJ (x) +O

((
‖κ‖|A|,η

) 1
2

)
by Lemma 6.36. The result follows from the fact that NJ (x) > ε′1, where ε′1 > 0 is given
by Lemma 6.39.
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6.7 Proof of Theorem 1.14: clustering for k-point functions

In this section we prove Theorem 1.14. This result will be deduced from Lemma 6.41
and Proposition 6.43, which will also be useful in the proof of Theorem 1.6 in Section 7.

As usual, in all this section, A denotes a non-empty finite set and f is a normalized
centered stationary Gaussian process of class C|A| whose correlation function is denoted
by κ. We assume in the following that ‖κ‖|A|,η −−−−−→η→+∞

0. In particular, κ tends to 0 at

infinity, so that the conclusion of Lemma 2.10 holds true. Under these assumptions,
the Kac–Rice density ρ{A} is well-defined on RA. Moreover, it coincides with ρ|A| on
RA \∆A (see Proposition 6.23), which is also the |A|-point function of the point process
Z = f−1(0) (see Lemma 3.11).

Lemma 6.41 (Boundedness). If ‖κ‖|A|,η −−−−−→η→+∞
0 then there exists C > 0 such that, for

all x = (xa)a∈A ∈ RA,

ρ{A}(x) 6 C

∏
a6=b

min(|xa − xb| , 1)

 1
2

.

In particular, ρ{A} is bounded on RA.

Proof. Let x = (xa)a∈A ∈ RA and let us denote by I = I1(x) for simplicity. We have
x ∈ RAI,1, hence DI(x) > ε1, where ε1 > 0 is given by Lemma 6.32. In particular, by
Proposition 6.23, we have ρ{A}(x) = ρI(x). Then, by Equation (6.4),

ρ{A}(x) =

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |
1
2

 NI(x)

(2π)
|A|
2 DI(x)

1
2

.

By Corollary 6.28, there exists C ′ > 0 independent of I and x such that NI(x) 6 C ′.
Hence,

ρ{A}(x) 6
C ′

(2π)
|A|
2 (ε1)

1
2

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |
1
2

 .

Let a and b ∈ A. If a and b belong to the same cluster of I, then |xa − xb| 6 |A| (see
Remark 6.8) and |xa − xb| 6 |A|min(|xa − xb| , 1). If a and b belong to different cluster of
I, then |xa − xb| > 1 by definition, so that min(|xa − xb| , 1) = 1. Thus,

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

|xi − xj |
1
2 6 |A||A|

2

∏
I∈I

∏
{(i,j)∈I2|i 6=j}

min(|xi − xj | , 1)

 1
2

6 |A||A|
2

 ∏
{(i,j)∈A2|i6=j}

min(|xi − xj | , 1)

 1
2

.

This proves the result with C = |A||A|
2

C ′(2π)−
|A|
2 (ε1)−

1
2 .

Remark 6.42. Note that this bound is the best we can hope for near the diagonal,
because of Theorem 1.13.

Proposition 6.43 (Clustering). Let A be a non-empty finite set. Let f be a normalized
centered stationary Gaussian process of class C|A|, whose correlation function κ satisfies
‖κ‖|A|,η −−−−−→η→+∞

0. Then, for all η > 1, for all I ∈ PA, for all x ∈ RAI,η, we have:

∏
I∈I

ρ{I}(xI) = ρ{A}(x)

(
1 +O

(
‖κ‖|A|,η

) 1
2

)
,
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where the constant involved in the error term does not depend on η, I nor x.

Proof. First, note that ρ{A} (resp. ρ{I}) is well-defined on RA (resp. RI), see Proposi-
tion 6.23. Note also that, for any J ∈ PA, we have ρ{A} = ρJ whenever ρJ is well-defined.
In this proof, we use the previous fact, and we choose J ∈ PA depending on the point
x ∈ RAI,η in order to use the nicest expression of ρ{A} we can find.

Let η > 1, let I ∈ PA and let x = (xa)a∈A ∈ RAI,η. Let us denote by J = I1(x), so that
J 6 I and x ∈ RAJ ,1 ∩ RAI,η. By Corollary 6.22, since x ∈ RAJ ,1, we have DJ (x) > 0 so
that ρJ (x) is well-defined. Similarly, for any I ∈ I, we have xI ∈ RIJI ,1 so that ρJI (xI) is
well-defined.

By Proposition 6.23 and Equation (6.4), we have:∏
I∈I

ρ{I}(xI) =
∏
I∈I

ρJI (xI)

=
∏
I∈I

 ∏
J∈JI

∏
{(i,j)∈J2|i 6=j}

|xi − xj |
1
2

 NJI (xI)

(2π)
|I|
2 DJI (xI)

1
2


=

∏
J∈J

∏
{(i,j)∈J2|i 6=j}

|xi − xj |
1
2

 ∏
I∈I NJI (xI)

(2π)
|A|
2

(∏
I∈I DJI (xI)

) 1
2

.

Since x ∈ RAJ ,1 ∩RAI,η, by Lemmas 6.33 and 6.40, we obtain:

∏
I∈I

ρ{I}(xI) =

∏
J∈J

∏
{(i,j)∈J2|i 6=j}

|xi − xj |
1
2

 NJ (x)

(2π)
|A|
2 DJ (x)

1
2

(
1 +O

((
‖κ‖|A|,η

) 1
2

))
.

The conclusion follows from ρ{A}(x) = ρJ (x) and the definition of ρJ , see Equation (6.4)
and Proposition 6.23.

In Proposition 6.43, we only consider points x ∈ RAI,η. In fact, an estimate of the
same kind remains valid if we replace RAI,η with

⊔
J6I R

A
J ,η. Equivalently, we only need

Iη(x) 6 I instead of Iη(x) = I. That is, we need the components of x whose indices lie in
different clusters of I to be far from one another, but we do not ask anything regarding
components whose indices lie in the same cluster of I. The precise statement is the
following.

Corollary 6.44. In the setting of Proposition 6.43, for all η > 1, for all I ∈ PA, for all
x ∈ RA, such that Iη(x) 6 I, we have:

∏
I∈I

ρ{I}(xI) = ρ{A}(x)

(
1 +O

(
‖κ‖|A|,η

) 1
2

)
,

where the constant involved in the error term does not depend on η, I nor x.

Proof. Let η > 1, let I ∈ PA and let x ∈ RA such that Iη(x) 6 I. Let us denote by
J = Iη(x) for simplicity. Since x ∈ RAJ ,η, by Proposition 6.43 we have:

ρ{A}(x) =

(∏
J∈J

ρ{J}(xJ)

)(
1 +O

((
‖κ‖|A|,η

) 1
2

))

=

(∏
I∈I

∏
J∈JI

ρ{J}(xJ)

)(
1 +O

((
‖κ‖|A|,η

) 1
2

))
.
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Let I ∈ I, we have xI ∈ RIJI ,η. Using Proposition 6.43 once again, we have:

∏
J∈JI

ρ{J}(xJ) = ρ{I}(xI)

(
1 +O

((
‖κ‖|A|,η

) 1
2

))
.

This yields the result. The uniformity of the error term follows from the finiteness
of A.

We can now prove Theorem 1.14, which is just a special case of Lemma 6.41 and
Corollary 6.44.

Proof of Theorem 1.14. Let k ∈ N∗ and let f be a Ck Gaussian process which is nor-
malized centered and stationary. We assume that its correlation function κ satisfies
‖κ‖k,η −−−−−→η→+∞

0. By Lemmas 2.10 and 3.11, for all l ∈ {1, . . . , k}, the l-point function of

the point process Z = f−1(0) is the Kac–Rice density ρl defined in Definition 3.1. This
function is well-defined on Rl \∆l and admits a unique continuous extension to Rl, which
vanishes on ∆l, by Proposition 6.23.

By Proposition 6.23, the continuous extension of ρk to Rk is the function ρImax(k).
Then, by Lemma 6.41, for all x = (xi)16i6k ∈ Rk \∆k we have:

ρk(x) = ρImax(k)(x) 6 C
∏

16i<j6k

max (|xi − xj | , 1)

for some positive constant C.
Let η > 1, let I ∈ Pk and let x = (xi)16i6k ∈ Rk \∆k. The condition:

∀I, J ∈ I such that I 6= J, ∀i ∈ I, ∀j ∈ J, |xi − xj | > η,

appearing in Theorem 1.14 is equivalent to Iη(x) 6 I. Let us assume that x satisfies this
condition. Then, by Corollary 6.44 applied with A = {1, . . . , k}, we have:

∏
I∈I

ρ{I}(xI) = ρImax(k)(x)

(
1 +O

(
‖κ‖k,η

) 1
2

)
.

Finally, we have the equality ρk(x) = ρImax(k)(x) and similarly, ρ{I}(xI) = ρ|I|(xI) for all
I ∈ I since xI ∈ RI \∆I . Hence the result.

7 Proof of Theorem 1.6: central moments asymptotics

This section deals with the proof of Theorem 1.6. The proof follows the lines of that
of [4, Theorem 1.12]. We still give the proof in full, since we believe that the setting of
the present article makes it accessible to a wider audience than [4]. In all this section,
we consider a Gaussian process f which is at least of class C1, stationary, centered and
normalized. We denote by κ is correlation function, which is assumed to tend to 0 at
infinity. In particular, the process f satisfies the conclusion of Lemma 2.10.

In Section 7.1, we derive an integral expression of the central moments we are
interested in. In order to understand this integral, we split Rp as

⊔
I∈Pp R

p
I,η, for some

η > 0, and study the contribution of each RpI,η to the integral. In Section 7.2, we give an
upper bound for the contribution of each of these sets. Then, in Sections 7.3 and 7.4,
we study the contributions of the pieces of the form R

p
I,η, where respectively I contains

a singleton and I is a partition into pairs. We conclude the proof of Theorem 1.6 in
Section 7.5.
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7.1 An integral expression of the central moments

Let R > 0, recall that νR denotes the counting measure of ZR = {x ∈ R | f(Rx) = 0}.
Let p > 2 be an integer and let φ1, . . . , φp be test-functions in the sense of Definition 1.2.
In this section, we derive an integral expression of the quantity mp(νR)(φ1, . . . , φp)

defined by Definition 1.1. This requires to introduce the following definition.

Definition 7.1 (Subsets adapted to a partition). Let A be a finite set and let I ∈ PA, we
denote by SA(I) the set of subsets of A adapted to I, that is:

SA(I) = {B ⊂ A | ∀I ∈ I, if Card(I) > 2, then I ⊂ B} .

Equivalently, B ∈ SA(I) if and only if I 6 {B}tImin(A\B) where 6 is as in Definition 6.3
and Imin(A \ B) = {{b} | b /∈ B}. If A is of the form {1, . . . , p}, we simply denote by
Sp(I) = SA(I).

Let A be a finite set and let I ∈ PA. Let B ∈ SA(I), we have I 6 {B} t Imin(A \B),
so that IB = {I ∈ I | I ⊂ B} is a well-defined element of PB, as in Notation 6.5. In fact,
we have:

I = IB t Imin(A \B). (7.1)

Lemma 7.2. Let A be any finite set, then the map (B, I) 7→ (B, IB) defines a bijection
from {(B, I) | I ∈ PA, B ∈ SA(I)} to {(B,J ) | B ⊂ A,J ∈ PB}.

Proof. This map is well-defined. By Equation (7.1), the map (B,J ) 7→ (B,J tImin(A\B))

from {(B,J ) | B ⊂ A,J ∈ PB} to {(B, I) | I ∈ PA, B ∈ SA(I)} is the inverse of
(B, I) 7→ (B, IB).

For any non-empty finite set A, let us denote by dxA the Lebesgue measure on RA.
The following lemma gives the integral expression of mp(νR)(φ1, . . . , φp) we are looking
for. This integral expression is a sum of integrals over RI , indexed by I ∈ Pp. For each
of these terms, the integrand function is itself a sum of functions that are indexed by
partitions of some partitions induced by I. Hence we need to consider partitions of
partitions, which is a bit cumbersome.

Lemma 7.3 (Integral expression of the central moments). Let p > 2 and let us assume
that f is of class Cp. Let φ1, . . . , φp be test-functions in the sense of Definition 1.2. For all
R > 0, we have:

mp(νR)(φ1, . . . , φp) =
∑
I∈Pp

∫
RI
ι∗IφR(xI)FI(xI) dxI ,

where, for any finite set A 6= ∅, any I ∈ PA and any xI = (xI)I∈I ∈ RI ,

FI(xI) =
∑

B∈SA(I)

(
−1

π

)|A|−|B|
ρ{IB}(xIB ). (7.2)

Here, we use the convention that ρ{∅} is constant equal to 1. Note that IB = ∅ if and
only if B = ∅.

Proof. The proof follows the lines of [4, Lemma 3.1]. Recall that mp(νR) is defined by
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Definition 1.1. We develop this product using Notations 2.1, we get:

mp(νR)(φ1, . . . , φp) =
∑

B⊂{1,...,p}

(−1)p−|B|E

[∏
i∈B
〈νR , φi〉

]∏
i/∈B

E[〈νR , φi〉]

=
∑

B⊂{1,...,p}

(−1)p−|B|E
[〈
νB , (φB)R

〉]∏
i/∈B

E[〈νR , φi〉]

=
∑

B⊂{1,...,p}

∑
I∈PB

(−1)p−|B|E
[〈
ν[I] , ι∗I((φB)R)

〉]∏
i/∈B

E[〈νR , φi〉] ,

where the last equality comes from Lemma 2.7.

Let B ⊂ {1, . . . , p} and I ∈ PB. Note first that ι∗I((φB)R) = φB

(
ιI(·)
R

)
= (ι∗IφB)R.

Then, we can identify RI with R|I| by ordering I. Since the (φi)16i6p are integrable on
R and essentially bounded, ι∗IφB is integrable on RI . By Propositions 3.6 and 6.23, we
obtain:

E
[〈
ν[I] , ι∗I((φB)R)

〉]
= E

[〈
ν[|I|] , (ι∗IφB)R)

〉]
=

∫
R|I|

ι∗IφB

(x1

R
, . . . ,

x|I|

R

)
ρ|I|(x1, . . . , x|I|) dx1 . . . dx|I|

=

∫
RI
ι∗IφB

(xI
R

)
ρ{I}(xI) dxI ,

where ρ{I} : RI → R is defined by Equation (6.4). As in Section 3.3, for any i /∈ B, we

have E[〈νR , φi〉] =
1

π

∫
R

φi

( x
R

)
dx. Hence,

mp(νR)(φ1, . . . , φp) =∑
B⊂{1,...,p}

∑
I∈PB

(
−1

π

)p−|B| ∫
RI
ι∗IφB

(xI
R

)
ρ{I}(xI) dxI

∏
i/∈B

∫
R

φi

( x
R

)
dx.

By Lemma 7.2, we can exchange the two sums and obtain the following:

∑
I∈Pp

∑
B∈Sp(I)

(
−1

π

)p−|B|(∫
RIB

ι∗IBφB

(xIB
R

)
ρ{IB}(xIB ) dxIB

)∏
i/∈B

∫
R

φi

( x
R

)
dx.

We conclude the proof by applying Fubini’s Theorem, which yields:

mp(νR)(φ1, . . . , φp) =
∑
I∈Pp

∫
RI
ι∗IφR(xI)

 ∑
B∈Sp(I)

(
−1

π

)p−|B|
ρ{IB}(xIB )

 dxI .

Example 7.4. Let A = {a, b}, then PA contains only two elements: Imin(A) = {{a}, {b}}
and Imax(A) = {A}. In the first case, SA(Imin(A)) = {∅, {a}, {b}, A}, and one can check
that, F{{a},{b}} : (x, y) 7→ ρ{Imin(A)}(x, y)− 1

π2 . In fact, for all (x, y) ∈ R2 \∆2, we have:

F{{a},{b}}(x, y) = ρ2(x, y)− 1

π2
= F (y − x),

where F is as in Definition 4.1. In the second case, SA({A}) = {A} and F{A} = 1
π . Then,

if φa and φb are integrable and φb is bounded and continuous almost everywhere, we
have: ∫

R{A}
(φa)R(x)(φb)R(x)F{A}(x) dx =

R

π

∫
R

φa(x)φb(x) dx.
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Moreover, the computations of Section 4.1 show that:∫
R{{a},{b}}

(φa)R(x)(φb)R(y)F{{a},{b}}(x, y) dxdy =

∫
R2

(φa)R(x)(φb)R(y)F (y − x) dxdy

= R

(
σ2 − 1

π

)∫
R2

φa(x)φb(x) dx+ o(R),

where σ2 is defined by Equation (1.2).

Lemma 7.5 (Boundedness). Let A be a finite set. Let us assume that f is of class C|A|
and that ‖κ‖|A|,η −−−−−→η→+∞

0. Then, for all I ∈ PA, the function FI is bounded on RI .

Proof. Let B ∈ SA(I). Since IB ∈ PB, we have |IB | 6 |B| 6 |A|. Thus ‖κ‖|IB |,η −−−−−→η→+∞
0,

and ρ{IB} is bounded by Lemma 6.41. The conclusion follows from the expression of FI
given by Equation (7.2).

In order to compute the central moments of νR, we have to estimate the integral
of FI over RI for any partition I ∈ Pp. This is done by writing RI as

⊔
J∈PI R

I
J ,η

for some well-chosen η > 0 and proving estimates for the contribution of each RIJ ,η.
In the following sections, we will derive estimates for FI on RIJ ,η, depending on the
combinatorial properties of the partitions I and J .

Let us conclude this section by choosing the scale parameter η. In the following, we
will work, not with a fixed η > 0, but with a scale parameter depending on R, given by
the following lemma.

Lemma 7.6 (Scale parameter). Let p > 2 be an integer. Let us assume that f is of class Cp
and that ‖κ‖p,η = o(η−4p) as η → +∞. Then, there exists a function η : (0,+∞)→ (0,+∞)

such that, as R→ +∞ we have: η(R)→ +∞, η(R) = o(R
1
4 ) and ‖κ‖p,η(R) = o(R−p).

Proof. Let ε : τ 7→ τ4p ‖κ‖p,τ from [0,+∞) to itself. We have ε(τ)→ 0 as τ → +∞ since
‖κ‖p,τ = o(τ−4p). Note that this implies that ε is bounded on [0,+∞). For all R > 0 we

denote by α(R) = max

(
R−

1
8 ,
(

sup{ε(τ) | τ > R 1
8 }
) 1

8p

)
. Since ε(τ) −−−−−→

τ→+∞
0 at infinity,

we have α(R) −−−−−→
R→+∞

0. Let us set η(R) = R
1
4α(R) for all R > 0, and let us check that η

satisfies the desired conditions.

Since α goes to 0 at infinity, we have η(R) = o(R
1
4 ) as R→ +∞. Besides, for all R > 0

we have α(R) > R−
1
8 , hence η(R) > R

1
8 and η(R) −−−−−→

R→+∞
+∞. Then, let R > 0, we have:

‖κ‖p,η(R) =
ε(η(R))

η(R)4p
=

1

Rp
ε(η(R))

α(R)4p
.

Since η(R) > R
1
8 , we have ε(η(R)) 6 sup{ε(τ) | τ > R 1

8 } 6 α(R)8p. Finally,

‖κ‖p,η(R) 6
α(R)4p

Rp
= o(R−p).

7.2 An upper bound on the contribution of each piece

In this section, we give upper bounds for the contribution of each addend in the
expression of mp(νR)(φ1, . . . , φp) derived in Lemma 7.3. We bound the contribution of
the integral of the term indexed by I ∈ Pp over RIJ ,η(R) in terms of the combinatorial
properties of I and J . See Lemma 7.9 below for a precise statement.
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Remark 7.7. Note that J is partition of I, which is itself a partition of {1, . . . , p}. This
is the main reason why our formalism is so heavy. A good starting point is to understand
what happens for the term indexed by I = Imin(p) = {{i} | 1 6 i 6 p} in Lemma 7.3. In
this case, all the important ideas of the proof appear, but we can simplify the formalism
a bit since I ' {1, . . . , p} canonically.

Lemma 7.8. Let A be a non-empty finite set and let us assume that f is a C|A|-process
such that ‖κ‖|A|,η = o(η−4|A|) at infinity. Let η : [0,+∞)→ [0,+∞) be a function satisfying
the conditions of Lemma 7.6 with p = |A|.

Let I ∈ PA and let S ⊂ A be of even cardinality and such that IS = {{s} | s ∈ S} ⊂ I.
Let J ′ ∈ PPIS and J ′′ ∈ PI\IS , we denote by J = J ′ t J ′′ ∈ PI . Then, the following
holds uniformly for all xI ∈ RIJ ,η(R):

FI(xI) = FI\IS (xI\IS )
∏
J∈J ′

FJ(xJ) + o
(
R−

|A|
2

)
. (7.3)

Proof. If S is empty, then IS = ∅ and J ′ = ∅ by convention. Hence, the result holds in
this case. Let us now assume that S is not empty. Then IS is non-empty and contains an
even number of elements, so that PPIS is non-empty.

Let J ′ ∈ PPIS , let J ′′ ∈ PI\IS and let J = J ′ t J ′′. Let J ∈ J ′, then there exists s
and t ∈ S such that s 6= t and J = {{s}, {t}}. Let us denote by A′ = A \ {s, t}, we have
I 6 {A′, {s}, {t}} so that I = IA′ t {{s}, {t}}. Recall that FI is defined as a sum indexed
by B ∈ SA(I), see Equation (7.2). Since {s} and {t} ∈ I, we have:

SA(I) =
⊔

B∈SA′ (IA′ )

{B,B t {s}, B t {t}, B t {s, t}}.

Let B ∈ SA′(IA′), we regroup the four terms corresponding to B, B t {s}, B t {t} and
B t {s, t} in the sum defining FI (see Lemma 7.3). For all xI ∈ RI , we obtain:(
−1

π

)|A|−|B|(
π2ρ{IBt{s,t}}(xIBt{s,t})− πρ{IBt{s}}(xIBt{s})

− πρ{IBt{t}}(xIBt{t}) + ρ{IB}(xIB )
)
. (7.4)

Note that IBt{s,t} = IB t J . Since J = {{s}, {t}} ∈ J , if xI ∈ RIJ ,η(R), then for any

I ∈ I \ J we have
∣∣xI − x{s}∣∣ > η(R) and

∣∣xI − x{t}∣∣ > η(R). In particular, the following
holds:

Iη(R)

(
xIBtJ

)
= JIBtJ 6 {IB , J}.

Since we chose η so that ‖κ‖|A|,η(R) = o(R−|A|), applying Corollary 6.44 we get:

ρ{IBt{s,t}}(xIBt{s,t}) = ρ{IBtJ}(xIBtJ) = ρ{IB}(xIB )ρ{J}(xJ)
(

1 + o
(
R−

|A|
2

))
.

We proceed similarly with the three other terms in Equation (7.4). Bearing in mind that
ρ{J} and ρ{IB} are bounded (see Lemma 6.41), we obtain that (7.4) equals:(

−1

π

)|A|−|B|−2

ρ{IB}(xIB )FJ(xJ) + o
(
R−

|A|
2

)
.

Summing these terms over B ⊂ A′, we get that, for all xI ∈ RIJ ,η(R):

FI(xI) = FI\J(xI\J)FJ(xJ) + o
(
R−

|A|
2

)
. (7.5)

We can repeat the argument for FI\J(xI\J), with J ′ replaced by J ′ \ {J}. More formally,
we prove by induction on the cardinality of J ′ that Equation (7.3) holds uniformly on
RIJ ,η(R). The result is true if J ′ = ∅, and the inductive step is given by Equation (7.5).
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Lemma 7.9. In the same setting as Lemma 7.8, let (φa)a∈A be Lebesgue-integrable and
essentially bounded functions. Then, as R→ +∞, we have:∫

RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = O
(
R|J |η(R)|I|−2|J ′|−|J ′′|

)
,

where η : [0,+∞)→ [0,+∞) is a function satisfying the conditions of Lemma 7.6.

Proof. Let xI = (xI)I∈I ∈ RIJ ,η(R), using the estimate of Lemma 7.8, we have:

ι∗IφR(xI)FI(xI) = ι∗IφR(xI)FI\IS (xI\IS )
∏
J∈J ′

FJ(xJ) + o
(
R−

|A|
2

)
ι∗IφR(xI).

Then, since I = (I \ IS) t
⊔
J∈J ′ J , by Fubini’s Theorem,∣∣∣∣∣

∫
RIJ ,η(R)

ι∗IφR(xI)FI\IS (xI\IS )
∏
J∈J ′

FJ(xJ) dxI

∣∣∣∣∣
6
∫
RIJ ,η(R)

∣∣∣∣∣ι∗IφR(xI)FI\IS (xI\IS )
∏
J∈J ′

FJ(xJ)

∣∣∣∣∣ dxI
6
∫
R
I\IS
J′′,η(R)

∣∣∣FI\IS (xI\IS )
∣∣∣ ∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS
×
∏
J∈J ′

∫
RJ
|FJ(xJ)|

∏
I∈J

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ , (7.6)

where we used the fact that RIJ ,η(R) ⊂ R
I\IS
J ′′,η(R)×R

IS = R
I\IS
J ′′,η(R)×

∏
J∈J ′ R

J . The same
kind of computation shows that:∣∣∣∣∣
∫
RIJ ,η(R)

ι∗IφR(xI) dxI

∣∣∣∣∣ 6
∫
R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS
×
∏
J∈J ′

∫
RJ

∏
I∈J

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ . (7.7)

Let J = {{a}, {b}} ∈ J ′. Since φa and φb are integrable onR, then φa�φb is integrable
on R2. Then, as explained in Example 7.4, we have:∫

RJ
|FJ(xJ)|

∏
I∈J

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ =

∫
R2

∣∣∣φa ( x
R

)
φb

( y
R

)∣∣∣ |F (y − x)|dxdy, (7.8)

where F is defined by Definition 4.1. Then, recall that φa and φb are essentially bounded.
Denoting by ‖φb‖∞ the essential supremum of φb, we have:∫

R2

∣∣∣φa ( x
R

)
φb

( y
R

)∣∣∣ |F (y − x)|dx dy 6 ‖φb‖∞
∫
R2

∣∣∣φa ( x
R

)∣∣∣ |F (z)|dxdz

6 R ‖φb‖∞

(∫
R

|φa(x)|dx
)(∫

R

|F (z)|dz
)
.

Since φa and F are integrable (see Lemma 4.3), the previous term is O(R). Hence, by
Equations (7.6) and (7.8), the term on the first line of Equation (7.6) equals:

O(R|J
′|)
∫
R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS ,
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where we also used the boundedness of FI\IS on RI\IS (see Lemma 7.5). On the other
hand, we have:∫

RJ

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ = R2

∫
R2

|φa(x)φb(y)|dxdy = O(R2),

so that, by Equation (7.7),

o
(
R−

|A|
2

) ∣∣∣∣∣
∫
RIJ ,η(R)

ι∗IφR(xI) dxI

∣∣∣∣∣ = o
(
R2|J ′|− |A|2

)∫
R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS .
Since J ′ ∈ PPIS and I ∈ PA, we have |J ′| = |IS |

2 6 |I|2 6
|A|
2 . Hence, in order to conclude

the proof, it is enough to prove that:∫
R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS = O
(
R|J

′′|η(R)|I|−2|J ′|−|J ′′|
)
. (7.9)

Note that RI\ISJ ′′,η(R) ⊂
∏
J∈J ′′ R

J
{J},η(R). Hence, we have:∫

R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS 6 ∏
J∈J ′′

∫
RJ{J},η(R)

∏
I∈J

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ (7.10)

Let J ∈ J ′′ and let B =
⊔
I∈J I. Recall that, for all a ∈ B, the function φa is essentially

bounded and let us denote by ‖φa‖∞ its essential supremum. Let us choose a preferred
element b ∈ B and let I0 ∈ J be defined by b ∈ I0. Then, we have:∫

RJ{J},η(R)

∏
I∈J

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxJ 6
 ∏
a∈B\{b}

‖φa‖∞

∫
RJ{J},η(R)

∣∣∣φb (xI0
R

)∣∣∣dxJ . (7.11)

Let xJ ∈ RJ{J},η(R), for all I ∈ J \ {I0}, we have |xI − xI0 | 6 |J | η(R) (cf. Remark 6.8).
Thus, ∫

RJ{J},η(R)

∣∣∣φb (xI0
R

)∣∣∣dxJ 6 (|J | η(R))
|J|−1

∫
R

∣∣∣φb ( x
R

)∣∣∣dx
= R (|J | η(R))

|J|−1
∫
R

|φb(x)|dx,
(7.12)

and this term is O
(
Rη(R)|J|−1

)
since φb is integrable. Finally, by Equations (7.10), (7.11)

and (7.12), we obtain:∫
R
I\IS
J′′,η(R)

∏
I /∈IS

∏
i∈I

∣∣∣φi (xI
R

)∣∣∣dxI\IS =
∏
J∈J ′′

O
(
Rη(R)|J|−1

)
= O

(
R|J

′′|η(R)
∑
J∈J′′ |J|−|J ′′|

)
.

Since J ′′ ∈ PI\IS , we have
∑
J∈J ′′ |J | = |I \ IS | = |I| − |IS |. Finally, since J ′ ∈ PPIS ,

we have |IS | = 2 |J ′|. Thus,
∑
J∈J ′′ |J | − |J ′′| = |I| − 2 |J ′| − |J ′′|, and we just proved

Equation (7.9), which yields the result.

7.3 Contribution of the partitions with an isolated point

The result of Lemma 7.9 may lead to think that the main contribution in the integral
over RI appearing in Lemma 7.3 comes from the subsets of the form RIJ ,η(R), where |J |
is large. In this section, we prove that the function FI is uniformly small over RIJ ,η(R) if J
contains a singleton. In particular, the contribution of RIJ ,η(R) to the integral over RI

appearing in Lemma 7.3 is small if |J | > |I|
2 .

EJP 26 (2021), paper 68.
Page 63/81

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP637
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Zeros of smooth stationary Gaussian processes

Lemma 7.10. Let A be a finite set of cardinality at least 2, and let us assume that f is
a C|A|-process such that ‖κ‖|A|,η = o(η−4|A|) at infinity. Let η : [0,+∞) → [0,+∞) be a
function satisfying the conditions of Lemma 7.6 with p = |A|.

Let I ∈ PA, we assume that there exists i ∈ A such that {i} ∈ I. Then, for all J ∈ PI
such that {{i}} ∈ J , we have FI(xI) = o

(
R−

|A|
2

)
as R→ +∞, uniformly in xI ∈ RIJ ,η(R).

Proof. Recall that we defined SA(I) in Definition 7.1. Let A′ = A \ {i}. Since {i} ∈ I, we
have I = IA′ t {{i}}, and:

SA(I) =
⊔

B∈SA′ (IA′ )

{B,B t {i}}.

Thus, we can split SA(I) into the subsets that contain i and those that do not, and
B 7→ B t {i} is a bijection from SA′(IA′) = {B ∈ SA(I) | i /∈ B} to {B ∈ SA(I) | i ∈ B}.

Let xI = (xI)I∈I ∈ RI and let B ∈ SA(I) be such that i /∈ B. Regrouping the terms
corresponding to B and B t {i} in the sum defining FI(xI) (see Equation (7.2)), we
obtain: (

−1

π

)|A|−|B|−1(
ρ{IBt{i}}(xIBt{i})−

1

π
ρ{IB}(xIB )

)
. (7.13)

Note that we have I = IB t{{a} | a ∈ A\B} and IBt{i} = IB t{{i}}. Let us now assume
that xI ∈ RIJ ,η(R). Since {{i}} ∈ J , for all I ∈ I \ {{i}} we have

∣∣xI − x{i}∣∣ > η(R), and

Iη(R)

(
xIBt{i}

)
= JIBt{i} 6 {IB , {i}}. Then, by Lemma 6.41 and Corollary 6.44, the right-

hand side of Equation (7.13) is o
(
R−

|A|
2

)
, uniformly over RIJ ,η(R). Here, we also used

the fact that ρ1 is constant equal to 1
π (see Example 3.3) and that ‖κ‖|A|,η(R) = o(R−|A|),

since η satisfies the conclusion of Lemma 7.6.

Corollary 7.11. In the same setting as Lemma 7.10, let (φa)a∈A be Lebesgue-integrable
and essentially bounded functions. Then, as R→ +∞, we have:∫

RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = o
(
R
|A|
2

)
,

where η : [0,+∞)→ [0,+∞) is a function satisfying the conditions of Lemma 7.6.

Proof. Our hypotheses ensure that ι∗Iφ is integrable on RI . Then, by Lemma 7.10, we
have: ∫

RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = o
(
R−

|A|
2

)∫
RI

∣∣∣ι∗Iφ(xIR )∣∣∣dxI = o
(
R|I|−

|A|
2

)
.

Since I ∈ PA, we have |I| 6 |A|, which concludes the proof.

Example 7.12. Let us consider the case where A = {a, b} and I = Imin(A) = {{a}, {b}}.
Applying Corollary 7.11 with J = Imin(I) =

{
{{a}}, {{b}}

}
, we have:∫

RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI =

∫
{(x,y)∈R2||x−y|>η(R)}

φa

( x
R

)
φb

( y
R

)
FI(x, y) dx dy

= o(R).

Besides, by Example 7.4, we know that:∫
R2

φa

( x
R

)
φb

( y
R

)
FI(x, y) dx dy = R

(
σ2 − 1

π

)∫
R2

φa(x)φb(x) dx+ o(R),
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where σ2 is the constant appearing in Proposition 1.11. Since PI = {J , {I}}, this shows
that:∫

RI{I},η(R)

ι∗IφR(xI)FI(xI) dxI =

∫
{(x,y)∈R2||x−y|6η(R)}

φa

( x
R

)
φb

( y
R

)
FI(x, y) dx dy

= R

(
σ2 − 1

π

)∫
R2

φa(x)φb(x) dx+ o(R).

7.4 Contribution of the partitions into pairs

The goal of this section is to study the behavior of the function FI , introduced in
Lemma 7.3, on some particular pieces of the decomposition RI =

⊔
J∈PI R

I
J ,η(R). More

precisely, we will consider pieces indexed by partitions into pairs.

Definition 7.13. Let A 6= ∅ be a finite set and I ∈ PA, we denote by I ′ = {I ∈ I | |I| > 2}
and by I ′′ = {I ∈ I | |I| = 1}. We denote by CA the set of couples (I,J ) such that I ∈ PA,
J ∈ PI and the following two conditions are satisfied:

1. for all I ∈ I ′, we have |I| = 2;

2. there exists J ′ ∈ PPI′′ such that J = J ′ t J ′′, where J ′′ = {{I} | I ∈ I ′}.

As usual, if A = {1, . . . , p}, we denote by Cp = CA.

Remark 7.14. If (I,J ) ∈ CA, then I ′′ admits a partition into pairs, hence |I ′′| is even.
Moreover, |A| = 2 |I ′|+ |I ′′| is also even.

Lemma 7.15. Let A be a non-empty finite set and let us assume that f is a C|A|-process
such that ‖κ‖|A|,η = o(η−4|A|) at infinity. Let η : [0,+∞)→ [0,+∞) be a function satisfying
the conditions of Lemma 7.6 with p = |A|.

Let (I,J ) ∈ CA and let I ′, I ′′, J ′ and J ′′ be as in Definition 7.13. Then the following
holds uniformly for all xI ∈ RIJ ,η(R):

FI(xI) =

(
1

π

)|I′| ∏
J∈J ′

FJ(xJ) + o
(
R−

|A|
2

)
.

Proof. Let us denote by S =
⊔
I∈I′′ I. We have |S| = |I ′′|, and by Remark 7.14 this

cardinality is even. By Lemma 7.8, we have the following uniform estimate: for all
xI ∈ RIJ ,η(R),

FI(xI) = FI′(xI′)
∏
J∈J ′

FJ(xJ) + o
(
R−

|A|
2

)
.

Note that we have I ′ ∈ PA\S . Recalling Definition 7.1, we have SA\S(I ′) = {A \ S}
because of Condition 1 in Definition 7.13. Hence we obtain FI′ = ρ{I′} by Equation (7.2).
By Condition 2 in Definition 7.13 we have JI′ = J ′′. Then, for any xI ∈ RIJ ,η(R) we have

xI′ ∈ RI
′

J ′′,η(R), and by Proposition 6.43, we obtain:

FI′(xI′) = ρ{I′}(xI′) =

( ∏
J∈J ′′

ρ{J}(xJ)

)(
1 +O

(
‖κ‖|A|,η(R)

) 1
2

)
,

uniformly for xI ∈ RIJ ,η(R). Our hypotheses on κ and η ensure that ‖κ‖|A|,η(R) = o(R−
|A|
2 ).

Moreover, for all J ∈ J ′′ we have |J | = 1, so that ρ{J} = ρ1 is constant equal to 1
π , see

Example 3.3. The conclusion follows from the boundedness of the functions FJ with
J ∈ J ′ (see Lemma 7.5) and from |J ′′| = |I ′|.
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7.5 Conclusion of the proof

In this section, we finally conclude the proof of Theorem 1.6. In all this section, we
fix an integer p > 2. We consider a normalized centered stationary Gaussian process
f of class Cp. The correlation function κ of f is such that ‖κ‖p,η = o(η−4p) as η → +∞.
We fix a function η : [0,+∞) → [0,+∞) such that as R → +∞ we have: η(R) → +∞,
η(R) = o(R

1
4 ), and ‖κ‖p,η(R) = o(R−p). The existence of such a function was proved in

Lemma 7.6. Finally, we consider test-functions φ1, . . . , φp is the sense of Definition 1.2.

Lemma 7.16 (Error terms). Let I ∈ Pp and J ∈ PI be such that (I,J ) /∈ Cp, where Cp is
defined by Definition 7.13. Then, as R→ +∞, we have:∫

RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = o(R
p
2 ). (7.14)

Proof. As in Definition 7.13, let us set I ′ = {I ∈ I | |I| > 2} and I ′′ = {I ∈ I | |I| = 1}.
Since I = I ′ t I ′′ ∈ Pp, we have:

2 |I ′|+ |I ′′| 6 p (7.15)

and equality holds if and only if |I| = 2 for all I ∈ I ′, that is if and only if Condition 1 of
Definition 7.13 is satisfied.

Let J ∈ J be such that |J | = 1. There exists I ∈ I such that J = {I}. If I ∈ I ′′, that
is if I is a singleton, then we are in the situation studied in Section 7.3. In this case,
Equation (7.14) holds by Corollary 7.11.

In the following, we assume that we are not in the previous situation. That is, for
all J ∈ J such that |J | = 1, we have J ⊂ I ′. Let us prove that Equation (7.14) holds in
this case. We denote by J ′ = {J ∈ J | J ⊂ I ′′, |J | = 2} and by J ′′ = J \ J ′. Finally, let
S =

⊔
J∈J ′

⊔
I∈J I ⊂ {1, . . . , p}. By definition of S we have IS = {{s} | s ∈ S} ⊂ I ′′ ⊂ I

and J ′ ∈ PPIS . We also have J ′′ ∈ PI\IS and J = J ′ t J ′′. By Lemma 7.9, the left-hand

side of Equation (7.14) equals O
(
R|J |η(R)|I|−2|J ′|−|J ′′|

)
. Since η(R) = o(R

1
4 ), there

exists a function α such that α(R) −−−−−→
R→+∞

0 and η(R) = α(R)R
1
4 . Then, left-hand side

of (7.14) is:

O

(
R|J |+

|I|−2|J′|−|J′′|
4 α(R)|I|−2|J ′|−|J ′′|

)
. (7.16)

Let J ∈ J ′′. Since J ′′ is a partition of I \ IS = I ′ t (I ′′ \ IS), if J ∩ I ′ = ∅ then
J ⊂ I ′′ \ IS . In this case, we assumed that |J | 6= 1, and moreover |J | 6= 2 by definition of
J ′ and J ′′. Thus, either there exists I ∈ I ′ ∩ J , or J ⊂ I ′′ \ IS and |J | > 3. This proves
that:

|J ′′| 6 |I ′|+ 1

3
(|I ′′| − |IS |).

Since |IS | = 2 |J ′|, we have 2 |J ′|+ 3 |J ′′| 6 3 |I ′|+ |I ′′|. Hence,

|J |+ |I| − 2 |J ′| − |J ′′|
4

=
1

4
(2 |J ′|+ 3 |J ′′|+ |I ′|+ |I ′′|) 6 1

2
(2 |I ′|+ |I ′′|).

Then, by Equation (7.15), we have:

|J |+ |I| − 2 |J ′| − |J ′′|
4

6
p

2
. (7.17)

If this inequality is strict, then (7.16) equals a o(R
p
2 ), which proves that Equation (7.14)

holds.
If equality holds in Equation (7.17), then it must hold in Equation (7.15), which

implies that (I,J ) satisfies Condition 1 in Definition 7.13. In this case, (7.16) is a
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O(R
p
2α(R)|I|−2|J ′|−|J ′′|) and it is enough to check that 2 |J ′| + |J ′′| < |I|, because

α(R) = o(1). Since J = J ′ t J ′′ ∈ PI and |J | = 2 for all J ∈ J ′, we have:

2 |J ′|+ |J ′′| 6 |I| , (7.18)

and equality holds if and only if |J | = 1 for all J ∈ J ′′. If equality held in Equation (7.18)
then, under our assumptions, we would have |J | = 1 and J ⊂ I ′ for all J ∈ J ′′, hence
J ′′ ⊂ Imin(I ′). Since J ′ ∈ PIS and IS ⊂ I ′′ = I \ I ′, the only possibility for this to
happen is that J ′′ = Imin(I ′) and IS = I ′′. Thus, if equality held in Equation (7.18) then
(I,J ) would satisfy Condition 2 of Definition 7.13. Since we already assumed that (I,J )

satisfies Condition 1, this would imply (I,J ) ∈ Cp, which is a contradiction. Finally, the
inequality is strict in Equation (7.18). Hence, (7.16) is a o(R

p
2 ), which concludes the

proof.

Lemma 7.17 (Leading terms). Let I ∈ Pp and J ∈ PI be such that (I,J ) ∈ Cp. Let
I ′, I ′′,J ′ and J ′′ be as in Definition 7.13. Then, as R→ +∞, we have:∫

xI∈RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = ∏
{i,j}∈I′

R

π

∫
R

φi(x)φj(x) dx

( ∏
J∈J ′

∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ

)
+ o(R

p
2 ).

Proof. For any point xI ∈ RI , we have:

ι∗IφR(xI) =
∏
I∈I

∏
i∈I

φi

(xI
R

)
=

 ∏
{i,j}=I∈I′

φi

(xI
R

)
φj

(xI
R

) ∏
{i}∈I′′

φi

(x{i}
R

) .

Note that, for all J = {{i}, {j}} ∈ J ′ we have φJ = φ{i}�φ{j} = φi�φj (see Notation 2.1).
Hence, by Lemma 7.15, for all xI ∈ RIJ ,η(R), we have that ι∗IφR(xI)FI(xI) equals: ∏

{i,j}=I∈I′

1

π
φi

(xI
R

)
φj

(xI
R

)( ∏
J∈J ′

φJ

(xJ
R

)
FJ(xJ)

)
+ ι∗IφR(xI)o(R−

p
2 ), (7.19)

and we want to compute the integral of (7.19) over RIJ ,η(R). Our assumptions on the the

test-functions φ1, . . . , φp ensure that ι∗Iφ is integrable on RI . Hence, since |I| 6 p, the
contribution to the integral of the error term in Equation (7.19) is:∫

RIJ ,η(R)

ι∗IφR(xI)o(R−
p
2 ) dxI = o(R−

p
2 )

∫
RIJ ,η(R)

|ι∗IφR(xI)|dxI = o(R|I|−
p
2 ) = o(R

p
2 ).

Let us check that:

RIJ ,η(R) ⊂

(∏
I∈I′

R

)
×

( ∏
J∈J ′

RJ{J},η(R)

)
⊂
⊔
K>J

RIK,η(R). (7.20)

In order to prove the first inclusion, let xI ∈ RIJ ,η(R). Since J satisfies Condition 2
of Definition 7.13, the associated graph Gη(R)(xI) (see Definition 6.1) is formed of |I ′|
isolated vertices {I | I ∈ I ′} and |J ′| pairs of vertices of the form {I, I ′} ∈ J ′ with
an edge between I and I ′. Hence, for all J = {I, I ′} ∈ J ′, we have |xI − xI′ | 6 η(R),
and xJ ∈ RJ{J},η(R). Let us now prove the second inclusion in Equation (7.20). Let

xI = (xI)I∈I ∈ RI and let us assume that xI belongs to the middle set in Equation (7.20).
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By Definition 6.1, for all J = {I, I ′} ∈ J ′, the graph Gη(R)(xI) associated with xI has an
edge between I and I ′. Hence the associated partition K = Iη(R)(xI) (see Definition 6.2)
is such that, for all J ∈ J ′ there exists K ∈ K such that J ⊂ K. Since J satisfies
Condition 2 in Definition 7.13, this is enough to ensure that K > J . Note that, in general,
both inclusions in Equation (7.20) are strict.

Let K ∈ PI be such that K > J . This ensures that (I,K) /∈ Cp.Then, by Lemma 7.16,
the integral of the leading term in Equation (7.19) over((∏

I∈I′
R

)
×

( ∏
J∈J ′′

RJ{J},η(R)

))
∩RIK,η(R)

equals o(R
p
2 ). This proves that:∫

xI∈RIJ ,η(R)

ι∗IφR(xI)FI(xI) dxI = ∏
{i,j}∈I′

R

π

∫
R

φi(x)φj(x) dx

( ∏
J∈J ′

∫
RJ{J},η(R)

φJ

(xJ
R

)
FJ(xJ) dxJ

)
+ o(R

p
2 ). (7.21)

In order to conclude the proof, we need to replace the integral over RJ{J},η(R) by an

integral over RJ in Equation (7.21), for all J ∈ J ′. Let J = {I, I ′} ∈ J ′, we have:∫
RJ{J},η(R)

φJ

(xJ
R

)
FJ(xJ) dxJ

=

∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ −

∫
RJ{{I},{I′}},η(R)

φJ

(xJ
R

)
FJ(xJ) dxJ

=

∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ + o(R),

by Corollary 7.11. Moreover, as in Example 7.12, we have:∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ = O(R).

Since |I ′|+ |J ′| = |I ′|+ 1
2 |I
′′| = p

2 , this yields the claimed estimate.

Proof of Theorem 1.6. By Lemma 7.3 and the fact that RI =
⊔
J∈PI R

I
J ,η(R) for all

I ∈ Pp, we have:

mp(νR)(φ1, . . . , φp) =
∑
I∈Pp

∑
J∈PI

∫
xI∈RIJ ,η(R)

(ι∗IφR) (xI)FI(xI) dxI .

By Lemma 7.16, up to an error term of the form o(R
p
2 ) we need only consider the terms

in this double sum indexed by (I,J ) ∈ Cp, where Cp is defined by Definition 7.13. The
expression of these terms is given by Lemma 7.17. Thus, we have:

mp(νR)(φ1, . . . , φp) =

∑
(I,J )∈Cp

 ∏
{i,j}∈I′

R

π

∫
R

φi(x)φj(x) dx

( ∏
J∈J ′

∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ

)
+ o(R

p
2 ),

where we used the same notations as in Definition 7.13. Recall that I ′ = {I ∈ I | |I| = 2}
and I ′′ = {I ∈ I | |I| = 1}, so that I = I ′ t I ′′ thanks to Condition 1 in Definition 7.13.
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Recall also that J ′′ = {{I} | I ∈ I ′} and J = J ′ t J ′′ for some J ′ ∈ PPI′′ , thanks to
Condition 2 in Definition 7.13.

We just wrote mp(νR)(φ1, . . . , φp) as a sum of terms indexed by Cp. In the following,
we define a bijection Φ : Cp → {(Π,S) | Π ∈ PPp,S ⊂ Π}, which will allow us to rewrite
mp(νR)(φ1, . . . , φp) as sum over {(Π,S) | Π ∈ PPp,S ⊂ Π}, by a change of variable.

• Let (I,J ) ∈ Cp, we denote by S = {i | {i} ∈ I ′′} and by S = {{i, j} | {{i}, {j}} ∈ J ′}.
Since J ′ ∈ PPI′′ , we have S ∈ PPS . Since I ′ is a partition of

⊔
I∈I′ I = {1, . . . , p}\S

into pairs, we define a partition into pairs Π ∈ PPp by Π = I ′ t S. We obtain a
couple (Π,S) where Π ∈ PPp and S ⊂ Π. Let us denote this couple by Φ(I,J ).

• Conversely, let Π ∈ PPp and let S ⊂ Π. We set S =
⊔
I∈S I and I ′ = Π \ S, so that

I ′ is a partition into pairs of {1, . . . , p} \ S. Let us denote by I ′′ = {{i} | i ∈ S} and
by J ′ = {{{i}, {j}} | {i, j} ∈ S}, so that J ′ ∈ PPI′′ . Finally, let I = I ′ t I ′′ ∈ Pp,
and let J ′′ = {{I} | I ∈ I ′} so that J = J ′ t J ′′ ∈ PI . We just defined a couple
(I,J ) ∈ Cp that we denote by Ψ(Π,S).

By construction, Φ is a bijection from Cp to {(Π,S) | Π ∈ PPp,S ⊂ Π} such that
Ψ = Φ−1. Moreover, for all (I,J ) ∈ Cp, denoting by (Π,S) = Φ(I,J ), we have: ∏

{i,j}∈I′

R

π

∫
R

φi(x)φj(x) dx

( ∏
J∈J ′

∫
RJ
φJ

(xJ
R

)
FJ(xJ) dxJ

)
=

 ∏
{i,j}∈Π\S

R

π

∫
R

φi(x)φj(x) dx

 ∏
{i,j}∈S

∫
R2

φi

( x
R

)
φj

( y
R

)
F (y − x) dxdy

 ,

where we used Example 7.4. Hence,

mp(νR)(φ1, . . . , φp) =

∑
Π∈PPp

∑
S⊂Π

 ∏
{i,j}∈Π\S

R

π

∫
R

φi(x)φj(x) dx

 ∏
{i,j}∈S

∫
R2

φi

( x
R

)
φj

( y
R

)
F (y − x) dx dy


+ o(R

p
2 ). (7.22)

The leading term on the right-hand side of Equation (7.22) can be rewritten as:∑
Π∈PPp

∏
{i,j}∈Π

(∫
R2

φi

( x
R

)
φj

( y
R

)
F (y − x) dxdy +

R

π

∫
R

φi(x)φj(x) dx

)
.

Using the expression of m2(νR)(φi, φj) derived in Lemma 4.4, this last term equals

∑
Π∈PPp

∏
{i,j}∈Π

m2(νR)(φi, φj) =
∑

{{ai,bi}|16i6 p
2}∈PPp

p
2∏
i=1

m2(νR)(φai , φbi),

which proves the first part of Theorem 1.6.
Let φ : R→ R be a test-function in the sense of Definition 1.2. Using what we just

proved with φi = φ for all i ∈ {1, . . . , p}, we have:

mp(〈νR , φ〉) = mp(νR)(φ, . . . , φ) = Card(PPp) Var(〈νR , φ〉)
p
2 + o(R

p
2 ).

Since Card(PPp) = µp (see Notation 1.5), this proves the expression of mp(〈νR , φ〉) stated
in Theorem 1.6.
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8 Limit theorems

The purpose of this section is to deduce the functional limit Theorems 1.16 and 1.21
from Theorem 1.6. We prove the Law of Large Numbers (Theorem 1.16) in Section 8.1
and the Central Limit Theorem 1.21 in Section 8.2.

8.1 Proof of Theorem 1.16: law of large numbers

This section is concerned with the proof of Theorem 1.16. In the first part of the
proof, we derive a Law of Large Numbers for the linear statistics 〈νR , φ〉, for a fixed
test-function φ. We use the moments estimates of Theorem 1.6 and Markov’s Inequality
to obtain a quantitative convergence in probability. Then, we deduce the almost sure
convergence from the Borel–Cantelli Lemma. In the second part of the proof, we prove a
functional Law of Large Number for the random measures νR. This uses the first part of
Theorem 1.16, together with the separability of the space C0

c (R) of continuous functions
with compact support equipped with the sup-norm ‖·‖∞.

Proof of Theorem 1.16. Let p ∈ N∗ and let f be a normalized stationary centered Gaus-
sian process of class C2p. Let κ denote the correlation function of f . We assumed that
‖κ‖2p,η = o(η−8p) as η → +∞, where ‖·‖2p,η is defined as in Notation 1.3. Let (Rn)n∈N
be a sequence of positive numbers such that

∑
n∈NR

−p
n < +∞.

Let φ : R→ R be a test-function as in Definition 1.2,we have:

E

[∑
n∈N

(
1

Rn
〈νRn , φ〉 −

1

π

∫
R

φ(x) dx

)2p
]

=
∑
n∈N

1

R2p
n

m2p(〈νRn , φ〉).

We obtain R−2p
n m2p(〈νRn , φ〉) = O(R−pn ) using Proposition 1.11 if p = 1 and Theorem 1.6

otherwise. Thus, the sum on the right-hand side of the previous equation is finite. This
proves that, almost surely, we have:∑

n∈N

(
1

Rn
〈νRn , φ〉 −

1

π

∫
R

φ(x) dx

)2p

< +∞,

hence
1

Rn
〈νRn , φ〉 −−−−−→n→+∞

1

π

∫
R

φ(x) dx. This proves our first claim. The almost sure

convergence of 1
Rn

Card(Z ∩ [0, Rn]) is obtained by applying this result with φ = 1[0,1].
Recall that the space C0

c (R) of continuous functions with compact support is separable
for the topology induced by ‖·‖∞. Let (φk)k∈N∗ denote a dense sequence in

(
C0
c (R), ‖·‖∞

)
.

We also denote by φ0 = 1R. For any N ∈ N, let χN : R→ R denote the even continuous
function defined by:

χN : x 7−→


1 if |x| 6 N,
1− (|x| −N) if N 6 |x| 6 N + 1,

0 if |x| > N + 1.

Note that φ0 /∈ C0
c (R) but that χNφ0 = χN ∈ C0

c (R) for all N ∈ N.
Using the first part of Theorem 1.16 proved above and the countability of N2, the

following happens almost surely:

∀(k,N) ∈ N2,
1

Rn
〈νRn , χNφk〉 −−−−−→

n→+∞

1

π

∫
R

χN (x)φk(x) dx. (8.1)

In the following, we consider a realization of the random process f such that (8.1) holds.
For this realization, we will prove by an approximation argument that:

∀φ ∈ C0
c (R),

1

Rn
〈νRn , φ〉 −−−−−→

n→+∞

1

π

∫
R

φ(x) dx, (8.2)
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i.e. that
1

Rn
νRn −−−−−→

n→+∞

1

π
dx in the weak-∗ sense in the topological dual of

(
C0
c (R), ‖·‖∞

)
.

This yields the result.
Let us consider a realization of f such that (8.1) holds. Let φ ∈ C0

c (R) and let N ∈ N
be large enough that the support of φ is included in [−N,N ]. By Equation (8.1) with k = 0,
the non-negative sequence

(
R−1
n 〈νRn , χN 〉

)
n∈N converges towards 2N+1

π . In particular,
this sequence is bounded by some constant CN > 0.

Let ε > 0 and let k ∈ N∗ be such that ‖φ− φk‖∞ 6 ε. For all x ∈ R, we have:

|φ(x)− χN (x)φk(x)| = |χN (x) (φ(x)− φk(x))| = χN (x) |φ(x)− φk(x)| 6 εχN (x). (8.3)

Then, for all n ∈ N, we have:∣∣∣∣ 1

Rn
〈νRn , φ〉 −

1

π

∫
R

φ(x) dx

∣∣∣∣ 6 1

Rn
|〈νRn , φ− χNφk〉|

+

∣∣∣∣ 1

Rn
〈νRn , χNφk〉 −

1

π

∫
R

χNφk(x) dx

∣∣∣∣+
1

π

∣∣∣∣∫
R

φ(x)− χN (x)φk(x) dx

∣∣∣∣ . (8.4)

Using Equation (8.3), the first term on the right-hand side of Equation (8.4) satisfies:

1

Rn
|〈νRn , φ− χNφk〉| 6

1

Rn
〈νRn , |φ− χNφk|〉 6 ε

1

Rn
〈νRn , χN 〉 6 εCN .

Similarly, the third term on the right-hand side of Equation (8.4) satisfies:

1

π

∣∣∣∣∫
R

φ(x)− χN (x)φk(x) dx

∣∣∣∣ 6 1

π

∫
R

|φ(x)− χN (x)φk(x)|dx 6 ε

π

∫
R

χN (x) dx

6 ε
2N + 1

π
.

Using our hypothesis that (8.1) holds for (k,N) the middle term on the right-hand side
of Equation (8.4) goes to 0 as n→ +∞. Finally, for all n large enough we have:∣∣∣∣ 1

Rn
〈νRn , φ〉 −

1

π

∫
R

φ(x) dx

∣∣∣∣ 6 ε(CN + 1 +
2N + 1

π

)
.

This proves that Equation (8.2) holds for φ, hence for all φ ∈ C0
c (R), as claimed. Thus (8.2)

holds almost surely, which concludes the proof.

8.2 Proof of Theorem 1.21: central limit theorem

In this section we deduce Theorem 1.21 from the moments estimates of Theorem 1.6.
The Central Limit Theorem for a fixed test-function follows from Theorem 1.6 by the
method of moments, see [9, Chapter 30]. Then, we obtain the functional Central Limit
Theorem by the Lévy–Fernique Theorem, which is a generalization of Lévy’s Continuity
Theorem for random generalized functions. The result of Fernique [20, Theorem III.6.5]
is not exactly what we need, and we refer to [8] instead, for a version of this result that
suits us better.

Proof of Theorem 1.21. Let f be a C∞ centered Gaussian process which is stationary
and normalized. Let κ denote its correlation function, we assume that κ ∈ S(R), see
Definition 1.18. Let σ be the positive constant appearing in the variance asymptotics of
Proposition 1.11, which is defined by Equation (1.2).

Let R > 0, we denote by νR the counting measure of {x ∈ R | f(Rx) = 0}. Let TR be
the random measure on R defined by:

TR =
1

R
1
2σ

(
νR −

R

π
dx

)
,
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where dx stands for the Lebesgue measure of R. Let φ : R→ R be a test-function in the
sense of Definition 1.2. By Proposition 1.8 and Remark 1.9,

〈TR , φ〉 =
1

R
1
2σ

(
〈νR , φ〉 −

R

π

∫
R

φ(x) dx

)
is an almost-surely well-defined centered random variable. Then, by Theorem 1.6 and
Proposition 1.11, for any integer p > 2, we have:

E[〈TR , φ〉p] −−−−−→
R→+∞

µp ‖φ‖pL2 ,

where µp is the p-th moment of an N (0, 1) random variable, as in Notation 1.5. Hence,
we have:

〈TR , φ〉 −−−−−→
R→+∞

N
(

0, ‖φ‖2L2

)
(8.5)

in distribution, by [9, Theorem 30.2]. Note that if ‖φ‖L2 = 0 then φ vanishes almost
everywhere. In this case 〈TR , φ〉 = 0 almost surely, by Proposition 1.8 and Remark 1.9.
This proves the first claim in Theorem 1.21. The Central Limit Theorem follows since
Card(Z ∩ [0, R]) =

〈
νR ,1[0,1]

〉
.

Let R > 0, Lemma 3.12 shows that TR is an almost surely well-defined random
element of S ′(R). For all φ ∈ S(R), the convergence in distribution of Equation (8.5) and
the definition of the standard Gaussian White Noise (cf. Definition 1.20) show that:

〈TR , φ〉 −−−−−→
R→+∞

〈W ,φ〉 .

By [8, Corollary 2.4], we have TR −−−−−→
R→+∞

W in distribution in S ′(R). This concludes the

proof.

A Examples of smooth non-degenerate processes

In this section, we build examples of Gaussian processes satisfying the hypotheses
of Theorems 1.6, 1.13 and 1.14. First, we need to recall the definition of the spectral
measure of a stationary Gaussian process and some of its properties. This is done in
Section A.1. In Section A.2, we give a non-degeneracy criterion on the spectral measure
for a Cp Gaussian process. Finally, in Section A.3, we give examples of Gaussian processes
whose correlation functions lie in the Schwartz space S(R) of smooth fast-decreasing
functions.

A.1 Spectral measure

This section is concerned with the definition and the properties of the spectral
measure of a stationary Gaussian process. Let f : R → R be a non-zero stationary
centered Gaussian process of class C0 and let κ denote its correlation function. We
assume that f is normalized so that Var(f(0)) = 1. Then, κ : R → R is a continuous
function such that κ(0) = 1. Moreover, κ is positive semi-definite, in the sense that, for
all m ∈ N∗, for all x1, . . . , xm ∈ R, for all a1, . . . , am ∈ C, we have:

∑
16j,k6m

ajakκ(xk − xj) = E


∣∣∣∣∣∣
m∑
j=1

ajf(xj)

∣∣∣∣∣∣
2
 > 0. (A.1)

By Bochner’s Theorem, there exists a unique Borel probability measure λ on R such that
κ is the characteristic function of λ, i.e.:

∀x ∈ R, κ(x) =

∫ +∞

−∞
eixξ dλ(ξ). (A.2)
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Since κ is real-valued, λ is symmetric. That is (− Id)∗λ = λ, where Id is the identity of R.

Definition A.1 (Spectral measure). Let f be a stationary centered Gaussian process
of class C0, normalized so that its correlation function κ satisfies κ(0) = 1. The unique
symmetric Borel probability measure λ such that (A.2) holds is called the spectral
measure of f .

Conversely, let λ be a symmetric Borel probability measure on R and let κ denote its
characteristic function. Then, κ is a continuous real-valued function such that κ(0) = 1,
and κ is positive semi-definite (cf. Equation (A.1)). By a theorem of Kolmogorov (see [6,
p. 19], for example), there exists a stationary centered Gaussian process f whose
correlation function equals κ.

Let us now relate the properties of the process f , its correlation function κ and its
spectral measure λ. As explained in Section 2.2, if f is of class Cp for some p ∈ N∗,
then κ is of class C2p. In this case, λ admits a finite moment of order 2p, that is∫
R
ξ2p dλ(ξ) < +∞. Conversely, if λ admits a finite moment of order 2p then κ is C2p. If

these conditions are satisfied then, for all j ∈ {0, . . . , 2p}, for all x ∈ R, we have:

κ(j)(x) =

∫ +∞

−∞
(iξ)jeixξ dλ(ξ). (A.3)

The fact that κ is of class C2p is not enough to ensure that f is a Cp-process. However, by
Kolmogorov’s Theorem [31, Appendix A.9], the process f is of class Cp−1, in the sense
that there exists a version of f which is of class Cp−1. We can say a bit more about the
regularity of f :

• for all α ∈ (0, 1), the process f (p−1) is almost surely α-Hölder (see [31, Ap-
pendix A.11.2]);

• for all x ∈ R, the variable f (2p)(x) is well-defined and Gaussian (cf. [6, Proposi-
tion 1.13]);

• if there exists α > 0 such that κ(2p)(0) − κ(2p)(x) = O(|x|α) as x → 0, then there
exists a version of f of class Cp (cf. [6, Corollary 1.7.b]).

A.2 Non-degeneracy, spectral measure and ergodicity

In this section, we give a condition on the spectral measure of a stationary Gaussian
process implying that the finite-dimensional marginal distributions of this process are
non-degenerate. A similar criterion already appeared in [6, p. 64]. Then, we use this
result to prove Lemma 2.10.

Lemma A.2 (Non-degeneracy). Let f : R → R be a stationary Gaussian process of
class Cp. Let λ denote its spectral measure. If the support of λ has an accumulation
point in R then: for all m ∈ N∗, for any k1, . . . , km ∈ {0, . . . , p} and any x1, . . . , xm ∈ R
such that the couples ((kj , xj))16j6m are pairwise distinct, the centered Gaussian vector(
f (kj)(xj)

)
16j6m

is non-degenerate.

Proof. Let us assume that the support of λ has an accumulation point in R. Let m ∈ N∗,
let k1, . . . , km ∈ {0, . . . , p} and let x1, . . . , xm ∈ R be such that the couples ((kj , xj))16j6m

are pairwise distinct. The Gaussian vector
(
f (kj)(xj)

)
16j6m

is non-degenerate if and

only if its variance matrix Λ =
(
(−1)kjκ(kj+kl)(xl − xj)

)
16i,j6m

is non-singular, that is, if

and only if ker(Λ) = {0}.
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Let a =
t
(a1, . . . , am) ∈ ker(Λ), by Equations (2.1) and (A.3), we have:

0 = taΛa =
∑

16j,l6m

ajal(−1)kjκ(kj+kl)(xl − xj)

=
∑

16j,l6m

ajal

∫ +∞

−∞
(iξ)kl(−iξ)kjei(xl−xj)ξ dλ(ξ)

=

∫ +∞

−∞

∣∣∣∣∣∣
m∑
j=1

aj(−iξ)kje−ixjξ
∣∣∣∣∣∣
2

dλ(ξ).

Hence ga : ξ 7→
∑m
j=1 aj(−iξ)kje−ixjξ vanishes on the support of λ. Since ga is analytic

and the support of λ has an accumulation point, we have ga = 0. Besides, ga is the Fourier

transform, in the sense of tempered generalized functions, of
∑m
j=1 aj

(
δxj
)(kj), where δx

stands for the unit Dirac mass at x ∈ R. Since the Fourier transform is an isomorphism

from S ′(R) to itself, we have
∑m
j=1 aj

(
δxj
)(kj)

= 0. The couples ((kj , xj))16j6m being

pairwise distinct, this implies that a = 0. Thus ker(Λ) = {0} and
(
f (kj)(xj)

)
16j6m

is
non-degenerate.

We can now prove Lemma 2.10 as a corollary of Lemma A.2.

Proof of Lemma 2.10. Since κ(x) −−−−−→
x→+∞

0, the random process f is ergodic, cf. [1,

Theorem 6.5.4]. By the Fomin–Grenander–Maruyama Theorem (see [31, Section 6]),
this is equivalent to the fact that the spectral measure λ of f has no atom. Note that,
in [31], the authors only state one implication in the body of the text, which is not the
one we are interested in. The fact that equivalence holds appears as a footnote. Then,
any point in the support of λ must be an accumulation point. The conclusion follows by
Lemma A.2.

A.3 Smooth non-degenerate processes with fast-decreasing correlations

In this section, we build examples of normalized stationary centered Gaussian Cp-
processes whose correlation functions, as well as their derivatives, decay as O(x−k) at
infinity.

Lemma A.3. Let λ be a probability measure on R admitting a density g with respect to
the Lebesgue measure. Let k ∈ N and p ∈ N∗, we assume that g is even, of class Ck, and
satisfies the following conditions:

1.
∫
R
ξ2g(ξ) dξ = 1;

2.
∫
R
ξ2p+2g(ξ) dξ < +∞;

3. for all j ∈ {0, . . . , k},
∫
R
|ξ|p

∣∣g(j)(ξ)
∣∣dξ < +∞;

4. for all j ∈ {0, . . . , k − 1},
∣∣g(j)(ξ)

∣∣ = o(|ξ|−p) as |ξ| → +∞.

Then λ is the spectral measure of normalized stationary centered Gaussian process f of
class Cp. Moreover, denoting by κ the correlation function of f , we have κ(j)(x) = o(|x|−k)

as |x| → +∞, for all j ∈ {0, . . . , p}.

Proof. Since g is even and continuous, λ is a symmetric Borel probability measure. Let κ
denote the characteristic function of λ. By Condition 2, the function κ is of class C2p+2.
As discussed in Section A.1, this means that κ is the correlation function of a stationary
centered Gaussian process f , at least of class Cp. Since λ is a probability measure, we
have κ(0) = 1. Moreover, by Condition 1, we have κ′′(0) = −1. Thus f is normalized (see
Definition 2.9).
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For any j ∈ {0, . . . , p}, an expression of κ(j) is given by Equation (A.3). Using
Conditions 3 and 4, we integrate by parts k times, and obtain for any x 6= 0:

κ(j)(x) =
ij+k

xk

min(j,k)∑
m=0

(
k

m

)
j!

(j −m)!

∫ +∞

−∞
eixξξj−mg(k−m)(ξ) dξ.

By Condition 3, the function ξ 7→ ξj−mg(k−m)(ξ) is integrable for all m 6 min(j, k). Hence,
by the Riemann–Lebesgue Lemma, the integrals in the previous expression tend to 0 as
|x| → +∞, which shows that κ(j)(x) = o(|x|−k).

Lemmas A.2 and A.3 allow to build examples of Gaussian processes satisfying the
hypotheses of our main results, see Theorems 1.6, 1.13 and 1.14. Let us conclude this
section by giving a few of them. Recall that the Schwartz space S(R) is defined by
Definition 1.18.

Example A.4. Let g : R → R be a non-negative continuous even function such that∫
R
ξ4g(ξ) dξ < +∞ and

∫
R
g(ξ) dξ = 1 =

∫
R
ξ2g(ξ) dξ. Let λ denote the measure having

the density g with respect to the Lebesgue measure. As explained above, λ is the spectral
measure of a normalized stationary centered Gaussian C1-process f , whose correlation
function is denoted by κ.

• If g is C1 and we have g(ξ) = O(ξ−8) and g′(ξ) = O(ξ−4) as ξ → +∞, then f is C2

and κ(x), κ′(x) and κ′′(x) are o(|x|−1
) as x → +∞. In particular, f satisfies the

hypotheses of Proposition 1.11.

• Let p ∈ N∗, if g(ξ) = O(ξ−2p−4) as ξ → +∞ then f is of class Cp and κ(j)(x) −−−−−→
x→+∞

0

for all j ∈ {0, . . . , p}. In particular, f satisfies the hypotheses of Theorems 1.13
and 1.14.

• If g ∈ S(R), then f is C∞ and κ ∈ S(R). Hence f satisfies the hypotheses of
Proposition 1.11 and Theorems 1.6, 1.13 and 1.14.

• If g : ξ 7→ 1√
2π

exp
(
− 1

2ξ
2
)

is the standard Gaussian density, then κ : x 7→ exp
(
− 1

2x
2
)

and f is the Bargmann–Fock process discussed in Section 1.2.

• If g = 1
2
√

3
1[−
√

3,
√

3] then κ : x 7→ sinc(
√

3x), where sinc : x 7→
∑
k>0

(−1)kx2k

(2k+1)! is the

smooth extension of x 7→ 1
x sin(x) to R. The density g is not regular enough to

apply Lemma A.3, but κ is still the correlation function of a normalized stationary
centered Gaussian process f of class C∞ (cf. Section A.1). By Lemma A.2, f
satisfies the hypotheses of Theorem 1.13. Moreover, one can check that κ and all
its derivatives are square-integrable on R and tend to 0 at infinity, hence f satisfies
the hypotheses of Proposition 1.11 and Theorem 1.14 for any p ∈ N∗.

• If g : ξ 7→ 1√
2

exp
(
−
√

2 |ξ|
)
, then κ : x 7→

(
1 + x2

2

)−1

(one can check this using

his favorite computational software). As above g is not regular enough to apply
Lemma A.3 directly. Yet, κ is the correlation function of a normalized stationary
centered Gaussian C∞-process satisfying the hypotheses of Proposition 1.11 and
Theorems 1.13 and 1.14 for any p ∈ N∗.

Remark A.5. Let h be a non-negative even function. If we have
∫
R
h(ξ) dξ = A > 0 and∫

R
ξ2h(ξ) dξ = B, then g : ξ 7→

√
B
A3h

(√
B
A ξ
)

is such that
∫
R
g(ξ) dξ = 1 =

∫
R
ξ2g(ξ) dξ.

Moreover, g is non-negative, even and it has the same regularity and asymptotic behavior
as h.
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B Properties of the density function F

B.1 Proof of Lemma 4.2

The goal of this section is to prove Lemma 4.2, which gives an expression of the func-
tion F defined by Definition 4.1. Recall that in Lemma 4.2 we work under the hypotheses
of Proposition 1.11. In particular, f is a C2 Gaussian process whose correlation function
κ tends to 0 at infinity.

Lemma B.1. For all z > 0 we have N2(0, z) =
2

π
b(z)

(√
1− a(z)2 + a(z) arcsin(a(z))

)
,

where

a(z) =
κ(z)κ′(z)2 − κ(z)2κ′′(z) + κ′′(z)

1− κ(z)2 − κ′(z)2
and b(z) = 1− κ′(z)2

1− κ(z)2
.

Moreover, |a(z)| 6 1.

Proof. Let z > 0. The random vector (f(0), f(z), f ′(0), f ′(z)) is a centered Gaussian in R4

whose variance matrix equals:
1 κ(z) 0 κ′(z)

κ(z) 1 −κ′(z) 0

0 −κ′(z) 1 −κ′′(z)
κ′(z) 0 −κ′′(z) 1

 .

Since κ tends to 0 at infinity, by Lemma 2.10 the Gaussian vector (f(0), f(z)) is non-
degenerate, that is κ(z)2 < 1. Then, by [6, Proposition 1.2], (f ′(0), f ′(z)) given that
f(0) = 0 = f(z) is a centered Gaussian vector in R2. Moreover, its variance matrix is:

Λ(z) =

(
1 −κ′′(z)

−κ′′(z) 1

)
−
(

0 −κ′(z)
κ(z) 0

)(
1 κ(z)

κ(z) 1

)−1(
0 κ′(z)

−κ′(z) 0

)
=

(
b(z) c(z)

c(z) b(z)

)
,

where

b(z) = 1− κ′(z)2

1− κ(z)2
and c(z) = −κ′′(z)− κ(z)κ′(z)2

1− κ(z)2
.

Note that, since Λ(z) is a variance matrix, we have b(z) > |c(z)| > 0.
Let (X,Y ) ∼ N (0,Λ(z)) in R2, we have N2(0, z) = E[|X| |Y |]. If b(z) > |c(z)|, then

Λ(z) is invertible and Λ−1(z) =
(
A(z) B(z)
B(z) A(z)

)
, where

A(z) =
b(z)

b(z)2 − c(z)2
and B(z) = − c(z)

b(z)2 − c(z)2
.

Then, using [11, Equation (A.1)], we have:

E[|X| |Y |] =
1

2π
√
b(z)2 − c(z)2

∫
R2

|x| |y| exp

(
−A(z)

x2 + y2

2
−B(z)xy

)
dxdy

=
2

π
b(z)

(√
1− c(z)2

b(z)2
+
c(z)

b(z)
arcsin

(
c(z)

b(z)

))
On the other hand, if b(z) = |c(z)| then |X| = |Y | almost surely. Hence,

E[|X| |Y |] = E
[
X2
]

= b(z) =
2

π
b(z)

(√
1− c(z)2

b(z)2
+
c(z)

b(z)
arcsin

(
c(z)

b(z)

))
.
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To conclude, note that a(z) = − c(z)b(z) , so that |a(z)| 6 1 and:

N2(0, z) = E[|X| |Y |] =
2

π
b(z)

(√
1− a(z)2 + a(z) arcsin(a(z))

)
.

Proof of Lemma 4.2. By definition of F and ρ2 (see Definitions 4.1 and 3.1), for all z 6= 0,
we have:

F (z) =
1

2π

N2(0, z)

D2(0, z)
1
2

− 1

π2
.

Note that, N2 and D2 are symmetric functions on R2 \∆2. Then, using the stationarity
of f , we have N2(0, z) = N2(z, 0) = N2(0,−z), and similarly D2(0, z) = D2(0,−z). Thus
F (z) = F (−z) for all z 6= 0.

Let z > 0, we have D2(0, z) = 1 − κ(z)2 (see Example 3.3) and the expression of
N2(0, z) is given by Lemma B.1. Then, a direct computation yields:

F (z) =
1

π2

(
1− κ(z)2 − κ′(z)2

(1− κ(z)2)
3
2

(√
1− a(z)2 + a(z) arcsin(a(z))

)
− 1

)
,

where a(z) is defined as in Lemmas 4.2 and B.1. In particular, |a(z)| 6 1.

B.2 Proof of Lemma 4.3

In this section, we prove the integrability of the function F defined by Definition 4.1,
under the hypotheses of Proposition 1.11.

Lemma B.2. Under the hypotheses of Proposition 1.11, we have F (z) −−−→
z→0

− 1
π2 .

Proof. Let us consider the expression of F derived in Lemma 4.2. Note that, for all z > 0,
we have:

0 6
√

1− a(z)2 + a(z) arcsin(a(z)) 6 1 +
π

2
.

Hence, it is enough to prove that:

1− κ(z)2 − κ′(z)2

(1− κ(z)2)
3
2

−−−→
z→0

0.

We know that κ is C4. Moreover, κ(0) = 1 = −κ′′(0) and κ′(0) = 0 = κ(3)(0). Thus, as
z → 0, we have:

κ(z) = 1− z2

2
+O(z4) and κ′(z) = −z +O(z3).

These estimates yield that
1− κ(z)2 − κ′(z)2

(1− κ(z)2)
3
2

= O(z) as z → 0, which concludes the

proof.

Lemma B.3. Under the hypotheses of Proposition 1.11, as z → +∞, we have:

F (z) = O(κ(z)2 + κ′(z)2 + κ′′(z)2).

Proof. Once again, we use the expression of F derived in Lemma 4.2. First, note that
since κ(z), κ′(z) and κ′′(z) tend to 0 as z → +∞, we have: a(z) = O(κ(z)) +O(κ′′(z)) as
z → +∞. Then,√

1− a(z)2 + a(z) arcsin(a(z)) = 1 +O(a(z)2) = 1 +O(κ(z)2) +O(κ′′(z)2),
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as z → +∞. On the other hand, as z → +∞, we have:

1− κ(z)2 − κ′(z)2

(1− κ(z)2)
3
2

= 1 +O(κ(z)2) +O(κ′(z)2).

These two estimates yield that F (z) = O(κ(z)2) +O(κ′(z)2) +O(κ′′(z)2) as z → +∞.

Proof of Lemma 4.3. First, note that F is well-defined and continuous on R\{0}. Indeed,
ρ2 is continuous on R2 \∆2 by Lemma 3.9. By Lemma B.2, F (z) −−−→

z→0
− 1
π2 . In particular,

F is integrable near 0. Since F is even and κ(z), κ′(z) and κ′′(z) tend to 0 as z → +∞,
we have F (z) −−−−−→

|z|→+∞
0, by Lemma B.3.

Under the hypotheses of Proposition 1.11, both κ and κ′′ are square-integrable. By
an integration by parts and the Cauchy-Schwarz Inequality, this implies that κ′ is also
square-integrable. Finally, F is integrable at infinity by Lemma B.3.

C A Gaussian lemma

In this appendix, we prove an estimate that we used in our study of the Kac–Rice
numerators NI (see Definition 6.14). More precisely, Corollary C.3 below is used in the
proofs of Lemmas 6.16 and 6.36.

Let k ∈ N∗, we denote by Symk(R) the space of symmetric matrices of size k with real
coefficients and by Sym+

k (R) ⊂ Symk(R) the subset of positive semi-definite matrices.
We equip Symk(R) with the sup-norm ‖·‖∞, see Notation 6.25.

Definition C.1. Let U ∈ Sym+
k (R) and let (X1, . . . , Xk) ∼ N (0, U), we denote by

Πk(U) = E

[
k∏
i=1

|Xi|

]
.

Lemma C.2. Let k ∈ N∗, there exists Ck > 0 such that, for all U and V ∈ Sym+
k (R):

|Πk(V )−Πk(U)| 6 Ck ‖V − U‖
1
2
∞ (max(‖U‖∞ , ‖V ‖∞))

k−1
2 .

Proof. Let (X1, . . . , Xk) ∼ N (0, U) and (Y1, . . . , Yk) ∼ N (0, V ) be centered Gaussian
vectors in Rk of variance matrices U and V , respectively.

Let us first assume that V − U ∈ Sym+
k (R) and let T = (T1, . . . , Tk) ∼ N (0, V − U) be

independent of X. In this case X + T ∼ N (0, V ), and we can assume that Y = X + T

without loss of generality. Then,

|Πk(V )−Πk(U)| =

∣∣∣∣∣E
[
k∏
i=1

|Yi|

]
− E

[
k∏
i=1

|Xi|

]∣∣∣∣∣
6 E

[∣∣∣∣∣
k∏
i=1

Yi −
k∏
i=1

Xi

∣∣∣∣∣
]

6
k∑
j=1

E

(j−1∏
i=1

|Yi|

)
|Yj −Xj |

 k∏
i=j+1

|Xi|


6

k∑
j=1

j−1∏
i=1

(
E
[
|Yi|k

] 1
k

)
E
[
|Tj |k

] 1
k

 k∏
i=j+1

E
[
|Xi|k

] 1
k

 ,

where we obtained the last line by applying Hölder’s Inequality. Now, for all i ∈ {1, . . . , k},
we have:

E
[
|Xi|k

]
6 E

[
(Xi)

2k
] 1

2 = (µ2k)
1
2 Var(Xi)

k
2 6 (µ2k)

1
2 ‖U‖

k
2
∞ ,
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where µ2k stands for the 2k-th moment of an N (0, 1) real variable, as in Notation 1.5.

Similarly, we have E
[
|Yi|k

]
6 (µ2k)

1
2 ‖V ‖

k
2
∞ and E

[
|Ti|k

]
6 (µ2k)

1
2 ‖V − U‖

k
2
∞. Hence,

|Πk(V )−Πk(U)| 6 k(µ2k)
1
2 ‖V − U‖

1
2
∞ (max(‖U‖∞ , ‖V ‖∞))

k−1
2 . (C.1)

This concludes the proof in the special case where V − U is positive semi-definite.
Let us now consider the general case and let us denote by ε = ‖V − U‖∞. Let Idk

denote the identity matrix of size k and W = U+kε Idk. Then, W−U = kε Idk ∈ Sym+
k (R).

Moreover, we have W − V = kε Idk +U − V . Since for all x = (xi)16i6k ∈ Rk, we have

∣∣tx(U − V )x
∣∣ 6 ε ∑

16i,j6k

|xi| |xj | = ε

(
k∑
i=1

|xi|

)2

6 kε
k∑
i=1

x2
i ,

the matrix W − V is also positive semi-definite. Let Z = (Z1, . . . , Zk) ∼ N (0,W ), using
Equation (C.1), we obtain:

|Πk(V )−Πk(U)| 6 |Πk(W )−Πk(V )|+ |Πk(W )−Πk(U)|

6 k(µ2k)
1
2

(
‖W − U‖

1
2
∞ + ‖W − V ‖

1
2
∞

)
(max(‖U‖∞ , ‖V ‖∞ , ‖W‖∞))

k−1
2 .

We know that ‖W − V ‖∞ 6 ‖W − U‖∞ + ‖V − U‖∞. Hence, by definition of W and ε,
we get ‖W − U‖∞ = kε = k ‖V − U‖∞ and ‖W − V ‖∞ 6 (k + 1) ‖V − U‖∞. Moreover,

‖W‖∞ 6 ‖U‖∞ + ‖W − U‖∞ = ‖U‖∞ + k ‖V − U‖∞ 6 (2k + 1) max(‖U‖∞ , ‖V ‖∞).

Finally, setting Ck = k(2k + 1)
k+1
2 (µ2k)

1
2 , we have:

|Πk(V )−Πk(U)| 6 Ck ‖V − U‖
1
2
∞ (max(‖U‖∞ , ‖V ‖∞))

k−1
2 .

Corollary C.3 (Regularity). Let k ∈ N∗, the map Πk : Sym+
k (R) → R defined by Defini-

tion C.1 is 1
2 -Hölder on compact subsets of Sym+

k (R), for the sup-norm ‖·‖∞. In particular,
the map Πk is continuous.

Proof. Let K ⊂ Sym+
k (R) be a compact subset, we denote by M = maxU∈K ‖U‖∞. By

Lemma C.2, for all U, V ∈ K, we have |Πk(V )−Πk(U)| 6 CkM
k−1
2 ‖V − U‖

1
2
∞. Thus, Πk

is 1
2 -Hölder on compact subsets of Sym+

k (R), hence continuous.
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