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Fluctuations of the Gromov–Prohorov sample model
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Abstract

In this paper, we study the fluctuations of observables of metric measure spaces which
are random discrete approximations Xn of a fixed arbitrary (complete, separable)
metric measure space X = (X , d, µ). These observables Φ(Xn) are polynomials in
the sense of Greven–Pfaffelhuber–Winter, and we show that for a generic model space
X , they yield asymptotically normal random variables. However, if X is a compact
homogeneous space, then the fluctuations of the observables are much smaller, and
after an adequate rescaling, they converge towards probability distributions which are
not Gaussian. Conversely, we prove that if all the fluctuations of the observables Φ(Xn)

are smaller than in the generic case, then the measure metric space X is compact
homogeneous. The proofs of these results rely on the Gromov reconstruction principle,
and on an adaptation of the method of cumulants and mod-Gaussian convergence
developed by Féray–Méliot–Nikeghbali. As an application of our results, we construct
a statistical test of the hypothesis of symmetry of a compact Riemannian manifold.
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1 Introduction

Let X = (X , d, µ) be a metric space which we assume to be complete, separable and
equipped with a probability measure µ over the Borel algebra of X ; and (Xn)n∈N be
a sequence of independent random variables with the same law µ. We study here the
approximation of X = (X , d, µ) by the random discrete metric space

Xn =

(
Xn = {X1, . . . , Xn}, d,

1

n

n∑
i=1

δXi

)
for the Gromov-weak topology; we call this discrete approximation the Gromov–Prohorov
random sample model. The Gromov-weak topology is based on the idea that a sequence
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Fluctuations of the Gromov–Prohorov sample model

of metric measure spaces converges if and only if all finite subspaces sampled from these
spaces converge. This is formalized by using real-valued observables called polynomials
and introduced by Greven, Pfaffelhuber and Winter in [GPW09]: they are the functions
Φ defined by

Φ((X , d, µ)) =

∫
Xp

ϕ((d(xi, xj))1≤i<j≤p)µ(dx1) · · ·µ(dxp),

where ϕ : R(p2) → R is an arbitrary continuous bounded function. By using the theorem
of convergence of empirical measures (see [Var58, Theorem 3]), one proves readily the
almost sure convergence of Xn toward X (see Theorem 2.7). In this paper, we will
study the fluctuations of the polynomials Φ(Xn) with respect to their limits Φ(X ). The
evaluation of a polynomial Φ on the space Xn is a sum of dependent random variables

Φ(Xn) =
1

np

∑
ı̄∈[[1,n]]p

ϕ(d(Xı̄)),

where we abbreviate ϕ(d(Xı̄)) := ϕ((d(Xia , Xib))1≤a,b≤p) for a sequence of indices ı̄ =

(i1, . . . , ip). This dependency between the random variables is sparse: if we associate
to these variables a graph describing the dependency between those variables, then
when n goes to infinity the maximal degree of a vertex of this graph becomes negligible
against the number of vertices (variables). This sparse dependency leads to central limit
theorems, but the limiting distribution is not necessarily Gaussian, and it depends on
the size of the variance of Φ(Xn), for which there are two cases.

We shall see that the variance var(Sn(ϕ,X )) with Sn(ϕ,X ) = np Φ(Xn) is a polyno-
mial in the variable n with coefficients depending on the function ϕ and the space X ;
this variance is at most of order n2p−1 and therefore, var(Φ(Xn)) is of order at most 1/n.

• In a first part, we study the case where the variance of Φ(Xn) is of order exactly
1/n. We call this setting the generic case, and it corresponds to fluctuations which
are asymptotically normal. We study the combinatorics of the cumulants of the
variable Sn(ϕ,X ) by using the theory of dependency graphs and mod-Gaussian
convergence developed recently by Féray, Méliot and Nikeghbali (see [FMN16]);
and we prove the mod-Gaussian convergence of the sequence Sn(ϕ,X ) adequately
renormalized. This leads to a central limit theorem for the variables

Yn(ϕ,X ) =
Φ(Xn)− E[Φ(Xn)]√

var(Φ(Xn))
;

the limiting distribution is the standard Gaussian distribution, and we also obtain
the normality zone of this approximation, moderate deviation estimates and a
Berry–Esseen inequality (Theorem 4.4). In [FMN20], similar techniques were
used in the study of the fluctuations of observables of random graph, random
permutation and random integer partition models parametrised respectively by the
space of graphons, the space of permutons and the Thoma simplex.

• In a second part, we study the case where the variance of Φ(Xn) is at most of order
1/n2 for any polynomial Φ. We call this setting a globally singular point X of the
Gromov–Prohorov sample model. It corresponds to the following condition: for any

p ≥ 1 and any ϕ ∈ Cb(R(p2)),∑
1≤i,j≤p

cov
(
ϕ(d(X1, . . . , Xi, . . . , Xp)), ϕ(d(X ′1, . . . , X

′
j−1, Xi, X

′
j+1, . . . , X

′
p))
)

= 0,
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where (X ′n)n∈N is an independent copy of (Xn)n∈N, and where in each summand
the second vector contains all the variables X ′1, . . . , X

′
p, except X ′j which is replaced

by Xi. This identity is difficult to analyse: therefore, we shall study the simpler
case where each of the covariances in the sum vanishes. In particular,

cov
(
ϕ(d(X1, X2, . . . , Xp)), ϕ(d(X1, X

′
2, . . . , X

′
p))
)

= 0.

It turns out that this second identity is equivalent to X being a compact homoge-
neous space (in the space of metric measure spaces); see Theorem 5.1. We are thus
able to relate a probabilistic condition to a geometric condition on the space; this
result is a bit surprising, and for instance it ensures that when approximating an el-
lipse and a circle by the Gromov–Prohorov sample model, the convergence is much
faster for the circle and does not have the same kind of asymptotic fluctuations.
The proof of the equivalence relies notably on Gromov’s reconstruction theorem
[Gro07]. Now, in this situation, we cannot directly use the theory of mod-Gaussian
convergence and dependency graphs in order to prove all the probabilistic results
that we obtained in the generic case. However, by using the symmetry of the space,
we are able to obtain for this singular case a better upper bound of the cumulants.
It allows us to prove a central limit theorem for the random variables Yn(ϕ,X ),
but the limit is not necessarily the Gaussian distribution; see Theorem 5.7.

The reader might wonder why we consider that replacing the hypothesis “the sums of
covariances vanish” by “all the covariances vanish” is a reasonable restriction in the
study of the singular models. In fact, we believe that the two conditions are equivalent;
we shall say a short bit about this at the beginning of Section 5, and we plan to address
this question in forthcoming works.

The theoretical results of this article lead to a better understanding of the possible
behaviors of random variables stemming from a mod-Gaussian moduli space; this kind
of classifying object for random models has been introduced in [FMN20]. Let us restate
the previous discussion with this viewpoint. To any point X of the space M of complete
separable metric spaces endowed with a probability measures, one can associate a
sequence of random models (Xn)n∈N which are discrete approximations of X , and such
that Xn →P X as n goes to infinity. Moreover, for a generic point X , an algebra of
observables of spaces in M yields random variables Φ(Xn) such that n−1/2(Φ(Xn) −
Φ(X )) is always asymptotically normal. However, some special points X ∈ M yield
observables such that n−1/2(Φ(Xn) − Φ(X )) always goes to 0 (in probability). The
identification of these singular models X is then a natural question, and for those
models, one can be interested in the asymptotics of Φ(Xn) − Φ(X ) with a different
rescaling (here, we shall look at n−1(Φ(Xn) − Φ(X ))). The exact same approach has
been used in [FMN20] with the space of graphons for models of random graphs, the
space of permutons for models of random permutations, and the Thoma simplex for
models of random integer partitions. Until now, we believed that the singular points of a
mod-Gaussian moduli space still yielded observables which were asymptotically normal,
albeit with a different rescaling. Indeed, this is what happens for singular graphons
(Erdős–Rényi random graphs) and for singular models of random integer partitions
(Plancherel and Schur–Weyl measures). However this is not a general phenomenon:
with the Gromov–Prohorov sample model, we encounter the first known example where
singular points yield observables which are not asymptotically normal after appropriate
rescaling.

An application of our identification of the singular points of the space M of measured
metric spaces is a procedure of statistical testing of the hypothesis of symmetry of a
manifold. Suppose given a compact Riemannian manifold X , endowed with its geodesic
distance d and with the unique probability measure µ which is proportional to the volume
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form of the manifold. We want to know whether X is a compact homogeneous space (see
Theorem 5.1 for precise definitions). For instance, assume that one is given a surface
homeomorphic to the real sphere S2 and endowed with a Riemannian structure; one
wants to decide whether this structure is the canonical structure of symmetric space
S2 = SO(3)/SO(2). One can observe the manifold X as follows:

• one can take independent random points xi on X according to µ;

• one can measure the distances d(xi, xj) between the observed points.

Fix a polynomial Φ as defined previously. If the triple X = (X , d, µ) is truly a homoge-
neous space, then the fluctuations of Φ(Xn) tend to be small, of order n−1. Therefore,
given a 2n sample of points (xi, x

′
i)1≤i≤n and a large threshold tα, if Xn (respectively, X ′

n)
denotes the approximation of X constructed from the family of points {x1, x2, . . . , xn}
(respectively, {x′1, x′2, . . . , x′n}), then

Zn = n |Φ(Xn)− Φ(X ′
n)|

should be smaller than tα with large probability 1 − α (for n large). On the contrary,
if (X , d, µ) is not homogeneous, then the fluctuations of Φ(Xn) are generically of order

1√
n

, so one expects Zn to be larger than tα with large probability (again, for n large).
We make this argument precise at the end of our paper, by describing in details the
procedure of statistical hypothesis testing for the symmetry of X .

Outline of the article. The paper is organized as follows. In Section 2, we will recall
some definitions and facts about metric measure spaces. Section 3 introduces the method
of cumulants, the theory of dependency graphs and all the probabilistic results that we
can obtain from this method. In Section 4, we apply this theory to the generic case of
the random sample model to get several probabilistic results about the model including
a central limit theorem, the normality zone, moderate deviations and a Berry–Esseen
bound for the random variables Yn(ϕ,X ).

Section 5 details the singular case, and we prove the equivalence between having a
small variance for the model, and X being a compact homogeneous space. We obtain
also in this case a finer bound on the cumulants, a non-Gaussian central limit theorem
for the observables Φ(Xn), and concentration inequalities for these random variables.
In Section 6, we provide an explicit counterexample for the asymptotic normality of
observables of the sample model of an homogeneous space. This section also enables us
to explain in more details the combinatorics of moments and cumulants of the polynomial
observables, and how to compute them concretely. Finally, Section 7 is devoted to the
description of the statistical test for symmetry that has been briefly presented above.

2 Metric measure spaces

In this section, we recall the theory of metric measure spaces and of the Gromov–
Prohorov topology, following very closely [GPW09, Section 2].

2.1 Definitions

For any topological space X , we denote Cb(X ) the set of continuous bounded functions
X → R; C (X ) the set of continuous functions X → R; B(X ) the set of Borel subsets of X ;
and M 1(X ) the set of Borel probability measures over X . A measurable map f : X → Y
between two topological spaces induces a map f∗ : M 1(X )→M 1(Y) (push-forward of
measures): for any Borel subset A ⊂ Y, (f∗µ)(A) = µ(f−1(A)).

Definition 2.1. A metric measure space is a complete and separable metric space (X , d)

which is endowed with a probability measure µ ∈ M 1(X ). We say that two metric
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measure spaces (X , d, µ) and (X ′, d′, µ′) are measure-preserving isometric if there exists
an isometry ψ between the supports of µ on (X , d) and of µ′ on (X ′, d′), such that
µ′ = ψ∗µ.

We denote M the space of metric measure spaces (in short, mm-spaces) modulo
measure-preserving isometries. In the sequel, unless explicitly stated, given a mm-space
(X , d, µ), we will always suppose that the space X is exactly the support of the measure
µ. Let X = (X , d, µ) ∈M and

Rmet := {(di,j)1≤i<j<∞ | ∀1 ≤ i < j < k <∞, di,j + dj,k ≥ di,k}.

the space of infinite pseudo-distance matrices. We introduce the maps:

ιX : XN → Rmet

(xn)n∈N 7→ (d(xi, xj))1≤i<j<∞,

and

S : X → (XN → XN)

x 7→ (Sx := (xn)n∈N 7→ (x, x0, x1, x2, . . .)) .

Definition 2.2. We define the distance matrix distribution of X by

νX := (ιX )∗µ
⊗N,

and the pointed distance matrix distribution by

ν : X →M 1(Rmet)

x 7→ νx := (ιX ◦ Sx)∗µ
⊗N.

The distance matrix distribution characterizes the metric measure space in M. It
means that if νX1 = νX2 , then X1 is measure-preserving isometric to X2. This follows
from Gromov’s reconstruction theorem for metric measure spaces [Gro07, Paragraph
3 1

2 .5].

2.2 Polynomials and the Gromov–Prohorov distance

We associate to any bounded continuous map ϕ ∈ Cb(R(p2)) a map Φ = Φp,ϕ : M→ R

called a polynomial on M and defined by

Φ(X = (X , d, µ)) =

∫
Rmet

ϕ((di,j)1≤i<j≤p) ν
X ((di,j)1≤i<j≤p),

We denote Π the real algebra of polynomials on M. Applying the definition of the
distance-matrix distribution as a pushed-forward measure, we have

Φ((X , d, µ)) =

∫
Xp

ϕ((d(xi, xj))1≤i<j≤p)µ
⊗p(x1, . . . , xp).

Definition 2.3. The Gromov-weak topology is the initial topology on M associated to
the family of polynomials (Φp,ϕ)p,ϕ. In the sequel we endow M with this topology.

The Gromov-weak topology can be metrized by the Gromov–Prohorov distance, where
we optimally embed the two metric measure spaces into a common mm-space and then
take the Prohorov distance between the image measures. Given µ and ν two probability
measures on a metric space (Z, dZ), their Prohorov distance is

d
(Z,dZ)
Pr = inf{ε > 0 | ∀A ∈ B(Z), µ(A) ≤ ν(Aε) + ε, ν(A) ≤ µ(Aε) + ε},

where Aε = {z ∈ Z | dZ(z,A) < ε}. It is well known to metrise the weak convergence of
probability measures in M 1(Z) [Bil99, Theorem 6.8].
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Definition 2.4. The Gromov–Prohorov distance between mm-spaces X = (X , dX , µX )

and Y = (Y, dY , µY) in M is defined by

dGPr(X ,Y ) = inf
(ϕX ,ϕY ,Z)

d
(Z,dZ)
Pr ((ψX )∗µX , (ψY)∗µY),

where the infimum is taken over all pairs of isometric embeddings ψX and ψY from
(X , dX ) and (Y, dY) into some common metric space (Z, dZ).

Theorem 2.5. Given a sequence of mm-spaces (Xn = (Xn, µn, dn))n∈N and another
mm-space X = (X , d, µ) in M, the following assertions are equivalent:

1. The sequence (Xn)n∈N converges to X with respect to the Gromov–Prohorov
distance.

2. The sequence of distance matrix distributions (νXn)n∈N converges weakly to νX .

3. The sequence (Xn)n∈N converges to X with respect to the Gromov–weak topology:
for any polynomial Φp,ϕ associated to a bounded and continuous function ϕ ∈
Cb(R(p2)), we have Φp,ϕ(Xn)→n→∞ Φp,ϕ(X ).

4. For any p ≥ 2 and any compactly supported and continuous function ϕ ∈ Cc(R(p2)),
we have Φp,ϕ(Xn)→n→∞ Φp,ϕ(X ).

Furthermore, the metric space (M, dGPr) is complete and separable, so the space M is
polish.

Proof. The equivalence of the three first points and the polish character are respectively
Theorem 5 and Theorem 1 in [GPW09]; we also refer to [Lö13] for further details on
the Gromov–Prohorov metric. We have obviously (3) ⇒ (4). Conversely, note that (4)
amounts to the vague convergence of the distance matrix distributions νXn towards
νX . However, for probability measures, vague convergence and weak convergence are
equivalent (the difference is that for vague convergence we can have a positive mass
that escapes to infinity, but this does not happen if we specify the limit and if this limit is
a probability measure); see [Kal02, Lemma 5.20]. Therefore, (4)⇒ (2).

Remark 2.6. As a consequence of the fourth item in the theorem above and of the
Stone–Weierstrass theorem, in order to control the Gromov-weak topology, we can use a

countable family H of polynomials (Φp,ϕ)p,ϕ associated to functions ϕ : R(p2) → R with
compact support.

2.3 Almost sure convergence of the sample model

Let X = (X , d, µ) in M and (Xn)n∈N be a sequence of random and independent
variables with the same law µ. We define

Xn =

(
Xn = {X1, . . . , Xn}, d|Xn , µn =

1

n

n∑
i=1

δXi

)
.

Then, taking Φ ∈ H (see Remark 2.6), we have

Φ(Xn) =

∫
Xp

ϕ((d(xi, xj))1≤i<j≤p)µ
⊗p
n (x1, . . . , xp)

−→n→∞

∫
Xp

ϕ((d(xi, xj))1≤i<j≤p)µ
⊗p(x1, . . . , xp) = Φ(X ).
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Indeed, µn converges almost surely to µ for the weak topology of probability measures
(see for instance [Var58]), so the same is true for µ⊗pn toward µ⊗p (see [Bil99, Chapter 1,
Example 3.2]). This implies the following theorem:

Theorem 2.7. We have the almost sure convergence Xn−→
a.s.

X in the space M of mm-
spaces:

P[Φ(Xn)→n→∞ Φ(X ) for any polynomial Φ ∈ Π] = 1

or equivalently,

P[dGPr(Xn,X )→n→∞ 0] = 1.

We can also prove the theorem by using the Gromov–Prohorov distance; indeed, by
choosing Z = X as the common metric space in which one embeds Xn and X , and the
identity maps for the isometric embeddings, we see that

dGPr(Xn,X ) ≤ dPr(µn, µ),

and the convergence to 0 of the right-hand side is the Glivenko–Cantelli convergence
of empirical measures. Estimates on the speed of convergence of E[dPr(µn, µ)] are
given in [Dud69], but they depend strongly on the space X : if k denotes the entropic
dimension of X = (X , d, µ), then in general one cannot prove a better bound than

E[dPr(µn, µ)] = O(n−
1

k+2+ε ); see Theorem 4.1 in [Dud69]. However, if instead of the
Gromov–Prohorov distance one uses polynomial observables Φ in order to control the
speed of convergence, then the results of this paper will prove that essentially there are
only two possible speeds of convergence:

• In the generic case, |Φ(Xn) − Φ(X )| = O(n−
1
2 ); more precisely, there exists a

bilinear map

κ2 : Π2 → Π

such that, for any polynomial Φ = Φp,ϕ, we have the convergence in law

Φ(Xn)− Φ(X )

n1/2
⇀n→∞ N (0, κ2(Φ)(X ));

see Theorem 4.4.

• In the case of compact homogeneous spaces, |Φ(Xn) − Φ(X )| = O(n−1); more
precisely, for any polynomial Φ = Φp,ϕ, there exists a random variable Y (ϕ,X )

which is determined by its moments (it has a convergent moment-generating
function) such that we have the convergence in law

Φ(Xn)− Φ(X )

n
⇀n→∞ Y (ϕ,X );

see Theorem 5.7.

3 The method of cumulants

In this section, we recall the notion of (joint) cumulants of random variables and the
results from [FMN16, FMN19], which relate the existence of a sparse dependency graph
for a family of random variables to the size of the cumulants and to the fluctuations of
their sum.
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3.1 Joint cumulants

A set partition of [[1, n]] is a family of non-empty disjoint subsets of [[1, n]] (the parts of
the partition), whose union is [[1, n]]. For instance,

{{1, 4, 8}, {3, 5, 6}, {2, 7}, {9}}

is a set partition of [[1, 9]]. We denote Q(n) the set of set partitions of [[1, n]]. It is endowed
with the refinement order: a set partition π is finer than another set partition π′ if every
part of π is included in a part of π′. Denote µ the Möbius function of the partially ordered
set (Q(n),�) (see [Rot64]). One has

µ(π) := µ(π, {[[1, n]]}) = (−1)`(π)−1 (`(π)− 1)!,

where `(π) is the number of parts of π; see [Sta97, Chapter 3, Equation (30) p. 128].
Given a probability space (Ω,F ,P), we set

A =
⋂
p∈N∗

L p(Ω,F ,P),

which has a structure of real algebra. For any integer r ≥ 1, we define a map κr : A r → R

by

κr(X1, . . . , Xr) = [t1 · · · tr] log
(
E
[
et1X1+···+trXr

])
for (Xi)i∈[[1,r]] ∈ A r,

where [t1 · · · tr] (F ) is the coefficient of the monomial
∏r
i=1 ti in the series expansion of F .

Here, log(E[et1X1+···+trXr ]) is considered as a formal power series whose coefficients are
polynomials in the joint moments of the Xi’s; we do not ask a priori for the convergence
of the exponential generating function. We call the map κr the r-th joint cumulant map,
and we define the joint cumulant map

κ :
⋃
r∈N∗

A r → R

by κ|A r = κr for any integer r ≥ 1. For a specific sequence (Xi)i∈[[1,r]] ∈ A r, we call
the quantity κr((Xi)i∈[[1,r]]) the joint cumulant of (Xi)i∈[[1,r]] ∈ A r. This notion of joint
cumulant was introduced by Leonov and Shiryaev in [LS59], and it generalises the usual
cumulants: for X ∈ A ,

κ(r)(X) := κr(X, . . . ,X)

is the usual r-th cumulant of X, that is r! [tr](logE[etX ]). We summarise the properties of
the map κ in the following:

Proposition 3.1. 1. The map κ is multilinear.

2. The joint cumulants and the joint moments are related by the poset of set partitions,
and the following formulas hold:

E [X1 · · ·Xr] =
∑

π∈Q(r)

∏
C∈π

κ (Xi ; i ∈ C) ;

κ(X1, . . . , Xr) =
∑

π∈Q(r)

µ(π)
∏
C∈π

E

[∏
i∈C

Xi

]
.

3. If the variables X1, . . . , Xr can be split into two non-empty sets of variables which
are independent of each other, then κ(X1, . . . , Xr) vanishes.
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For example, the joint cumulants of one or two variables are respectively the expecta-
tion and the covariance:

κ(X1) = E[X1] ; κ(X1, X2) = E[X1X2]− E[X1]E[X2].

For the convenience of the reader, we also recall the value of the third cumulant:

κ(X1, X2, X3) = E[X1X2X3]− E[X1]E[X2X3]− E[X2]E[X1X3]

− E[X3]E[X1X2] + 2E[X1]E[X2]E[X3].

3.2 Dependency graphs and bounds on cumulants

A real random variable X is distributed according to the normal law N (m,σ2) with
mean m and variance σ2 if and only if κ(1)(X) = m, κ(2)(X) = σ2 and κ(r)(X) = 0 for
r ≥ 3. More generally, a sequence of random variables (Xn)n∈N converges in distribution
towards a normal law N (m,σ2) if the two first cumulants κ(1,2)(Xn) converge toward
m and σ2 respectively, and if limn→∞ κ(r)(Xn) = 0 for r ≥ 3; see for instance [Jan88,
Theorem 1]. In the series of papers [FMN16, FMN19, FMN20, DBMN19], a method
of cumulants has been built in order to make more precise this result of asymptotic
normality, assuming that one has good upper bounds on the size of the cumulants of the
random variables Xn. This method falls in the framework of mod-Gaussian convergence
also constructed in the aforementioned papers. We recall below the main results from
this theory; see [FMN20, Definition 2 and Theorem 3].

Definition 3.2. Let (Sn)n∈N be a sequence of real-valued random variables. We fix
A ≥ 0, and we consider two positive sequences (Dn)n∈N and (Nn)n∈N such that

lim
n→∞

Dn

Nn
= 0 (hypothesis of sparcity).

The hypotheses of the method of cumulants with parameters ((Dn)n∈N, (Nn)n∈N, A) and
with limits (σ2, L) for the sequence (Sn)n∈N are the two following conditions:

• For any r ≥ 1, we have:

|κ(r)(Sn)| ≤ Nn(2Dn)r−1rr−2Ar.

• There exist two real numbers σ2 ≥ 0 and L such that:

κ(2)(Sn)

NnDn
= (σn)2 = σ2

(
1 + o

((
Dn

Nn

)1/3
))

;

κ(3)(Sn)

Nn(Dn)2
= Ln = L(1 + o(1)).

In particular, the first estimate in the second item states that the variance of Sn is
equivalent to σ2NnDn.

Theorem 3.3. Let (Sn)n∈N be a sequence of real-valued random variables that satisfies
the hypotheses of the method of cumulants, with parameters ((Dn)n∈N, (Nn)n∈N, A) and
with limits (σ2, L). Assuming that σ2 > 0, we set:

Yn =
Sn − E[Sn]√

var(Sn)
.

1. Central limit theorem with an extended zone of normality: we have the convergence
in distribution Yn⇀n→∞NR(0, 1), and more precisely,

P [Yn ≥ yn] = P [NR(0, 1) ≥ yn] (1 + o(1))
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for any sequence (yn)n∈N with |yn| �
(
Nn
Dn

)1/6

.

2. Berry–Esseen type bound: the Kolmogorov distance between Yn and the standard
Gaussian distribution satisfies

dKol(Yn,N (0, 1)) ≤ C A3

(σn)3

√
Dn

Nn
,

where C = 76.36 is a universal constant.

3. Moderate deviations: for any sequence (yn)n∈N with 1� yn �
(
Nn
Dn

)1/4

,

P [Yn ≥ yn] =
e−

(yn)2

2

yn
√

2π
exp

(
L

6σ3

√
Dn

Nn
(yn)3

)
(1 + o(1)).

4. Local limit theorem: for any y ∈ R, any Jordan measurable set B with positive
Lebesgue measure m(B) > 0, and any real exponent δ in (0, 1

2 ),

lim
n→∞

(
Nn
Dn

)δ
P

[
Yn − y ∈

(
Dn

Nn

)δ
B

]
=

1√
2π

e−
y2

2 m(B).

5. Concentration inequality: suppose that in addition to the hypotheses of the method
of cumulants, we have almost surely |Sn| ≤ NnA. Then, for any x ≥ 0 and any
n ∈ N,

P[|Yn| ≥ x] ≤ 2 exp

(
− (σn)2x2

9A2

)
.

This list of results corresponds to Theorem 9.5.1 in [FMN16] (CLT and moderate de-
viations), Corollary 30 in [FMN19] (Kolmogorov distance), Proposition 4.9 in [DBMN19]
(local limit theorem), and Proposition 6 in [FMN20] (concentration inequality).

We shall use the method of dependency graphs in order to verify the hypothesis of
the previous theorem. Let S =

∑
v∈V Av be a finite sum or real-valued random variables.

We say that a graph G = (V,E) is a dependency graph for the family of random variables
(Av)v∈V if, given two disjoint subsets V1, V2 ⊆ V , if there is no edge e = (v, w) ∈ E such
that v ∈ V1 and w ∈ V2, then the two vectors (Av)v∈V1

and (Aw)w∈V2
are independent.

Theorem 3.4. Let S =
∑
v∈V Av be a sum of random variables such that (Av)v∈V admits

a dependency graph G = (V,E), with

N = card(V ) ; D = 1 + max
v∈V

(deg(v)).

We also assume that |Av| ≤ A almost surely for any v in V . Then, for any r ≥ 1,

|κ(r)(S)| ≤ N(2D)r−1rr−2Ar. (3.1)

We refer to [FMN16, Theorem 9.1.7] for a proof of this result; later, we shall recall
some of its arguments and adapt them in order to obtain adequate bounds on the cumu-
lants of polynomials of the Gromov–Prohorov sample model of a compact homogeneous
space.

4 Generic fluctuations of the sample model

Throughout this section, X = (X , d, µ) ∈ M is a fixed metric measure space and
Φp,ϕ ∈ Π a fixed polynomial. As in Section 2.3, we denote Xn the sample model of X
with n independent points X1, . . . , Xn, and we are going to study the convergence of
Φ(Xn) toward Φ(X ).
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4.1 Dependency graphs for the sample model

For any sequence X : N→ E with values in a set E and for any map f : S → N, we
denote by Xf the map X ◦ f . For example, if we take f = I ∈ [[1, n]]5 which is a 5-tuple,
we have XI = (XI1 , XI2 , XI3 , XI4 , XI5). For any finite or infinite sequence I : S → T , we
write

d(XI) = (d(XIi , XIj ))i∈S,j∈S

We see a p-tuple ı̄ as a map ı̄ : [[1, p]]→ [[1, n]] and we denote by Im(̄ı) the multiset-image
of this map, taking as a multiplicity function the map m : Im(̄ı)→ N defined for any Im(̄ı)

by m(x) = Card((̄ı)−1(x)). We have

∀n ≥ 1, Φ(Xn) =
1

np

∑
ı̄∈[[1,n]]p

ϕ(d(Xı̄)).

We write Sn(ϕ,X ) = np Φ(Xn) =
∑
ı̄∈[[1,n]]p ϕ(d(Xı̄)), which is a sum of dependent

random variables. We are going to use the method of cumulants in order to study the
asymptotic probabilistic behavior of Sn(ϕ,X ). Placing ourselves in the framework of
the previous section, we take V = [[1, n]]p, S = Sn(ϕ,X ) =

∑
ı̄∈[[1,n]]p ϕ(d(Xı̄)), A = ‖ϕ‖∞,

and two vertices ı̄ and ̄ will be adjacent in the graph G = (V,E) if and only if they have
at least one index in common, i.e. if and only if

Card
(
Im(̄ı) ∩ Im(̄)

)
≥ 1.

Lemma 4.1. The condition written above defines a dependency graph for the family of
random variables (ϕ(d(Xı̄)))ı̄∈V .

Proof. Suppose that {ı̄1, . . . , ı̄r} and {̄1, . . . , ̄s} are two sets of p-tuples which are not
connected. Then, there is no index i belonging to an intersection Im(̄ıa) ∩ Im(̄b), so the
two sets of variables{

Xi, i ∈
r⋃
a=1

Im(̄ıa)

}
and

{
Xj , j ∈

s⋃
b=1

Im(̄b)

}

are disjoint. As the two vectors (φ(d(Xı̄a)))1≤a≤r and (φ(d(X̄b)))1≤b≤s are measurable
functions of these two sets, they are independent.

In the dependency graph G constructed above, we have N = np and D ≤ p2np−1.
Indeed, we can build a surjective map from [[1, p]]2 × [[1, n]]p−1 to the set of adjacent
vertices of a vertex ı̄ ∈ V taking

[[1, p]]2 × [[1, n]]p−1 → {adjacent vertices of ı̄}
(i, j, (yk)k 6=j) 7→ (y′k)k∈[[1,p]]

with y′k = yk if k 6= j and y′j = xi. Therefore, we have from Theorem 3.4:

∀r ≥ 1, |κ(r)(Sn(ϕ,X ))| ≤ np(2p2np−1)r−1rr−2(‖ϕ‖∞)r.

which is an upper bound of order n(p−1)r+1.
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4.2 Polynomiality of the cumulants

For any r ≥ 1, we can write by multilinearity of the cumulant:

κ(r)(Sn(ϕ,X )) =
∑

(ı̄1,...,̄ır)∈V r
κ (ϕ(d(Xı̄1)), . . . , ϕ(d(Xı̄r ))) .

For any I = (̄ı1, . . . , ı̄r) ∈ V r, we set ϕ(d(XI)) = (ϕ(d(Xı̄1)), . . . , ϕ(d(Xı̄r ))), hence:

κ(r)(Sn(ϕ,X )) =
∑
I∈V r

κ(ϕ(d(XI))).

We identify here V r = ([[1, n]]p)
r with the set [[1, n]]pr by preserving the lexicographic

order: i.e. by using the bijection

b : [[1, r]]×[1, n]]→ [[1, rp]]

(k, l) 7→ (k − 1)p+ l.

Proposition 4.2. For any integer r ≥ 1, the map

N∗ → R

n 7→ κ(r)(Sn(ϕ,X ))

is a polynomial in R[n] with degree not exceeding (p− 1)r + 1.

Proof. For x = (x1, . . . , xpr) in [[1, n]]pr, we consider the equivalence relation πx over
[[1, pr]] defined by i ∼ j if and only if xi = xj . We then denote Spn(x) the set-partition
in Q(pr) associated to the equivalence relation πx. Given two families of indices
I = (x1, . . . , xpr) and J = (y1, . . . , ypr) in [[1, n]]pr, note that if Spn(I) = Spn(J), then
κ(ϕ(d(XI))) = κ(ϕ(d(XJ))). Indeed, if Spn(I) = Spn(J), then one can find a bijection
ψ : [[1, n]] → [[1, n]] such that ψ(xa) = ya for any a ∈ [[1, pr]]; the result follows since the
Xi’s all have the same law. Given π ∈ Q(pr), we denote:

κ(π, ϕ) = κ(ϕ(d(XI))) for any I ⊂ [[1, n]]pr such that Spn(I) = π. (4.1)

Then,

κ(r)(Sn(ϕ,X )) =
∑
I∈V r

κ(ϕ(d(XI)))

=
∑

π∈Q(pr)

Card(π, n)κ(π, ϕ).

where Card(π, n) denotes the number of families I ∈ [[1, n]]pr such that Spn(I) = π. We
now remark that given π ∈ Q(pr), Sp−1

n (π) is in bijection with the set

{(x1, . . . , x`(π)) ; xi ∈ [[1, n]] and for all i 6= j ∈ [[1, `(π)]], xi 6= xj}.

The cardinal of this set is n↓`(π) = n(n−1) · · · (n−(`(π)−1)) (this is valid even if n < `(π)).
Thus, for any n ≥ 1,

κ(r)(Sn(ϕ,X )) =
∑

π∈Q(pr)

κ(π, ϕ)n↓`(π). (4.2)

This proves the polynomiality, and since we know that the left-hand side is a O(n(p−1)r+1),
the degree of the polynomial is smaller than (p− 1)r + 1.

In Equation (4.2), we know that the terms with degree strictly larger than (p− 1)r+ 1

cancel one another. Let us give a simpler explanation of this vanishing:
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Proposition 4.3. If r ≥ 2 and `(π) > (p− 1)r + 1, then κ(π, ϕ) = 0.

Proof. This is mostly a rewriting of the proof of the general upper bound on cumulants
stated in Theorem 3.3. For the convenience of the reader, let us give a proof which
is adapted to our situation; this will also enable us to introduce combinatorial objects
which will play a major role in Section 5. Given π ∈ Q(pr), we construct a graph
Gπ on the vertex set V (Gπ) = [[1, pr]] as follows. For any part A of the set partition
π, we associate a spanning tree TA of the set of vertices A, then we define Gπ as
the disjoint union of those spanning trees. We have

∑
A∈π(|E(TA)| + 1) = pr. This

implies |E(Gπ)| =
∑
A∈π |E(TA)| ≤ r − 2 by the assumption on `(π). We now construct a

multigraph Hπ with vertex set V (Hπ) = [[1, r]], by contracting the vertices of the graph
Gπ according to the map

(b−1)1 : [[1, rp]]→ [[1, r]]

(k − 1)p+ l 7→ k.

The multigraph Hπ has the same number of edges as Gπ, so E(Hπ) = E(Gπ) ≤ r − 2

and Hπ is not connected. As a consequence, if [[1, r]] = A t B are two non-connected
components and I = (̄ı1, . . . , ı̄r) is a family of indices such that Spn(I) = π, then the two
families of indices

⋃
a∈A ı̄

a and
⋃
b∈B ı̄

b are disjoint. This implies that κ(π, ϕ) = 0, by
using the third property in Proposition 3.1.

4.3 Limiting variance and asymptotics of the fluctuations

In order to apply Theorem 3.3, we also have to compute the limiting parameters σ2

and L involved in the method of cumulants. Identifying the leading terms in Equation
(4.2), we obtain:

κ(2)(Sn(ϕ,X ))

NnDn
=
κ(2)(Sn(ϕ,X ))

p2n2p−1
=

1

p2

∑
π∈Q(2p)
`(π)=2p−1

κ(π, ϕ) +O

(
1

n

)
.

For k, l ∈ [[1, p]], we define the partition

πk,l = {k, l + p} ∪ {{t} ; t ∈ [[1, 2p]] \ {k, l + p}} =

k

l

; (4.3)

the picture above of the set partition makes appear the integers in [[1, p]] on the top row,
and the integers in [[p+ 1, 2p]] on the bottom row. We then have:

κ(2)(Sn(ϕ,X ))

NnDn
=

1

p2

∑
1≤k,l≤p

κ(πk,l, ϕ) +O

(
1

n

)
.

Indeed, a set partition π of [[1, 2p]] with length 2p − 1 consists of a pair {k, l} and of
singletons, and if the pair {k, l} is included in [[1, p]] or in [[p+ 1, 2p]], then the graph Hπ

introduced during the proof of Proposition 4.3 is not connected (it is the graph on 2

vertices and without edge), so κ(π, ϕ) = 0. Similarly, we compute the limiting third
cumulant L:

κ(3)(Sn(ϕ,X ))

Nn(Dn)2
=
κ(3)(Sn(ϕ,X ))

p4n3p−2
=

1

p4

∑
π∈Q(3p)
`(π)=3p−2

κ(π, ϕ) +O

(
1

n

)
.
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For i, j, k, l ∈ [[1, p]] with j 6= k, we define the partition:

πi,j,k,l = {i, j + p} ∪ {k + p, l + 2p} ∪ {{t} ; t ∈ [[1, 3p]] \ {i, j + p, k + p, l + 2p}}

= k
j

i

l

, (4.4)

and if j = k:

πi,j,j,l = {i, j + p, l + 2p} ∪ {{t} ; t ∈ [[1, 3p]] \ {i, j + p, l + 2p}} = j

i

l

.

These are the only possible forms for a set partition of [[1, 3p]] with length 3p− 2 and with
the condition that Hπ is connected. For the πi,j,k,l’s with j 6= k, we also need to take
into account the set partitions where two elements of the top row or of the bottom row
(instead of the middle row) are connected to elements of the other rows; this leads to a
factor 3 in the enumeration. Thus, we have:

κ(3)(Sn(ϕ,X ))

Nn(Dn)2
=

1

p4

∑
1≤i,j,k,l≤p

ci,j,k,l κ(πi,j,k,l, ϕ) +O

(
1

n

)
with

ci,j,k,l =

{
3 if j 6= k,

1 if j = k.
(4.5)

Similar formulas were obtained in [FMN20, Section 5] for the limiting behavior of the
first cumulants of observables of random graphs associated to a graphon parameter. We
have now established:

Theorem 4.4 (Fluctuations in the generic case). Let X = (X , d, µ) ∈M a metric measure
space and Φ = Φp,ϕ ∈ Π a polynomial.

1. The random variable Sn(ϕ,X ) = np Φ(Xn) satisfies the hypotheses of the method
of the cumulants

• with parameters Dn = p2np−1, Nn = np and A = ‖ϕ‖∞,

• and with limits

σ2 =
1

p2

∑
1≤k,l≤p

κ(πk,l, ϕ);

L =
1

p4

∑
1≤i,j,k,l≤p

ci,j,k,l κ(πi,j,k,l, ϕ).

In the formulæ for σ2 and L, κ(π, ϕ) with π set partition of [[1, pr]] is defined by
Equation (4.1), and the coefficients ci,j,k,l are given by Equation (4.5); the diagrams
of the set partitions are drawn in Equations (4.3) and (4.4).

2. If σ(ϕ,X ) > 0, then the random variables

Yn(ϕ,X ) =
Φ(Xn)− Φ(X )√

var(Φ(Xn))
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satisfy all the limiting results from Theorem 3.3. In particular, we have the conver-
gence in law Yn(ϕ,X ) ⇀n→∞ N (0, 1), and

dKol (Yn(ϕ,X ),N (0, 1)) = O

((
‖ϕ‖∞
σ

)3

p n−1/2

)
.

Under the assumption σ(ϕ,X ) > 0, the renormalisation
√

var(Φ(Xn)) is of order
n−1/2, and more precisely, var(Φ(Xn)) is a polynomial in n−1 without constant term,
and with leading term p2 σ2(ϕ,X )n−1.

With the terminology of [FMN20, Section 6, Definition 30], the theorem above
ensures that the pair (M,Π) is a mod-Gaussian moduli space: generically (as soon as
σ(ϕ,X ) > 0), an observable of the Gromov–Prohorov sample model of a mm-space X
has normal fluctuations of size O(n−1/2), and the limiting variance σ2(ϕ,X ) writes as
an observable κ2(ϕ,ϕ) ∈ Π evaluated on the mm-space X . In this setting, a general
problem is to identify the singular points of the space M, that is to say the mm-spaces

such that σ2(ϕ,X ) = 0 for any function ϕ ∈ Cb(R(p2)), and thus such that the fluctuations
of Φp,ϕ(Xn) are of order smaller than n−1/2. The next sections of this paper are devoted
to this topic.

5 Fluctuations in the homogeneous case

In this section, we place ourselves in the singular case of the Gromov–Prohorov
sample model, where

∀p ≥ 1, ∀ϕ ∈ Cb
(
R(p2)

)
, σ2(ϕ,X ) =

1

p2

∑
1≤k,l≤p

κ(πk,l, ϕ) = 0. (5.1)

This implies that Φ(Xn)−Φ(X )√
n

converges in probability to 0 for any observable Φ ∈ Π. A
condition which implies (5.1) and which is much easier to check is:

∀p ≥ 1, ∀k, l ∈ [[1, p]], ∀ϕ ∈ Cb
(
R(p2)

)
, κ(πk,l, ϕ) = 0. (5.2)

It is not known whether it is possible to have (5.1) without having (5.2). We strongly
believe that these two conditions are actually equivalent; let us detail a bit why this
should be true. In Section 6, we shall introduce monomial observables of mm-spaces
which are indexed by finite multigraphs; Equations (5.1) and (5.2) correspond to relations
between the values of these observables on a mm-space. This viewpoint leads then to
questions of graph theory, and a combinatorial study of these relations should allow
one to understand whether Condition (5.2) is strictly stronger than, or equivalent to
Condition (5.1); we aim to address this problem in a forthcoming paper. Let us mention
that a analogous problem occurs in the study of fluctuations of graphon models, where
the Erdős–Rényi random graphs are singular models but may not be the only singular
points; see again [FMN20]. In the remainder of the article, we assume that Condition
(5.2) is satisfied, and we prove the following results:

1. This probabilistic condition is equivalent to a geometric property for the space X ,
namely, X is a compact homogeneous space G/K on which the compact group G
acts by isometry; see Theorem 5.1.

2. In this situation, for any observable Φ ∈ Π, n(Φ(Xn)− Φ(X )) converges in distri-
bution toward a law which is determined by its moments (Theorem 5.7).
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3. The limiting distribution is not necessarily Gaussian; we provide in Section 6 an
explicit example when X is the circle.

Let us introduce a few more notations. Given X = (X , d, µ) ∈M, we denote Isomp(X )

the group of isometries i : X → X which are measure-preserving:

d(·, ·) = d(i(·), i(·)) and i∗µ = µ.

The group Isomp(X ) is endowed with the topology of uniform convergence on compact
subsets, which is defined by the neighborhoods

V (i,K, ε) =

{
j ∈ Isomp(X ) , sup

x∈K
d(i(x), j(x)) < ε

}
(5.3)

for i ∈ Isomp(X ), K compact subset of X and ε > 0. The group action of G = Isomp(X )

on X is the continuous map

Isomp(X )×X → X
(g, x) 7→ g · x = g(x).

The orbit of x ∈ X is Ox = {y ∈ X | ∃g ∈ G : y = g · x}, and the stabilizer of x is the
subgroup of G given by Stx = {g ∈ G | g · x = x}. For a subgroup K of a group G, we
denote by G/K the space of left cosets of the group G over K, and

π : G→ G/K

g 7→ ḡ = gK

the canonical projection map. The group action by left translations of G on G/K is
g · ḡ1 = gg1. For any x ∈X , we have the bijection{

G/Stx → Ox

ḡ 7→ g · x.

Finally, we denote XNµ the space of µ-equidistributed sequences:

XNµ =

{
(xn)n∈N |

1

n

n∑
i=1

δxi ⇀n→+∞ µ

}
.

5.1 Equivalence between small variance and compact homogeneity

The following theorem characterizes the singular case (5.2), where the variance of
Φ(Xn) is at most of order 1/n2 for any polynomial X . Let us restate in simpler words

our Condition (5.2). Given 1 ≤ k, l ≤ p, suppose that for any ϕ ∈ Cb(R(p2)), we have

0 = κ(πk,l, ϕ) = cov

(
ϕ(d(X1, . . . , Xp)), ϕ(d(X ′1, . . . ,

(l)

Xk, . . . , X
′
p))

)
.

By polarisation, the covariance between any two bounded continuous functions ψ1 and
ψ2 of the distances vanishes:

cov

(
ψ1(d(X1, . . . , Xp)), ψ2(d(X ′1, . . . ,

(l)

Xk, . . . , X
′
p))

)
= 0.
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In particular, taking

ψ1(d(x1, . . . , xp)) = ϕ(d(xk, x1, x2, . . . , xk−1, xk+1, . . . , xp));

ψ2(d(x1, . . . , xp)) = ϕ(d(xl, x1, x2, . . . , xl−1, xl+1, . . . , xp)),

we obtain

cov
(
ϕ(d(X1, . . . , Xp)), ϕ(d(X1, X

′
2, . . . , X

′
p))
)

= κ(π1,1, ϕ) = 0. (5.4)

Thus, the vanishing of one kind of covariance κ(πk,l, ϕ) is equivalent to the vanishing
of all these covariances for 1 ≤ k, l ≤ p, and in the sequel we shall work with the case
k = l = 1.

We recall that ν is the map that associates to any point in X the law of the random
variable d(x, (Xn)n∈N).

Theorem 5.1. The following assertions are equivalent:

1. For all p ≥ 1 and ϕ ∈ Cb(R(p2)), cov(ϕ(d(X1, . . . , Xp)), ϕ(d(X1, X
′
2, . . . , X

′
p))) = 0.

2. The map ν is constant.

3. The action of Isomp(X ) on X is transitive.

4. There exists a compact topological group G, and K a closed subgroup of G such
that

(X , d, µ) = (G/K, dG/K , µG/K),

where dG/K is a G-invariant distance (dG/K(gg1, gg2) = dG/K(g1, g2)), and µG/K =

π∗(HaarG) is the push-forward of the Haar measure of G.

Remark 5.2. In the fourth item of Theorem 5.1, the identification of X as a compact
homogeneous space has to be understood in the space M, that is to say modulo measure-
preserving isometries. In particular, one assumes that X is equal to the support of
µ.

Proof. (1) =⇒ (2). Let A be a closed subset of R(p2). There exists a sequence (ϕq)q∈N of
positive continuous bounded functions converging pointwise to 1A the indicator function
of A: take ϕq(x) = min(1, 1 − q d(x,A)). Taking the limit in Equation (5.4) as q goes to
infinity, we obtain

E
[
1A(d(X1, X2, . . . , Xp))1A(d(X1, X

′
2, . . . , X

′
p))
]

= E [1A(d(X1, X2, . . . , Xp))]E
[
1A(d(X1, X

′
2, . . . , X

′
p))
]
.

If U = R(p2) \A, then 1U = 1− 1A, so the same is true with A open subset. Let us define
the map

EdA : X → R

x 7→ E[1A(d(x,X2, . . . , Xp))].
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We have:∫
X

(EdA)
2

(x)µ(dx) =

∫
X
E [1A(d(x,X2, . . . , Xp))]E

[
1A(d(x,X ′2, . . . , X

′
p))
]
µ(dx)

=

∫
X
E
[
1A(d(x,X2, . . . , Xp))1A(d(x,X ′2, . . . , X

′
p))
]
µ(dx)

= E

[∫
X
1A(d(x,X2, . . . , Xp))1A(d(x,X ′2, . . . , X

′
p))µ(dx)

]
= E

[
1A(d(X1, X2, . . . , Xp))1A(d(X1, X

′
2, . . . , X

′
p))
]

= E [1A(d(X1, X2, . . . , Xp))]E
[
1A(d(X1, X

′
2, . . . , X

′
p))
]

= (E [1A(d(X1, X2, . . . , Xp))])
2

=

(∫
X

EdA(x)µ(dx)

)2

,

so the variance var(EdA) under µ vanishes. We have thus showed that

∀A open set of R(p2), µ-almost surely, EdA is constant(=

∫
X

EdA(x)µ(dx)).

Fix a countable basis of open subsets (Ai)i∈N of R(p2). For any Ai1 , . . . , Ain , there exists
a set XAi1 ,...,Ain of µ-measure 1 such that EdAi1∪···∪Ain is constant on that set. Hence,
there exists a set X0 ⊆ X of µ-measure 1 such that all the maps EdAi1∪···∪Ain are
simultaneously constant on X0. We can replace in the previous statement X0 by X ,
because by dominated convergence, EdA is continuous over X , and by assumption, X is
the support of µ, that is to say the smallest closed subset with µ-measure 1.

Consider now an arbitrary open subset A ⊂ X , and x, y ∈ X . We can write A as a
union

⋃
i∈I Ai, and for any finite subfamily J ⊂ I, we have by assumption

Ed⋃
i∈J Ai

(x) = Ed⋃
i∈J Ai

(y).

By making J grow to I, we conclude that EdA(x) = EdA(y). The set of all A ⊂ R(p2) such

that EdA is constant is a Dynkin system, so we get that for any Borel subset A of R(p2),
the map EdA is constant over X . This means that the law of d(x,X2, . . . , Xp) is constant
over X . As this is true for any p ≥ 1, and as the measurable structure of Rmet is defined
by its finite projections, we conclude that νx does not depend on x.

(2) =⇒ (1). Fix x0 ∈ X , and denote (X ′n)n∈N an independent copy of (Xn)n∈N. We can
write

E[ϕ(d(X1, X2, . . . , Xp))ϕ(d(X1, X
′
2, . . . , X

′
p))]

= E

[∫
X
ϕ(d(x,X2, . . . , Xp))ϕ(d(x,X ′2, . . . , X

′
p))µ(dx)

]
= E

[
ϕ(d(x0, X2, . . . , Xp))ϕ(d(x0, X

′
2, . . . , X

′
p))
]

= E [ϕ(d(x0, X2, . . . , Xp))] E
[
ϕ(d(x0, X

′
2, . . . , X

′
p))
]

= E

[∫
X

ϕ(d(x,X2, . . . , Xp))µ(dx)

]
E

[∫
X

ϕ(d(x,X ′2, . . . , X
′
p))µ(dx)

]
= E [ϕ(d(X1, X2, . . . , Xp))] E

[
ϕ(d(X1, X

′
2, . . . , X

′
p))
]

because from the second point, the integrals inside the expectations do not depend on x.
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(2) =⇒ (3). We adapt the arguments of [Gro07, Section 3 1
2 ]. Let x, y ∈ X , we set

νeq = νx = νy as the common value of the map ν by hypothesis. The law of large
numbers gives us µ⊗N(XNµ ) = 1. Then

νeq
(
(ιX ◦ Sx)(XNµ ) ∩ (ιX ◦ Sy)(XNµ )

)
= νx

(
(ιX ◦ Sx)

(
XNµ
))

+ νy
(
(ιX ◦ Sy)

(
XNµ
))

− νeq
(
(ιX ◦ Sx)(XNµ ) ∪ (ιX ◦ Sy)(XNµ )

)
≥ µ⊗N(XNµ ) + µ⊗N(XNµ )− 1 = 1.

It implies the existence of two sequences (xn)n∈N and (yn)n∈N in XN such that

• x0 = x et y0 = y;

• (xn)n∈N et (yn)n∈N are in XNµ ;

• (d(xi, xj))i,j = (d(yi, yj))i,j .

By the Portmanteau theorem [Bil99, Theorem 2.1], a µ-equidistributed sequence is dense
in the support of µ. Therefore, there exists a unique isometry i : X → X such that for all
n ∈ N, i(xn) = yn. We have for any continuous bounded function f : X → R:

1

n

n∑
j=1

δxj (f ◦ i) =
1

n

n∑
j=1

δi(xj)(f) =
1

n

n∑
j=1

δyj (f).

By taking the limit of this identity as n goes to infinity, we obtain µ(f ◦ i) = µ(f). This
is true for any f ∈ Cb(X ), so by [Bil99, Theorem 1.2], i∗µ = µ. We have therefore
constructed i ∈ Isomp(X ) such that i(x) = y.

(3) =⇒ (2). Let x, y ∈ X , by 3., there exists an isometry i : X → X with i(x) = y

and i∗µ = µ. We can define iN : XN → XN with iN((xn)n∈N) = (i(xn))n∈N. We get
(iN)∗µ

⊗N = µ⊗N. Let ϕ : Rmet → R a bounded continuous function, we have with x0 = x

and y0 = y, ∫
Rmet

ϕ(z) νx(z) =

∫
XN

ϕ(d((xn)n∈N))µ⊗N((xn+1)n∈N)

=

∫
XN

ϕ(d((i(xn))n∈N)µ⊗N((xn+1)n∈N)

=

∫
XN

ϕ(d((yn)n∈N) (iN)∗µ
⊗N((yn+1)n∈N)

=

∫
XN

ϕ(d((yn)n∈N)µ⊗N((yn+1)n∈N)

=

∫
Rmet

ϕ(z) νy(z),

so νx = νy.

(4) =⇒ (3). The action of G on G/K gives rise to translations (τg)g∈G with τg(g1) = gg1;
they form a subgroup of Isomp(G/K). For g1, g2 ∈ G/K, the translation τg2g

−1
1

sends g1

to g2, so Isomp(G/K) is transitive on G/K.

(3) =⇒ (4). Let (xn)n∈N a dense sequence in X and

DX ,ε = {I ⊆ P(N) | the union ∪n∈I B(xn, ε) is disjoint} ;

this is a poset for the inclusion order, and it is stable by increasing union. We build by
induction a maximal element of this set. We set A0 = B(x0, ε) and I0 = {0}, and then for
any n ∈ N:

EJP 26 (2021), paper 65.
Page 19/37

https://www.imstat.org/ejp

https://doi.org/10.1214/21-EJP634
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Fluctuations of the Gromov–Prohorov sample model

• if B(xn+1, ε) ∩An = ∅, then An+1 = An tB(xn+1, ε) and In+1 = In t {n+ 1};

• otherwise, An+1 = An and In+1 = In.

Consider Imax =
⋃
n∈N In.

1. The set of indices Imax is a maximal element of (DX ,ε,⊆): if n /∈ Imax, then
B(xn, ε) ∩An−1 is non-empty, and a fortiori

B(xn, ε) ∩

( ⊔
i∈Imax

B(xi, ε)

)
6= ∅;

therefore, we cannot add n to Imax and stay in DX ,ε.

2. We have X =
⋃
n∈Imax

B(xn, 3ε). If x ∈ X , since (xn)n∈N is dense in X , there exists
n ∈ N such that x ∈ B(xn, ε). If n ∈ Imax, then obviously

x ∈
⊔

n∈Imax

B(xn, ε) ⊂
⋃

n∈Imax

B(xn, 3ε),

and if n is not in Imax, then there exists n′ ∈ Imax such that y ∈ B(xn, ε)∩B(xn′ , ε) 6=
∅. Hence, we have

d(x, xn′) ≤ d(x, xn) + d(xn, y) + d(y, xn′) ≤ 3ε.

3. The set Imax is finite. Indeed, because the action of Isomp(X ) over X is transitive,
the following map is constant:

X → R

x 7→ µ(B(x, ε))

with common value denoted µε > 0. Consequently,

1 ≥ µ

( ⊔
n∈Imax

B(xn, ε)

)
=

∑
n∈Imax

µ(B(xn, ε)) = card(Imax)µε

because µ is a probability measure.

So, Imax is finite, and we have proved that X is a pre-compact space. Since X is
complete, X is compact. The group of isometries Isom(X ) endowed with the compact-
open topology defined by the neighborhoods V (i,K, ε) from Equation (5.3) is also a
compact Hausdorff space:

• It is a general fact that given two compact metric spaces X and Y, the space of con-
tinuous functions C (X ,Y) endowed with the compact-open topology is metrised by
d(f, g) = supx∈X d(f(x), g(x)); see [Dug66, Chapter XII, Section 8]. By restriction,
the topology of Isom(X ) is metrisable.

• The compactness of Isom(X ) is then an immediate application of the Arzela–Ascoli
theorem.

The subgroup of measure-preserving isometries Isomp(X ) is a closed subgroup of
Isom(X ), hence also compact. Since the action of Isomp(X ) over X is transitive, we
have Ox = X for each x ∈ X . Therefore, we have the following homeomorphism (see
[MT86, Theorem 2.3.2]):

ψ : Isomp(X )/Stx → X
ḡ 7→ g · x.
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Denote G = Isomp(X ) and K = Stx, x being an arbitrary reference point in the space
X . The homeomorphism ψ allows one to transport the distance d of X to a G-invariant
distance dG/K(·, ·) = d(ψ−1(·), ψ−1(·)), and the measure µ to a G-invariant probability
measure µG/K = (ψ−1)∗µ on G/K. It remains to prove that µG/K = π∗(HaarG). Given
a topological compact Hausdorff space Z, we recall the bijective correspondence (see
[Lan93, Chapter IX]):

M 1(Z)→ {φ : C (Z,R)→ R, R-linear, continuous, positive and with φ(1) = 1}

µ 7→

{
C (Z,R)→ R

f 7→
∫
Z
f(z)µ(dz).

To any topological compact Hausdorff group Z, we associate the probability Haar
measure HaarZ , and we define

T : C (G)→ C (G/K)

f 7→ Tf :

{
G/K → R

gK 7→
∫
K
f(gk) HaarK(dk)

We denote by C (G)∗+ the space of positive continuous linear forms on the R-vector space
C (G). The transformation T induces the contravariant transformation

T ∗ : C (G/K)∗+ → C (G)∗+

ν 7→ ν ◦ T,

and any group action G×A→ A induces the group action

G× C (A)→ C (A)

(g, f) 7→ g · f =

{
A→ R

x 7→ f(g−1 · x).

Consider the probability measure µG/K as an element of C (G/K)∗+; we have by definition
that for any g ∈ G and p ∈ C (G/K), µ(g · p) = µ(p). If q ∈ C (G), then we have

(µ ◦ T )(g · q) = µ(T (g · q)) = µ

({
G/K → R

l 7→
∫
K

(g · q)(lk) HaarK(dk)

)

= µ

({
G/K → R

l 7→
∫
K
q(g−1lk) HaarK(dk)

)

= µ

(
g ·

{
G/K → R

l 7→
∫
K
q(lk) HaarK(dk)

)
= (µ ◦ T )(q).

so µ ◦ T = T ∗(µ) is the unique G-invariant positive normalised continuous linear form
on C (G). Hence T ∗(µ) = HaarG, and we finally need to show that π∗ ◦ T ∗ = IdC (G/K)∗+

.

However, for any g ∈ G/K and f ∈ C (G/K), T (f ◦ π)(g) =
∫
K
f ◦ π(gk) HaarK(dk) =∫

K
f(g) HaarK(dk) = f(g); the result follows by functoriality.

5.2 Study of the cumulants in the homogeneous case

We now perform the asymptotic analysis of the fluctuations of the observables Φ(Xn)

when X = G/K is a compact homogeneous space. We start by proving an upper bound on
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the cumulants of Sn(ϕ,X ) which will be analogue to the one of the method of cumulants,
but with different parameters Nn and Dn, and with a non-Gaussian limiting distribution;
see Theorem 5.6. Our arguments will involve spanning trees of graphs. We recall that a
Cayley tree of size r is a labeled tree with vertex set [[1, r]]; there are rr−2 Cayley trees of
size r. We start with the homogeneous analogue of Proposition 4.3.

Proposition 5.3. If X is a compact homogeneous space, then for r ≥ 2, π ∈ Q(pr) and

ϕ ∈ Cb(R(p2)), if `(π) > (p− 1)r, then κ(π, ϕ) = 0.

Proof. We consider the same trees (TA)A∈π, the same graph Gπ and the same multigraph
Hπ as in the proof of Proposition 4.3. We have

∑
A∈π(|E(TA)| + 1) = pr. This implies

|E(Hπ)| = |E(Gπ)| =
∑
A∈π |E(TA)| ≤ r − 1 by the assumption on `(π). If Hπ is not

connected, then the same argument as in Proposition 4.3 gives κ(π, ϕ) = 0. Therefore,
the only remaining case to treat is when Hπ is connected and has exactly r − 1 edges;
it is then a Cayley tree. Fix I = (̄ı1, . . . , ı̄r) such that Spn(I) = π, and an index k ∈ [[1, r]]

which is a leaf of the graph Hπ. By definition of the multigraph Hπ, the block of indices
ı̄k shares exactly one index with all the other blocks ı̄j 6=k:

Card

Im(̄ık) ∩
⋃
j 6=k

Im(̄ıj)

 = 1.

To fix the ideas, let us assume that k = 1 and that the shared index in ı̄1 = (̄ı11, . . . , ı̄
1
p) is

the first one. To compute the cumulant, we consider

E
[
et1ϕ(d(Xı̄1 ))+···+trϕ(d(Xı̄r ))

]
=

∫
X

(∫
X (p−1)r

et1ϕ(d(xı̄1 ))+···+trϕ(d(xı̄r )) µ⊗(p−1)r((xi)i 6=ı̄11)

)
µ(dxı̄11).

Denote F (xı̄11) the integral where one has integrated all the variables except xı̄11 . If x0 is
an arbitrary point in X , then for any xı̄11 , we have an isometry ψ ∈ Isomp(X ) such that
ψ(xı̄11) = x0, because X is homogeneous. So, denoting ya = ψ(xa), we get

F (xı̄11) =

∫
X (p−1)r

et1ϕ(d(xı̄1 ))+···+trϕ(d(xı̄r )) µ⊗(p−1)r((xi)i 6=ı̄11)

=

∫
X (p−1)r

et1ϕ(d(yı̄1 )))+···+trϕ(d(yı̄r ))) µ⊗(p−1)r((yi)i 6=ı̄11)

= F (x0)

and the integral does not depend on xı̄11 . So, we have

E
[
et1ϕ(d(Xı̄1 ))+···+trϕ(d(Xı̄r ))

]
= F (x0) =

∫
X
F (x0)µ(dx0)

=

∫
X (p−1)r+1

et1ϕ(d(x̄1 ))+···+trϕ(d(x̄r )) µ⊗(p−1)r+1((xj)j∈Im(̄))

where J = (̄1, . . . , ̄r) is the same collection of indices as I, except that we have replaced
ı̄11 by a new index different from all the other indices. In this new collection, ̄1 does
not share any index with the other families ̄k≥2, so X̄1 is independent from the other
variables, and

E
[
et1ϕ(d(Xı̄1 ))+···+trϕ(d(Xı̄r ))

]
= E

[
et1ϕ(d(Xı̄1 ))

]
E
[
et2ϕ(d(Xı̄2 ))+···+trϕ(d(Xı̄r ))

]
.
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Looking at the coefficient of [t1 · · · tr] in the logarithm of the Laplace transform, we
conclude that the joint cumulant vanishes.

Remark 5.4. The proof of this proposition leads to a slightly stronger result: if π ∈ Q(pr)

is a set partition such that Hπ is disconnected or is a tree, or even is a connected graph
with one vertex of valence 1, then the corresponding cumulant vanishes. For instance,
with r = 2 and p = 6, the following set partition

which identifies one index of the first block of indices ı̄1 with two distinct indices of
the second block ı̄2 satisfies `(π) = 10 = (p − 1)r, but the corresponding graph Hπ is

the unique Cayley tree on 2 vertices, so κ(π, ϕ) = 0 for any function ϕ ∈ C (R(p2)). The
most general condition which leads to the vanishing of the joint cumulant κ(π, ϕ) = 0

is the following: if there exists an integer k ∈ [[1, r]] such that, among the integers
(k − 1)p + 1, . . . , kp, the set partition π ∈ Q(pr) contains p − 1 singletons (and the
remaining integer of this block which can be connected to many other integers in the
other blocks), then κ(π, ϕ) = 0. Indeed, we can then use the same trick as above to
replace in the computation of the joint Laplace transform the family ı̄k by a family of
indices ̄k which are all distinct and which are not shared by the other families ı̄a 6=k. We
call such a set partition π homogeneously vanishing.

In the homogeneous case, the variance var(Sn(ϕ,X )) is a polynomial function of
degree smaller than 2(p− 1). We have

κ(2)(Sn(ϕ,X )) =
∑

π∈Q(2p)
`(π)≤2(p−1)

κ(π, ϕ)n↓`(π).

By using the previous remark, we can identify the set partitions with `(π) = 2(p− 1) and
κ(π, ϕ) 6= 0. For 1 ≤ k1, l1, k2, l2 ≤ p with k1 6= k2, l1 6= l2, we define the set partition

πk1,l1,k2,l2 = {{k1, l1}, {k2, l2}, {t} ∪ {{t} ; t ∈ [[1, 2p]] \ {k1, k2, l1 + p, l2 + p}}.

Then we have the following equality (the bracket is the extraction of the coefficient of
degree n2(p−1) in the polynomial in the variable n):

κ(2)(Sn(ϕ,X ))[n2(p−1)] =
∑

1≤k1,l1,k2,l2≤p
k1<k2, l1 6=l2

κ(πk1,l1,k2,l2 , ϕ) := σ2
hom. (5.5)

Proposition 5.5. Suppose that σ2
hom > 0. If Yn(ϕ,X ) = Φ(Xn)−Φ(X )√

var(Φ(Xn))
, then we have

convergence of all the cumulants of these variables: for any r ≥ 1, there exists ar ∈ R
such that

κ(r)(Yn(ϕ,X ))−→n→+∞ar.

Proof. For r = 1, κ(r)(Yn(ϕ,X )) = 0 and for r ≥ 2

κ(r)(Yn(ϕ,X )) = κ(r)

(
Φ(Xn)− Φ(X )√

var(Φ(Xn))

)

= κ(r)

(
Sn(ϕ,X )− E[Sn(ϕ,X )]√

var(Sn(ϕ,X ))

)
=

κ(r)(Sn(ϕ,X ))

(var(Sn(ϕ,X )))
r/2

.
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We know that for each r ≥ 2, κ(r)(Sn(ϕ,X )) is a polynomial function of degree less
than (p − 1)r, according to Propositions 4.2 and 5.3. We can write κ(r)(Sn(ϕ,X )) =

V (n) =
∑(p−1)r
i=0 vin

i and var(Sn(ϕ,X )) = κ(2)(Sn(ϕ,X )) = W (n) =
∑2(p−1)
i=0 win

i; the
assumption σ2

hom > 0 amounts to w2(p−1) > 0. So we have

lim
n→+∞

κ(r)(Yn(ϕ,X )) = lim
n→+∞

v(p−1)r n
(p−1)r(

w2(p−1) n2(p−1)
)r/2 =

v(p−1)r

(w2(p−1))r/2
= ar.

The following theorem ensures that the ar’s are not too large, so that we can sum
them and obtain the Laplace transform of a limiting distribution of Yn(ϕ,X ).

Theorem 5.6. In the case where X is a compact homogeneous space, we have for any

ϕ ∈ C (R(p2)) and any r ≥ 2 the upper bound

|κ(r)(Sn(ϕ,X ))| ≤ (Ap2)r (2r)r−1 n(p−1)r

with A = ‖ϕ‖∞.

Proof. We are going to adapt the proof of the upper bound (3.1) which can be found
in [FMN16, Chapter 9]. We expand by multilinearity the cumulant and we start by
controlling each term of the following sum:

κ(r)(Sn(ϕ,X )) =
∑

(ı̄1,...,̄ır)∈V r
κ (ϕ(d(Xı̄1)), . . . , ϕ(d(Xı̄r ))) ,

with V = [[1, n]]p. With A = ‖ϕ‖∞, Equation (9.9) in [FMN16] gives

|κ (ϕ(d(Xı̄1)), . . . , ϕ(d(Xı̄r ))) | ≤ Ar2r−1 ST(Hπ),

where π = Spn(̄ı1, . . . , ı̄r) and ST(Hπ) is the number of spanning trees of the multigraph
Hπ. Now, we have identified in a previous remark the cumulants κ(π, ϕ) which vanish in
the homogeneous case, so we can add this condition to the upper bound. Thereby, we
have

|κ(Xı̄1 , . . . , Xı̄r )| ≤ Ar2r−1 ST(Hπ)1NHV(π),

where NHV(π) is the condition “π is not homogeneously vanishing”. Summing over V r,
we get by using the triangle inequality

|κ(r)(Sn(ϕ,X ))| ≤ Ar2r−1
∑
ı̄1∈V

 ∑
(ı̄2,...,̄ır)∈V r−1

ST(HSpn(I))1NHV(Spn(I))


≤ Ar2r−1

∑
ı̄1∈V

 ∑
T Cayley tree of size r

∑
(ı̄2,...,̄ır)∈V r−1

1T⊂HSpn(I)
1NHV(Spn(I))

 .
Now, we can bound the expression in the bracket by adapting the Lemma 9.3.5 in
[FMN16] to the homogeneous case. Indeed, let us fix a Cayley tree T of size r and an
element ı̄1 ∈ V . The lists (̄ı2, . . . , ı̄r) which have a non-zero contribution in the sum∑

(ı̄2,...,̄ır)∈V r−1

1T⊂HSpn(I)
1NHV(Spn(I))

are constructed as follows. We fix a vertex k 6= 1 of degree one (a leaf) in T , and we shall
choose ı̄k at the end. Before that:
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• We start by choosing the ı̄j ’s with j neighbour of 1 in T and j 6= k. For each such
family, ı̄1 and ı̄j share at least one index, so the number of possibilities for ı̄j is
smaller than Dn = p2 np−1.

• We pursue the construction with the neighbours of the neighbours of 1, and so
on but leaving always on the side the vertex k. Each time, there are at most
p2 np−1 possibilities for ı̄j . Moreover, as k is a leaf of T , our inductive construction
enumerates all the vertices in [[1, r]] but k.

We therefore have less than (p2 np−1)r−2 possibilities for (̄ı2, . . . , ı̄r) \ {ı̄k}. We finally
choose ı̄k, using now the fact that if the list (̄ı2, . . . , ı̄r) yields a non-zero contribution,
then π is not homogeneously vanishing and ı̄k must share at least two distinct indices
with other families ı̄a and ı̄b (we may have a = b). Consequently, there are less than

p4 (r − 1)np−2

possible values for ı̄k ∈ V : one family ı̄a is obtained by taking the unique neighbour a
of k in T , there are (r − 1) possibilities for the other family ı̄b, then p4 possibilities for
the choices of positions of indices that are shared, and np−2 possibilities for the other
indices in the family ı̄k. So,∑

(ı̄2,...,̄ır)∈V r−1

1T⊂HSpn(I)
1NHV(Spn(I)) ≤ (p2 np−1)r−2 p4 (r − 1)np−2 ≤ p2r r npr−p−r.

As there are rr−2 Cayley trees of size r, and np possibilities for ı̄1, we finally get the
upper bound

|κ(r)(Sn(ϕ,X ))| ≤ Ar 2r−1 rr−1 p2r n(p−1)r.

5.3 Central limit theorem for the homogeneous case

We can finally prove the analogue of Theorem 4.4 when X is a compact homogeneous
space.

Theorem 5.7 (Fluctuations in the homogeneous case). Let X be a compact homoge-

neous space, ϕ∈C (R(p2)) and Φ=Φp,ϕ. Suppose that σ2
hom(ϕ,X )=limn→∞

var(Sn(ϕ,X ))
n2(p−1) >

0; a combinatorial expansion of σ2
hom(ϕ,X ) is provided by Equation (5.5). Then, the

sequence

Yn(ϕ,X ) =
Φ(Xn)− Φ(X )√

var(Φ(Xn))

converges in distribution toward a real-valued random variable Y (ϕ,X ) having for
cumulants the sequence

κ(r)(Y (ϕ,X )) = ar =
1

(σhom)
r
2

∑
π∈Q(pr)

`(π)=(p−1)r
π non homogeneously vanishing

κ(π, ϕ),

where κ(π, ϕ) is defined by Equation (4.1). The law of the limit Y (ϕ,X ) is determined
by these cumulants (ar)r≥1. Under the assumption σhom(ϕ,X ) > 0, the renormalisation√

var(Φ(Xn)) is of order n−1, and more precisely, var(Φ(Xn)) is a polynomial in n−1

without constant term and without term αn−1; its leading term is σ2
hom(ϕ,X )n−2.

Proof. Theorem 5.6 shows that for any n ∈ N, the log-Laplace transform logE[ezYn ] is
absolutely convergent on a fixed disc of radius R > 0, with R independent of n. Indeed,
denoting var(Sn) = (σn,hom)2 n2(p−1), we obtain by using Stirling’s estimate

∞∑
r=2

|κ(r)(Yn)|
r!

|z|r ≤
∞∑
r=2

(Ap2e)r(2r)r−1

rr

(
|z|

σn,hom

)r
≤
∞∑
r=2

(
2|z|Ap2e

σn,hom

)r
.
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Since σn,hom → σhom > 0, we see that for n large enough, if

|z| ≤ R =
σhom

10Ap2
,

then logE[ezYn ] is convergent and uniformly bounded on this disk. Taking the exponen-
tials, the same is true for the Laplace transforms E[ezYn ], and by Proposition 5.5, these
holomorphic functions converge uniformly on D(0, R) towards

exp

( ∞∑
r=2

ar
r!
zr

)
= lim
n→∞

E[ezYn ].

By standard arguments (see [Bil95, p. 390]), this implies the convergence in law towards
a random variable Y whose moment-generating function E[ezY ] is the left-hand side of
the equation above. Since this Laplace transform is convergent on a disc with positive
radius, Y is determined by its moments.

Let us compare Theorems 4.4 and Theorems 5.7. In the generic case, the variance of
Φ(Xn) is expected to be of order

O

(
n2p−1

(np)2

)
= O

(
1

n

)
,

so the fluctuations of Φ(Xn) are usually of order O(n−1/2), and asymptotically
(mod-)Gaussian. By usually we mean that one specific observable ϕ might satisfy
“by chance” σ(ϕ,X ) = 0, but this is in general not the case; and by Theorem 5.1 the
vanishing of all these limiting variances is almost equivalent to X being compact ho-
mogeneous (the almost is related to the replacement of Condition (5.1) by the simpler
Condition (5.2); they might be equivalent). In the homogeneous case, the variance of
Φ(Xn) is expected to be of order

O

(
n2p−2

(np)2

)
= O

(
1

n2

)
,

so the fluctuations of Φ(Xn) are now of order O(n−1). What remains to be seen is that
our estimates on cumulants in the homogeneous case are in a sense optimal: we have the
best possible upper bound for these cumulants, and in particular we can have ar≥3 6= 0,
whence a non-Gaussian limiting distribution. The last section of the paper is devoted to
the analysis of one such example.

5.4 Concentration inequalities

Since the cumulant estimate from Theorem 5.6 holds for any n, we can use it in
combination with Chernoff’s inequality in order to obtain:

Proposition 5.8. Let X be a compact homogeneous space, and φ ∈ (R(p2)) such that
A = ‖ϕ‖∞ and σ2

hom(ϕ,X ) > 0. We denote as above σ2
n,hom(ϕ,X ) = var(Sn(ϕ,X ))

n2(p−1) , and

qn =
2Ap2

σn,hom
≥ 1.

For any x ≥ 0 and any n,

P
[
|Yn(ϕ,X )| ≥ qnx

e

]
≤ 2 exp

(
log(1 + x)− x

e2

)
.

The same estimate holds with Yn(ϕ,X ) replaced by its limit in distribution Y (ϕ,X ), and
qn replaced by its limit q.
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Proof. Note that the case r = 2 of Theorem 5.6 yields qn = 2Ap2

σn,hom
≥ 1 for any n. By

Chernoff’s inequality and by using Stirling’s estimate to get rid of the factorials, we
obtain for any t, x ≥ 0

P[Yn(ϕ,X ) ≥ x] ≤ exp

(
−tx+

∞∑
r=2

|κ(r)(Sn(ϕ,X )|
r!

(
t

σn,hom n(p−1)

)r)

≤ exp

(
−tx+

1

e2

∞∑
r=2

1

r
zr

)
= exp

(
−tx− 1

e2
log(1− z)− z

e2

)
where

z =
2Ap2

σn,hom
e t = qn e t

is supposed strictly smaller than 1, so that the power series on the second line is
convergent. The optimal value of t in terms of x is given by the equations

x =
q2
nt

1− qnet
; z =

qnex

q2
n + qnex

; t =
x

q2
n + qnex

.

This choice of t yields

P[Yn(ϕ,X ) ≥ x] ≤ exp

(
1

e2

(
log

(
1 +

ex

qn

)
− ex

qn

))
.

We obtain a two-sided upper bound on the tail of the distribution of |Yn(ϕ,X )| by
replacing Yn(ϕ,X ) by −Yn(ϕ,X ), which satisfies the same hypotheses. Finally, the
same arguments hold with Y (ϕ,X ) replaced by Yn(ϕ,X ), since we have convergence
in law and in moments.

Remark 5.9. One can wonder whether there exists in the homogeneous case a Berry–
Esseen upper bound similar to the one from Theorem 4.4. We believe that the approach
from [FMN19] cannot be used here, for two reasons:

• The concentration inequality stated above is the only thing about the limiting
distribution of the variables Yn(ϕ,X ) that we able to prove with the techniques
of this paper. In particular, we do not know whether this limiting distribution is
discrete or absolutely continuous with respect to the Lebesgue measure. This
prohibits the use of the inequality from [Fel71, Chapter XVI, Equation (3.13)],
which is the starting point of the Fourier approach to Berry–Esseen bounds.

• Besides, we do not have a large zone of control on the Fourier transform of
Yn(ϕ,X ) as in [FMN19]; the upper bound on the cumulants yields an upper bound
on the Fourier transform E[eiξYn(ϕ,X )] on a zone of size O(1), but it seems difficult
to extend it to a larger zone, which is a requirement in order to obtain a meaningful
upper bound on the Kolmogorov distance dKol(Yn(ϕ,X ), Y (ϕ,X )).

The study of the Cauchy transform of the variables Yn(ϕ,X ) (instead of the Fourier and
Laplace transforms) might lead to a solution of the first problem.

6 Sample model for the circle and a non-Gaussian limit

Throughout this section, Φ is the observable of metric measure spaces with degree 3

associated to the continuous bounded function

ϕ(d(x, y, z)) = min(1, d(x, y))×min(1, d(y, z)).
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In particular, if X = (X , d, µ) is a metric measure space with diameter smaller than 1,
then

Φ(X ) =

∫
X 3

d(x, y) d(y, z)µ⊗3(dx dy dz).

Let us consider the metric measure space X = R/Z. For x ∈ R, we denote x the class of
x modulo 1. The space X is endowed with the geodesic distance

d(x, y) = inf
k∈Z
|x− y − k|

and with the projection µ of the Lebesgue measure, which is a probability measure. It is
obviously a compact homogeneous space in the sense of Section 5, and even a compact
Lie group. Therefore, by Theorem 5.7, if Xn is the sample model of order n associated
to this space, then

Yn(ϕ,X ) =
Φ(Xn)− Φ(X )√

var(Φ(Xn))

converges towards a limiting distribution, assuming that

n2 var(Φ(Xn)) =
var(Sn(ϕ,X ))

n4

admits a strictly positive limit σ2
hom. The objective of this section is to prove that this

limiting distribution indeed exists and is not the Gaussian distribution. To this purpose,
we shall compute the three first cumulants of Sn(ϕ,X ), and prove in particular that
κ(3)(Yn(ϕ,X )) admits a non-zero limit.

Remark 6.1. The observable that we have chosen is not the simplest counterexample to
the asymptotic normality: we could have considered the degree 2 observable ϕ′(d(x, y)) =

min(1, d(x, y)). Our choice of the degree 3 observable ϕ enables us to explain how to
compute the moments and cumulants of a general observable Φ(Xn) (we believe that
the explanations are a bit clearer with an example larger than the smallest possible one).

6.1 Graph expansion of the moments of monomial observables

Let us consider in full generality the monomial observables MG attached to multi-
graphs. Let G be a (unoriented) graph on p vertices 1, 2, . . . , p, possibly with loops
and with multiple edges. We associate to G = (V,E) and to a metric measure space
X = (X , d, µ) the function

FG : X p → R+

(x1, . . . , xp) 7→
∏

{i,j}= e∈E

min(1, d(xi, xj)).

For instance, the function ϕ introduced above is ϕ(d(x1, x2, x3)) = FG(x1, x2, x3) with

G = 1 2 3 .

We denote MG(X ) =
∫
Xp FG(x1, . . . , xp)µ

⊗p(dx1 · · · dxp). This quantity is a polynomial
observable of X , and it only depends on the unlabeled graph underlying G. The following
proposition relates these observables and the moments of the random functions MG(Xn).

Proposition 6.2. Fix a multigraph G on p vertices, and a metric measure space X , with
sample model Xn for all order n. For any r ≥ 1, we have:

E[(MG(Xn))r] =
1

npr

∑
π∈Q(pr)

n↓`(π)MGr↓π(X ),

where Gr denotes the disjoint union of r copies of G, and Gr ↓ π is the contraction of
this graph according to a set partition π.
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By contraction of a multigraph H according to a set partition π of its vertex set V ,
we mean the multigraph H ↓ π whose vertices are the parts of π, and where every
edge {a, b} of the original graph H becomes an edge between the parts π(a) and π(b)

containing respectively a and b (and a loop if π(a) = π(b)).

Proof. By definition, if (Xn)n≥1 is a sequence of independent variables distributed
according to µ and with sequence of empirical measures (µn)n≥1, then

MG(Xn) =

∫
Xp

FG(x1, . . . , xp) (µn)⊗p(dx1 · · · dxp) =
1

np

∑
1≤i1,...,ip≤n

FG(Xi1 , . . . , Xip).

We denote as usual ı̄ an arbitrary family of p indices i1, . . . , ip. Given I = (̄ı1, . . . , ı̄r), if
π = Spn(I) is the set partition of [[1, pr]] = [[1, p]]r whose parts correspond to the sets of
equal indices in I, then we have

r∏
a=1

FG(Xia1
, . . . , Xiap

) =(distribution) FGr↓π(X1, . . . , X`(π)).

Indeed, if one chooses for every part πc of π an index iacbc falling in this part, then one has
the identity

r∏
a=1

FG(Xia1
, . . . , Xiap

) = FGr↓π

(
Xi

a1
b1

, . . . , X
i
a`(π)
b`(π)

)
,

and the variables Xiacbc
are all distinct by definition of π; the identity in distribution

follows by a relabeling of these variables.

We therefore have:

E[(MG(Xn))r] =
1

npr

∑
I=(ı̄1,...,̄ır)∈[[1,n]]pr

E[FGr↓Spn(I)(X1, . . . , X`(Spn(I)))]

=
1

npr

∑
I=(ı̄1,...,̄ır)∈[[1,n]]pr

MGr↓Spn(I)(X ),

and the result follows by gathering the list of indices I according to their set partitions
Spn(I).

Example 6.3. Let G be the graph on 3 vertices previously introduced, and r = 2. Note
that if a graph H = G2 ↓ π contains a loop, then the corresponding monomial FH
vanishes on X |V (H)|. There are 203 set-partitions of size 6, but only 67 of them yield a
graph H = G2 ↓ π without loop. Gathering these graphs according to their isomorphism
types, we obtain:

n6E[(M (Xn))2]

= 8

(
n↓4 (M (X ) +M (X ) +M (X )) + n↓3 (M (X ) +M (X ))

)
+ 6n↓3M (X ) + 4

(
n↓5 (M (X ) +M (X )) + n↓4M (X )

)
+ 2

(
n↓5M (X ) + n↓4M (X ) + n↓2M (X )

)
+ n↓6M (X ) + n↓5M (X ) + n↓4M (X ).
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6.2 The three first limiting cumulants

Proposition 6.2 shows that if one can compute MG(X ) for any graph G, then one
can also compute the moments and cumulants of MG(Xn) for any n and any graph G.
However, even in the easy case where X is the circle, it can be difficult to find the value
of the integral

MG(T) =

∫
[0,1]p

 ∏
{a,b}∈E(G)

d(xa, xb)

 dx1 · · · dxp

=

∫
[0,1]p

 ∏
{a,b}∈E(G)

min(|xa − xb|, |xa − xb + 1|, |xa − xb − 1|)

 dx1 · · · dxp.

In the following, we compute the three first moments of Φ(Xn) = M (Xn), and we
explain in the specific case where X = R/Z = T how to make some reductions of the
graphs G that appear in our computation.

We have of course M (T) = 1. Let us explain how to compute MG(T) when one can
reduce G to the trivial graph • by recursively deleting in G the vertices with one or two
neighbors:

• reduction of the vertices with one neighbor. If in the graph G there is one vertex x
only connected to another vertex y, then we can factor in the integral MG(T) the
term ∫

T

(d(x, y))a dx,

where a ≥ 1 is the number of edges between x and y. The integral above is equal to

2

∫ 1
2

0

ta dt =
1

2a(a+ 1)
.

Therefore,

M a
G

(T) =
1

2a(a+ 1)
MG(T).

More generally, because the circle T is a homogeneous space, if the graph G is not
biconnected and can be written either as the disjoint union of two graphs G1 and
G2, or as the union of two graphs G1 and G2 that only spare one vertex, then we
have MG(T) = MG1

(T)MG2
(T).

• reduction of the vertices with two neighbors. Suppose now that there is one vertex
x only connected to two other vertices y and z, with a ≥ 1 edges between x and y
and b ≥ 1 edges between x and z. Note that this does not mean that one can split
G as the union of two biconnected components meeting at x (consider for instance
the case where y and z are themselves connected by an edge). Setting D′ = 1

2 −D,
we have∫

T

(d(x, y))a (d(x, z))b dx =

∫ D

0

ta (D − t)b dt+

∫ D′

0

ta (D + t)b dt

+

∫ D′

0

(D + t)a tb dt+

∫ 1
2

D′
ta (1−D − t)b dt

with D = d(y, z). These four terms are polynomials in D: setting c = a+ b+ 1, we
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get ∫ D

0

ta (D − t)b dt =
a! b!

c!
Dc;

∫ D′

0

ta (D + t)b dt =

c∑
j=0

min(b,j)∑
k=0

(
b

k

)(
c− k
c− j

)
(−1)j−k

2c−j(c− k)

Dj ;

∫ D′

0

(D + t)a tb dt =

c∑
j=0

min(a,j)∑
k=0

(
a

k

)(
c− k
c− j

)
(−1)j−k

2c−j(c− k)

Dj ;

∫ 1
2

D′
ta (1−D − t)b dt =

1

2a+b

a+b∑
j=0

 ∑
0≤l≤k≤j
k even

(
a

k − l

)(
b

l

)(
a+ b− k
a+ b− j

)
(−1)j+l

k + 1

 Dj+1.

Therefore, if a graph G contains a vertex x with a incident edges (x, y), b incident
edges (x, z) and no other incident edges, then we have the reduction formula

MG(T)

=
a! b!

c!
M(G\{x})+(y,z)c(T)

+
∑

0≤k≤j≤c

(
a

k

)(
c− k
c− j

)
(−1)j+k

2c−j(c− k)
M(G\{x})+(y,z)j (T)

+
∑

0≤k≤j≤c

(
b

k

)(
c− k
c− j

)
(−1)j+k

2c−j(c− k)
M(G\{x})+(y,z)j (T)

+
1

2a+b

∑
0≤l≤k≤j≤a+b

k even

(
a

k − l

)(
b

l

)(
a+ b− k
a+ b− j

)
(−1)j+l

k + 1
M(G\{x})+(y,z)j+1(T),

where (G \ {x}) + (y, z)j is the graph obtained from G by first removing the vertex
x and its adjacent edges, and then adding j new edges between y and z.

This is already sufficient in order to compute the two first moments of Φ(Xn):

n3E[Φ(Xn)] = n↓3M (T) + n↓2M (T) =
n↓3

16
+
n↓2

12
=
n3

16
− 5n2

48
+

n

24
;

n6E[(Φ(Xn))2] =
n6

256
− 5n5

384
+

611n4

26880
− 67n3

2688
+

5n2

336
+

n

280
.

Indeed, all the loopless graphs Gr ↓ π with r ∈ {1, 2} are reducible by one of the previous
arguments. We obtain in particular the value of the variance:

n2 var(Φ(Xn)) =
269

40320
− 131

8064n
+

53

4032n2
− 1

280n3
.

In particular, σ2
hom = 269

40320 is strictly positive.
For the third moment, there are 22147 set partitions of size 9, and 6097 of them yield

a contracted graph G3 ↓ π which is without loop. These 6097 graphs fall into 131 isomor-
phism types, and only one isomorphism type is not reducible with the aforementioned
techniques:

H = G3 ↓ π = K4 = .
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Let us explain how to compute MH(T). We need to compute the integral

I =

∫
T

d(w, x) d(w, y) d(w, z) dw.

The Fourier expansion of the distance function d(x, y) with x, y ∈ R/Z is

d(x, y) =
1

4
−
∑
k∈Z
k odd

1

k2π2
e2iπk(x−y).

If d̃(x, y) = 1
4 − d(x, y), then

I = −
∫
T

(
d̃(w, x)− 1

4

)(
d̃(w, y)− 1

4

)(
d̃(w, z)− 1

4

)
dw

= −
∫
T

d̃(w, x) d̃(w, y) d̃(w, z) dw +
1

4
(F (x, y) + F (x, z) + F (y, z)) +

1

64

where

F (x, y) =

∫
T

d̃(w, x) d̃(w, y) dw =

∫
T

d(w, x) d(w, y) dw − 1

16

=
2(d(x, y))3

3
− (d(x, y))2

2
+

1

48
.

Now, the key observation is that
∫
T
d̃(w, x) d̃(w, y) d̃(w, z) dw = 0. Indeed, by using the

Fourier expansions of the distance functions, setting Ck odd = 1
k2π2 , we see that this

integral equals ∑
k+l+m=0

CkClCm e−2iπ(kx+ly+mz).

the sum running over odd integers k, l and m. But then it is not possible to have
k + l +m = 0, whence the vanishing of the integral. As a consequence,

MK4
(T) =

1

2
M (T)− 3

8
M (T) +

1

32
M (T) =

11

71680
,

all the graphs on the right-hand side being reducible. By using a computer algebra
system, we then obtain

n9E[(Φ(Xn))3] =
n9

4096
− 5n8

4096
+

541n7

143360
− 5713619n6

638668800
+

61771n5

3801600

− 132443n4

6386688
+

6367n3

380160
− 150193n2

19958400
+

2353n

1663200
.

This gives the third cumulant:

n3 κ(3)(Φ(Xn)) = − 42209

39916800
+O

(
1

n

)
.

Since the right-hand side does not vanish, we conclude that limn→∞ κ(3)(Yn(ϕ,X )) 6=
0; therefore, the limiting distribution from Theorem 5.1 is not the standard normal
distribution, and we have proved:

Proposition 6.4. If X is the circle R/Z endowed with its geodesic distance and with
the projection of the Lebesgue measure, and if Φ = M , then the Gromov–Prohorov
sample model yields a sequence of random variables

Φ(Xn)− Φ(X )√
var(Φ(Xn))
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which converges in distribution towards a law which is centered, with variance 1 and
with third cumulant equal to

−168836

44385

√
70

269
' −1.94044;

in particular, this distribution is not the Gaussian distribution.

7 A statistical test for the symmetry of a compact Riemannian
manifold

In this section, as an application of our results and in particular of the concentration
inequality 5.8, we construct a statistical test for the symmetry of a compact manifold.

Model. We consider a compact Riemannian manifold X ; the distance between points of
X is the geodesic distance, and the compactness ensures that for any pair of points (x, y)

in X , there exists a geodesic curve of minimal length connecting x to y (see for instance
[Jos11, Section 1.5]; this is even true for complete Riemannian manifolds, see [Hel78,
Chapter I, Theorem 10.4]). The space X is equipped with the probability measure µ
proportional to the Lebesgue measure induced by the Riemannian volume form ω of the
manifold. An isometry of X always preserves the Riemannian structure and therefore
the probability measure µ (this result is due to Myers and Steenrod [MS39]; see also
[Hel78, Chapter I, Theorem 11.1]). In other words, Isomp(X ) = Isom(X ). This group
of isometries endowed with the compact-open topology is always a compact Lie group,
such that the action G×X → X is a smooth map; see [Kob72, Chapter II, Theorems 1.1
and 1.2]. Therefore, the following assertions are equivalent:

1. The Riemannian manifold X is a compact homogeneous space (in the sense of the
fourth item of Theorem 5.1).

2. The group of isometries G = Isom(X ) acts transitively on X .

Our objective is to construct a statistical test for these conditions.

Hypotheses and statistics. The hypotheses of our test are:

null hypothesis H0 : the compact manifold X is homogeneous;

alternative hypothesis H1 : the compact manifold X is not homogeneous.

The allowed observations of X are the following:

• we can take independent random points x1, x2, . . . , xn on X , all these points being
chosen according to the Lebesgue measure µ;

• and we can measure all their inter-distances d(xi, xj), 1 ≤ i, j ≤ n.

Let us fix a function ϕ ∈ Cb(R(p2)) corresponding to a polynomial observable Φ = Φp,ϕ of
mm-spaces. A convenient choice is

p = 2 ; ϕ(d) = min(1, d),

but other observables might yield more powerful tests; we shall discuss this in a moment.
By Theorem 5.7, the random variable Φ(Xn) = 1

np

∑n
i1,...,ip=1 ϕ(d(xi1 , . . . , xip)) has

fluctuations of order 1
n under the hypothesis H0, so a convenient statistics for testing

this hypothesis would be n |Φ(Xn) − Φ(X )|. As we do not know the value of Φ(X ),
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we shall proceed a bit differently. Consider an independent copy X ′
n of the discrete

approximation of our mm-space X , constructed from random points x′1, x
′
2, . . . , x

′
n which

are again independent, independent from x1, . . . , xn, and distributed on X according to
the normalised Lebesgue measure µ. By the triangular inequality, the statistics

Zn = n |Φ(Xn)− Φ(X ′
n)| (7.1)

is smaller than the sum of two independent random variables distributed like n |Φ(Xn)−
Φ(X )|, so given a large threshold tα, we should again have Zn ≤ tα with large probability
under H0. We therefore choose Zn as our statistics of test.

Estimates of probabilities and choice of the threshold. By Proposition 5.8, under
the hypothesis of symmetry H0, if A is an upper bound on ‖ϕ‖∞ (A = 1 if we consider
the test function ϕ(d) = min(1, d)), then

PH0

[
n |Φ(Xn)− Φ(X )| ≥ 2Ap2

e
x

]
≤ 2 exp

(
log(1 + x)− x

e2

)
.

Notice that this is a non-asymptotic estimate, valid for any n ≥ 1. It implies:

PH0

[
Zn ≥

4Ap2

e
x

]
= PH0

[
n |Φ(Xn)− Φ(X ′

n)| ≥ 4Ap2

e
x

]
≤ PH0

[
n |Φ(Xn)− Φ(X )| ≥ 2Ap2

e
x

]
+ PH0

[
n |Φ(X ′

n)− Φ(X )| ≥ 2Ap2

e
x

]
≤ 4 exp

(
log(1 + x)− x

e2

)
= F (x).

The upper bound F (x) is a strictly decreasing function of x with limx→∞ F (x) = 0.
Therefore, for every significance level α ∈ (0, 1), there exists a unique xα ∈ R+ with
F (xα) = α.

0

1

2

3

4

0 25 50 75 100

F (x)

x
α

xα

We set

tα =
4Ap2

e
xα =

4Ap2

e
F−1(α). (7.2)

Proposition 7.1. For any n ≥ 1 and any significance level α ∈ (0, 1), the statistics Zn
given by Equation (7.1) and the threshold tα given by Equation (7.2) yield a test for the
hypothesis of symmetry with level smaller than α:

PH0
[Zn ≥ tα] ≤ α.
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Power of the test and sample size. Of course, the proposition above is only useful
if we can also estimate the probability PH1

[Zn < tα] of the second kind of error of this
procedure of testing, and make it reasonably small. To this purpose, we need to be a bit
more precise on the alternative hypothesis H1 (if X is very close to being homogeneous,
then the probability of the second kind of error will be large). A typical example
which is solvable is the following. Suppose that we observe a manifold X = (X , d, µ)

isometric to the circle R/Z, and where dµ
dx = f(x) is some unknown density function with∫ 1

0
f(x) dx = 1. In this case, the hypotheses of our test for symmetry can be taken as

follows:

H0 : f is constant (and the space is homogeneous);

H1(ε) : f(x) dx is at total variation distance larger than ε from dx

for some ε > 0.
More generally, we can take for alternative hypothesis:

H ′1 : X belongs to a specific class of non-homogeneous compact manifolds
for which σ2(ϕ,X ) can be computed.

Then, we can follow the steps below in order to compute the power of our test:

1. Compute a lower bound σ2
0 on σ2(ϕ,X ) for X described by H ′1. We assume that

this lower bound is strictly positive (under H0, σ2(ϕ,X ) = 0 for any continuous
bounded function ϕ).

2. By Theorem 4.4,
√
n (Φ(Xn)− Φ(X )) converges to a centered normal distribution

with variance p2 σ2(ϕ,X ), so

Zn√
n
⇀n→∞ |N (0, 2p2 σ2(ϕ,X ))|.

Moreover, the Kolmogorov distance between these two distributions is a

O

(
A3p

σ3(ϕ,X )
√
n

)
,

with a universal constant C in the O(·) (an explicit value of C can be computed
readily from [FMN19, Corollary 30]). Therefore,

P[Zn < tα] = P

[
Zn√
n
≤ tα√

n

]
≤ CA3p

σ3(ϕ,X )
√
n

+ P

[
|N (0, 2p2 σ2(ϕ,X ))| ≤ tα√

n

]
≤ CA3p

σ3(ϕ,X )
√
n

+
C ′ApF−1(α)

σ(ϕ,X )
√
n

with C ′ = 4
e
√
π

.

3. By combining the two items above, we obtain:

PH′1 [Zn < tα] ≤
(
A3

σ3
0

+
A

σ0
F−1(α)

)
Kp√
n

for some universal constant K.
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So, we conclude:

Proposition 7.2. Fix a significance level α and a threshold tα as in Proposition 7.1.
There exists a universal constant K such that the test for symmetry H0/H

′
1 has power

larger than 1− β, with

β =

(
A3

σ3
0

+
A

σ0
F−1(α)

)
Kp√
n
,

and where A = ‖ϕ‖∞ and σ2
0 is a lower bound on σ2(ϕ,X ) under the alternative

hypothesis H ′1.

Therefore, once the observable ϕ and the significance level α of the test for symmetry
have been chosen, if one has a non-zero lower bound on the variances σ2(ϕ,X ) under
H ′1, then one can find a sample size n in order to obtain an error of the second kind as
small as wanted.

Remark 7.3. Suppose that p = 2 and that ϕ(d) = min(A, d) (standard choice of observ-
able), where A is an a priori upper bound on the diameter of the space X to which we
want to apply the test for symmetry. Then,

σ2(ϕ,X ) =

∫
X 3

d(x, y)d(y, z)µ⊗3(dx dy dz)−
(∫

X 2

d(x, y)µ⊗2(dx dy)

)2

.

Remark 7.4. One might need to choose ϕ and the observable Φp,ϕ in order to ensure
that one has under H ′1 a non-zero lower bound σ2

0 . Indeed, for a given non-homogeneous
space X , certain functions ϕ might give “by chance” a vanishing parameter σ2(ϕ,X ).
Consequently, one might have to take another observable than the one previously
presented as the standard choice.
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