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A note on recurrence of the Vertex reinforced jump
process and fractional moments localization*
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Abstract

We give a simple proof for recurrence of vertex reinforced jump process on Z¢, under
strong reinforcement. Moreover, we show how the previous result implies that linearly
edge-reinforced random walk on Z? is recurrent for strong reinforcement. Finally,
we prove that the H??) model on Z? localizes at strong disorder. Even though these
results are well-known, we propose a unified approach, which also has the advantage
to provide shorter proofs, and relies on estimating fractional moments, introduced by
Aizenman and Molchanov.
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1 Introduction

The Vertex Reinforced Jump Process (VR]JP) is a continuous time self-interacting
process. It was first studied by Davis and Volkov ([DV02] and [DV04]) on Z. See also
[Col09, BS10] and [CZ18] for a study of VRJP on trees, and [RN18] for super-linear
VRJP. Recent studies [ST15a] revealed a close relation between VRJP and linearly edge
reinforced random walks (ERRW, introduced by Coppersmith and Diaconis [CD87]).
Moreover, VRJP is also related to a supersymmetric hyperbolic sigma model (introduced
by Zirnbauer [Zir91]), called the H??)-model, studied in [DS10, DSZ10]. The latter is a
toy model for the study of Anderson transition. The paper [STZ17] introduced a random
operator which is naturally related to these objects.

In [ST15a] and [ACK14], were given two different proofs of the fact that the ERRW are
recurrent under strong reinforcement on Z?. These were long-standing open problems
in the field. We will give yet an alternative short proof, using a unifying approach built
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VRJP and fractional moment localization

on ideas from [AM93]. In particular, we use the fact that ERRW is a time change of
VRJP with random i.i.d. conductance to prove recurrence of ERRW on Z¢ when the
reinforcement is strong enough.

2 The model

We define VRJP as follows. Let G = (V,E,W,60) be a non-directed locally finite
weighted graph, where to each edge e € F is assigned an initial weight W, > 0 and
to each vertex ¢ is assigned an initial weight 6; > 0. Moreover, we assume that G has
self-loops, i.e. edges connecting a vertex to itself; each pair of vertices in V' can be joined
by at most one edge, and two vertices i, j are neighbors, denoted by ¢ ~ j, if they are
joined by an edge. In this paper, we mainly focus on Z¢ and its sub-graphs, with general
weights, possibly random. Denote by W = (W.).cr and 6 = (6;),cv. For i ~ j we use the
notation W; ; for the weight on the edge connecting ¢ and j. If 7 and j are not neighbors,
we set W, ; = 0. VRJP(W,0) on G is a continuous time process that takes values on V.
This process is denoted by Y = (Y}),>0 and starts at Y, = ip € V, where iy € V is a
designated vertex. Conditionally on the past of Y up to time ¢, and conditionally to Y; = 1,
this process jumps at time ¢ towards j at rate

t
Wiijj(t) Where LJ(t) = aj +/ ]lyu:jdu.
0

In particular, VRJP can only jump among adjacent vertices. It is shown in [ST15a] that
after a suitable time change, the VRJP is a mixture of Markov jump processes. Section 3
contains a descriptions of the mixing measure and its very useful properties.

Next, we define the Linearly Edge-Reinforced Random Walk (ERRW). Fix a collection
a = (a¢)ecp of positive real numbers, they are called the initial weights of ERRW. It is a
discrete time process, which takes values on V, and at each step jumps between nearest
neighbors, updating the weights on the edges as follows. Initially to each edge e is
assigned a weight a.. Each time the process traverses an edge, the weight of that edge
is increased by 1. The probability to traverse a given edge at a given time is proportional
to the weight of that edge at that time. We denote ERRW(a) for such a process.

We use the notation VRJP(1W) to denote VRJP with edge weights W and vertex weights
0; = 1, that is VRJP(W, 1). It turns out that, as a consequence of Theorem C, or Corollary
1 of [STZ17], the two models VRJP(W, §) and VRJP(W*, 1) (where W/, = W ;0,0;) behave
the same in terms of recurrence/transience. Moreover, most of our results on infinite
graphs assume some ergodicity of the model w.r.t. Z“-translation, that is, for simplicity,
we frequently consider constant W; ; = W and ¢; =  on Z, in such case we also have
equivalence among the models VRJP(W, #), VRJP(W?, 1) and VRJP(1, vW6). In particular,
considering VRJP(W) is almost as general as considering VRJP(W, 6).

Theorem 2.1. 1. Consider a collection of independent positive random variables
W = {W.: e € E}. Consider the process Y defined as follows. Conditionally on W,
Y is VRJP(W). There exists W, € (0, 0] such that if

sup b ['W;/“] <Wy,

ecF

then Y is recurrent!.

2. Consider ERRW(a) on Z4, with d > 1. There exists a(d) € (0, 00) such that ERRW(a)
satisfying sup,cp, @ < @(d) is recurrent.

1By recurrent we mean that the process visit its starting position infinitely often almost surely.
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Remark 2.2. In our proof, we provide bounds for W . More precisely,

_ JT
>
Waz I(1/4)23/4d

Corollary 2.3. Consider VRJP(W) on Z?, where W = (W,).ck is a collection of de-
terministic weights and E is the edge set of Z¢. Let W, be as in Theorem 2.1. If
Supeep We < W, then the VRJP(W) is recurrent.

Moreover, we were able to apply our proof to show localization of a random
Schrodinger operator H () (c.f. definition in Theorem A) connected both to the H (212)
model (introduced in [Zir91]) and VRJP(1, §). It is shown in Theorem 1 of [DS10] that,
the Green function of H () at energy level 0 (ground state) decays exponentially when 6
is small enough. The following theorem is slightly more general, as we establish, when 6
is small enough, the exponential decay for the Green function at all energy levels.

Theorem 2.4. Consider the graph Z? where to each vertex is assigned weight # > 0, and
to each edge weight 1. In this context, denote the operator introduced in Definition 3.3
by Hy with n = 0. There exists 6y, which depends on d only, such that if § < 6, we
have that the operator Hy is localized, i.e. has a.s. a complete set of orthonormal
eigenfunctions, which decay exponentially.

The first part of Theorem 2.1 clearly implies Corollary 2.3. Moreover, Part 2) of
Theorem 2.1 is a corollary of part 1). In fact, it relies on a result of Sabot and Tarres
which can be described as follows. If Y is the process defined in Theorem 2.1 part 1),
where W = (W.).cg are independent random variables and Gamma(a,,1) distributed;
then the skeleton of Y (that is, the discrete time process associated to Y) equals in
distribution to ERRW(a) (proof can be found in Section 4). Hence, we only need to prove
Theorem 2.1 part 1).

The rest of the paper is organized as follows: In Section 3 we will introduce a family of
mixing measures connected with the local times of VRJP and derive some of its properties
for later use. In Section 4, as a preparation, we recall the fact that VRJP is a mixture
of Markov jump processes, and to be self-contained, we provide proofs. Section 5 is
devoted to the proof of recurrence in strong reinforcement, i.e. Theorem 2.1 part 1).
Finally, in Section 6, we show that, the operator related to the VRJP is localized in strong
disorder, as an application of [AM93].

3 The multivariate inverse Gaussian distribution

The aim of this section is to introduce and study the properties of a particular random
potential of some Schrodinger operators on finite weighted graphs. This operator is then
extended to infinite graphs, in particular Z?.

Consider a finite weighted graph G = (V, E, W, 0). For notational reason we identify
V with the set {1,..., N}. Recall that to each unordered pair of vertices {i, j} we assign
a non-negative weight W, ;, which is strictly positive if and only if i ~ j, and denote
W = (W.)eeck for short. Moreover, to each vertex i € V is assigned a real number 6; > 0,
and 0 = (ei)iev.

Definition 3.1. A Schrodinger operator Hg on the finite weighted graph G with potential
28 € RN is an N x N matrix with the following entries (1 <i,j5 < N)

2Bi i=J
Wiy i

For any 3 € RY, let [3] be the diagonal matrix where the i-entry of the diagonal is 3;,
for 1 <i < N. If we denote by Ay the weighted incidence matrix, whose entries are

Hy(i,j) = { (3.1)
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(Wi j)ijev (recall that W, ; = 0), we have Hg = 2[3] — Ay,. We call 23 the potential, and
even though this choice might differ with part of the literature, we aim to be consistent
with the terminology used in few papers that studied VRJP, e.g. in [STZ17, SZ19]. A main
ingredient in the present paper is a random version of Hg, with a particular random
potential 8 defined by the following theorem.

The proof of the following theorem is due to Letac and Jacek [LW17] and can also be
found in [SZ19]. For the sake of completeness, we included a proof in the Appendix.

Theorem A. Let H = Hg be defined as in (3.1). If 6 = (01,...,0x) and n = (01,...,MN)
are vectors with real positive coordinates, then

[Li0:  —i(co.m0)+(n1n)—200m)) 1
AL =50, ; M) ——— || dB;
H>0 (7T/2)N mll;‘[/

where (-, -) is the usual scalar product of R, (9, H0) = 3~ , ;. H(i,)0:6;, and {H > 0}
is the collection of 3 such that Hy is positive definite. In particular, the integrand is a
probability density and defines the distribution of an /N-dimensional random vector f3.

—1, (3.2)

The density appearing in the integrand in (3.2) is a multidimensional version of the
inverse Gaussian distribution. More precisely, (3.2) is a generalization of the well-known
fact, that for any a,b > 0

a —%(a2z+b2/z—2ab)i —

T \/de 1. (3.3)
Remark 3.2. The density appearing in Theorem A has a rather long history and also
have several names. First of all, it is a generalization of both the Gamma distribution
and the Inverse Gaussian (IG) distribution. It is related to the magic formula proposed
in [CD87], which is then discussed in [DR06, KR0O0O, MORO08]. In the meantime, it also
appears as a hyperbolic supersymmetric measure in [Zir91, DSZ10, DS10], which is
then connected to the magic formula by Sabot and Tarres in [ST15a]. It is introduced in
the above form (with n = 0) in [STZ17] and with n # 0 in [SZ19, DMR17a, LW17].
Definition 3.3. We say that 3 is v"V-%" distributed if its density is defined by (3.2). Let
B be v distributed, and Hz defined as in (3.1). Then Hp is a random Schrédinger
operator (as its potential is random) associated to the weighted graph G. Sometimes, we
denote this operator by Hyy ¢, to emphasize its dependency on the parameters.

For a subset V; of V, let us denote Hy, v, the sub-matrix (H(¢,j)): jev; and 8y, is the
sub-vector (6;);cv,, with similarly for the sub-vector ny,. Let G = H~!. Notice H > 0,
a.s. and it is an M matrix (see [PB74]). Therefore the entries of GG are all positive, a.s..
From the proof of Theorem A, we deduce the following.

Proposition 3.4. Let 3 be a random variable with distribution v"V-%7. Let V; = V'\ {io}
and Vo = {ip}. The density of the marginal (8;);cv, is

[Vil/2 )
<2> e —32({(0vy Hvy vy 0vy )+ (v .G Vi ) =2(0vy vy ) _—Hvi v >0 HV1 v, >0 H 0:d;,

™ \/detHvl Vijev,

where 7y, = ny, + Wy, v\v,0v\v, and GY' = (Hy, v,)~'. The random variable j3;, can be
represented as

Bi0:7+%< i, GV >

where the density of v, conditionally to (5;):cv,, equals to

2 1:2 .9 5 1
e iV 33 Tig Hioio _—_ gy (3.4)

L —
1ol ——
V20T NG
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where
Tio = > > Wig i GV (5. k) + i (3.5)
jrio kEVL
Moreover,
1 1 G(io, 7) 1
= Biy — 5 (Wip.. V" Wi, ) = Biy — 5 Wiy j oo = : 3.6
7= 2< o > fo=3 2 7 Glio,i0)  2Glio, i) G0

Jijr~io

and v is independent of (8;);cv,. In particular, if = 0 then v is Gamma (% ) dis-

10

tributed, with mean 67 /2.
Proof. This is a corollary of the proof of Theorem A, given in the Appendix. It is a

direct application of the fact that the density factorize into product of (7.5) and (7.6).
Equation (3.6) follows from definition of Green function, that is, for any + € V, we have

28,Gio,i) — Y Wi ;G(io, ) = Liziy- (3.7)

Jig~i

Notice that by considering elements j € V; in (3.7), one gets

G\ W, = H'W, Glio, )

i, — AT - 3.8
’ G(loﬂ/o) ( )

O

The measures %" satisfy useful properties, or more specifically they enjoy some
symmetries. For example, we can differentiate with respect to the parameters and
obtain useful identities. Identities of this kind are called Ward identities, we list two of
them, which will be useful later. For other Ward identities, one can check, for example,
[DMR17a, DMR17b, DSZ10, SZ19, MRT16, BHS18]. Recall that we denote by (,-) the
usual inner product for vectors in R%. Moreover, for any continuous function g: R — R™,
we define

GO = [ 9B ().

Remark 3.5. For Proposition 3.4, it is possible to prove that v is Gamma distributed via
Laplace transform. Assume that 3 is v":%¥ distributed. Let k > 0, define (1;);cv by ni, =
k and n; = 0 for i # iy, by (3.2), we see that the Laplace transform of % = H~(ig, o)

equals
<e—%k2 *1(io,io)> — oKty
W,0,0

This characterize the distribution of % and entails that v is Gamma distributed.

Corollary 3.6 (Ward identities). Consider a finite weighted graph G, let 3 be p":%1
distributed. For any |V|-dimensional vector k, such that k; > 0 for all : € V, we have

<€7 >iev kiﬁi> <77 VE4602— 9> Z{Z jree Wi i (V (07 +K:) (03 +k;)—0:05)
W.6.n i€V V 92 + k

(3.9)
. . i ki
Fix I # io, 1et 2(k, W, 8) = G2 exp (5(itssy = Siey kifhi ) then
Hz;éz 0;
<E(k,W,B)> = T _exp | - W,,j( (ki + 62)(k; + 0%) _wj)
w0.0 [l Vi +92 {l%E \/ J
(3.10)
Proof. See Appendix. O
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4 The VRJP is a random walk in random environment

Recall that we use Y = (Y;);>0 to denote VRJP(W) defined in the introduction.
In [ST15a], Sabot and Tarres introduced the following time change to the VR]JP:

Zt = YDfl(t), with t € [O, OO)7
where D(s) is the following increasing random time change
D(s) =Y (Li(s)—07) =) Si(s) (4.1)
1% eV

in particular, S;(s) = [ 1z,—idu is the local time of Z = (Z;). This section is devoted to
the study of Z, Wthh turns out to be a mixture of Markov jump processes. By definition,
conditionally on {Z,,s <t, Z; =i}, at time ¢, Z jumps from i to j at rate

1 S;(t) + 62
o 292 s,
2\ s, (t)+6;
The following theorem is first proved in [ST15a], the short proof we provided here
is inspired by [ST15b, STZ17] and [Zen16], it is written in the context of the measure
W01, to provide a self-contained treatise of recurrence of the ERRW.

Theorem B. Consider a finite weighted graph G = (V,E,W,0). Let Z be the time
changed VR]JP starting from iy € V defined by (4.1). We have that Z is a mixture of
Markov jump processes.

More precisely, if H = Hy g0 with 6 > 0, is the random operator associated to G and
introduced in Definition 3.3. Denote by P the distribution of G = H~!. Define, for any
collection of positive real numbers (g(io,j));jev, @ Markov jump process (X, P9). For
which under the measure P9 (called the quenched measure) the process X has Markov

jump rates VVZ i g(j‘;’f ) from 7 to j. Then the annealed law of X, defined by

Wi i L;(t)dL WU\/S +02d\/S )+ 62 =

p() = [ P/()P(dg)
equals to the law of Z. Also denote by It the associated expectation.

Proof. By (3.7), under the quenched measure P9, the process X has sojourn time rate at

1 € V equal to
ZO»J) Bi i # g
I R P

——— 1 =1
Jijri 2g(i0,i0) 0

Given a trajectory
0 X0,t1) = 105 X[t1,t0) =15 "y X[tn_1,tn) = In—15 X[tn,t) = In,

let S;(t) be the local time of X up to time ¢. The quenched trajectory density (see
Definition 4 of [Zen16]) of X equals

n

1 g(iO Zn S (t)
X )
= Wi 1 .7 E Si(t — .
fquenched(g) kl;[l <2 klwk) g(lo, 'LO ( = 107 ZO)
By the Ward identity (3.10), the annealed trajectory density of X is

f ﬁ ( g . ) Hz i#ig 0;
annealed ] k—1,Tk H Sz(t) +922

= it itin

xexp | = 3 Wiy (\/(Si(0) +62)(S5(0) + 63) — 6,0;)

igc i
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On the other hand, the trajectory density of Z equals (we abuse notation and denote by
S;(t) the local time of Z, note also S, (tx) = Si, (tk—1))

ze v 17 (1 Sy (tr—1) + 03, S;(v) + 62
f (U)_H <2mk17ik\/sik_l(tk)_’_92 - exp / Z Zy,j wdv

k=1 Tk—1 Jij~Zy
. 1 i£q 01 S v) + 92
:H <2Wik1,ik> H’;é g = - €xp / Z WZU j ) 92 ———dv
k=1 Hi;ﬁin Si(t) + 0; Gij~Zy z,(v) +
Now since
d 2 5 S; (t) + 62
| 2 W (s -os) )= 3 e\ s
1,):1~] Jijr~Zy
we conclude that f#(0) = f caeq(0), hence the law of X and Z are equal. O

The following corollary is immediate.

Corollary 4.1. Fix a finite weighted graph G. Let Hz the random operator associated to
G (as per Definition 3.3) and G = H[;l. The discrete time process (Y,,) associated to the
VRJP is a random conductance model, where the conductance on the edge {i,j} € E is
Cs.; = W, ;G(ig,1)G (g, 7).

5 Recurrence with strong reinforcement on Z¢

We can actually show that the random potential 5 can be defined on a infinite graph,
see Proposition 1 of [SZ19] for the case n = 0.
Theorem C. One can extend to v"*%7 to the entire Z<. If (3;);cza is v"V'%7 distributed,
its law is characterized by the Laplace transform of its finite dimensional marginals: for
any finite collection of vertices V C Z¢,

<€_ Ziev k757> =c Ziev i ( Vv ki+9$_9i)_2{i,j}eg(z;d) Wi,j( (9$+ki)(9?+k]‘)_9iej)

w,0,n
(5.1)

g \/02+k

where (k;);cv is such that k; > 0, and conventionally k;, = 0 if ¢ ¢ V, in particular, the
Sum »y; ;1ep(ze) in the exponent is a finite sum.

Proof. This is a direct application of the Kolmogorov extension theorem, and the fact
that by (3.9), 8; and j3; are independent if ¢ » j. O

Remark 5.1. In particular, if 8 is vW'¢0 distributed, then 623 = (628;);cy is v"W’1:0
distributed, where Wﬁ ;=W j0:0;. Moreover, in the case where W and 6 are constant, if
B is vW1:0 distributed, then 8/W is v1-VW:0 distributed.

In the sequel, we focus on the graph Z<. In order to have homogeneity, we assume
that ¢; and W; ; are constant, equals to § and W respectively. Define the random operator
associated to Z?, by Definition 3.1, it is of the form Hz = 2[3] — Ay, where 3 is v"0:0
distributed, as in Theorem C. By setting 5; =0, Vj # ¢ in (5.1), we see that 1/(24;) is an

1
IG (Z rjmi Wi j05/0; ) ,0? ) distributed random variable, in particular, the variance of

B; is (since W; ; and 6; are constant):

) ) > Wii0; 14+ Wd
Bhwoo = Bidwao =55+ = 4gs — = g2

EJP 26 (2021), paper 63. https://www.imstat.org/ejp
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To conjugate our language to the one that is usually used in the context of random
Schrodinger operator, we have to normalize Hg in such a way that the kinetic energy is
associated to the unweighted Laplacian A (that is, with entry 1 or 0 depending whether
an edge is present), so we would rather consider Hgz/W instead, and then the coupling
constant is the variance of the potential 23/W, that is

2 2d
e e
In particular, either 6 small or W small will entail large variance, i.e. strong disorder,
and we would expect localization.

For a finite box A of Z?, consider the finite weighted graph induced by the wired
boundary condition, denoted A, and defined as follows. Let A = (V, E,W,0). The set of
vertices of A, denoted by VU{d} where 0 is an additional vertex. The graph A is obtained
from A by adding edges connecting ¢ to each of the vertices on the boundary, which in
turn is defined as {i: 3j ~ i,j ¢ V}. Moreover

Wsi= > Wi, (5.2)
Jijr~ij@v
and 05 = 6.

Lemma 5.2. For any finite graph G = (V, E), in particular, finite boxes of Z¢, if H =
Hyy g o is the associated operator, with n = 0. Then, for any ip € V

PRI I(1/4)
<H (i, %) /4>W,9,0 = 21/4\/%\/6.

Note that this bound is completely independent of W.

Proof. We recall that H > 0 which implies H ! (ig, i) > 0. By Corollary 3.4, 1/(2H ~!(io,
ip)) is a Gamma variable with parameters (3, /), Hence

1/4

<(2H71(Z’0,i0) =

21
)5
\/é O

From now on, we denote by x — y the collection of paths connecting z to y for any
pair of vertices x and y. Moreover, for any connected set A C V, containing x,y, denote
by (z — y, A) the collection of paths connecting z to y and whose vertices belong to A
only. For any path o, we denote by |o] its length.

Proposition 5.3 (Random walk expansion). Let Hg be a random Schrodinger operator
on a finite graph, and let G be the relative Green function, i.e. G = H 5 Lleto:z—y

be a finite admissible path connecting z,y € V, thatis, 0 = (01 = z,02,...,0/,| = ¥),
define
lo|—1 lo|
= H Wo'k70'k+1’ (25)0 = H(2ﬁ0k)a
k=1 k=1
then we have
W,
Glz,y) = Y 28),
oEr—Y g
EJP 26 (2021), paper 63. https://www.imstat.org/ejp
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Figure 1: A path is decomposed into its loop-erased path along with dangling cycles.

Proof. Let D be the diagonal matrix with coefficient 23;, we have
D V2HD Y2 =1 - D V2AyD V2?2 .= - A.
Since H > 0 a.s., we have, for any vector ¢ € RY, since D'/2 is self-adjoint,
(Hip,p) = (DV2(I = )Y, 0) = (I - A)D2p, D) > 0.

Let ¢y = D2, we have |[1)||? > (Ay,) for all ¢, therefore, the largest real positive
eigenvalue of A is less than one. Recall that a.s. 5; > 0 for all i; by definition of A and
the fact that we consider a connected graph, we have that a.s. A is an irreducible matrix
with non-negative coefficients. By the Perron-Frobenius theorem, the largest eigenvalue
in absolute value, i.e. the Perron root of A, denoted by r(A), is real and positive. From
the reasoning above, we have that r(A) < 1. As a consequence, ||A|l,, <1. Next, we
write

G = H—l _ D—I/Q(I_A)—lD—l/Q
=D /2 (Z A’“) D Y2=p! Z(AWD*)’@.
k=0 k=0

The above series convergence holds in operator norm, in particular, also holds in the
weak operator topology, which is the random walk expansion. O

Proof of Theorem 2.1 part 1). By Remark 5.1, it suffice to deal with the case § = 1 and
(We)eer random and independent. Set

W' = sup E[WM4 < W
€

We will combine the random walk expansion and the fact that diagonal Green function
is a Gamma variable (which’s distribution is independent of the graph G, and, as a
consequence, all the bounds below are uniform on the sub-graphs on which the self
avoiding paths live, except that the number of such paths depend on the graph). Notice
that the collection of paths ¢ : 0 — z, can be decomposed as follows.

As shown in Figure 1, the collection of paths from z to y, can be seen as the collection
of self-avoiding paths from z to y (denoted by 7 in the figure) along with the collection of
paths from 7; to 7; for all ¢ (which are the loops).

We can therefore factorize the random walk expansion according to this path cut,
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and write
W,
GO,z)= Y =
occl0—x (2ﬁ)g
7\ W\
2 ( 2 ), ) s 2 @, | Mt Wt
T€0=>z \mHED—0 o w1 €(T1—=711,V\{70}) i
> o
ﬂkE(Tk*)Tk,V\{T(),H.,Tk_l}) (2/8)7rk
Notice that (ZWOEO 0 (VQVB’J)’;) = (G(0,0), it is distributed like the reciprocal of a Gamma

random variable, and it is independent of the rest. Unfortunately, the reciprocal of
Gamma random variable do not have first moment, thus we compute a fractional moment
instead, and use the following bound which holds for any a4, ...,a, > 0,

1/4

Hence, if we denote C' = IE(G(0,0)'/*), which is a constant, and independent of (Wm) by
Lemma 5.2. We have

EGO,2)/] < 3 E[(G(0,0)Wlhb( 3 (;?): )Wlmﬁlk,

let1
T: 0=z w1 =T EV\{70}

. > o))

T T =T EV\{7T0,...,Tk—1}

W |~ —
=w'c Z E Z (25) le,la e VVlk'vlkJrl
T:0=z m1:T1—=T1EV\{10} ™
. 1/4
" 2 o5
ﬂk:Tk—)TkGV\{To ..... Tk—l} Tk

Notice that

w. w.
Z 1 S Z il = G(Tl,Tl) (53)
w11 =11 EV\{70} (2B)7r1 (ZB)W

T:T1—>T1

and the rest inside the expectation is independent of G(71,71). Hence continuing our
inequality we have

W, =
E[G(0,2)/*] < (W'C)* Y E 2. @8, | Mo
T:0=>x mo:To—=T2EV\{10,71} 2
. 1/4
N Wx
Wlk,lk+1 Z (2B)k )
Tk

Tr:Tk—=TREV\{T0,....,Th—1}

EJP 26 (2021), paper 63. https://www.imstat.org/ejp
Page 10/16


https://doi.org/10.1214/21-EJP609
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

VRJP and fractional moment localization

recursively we get, at the end

E[G(O,.’)ﬁ)l/ﬂ < Z (W’C)\ﬂ < Z Z (W/C)k < Z (2d)k(W/C)k < e—n|1‘\
T:0=>x k>|z| 7:0=z,|T|=k k>|x|

(5.4)

where we have used the fact that there is at most (2d)" self avoiding paths on a finite
sub graph of Z< of length &, and have chosen W’ such that (2d)(W'C) < 1.

Finally, either using a tightness argument as in [MR09], or applying directly Theorem
1.(iii) in [SZ19], VRJP and ERRW are random walk in random conductance, and (5.4)
implies exponential decay of the conductance, therefore, a.s. sum of the conductance
are finite, which in turn implies that the process is positively recurrent. O

6 Pure point spectrum: proof Theorem 2.4

Since 8 = (B;);ev (z2) be v*? distributed, by the discussion after Remark 5.1, Hy is
in the right scaling. We use a result of [AM93], in particular, we recall the following
definition:

Definition 6.1. A probability measure v on R is said to be 7-regular for some parameter
7 € (0, 1) if there exists finite constants C, K > 0 such that

vz —06,240]) <C§v(z — K,z + K)),

forall§ € (0,1) and 2 € R.

According to Theorem 3.1 of [AM93] it suffices for our purpose to show that, the
conditional density of single site potential is r-regular for some 7 > 0. Let G,, = (V,,, E,,)
be the cube of volume 29n? centered at the origin. Denote by dV;, the boundary of this
cube, i.e. the set of vertices y ¢ V,, which are neighbors to at least one element of V,,. By
(5.1), the marginal distribution (3;);cy is v*%7 distributed, where (note that W = 1)

= Z 0=0-card{j:j~ijcaV,}=0mn").
i €OV,

By Remark 5.1 and the proof of Theorem 2.1 part 1), we can choose 6, such that if we
consider VRJP(1, §), with 6 < 6, then

E[(G"(0,2))/4] < e~ "l#l, (6.1)

for some x > 0. In the sequel assume § < 6,. The conditional density of 5y given
(Bi)iev\{o} is given by (3.4), with iy = 0. Using (3.5) and similar argument as in (5.3)
that, (6.1) holds with j, k instead of 0, z, we have, a.s.

1o = Z Z GA%L\{O}(.]7]€)77]€ < O(nd—1>e—nn n—00 0.
J: j~0keV,

Note that, recall the definition of 7, in the above sum, only those k s.t. that is connected
to at least one vertex outside V,, are non zero, and the number of such k is O(n9~1).
Define
GVn . .
Do = lim G0, g)
n—+4oo GV (ZO, lg)

J:Ja~
Vi (5. 4
Note that by random walk expansion, % is the sum over weight on paths in V,,,
start from ¢y that touch j without returning to ¢¢, this is an increasing function of V,,, as
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the path weights are positive. In particular, there is no problem in exchanging limit and
expectation. Notice that Dy < oo a.s. In fact, using Cauchy-Schwartz

( Glio, 5) )”8
G (ig, io)

The finiteness of the expression above is a consequence of (6.1) and the fact that v (see
equation (3.6)) is Gamma distributed with parameter independent of the sub graph V,,.

It follows that, by Proposition 3.4, and taking V 1 Z¢, the density of 5, conditioned on
(Bi)iev(zay {0y equals

E < B[G(io, )4 V2E[G (i0, i0) " 4? < c0.

exp (—(u— Do)6?/2) 1,>p, du. (6.2)

1 0
gD, (u) := N Vi—D,
1

We show that gp,(u)du is 5-regular (c.f. p256 of [AM93]), note that, gp, vanish in
(=00, Dy), and lim, p, gp,(u) = oo, and gp, is decreasing in (Dy,c0). Hence gp, is
%-regular (thanks to monotonicity and note that 0 < § < 1) by setting K = 1,C =1 1in
Definition 6.1, if z is away from Dy and ¢ is such that z — § > Dg. Therefore, it suffices to
check Equation (3.1) of [AM93] at the singularity Dy, i.e., to check v([Dy,d]) < C§. We
can explicitly compute that,

Pote _ _ Gm I e _ 1 (9\/5)3 2
/DO gp, (w)du = Exf(0/x/2) = ; \/—27_6 dt = Wors <9\/E— 3 +o(z )) .

Therefore, the conditional single site density (6.2) is %-regular. Thus, by Theorem 3.1 of
[AM93], there exists a 6, such that for 6 < 6y, the operator Hy on Z? is localized, which
proves Theorem 2.4.

7 Appendix A: Proof of Theorem A
Proof. Recall that V ={1,..., N}. We partition V into V' = V; U V5. After a relabelling,
we can pick V; ={1,..., N’} and Vo, = {N’ +1,..., N}. The matrix H can be written in

block form
Hy, v, Wy V)
H = 1 1z (7.1)
<WV2,V1 HV2,V2

where the top left block Hy, v, is an N’ x N’ matrix whose entries are (H; ;)i jev,. The
other blocks are defined implicitly by the identity (7.1). The Schur decomposition of the
right-hand side of (7.1) implies

H— IV1 0 thvl 0 IV1 —G‘Vll/V\/hv2
—\_ Vi Vs
WiwGV L)\ 0 & 0 Iy,

where Iy, (resp. Iy,) is the identity matrix of dimension N’ (resp. N — N’). Moreover,
GVI = (HV17V1)_17 HVZ = HV27V2 - WV21V1GV1WV17V27 évz = (HVg)—l.

The inverse of H can be computed via this decomposition, that is

G=H1!= IVl CATVVIVVVL‘Q GVI 0 IV1 ) 0
N N0 Iy, 0 GV> VVV%VlGV1 Iy,

Notice that when we take V5 to be a singleton, the previous decomposition implies the
second equality in (3.6). Note we can also write our vector 6,7 in block form, that is, e.g.
0 = (6v,,0v,). Recall that 7y, was defined via the equation

IV1 0 ) (7"/&) (77\/ )
. _(m (7.2
<WV2 Wi G IVQ A% Ny - )
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and
vy = vy + Wiy 1,0v;. (7.3)

With all these definitions and decompositions, the quadratic form in the exponent
(which is the Hamiltonian or energy in the point of view of statistical physics) can be
written as

<97H9> + <777 Gn> -2 <97 7]> = <6V27HV29V2> + <77V27GV277V2> -2 <77V270V2>
+ <9V1’HV17V19V1> + <77V176V177V1> -2 <ﬁV179V1> -

Note also that for the determinant, we have, again by Schur, det H = det Hy, v, det H"2,
therefore, the integrand in Equation (3.2) factorizes

2\ V2 1
() o 1(0,HO)+(n.Gry—2(0,m))_LH>0_ H 48
m vdet H

[Vil/2 .
— () e—%(<0vl,Hvl,vl9vl>+<ﬁvlxGVlﬁV1>_2<ﬁV1)9V1>) Hvl vi >0 H 0,dBv, (7.4)

7T \/detHVth eV,

[Va]/2 . .
. <2> ) 67%(@‘/2’HVQOVQ>+<77V2*GV277V2>72<77V2*9V2 HVZ >0 H dﬁv2
T Videt H LEV

Next we choose V5 = {41 }. Conditionally on S3y,, and performing the change of variable
y =By — (Wi,.,G'W.,,), we find the conditional density

a e—é(azy—bQ/y—Qab) 1

Var v

for some a,b > 0. In virtue of (3.3), this is a probability density. By iterating the previous
step to each of the one-dimensional marginals, we prove Equation (3.2). Moreover, the
factorization and the inductive argument used to integrate Sy, in (7.4) imply that

[Va]/2 .
(2) o H({0 v 0 ) 6 )2y 0 ) _LEZ0 TT a5 (75)

Q0 w/det HV1 Vi ieVi

is the marginal distribution of (f;):cv,, and the second term,

[Val/2 ; 3
(2) T (0w Y200, )+ (v GV 21w, )2 (v O, ) ) HV2>0 H 0idBv, (7.6)
™ Vdet HY>
is the conditional density of (5;);cv, given the values of (5;);ev; - O

8 Appendix B: Proof of Ward identities

Let us prove the first Ward identity. Note the v"-%" is a probability density for any
parameters, in particular true for v"-Vk+t0%n now (3.9) is equivalent to the fact that
pW:Vk+0%1 i a probability, since

S ki + 5 (6, HO) <\/k+92 HVE+07) + 3 Wiy (/i +62) (0 + 63) - 0:6; )
4,J

eV

For the second Ward identity, set Vo = {ip} and V; =V \ {ip}. Note that

= _ Glio,]) ko fw v VL
=00 W.6) = G exp< : <W10,.,G W> 2<\/E,25\/%>V1>. (8.1)
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The factorization and the change of coordinates give

b
yWOOdB) = Lysge 07— d

Y
VT
|V|_1 1 1 1p2 A V7
]lf{ 0 g 6_§<07259>V1+§<0’AWQ>V1_§9i0<Wi0"’G 1W"’O='>+91‘0 <97W7"0>‘>V1 41 H 0;dp;
> \/ =
n det H %
(8.2)

Therefore, we see that Z(k, W, 8) plug in well in %0, More precisely, we can write
(note that Sl — D ki Wi, xG"1(k,1) which is independent of 7)

G(iosi0)
. V-1
_9? ez G(ZOJ) 2
Ek7W,B :/ e 9107 0 d ey re—— -
(=( w00 0 VT ﬁ>o G(ZOvZO) (8.3)
B (VIR 2BVITRE) |~ 3 (0% i) (Wi, GV Wi, H 0:dp;.

V det H iio

As ~ is independent of the rest in (8.3), using the fact that »"V-V?"+%.0 is a probability

measure and
G(ig, 1 0% + k
< (.Zo,.) > _ 2l + R ’ (8.4)
Gio,i0) / w,ver 7.0 07, + kig

we deduce the second Ward identity.

Equation (8.4) is well known, it first appear in Equation (B.3) of [DSZ10] (where 6
and k are constant), as a consequence of supersymmetric localization. However, to be
self-contained, we provide a non supersymmetric proof of it. The idea is to again to
use symmetry. It is enough to prove (8.4) for the case k = 0. We start by proving the
following

|V|—1
[ \[ o Tos W (SR SR 20) _ L TTgap -1, 85)
>0 det H ;4;,

where the sum ) i is over all non oriented edges with end points in V. We obtain (8.5)
from the second line of Equation (8.2) as follows. First integrate out the variable v in
(8.2), then use (3.8) and (3.7). We perform the change of variable

( —-1/]V|
) G io Z) Zo .
i )itio — (Wi)izig, Wh M= ) , 1€V,
(ﬂ)#o (u)7é0 where e G('LO,ZO) H G'LO,ZO t
in particular ) ;.  u; = 0. The change of variables leads to
V]—1
/ 2 H 0; euiOe_% 2(ijyeE Wi.j(eu’v’iu’v93"*‘5"]'7“"’91-2—291‘%)
ey wi=0 T i#ig
< /DW,u) [] dui =1 (8.6)
i#ig

where D(W,u) = > spanning tree T H{i irer W, je“it% . The integral equals 1 for any W, 6,

more importantly, for any 7( (as in the definition v = 1/(2G(ig, %)), %o is arbitrary). Notice
G (io,l)

that = e“ %o and
G (io,io)
0
H 0; | e%io - "1 Mio = e—l . Hei e,
iig o i#£l
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<Cm>w,e,o

0;

0.

x /D(W,u) [ du; = 3

0

[V]-1
2 1 (oUW UG 02 Uj—u; n2 n.
_t A /; | | 0; eYe™ 2 Z{i,j}eE Wi, j(e 705 +e" 0;—20,0;)
2iev wi=0

il

iio 0;

where in the last step we used (8.6) with ¢y replaced with .
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