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Abstract

In the present paper, we determine the full spectrum of the simple random walk on
finite, complete d-ary trees. We also find an eigenbasis for the transition matrix. As an
application, we apply our results to get a lower bound for the interchange process on
complete, finite d-ary trees, which we conjecture to be sharp.
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1 Introduction

Finding the spectrum of a transition matrix is a very popular subject in graph theory
and Markov chain theory. There are only a few techniques known to describe the exact
spectrum of a Markov chain, and they usually work under very specific conditions, such
as when the Markov chain is a random walk on a finite group, generated only by a
conjugacy class [12]. Most well-known examples where a transition matrix has been
diagonalized usually rely on combination of advanced representation theory, Fourier
analysis, and combinatorial arguments [3, 5, 6, 7, 13, 15, 17, 22]. But even in most of
these cases, there is no description of what an eigenbasis of the transition matrix would
look like, which in general is needed as well in order to understand the transition matrix.

In this work, we present the full spectrum of the simple random walk on complete,
finite d-ary trees and a corresponding eigenbasis, and we use this information to produce
a lower bound for the interchange process on the trees, which we conjecture is sharp.
Consider the complete, d-ary tree Th of height h, which has n := 1+ d+ · · ·+ dh = dh+1−1

d−1
vertices. We study the simple random walk on Th, whose transition matrix is denoted by
Qh, according to which when we are at the root we stay fixed with probability 1/(d+ 1),
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Spectrum of random walks

or we move to a child with probability 1/(d + 1) each. When we are at a leaf, we stay
fixed with probability d/(d+ 1) otherwise we move to the unique parent with probability
1/(d+ 1). For any other node, we choose one of the neighbors with probability 1/(d+ 1).

This is a well studied Markov chain. Rojo [24] and later Rojo and Soto [23] linked
the spectrum of the Laplacian of the complete binary tree to the spectrum of suitable
submatrices. Aldous [1] proved that the cover time is asymptotic to 2h2dh+1 log h/(h− 1).
The order of the spectral gap and the mixing time of this Markov chain have been widely
known for a long time. In fact, the random walk on Th is one of the most famous examples
of a random walk not exhibiting cutoff (see Example 18.6 of [20]). In fact, Basu, Hermon
and Peres [4] have introduced a criterion for cutoff for random walks on trees which the
simple random walk on complete, finite d-ary trees fails to satisfy. However, finding the
exact value of the spectral gap has been an open question for years, let alone finding the
entire spectrum and an eigenbasis of the transition matrix Qh.

We denote by ρ the root of Th, by V (Th) the vertex set of Th, and by E(Th) the set
of edges of Th. Let ` : V (Th) → [0, . . . , h] denote the distance from the root. For every
node v, let T v be the complete d-ary subtree rooted at v, namely consisting of v and all
vertices of V (Th) that are descendants of v in Th. Let T vi be the complete d-ary subtree
of T v rooted at the i-th child of v.

The next theorem includes the first result of this paper, presenting the eigenvalues
and an eigenbasis of Qh.

Theorem 1.1. (a) Qh is diagonalizable with 1 being an eigenvalue with multiplicity 1.
Every other eigenvalue λ 6= 1 of Qh is of the form

λ =
d

d+ 1

(
x+

1

xd

)
, (1.1)

where x 6= ± 1√
d

is a solution of one of the following h+ 1 equations:

dh+1x2h+2 = 1 (1.2)

and
dk+2x2k+4 − dk+2x2k+3 + dx− 1 = 0, for 0 ≤ k ≤ h− 1. (1.3)

Conversely, each solution x 6= ± 1√
d

of these equations corresponds to an eigenvalue

λ according to (1.1). For each of these equations, if x is a solution then so is 1
xd .

Both x and 1
xd correspond to the same λ. The correspondence between x and λ is

2-to-1.

(b) For each solution x 6= ± 1√
d

of (1.2), an eigenvector fλ with respect to λ is given by
the formula

fλ(v) =
dx2 − x
dx2 − 1

xi +
x− 1

dx2 − 1

1

dixi
for every v with `(v) = i, 0 ≤ i ≤ h. (1.4)

For each 0 ≤ k ≤ h− 1, each solution x 6= ± 1√
d

of (1.3), each v ∈ V (Th) such that

`(v) = h− 1− k, and each j ∈ [1, . . . , d− 1], an eigenvector fv,j,j+1 with respect to
λ is given by the formula

fv,j,j+1(w) =


dxi+2

dx2−1 −
1

(dx2−1)dixi for w ∈ T vj , where i = `(w)− h+ k,

− dxi+2

dx2−1 + 1
(dx2−1)dixi for w ∈ T vj+1, where i = `(w)− h+ k,

0, otherwise.
(1.5)
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Spectrum of random walks

(c) The collection of these eigenvectors together with the all-1 vector form an eigenba-
sis of Qh.

In Lemma 2.1 and Figure 1, we describe and illustrate the eigenvectors in more
detail.

The idea behind the proof is to consider appropriate projections of the random walk.
For example, let Xt be the state of the random walk at time t and let Yt be the distance
of Xt from the root. Then Yt is a Markov chain on [0, h], whose eigenvalues are also
eigenvalues of Qh. Also, the eigenvectors of Yt lift to give the eigenvectors presented in
(1.4). This computation is not going to give us the full spectrum, however.

For example, in the case of the binary tree, another type of projection to consider is
as follows. We consider the process Wt, which is equal to −Yt if Xt ∈ T ρ1 and equal to
Yt otherwise. The second largest eigenvalue can be derived by this new process, while
the eigenvectors are of the form presented in (1.5). The reason why this is the right
process to study is hidden in the mixing time of the random walk on Th. A coupling
argument roughly says that we have to wait until Xt reaches the root ρ. The first time
that Xt hits ρ is captured by Wt, since Wt is a Markov chain on [−h, h], where the bias
is towards the ends and away from zero. The projections that we consider form birth
and death processes, whose spectral and mixing properties have been studied by Chen
and Saloff-Coste [9, 10, 11] and Ding, Lubetzky, and Peres [14]. To capture the entire
spectrum, our method is to find in each eigenspace a well-structured eigenvector, which
occurs by considering an appropriate projection, which gives rise to a birth and death
process.

Our analysis has immediate applications to card shuffling, namely the interchange
process on Th, and to the exclusion process. We enumerate the nodes in V (Th) and we
assign cards to the nodes. At time zero, card i is assigned to node i. The interchange
process on Th chooses an edge uniformly at random and then flips a fair coin. If heads,
interchange the cards on the ends of e; if tails, stay fixed. A configuration of the deck
corresponds to an element of the symmetric group, which we denote by Sn where we
recall that n is the number of vertices of Th.

Let g ∈ Sn. Let P be the transition matrix of the interchange process on the complete,
finite d-ary tree Th and let P tid(g) be the probability that we are at g after t steps, given
that we start at the identity. We define the total variation distance between P tid and the
uniform measure U to be

d(t) =
1

2

∑
x∈Sn

∣∣∣∣P tid(x)− 1

n!

∣∣∣∣ .
A celebrated result concerning the interchange process was the proof of Aldous

conjecture [8, Theorem 1.1], which states that the spectral gap of P is the same as
the spectral gap of the Markov chain that the ace of spades performs. Adjusting our
computations, we now get the following result.

Theorem 1.2. Consider the interchange process on the complete d-ary tree of depth h.
We have that

(a) the spectral gap of the transition matrix is (d−1)2
2(n−1)[(d−1)n+1] +O

(
d logd n
n3

)
,

(b) and if t = 1
d−1n

2 log n− 1
d−1n

2 log
(
1
ε

)
+O

(
n2
)
, then

d(t) ≥ 1− ε,

where ε is any positive constant. Here, the implicit constants do not depend on
d, h, n.
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Spectrum of random walks

The order for the mixing time of the interchange process on Th has been known to
be of the form C(d)n2 log n (see Corollary 8 of [2] and Theorem 1.4a of [18]). However,
no explicit bounds on constant C(d) have been stated. We conjecture that the lower
bound in part (b) of Theorem 1.2 is sharp and that the interchange process on Th exhibits
cutoff at 1

d−1n
2 log n. This would imply that this process mixes much faster than the

interchange process on the path, another card shuffle that uses n − 1 transpositions,
which Lacoin [19] recently proved exhibits cutoff at 1

2π2n
3 log n.

We can get lower bounds for the mixing time of another well studied process, the
exclusion process on the complete d-ary tree. This is a famous interacting particle system
process, according to which at time zero, k ≤ n/2 nodes of the tree are occupied by
indistinguishable particles. At time t, we pick an edge uniformly at random and we flip
the two ends. Similar computations to the ones of the proof of Theorem 1.2 give that if
t = 1

d−1n
2 log k − 1

d−1n
2 log

(
1
ε

)
+ o

(
n2 log k

)
, then

d(t) ≥ 1− ε,

where ε > 0 is a constant. Combining Oliveira’s result [21] with Theorem 1.2 (b), we get
that the order of the mixing time of the exclusion process on the complete d-ary tree is
n2 log k.

As potential open questions, we suggest trying to find the spectrum or just the exact
value of the spectral gap for the simple random on finite Galton-Watson trees or for the
frog model as presented in [16].

2 The spectrum of Qh

This section is devoted to the proof of Theorem 1.1, which presents the full spectrum
of Qh and the corresponding eigenvectors.

Let λ be an eigenvalue of Qh and let E(λ) be the corresponding eigenspace. We first
show that there exists an eigenvector in E(λ) that has the form described in Theorem
1.1 (b).

Lemma 2.1. The eigenspace E(λ) contains an eigenvector f that has one of the following
forms.

(a) [Completely symmetric] f(v) = f(w) for every v, w ∈ V (Th) such that `(v) = `(w).
In this case we call f completely symmetric for Th.

(b) [Pseudo anti-symmetric] There is a node v and i, j ∈ {1, . . . , d} such that f(w) = 0 for
every w /∈ V (T vi ∪ T vj ), f |T vi and f |T vj are completely symmetric, and f |T vi = −f |T vj .
We call such f pseudo anti-symmetric.

The following illustrations explain what the described eigenvectors look like for
binary trees.

Proof. Assume that E(λ) does not contain a completely symmetric eigenvector. Let f be
a nonzero element of E(λ). Since f is not completely symmetric, there exist vertices of
the same level at which f takes different values. Let v be a vertex with the largest `(v)
such that there are at least two of its children, say the i-th and j-th children, at which f
has different values. For example, if there are two leaves u and w at which f(u) 6= f(w)

that have the same parent v′ then we simply take v to be v′.

By the choice of v, f |T vk is completely symmetric for all k ∈ [d]. Indeed, let u be the
k-th child of v. We have T vk = T u. By the choice of v, f takes the same value at all
children of u. Let u1, u2 be two arbitrary children of u. Again by the choice of v, f takes
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Figure 1: Completely symmetric eigenvectors (left) and pseudo anti-symmetric eigenvec-
tors (right)

the same value, denoted by f1, at all children of u1, and the same value, denoted by f2,
at all children of u2. Since f is an eigenvector of Qh,

λf(u1) =
d

d+ 1
f1 +

1

d+ 1
f(u) and λf(u2) =

d

d+ 1
f2 +

1

d+ 1
f(u).

Since f(u1) = f(u2), f1 = f2. Thus, f takes the same value at all grandchildren of u.
Repeating this argument shows that f |T u is completely symmetric.

Consider the vector g obtained from f by switching its values on T vi and T vj . More
specifically, g|T vi = f |T vj , g|T vj = f |T vi , and g = f elsewhere.

By the symmetry of the tree and the matrix Qh, g also belongs to E(λ). So is f − g,
which we denote by h. Observe that h is an eigenvector that is 0 everywhere except on
T vi ∪ T vj and h|T vi = f |T vi − f |T vj = −h|T vj . Moreover, h is completely symmetric when
restricted to T vi and T vj because both f and g are, as seen above. Thus, h ∈ E(λ) and is
pseudo anti-symmetric.

2.1 Completely symmetric eigenvectors

In this section, we describe completely symmetric eigenvectors. We show that the
completely symmetric eigenvectors of Qh are given by the formula (1.4) and correspond
to λ and x satisfying (1.1) and (1.2) as in Theorem 1.1.

Since a completely symmetric eigenvector of Qh has the same value at every node
of the same level (see Figure 2), we can project it onto the path [0, h] and obtain an
eigenvector of the corresponding random walk on the path.

Lemma 2.2. There are exactly h+ 1 linearly independent completely symmetric eigen-
vectors of Qh.

Proof. Each symmetric eigenvector of Qh corresponds one-to-one to an eigenvector of
the following projection onto the path [0, h] with transition matrix Rh:

• Rh(0, 1) =
d
d+1 , Rh(0, 0) =

1
d+1 ,

• Rh(l, l − 1) = 1
d+1 , Rh(l, l + 1) = d

d+1 for all 1 ≤ l ≤ h− 1,

• Rh(h, h− 1) = 1
d+1 , Rh(h, h) =

d
d+1 .

Since Rh is a reversible transition matrix with stationary distribution

π := [1, d, d2, . . . , dh],
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Figure 2: Completely symmetric eigenvectors

the matrix A := D1/2RhD
−1/2 is symmetric where D is the diagonal matrix with

D(x, x) = π(x). Therefore, A is diagonalizable and so is Rh. In other words, Rh has
h+ 1 independent real eigenvectors. This implies that Qh has h+ 1 linearly independent
completely symmetric eigenvectors.

Lemma 2.3. The matrix Rh has 1 as an eigenvalue with multiplicity 1. Each of the
remaining h eigenvalues λ 6= 1 of Rh is of the form

λ =
d

d+ 1

(
x+

1

xd

)
where x 6= ± 1√

d
is a non-real solution of the equation

dh+1x2h+2 = 1.

This equation has exactly 2h such solutions. If x is a solution, so is 1
xd . There is a 2-to-1

correspondence between x and λ. An eigenvector y = (y0, y1, . . . , yh) of Rh with respect
to λ is given by

yi =
dx2 − x
dx2 − 1

xi +
x− 1

dx2 − 1

1

dixi
for every 0 ≤ i ≤ h.

The vector f : Th → R that takes value yi at all nodes of depth i is an eigenvector of Qh
with respect to λ.

Proof. Let λ be an eigenvalue of Rh and y = (y0, y1, . . . , yh) be an eigenvector corre-
sponding to λ. We have

(R1) 1
d+1y0 +

d
d+1y1 = λy0,

(R2) 1
d+1yi−1 +

d
d+1yi+1 = λyi for all 1 ≤ i ≤ h− 1,

(R3) 1
d+1yh−1 +

d
d+1yh = λyh.

Since y is not the zero vector, the above equations imply that y0 6= 0. Without loss of
generality, we assume y0 = 1.

Let x1, x2 be the solutions to the characteristic equation of (R2):

1

d+ 1
− λx+

d

d+ 1
x2 = 0
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or equivalently
dx2 − (d+ 1)λx+ 1 = 0. (2.1)

By (2.1), we have

x1x2 =
1

d

and

λ =
d

d+ 1
(x1 + x2) =

d

d+ 1

(
x1 +

1

x1d

)
. (2.2)

If x1 6= x2 then we can write y0 = α1 −α2, y1 = α1x1 −α2x2 for some α1, α2. We show
that for all 0 ≤ i ≤ h,

yi = α1x
i
1 − α2x

i
2. (2.3)

Indeed, assuming that (2.3) holds for y0, . . . , yi for some 1 ≤ i ≤ h− 1 then by (2.1),

λyi −
1

d+ 1
yi−1 = α1x

i−1
1

(
λx1 −

1

d+ 1

)
− α2x

i−1
2

(
λx2 −

1

d+ 1

)
=

d

d+ 1

(
α1x

i+1
1 − α2x

i+1
2

)
.

Thus, by (R2),
d

d+ 1
yi+1 =

d

d+ 1
α1x

i+1
1 − d

d+ 1
α2x

i+1
2

and so
yi+1 = α1x

i+1
1 − α2x

i+1
2 .

Thus, (2.3) also holds for yi+1 and hence, for all y0, . . . , yh.
Similarly, by (R3), we get

d

d+ 1
yh = λyh −

1

d+ 1
yh−1 = α1x

h−1
1

(
λx1 −

1

d+ 1

)
− α2x

h−1
2

(
λx2 −

1

d+ 1

)
=

d

d+ 1

(
α1x

h+1
1 − α2x

h+1
2

)
.

Thus,
α1x

h+1
1 − α2x

h+1
2 = α1x

h
1 − α2x

h
2 (2.4)

as they are both equal to yh.
By (2.3), (R1) becomes

d(α1x1 − α2x2) =

(
x1d+

1

x1
− 1

)
(α1 − α2). (2.5)

For simplicity, we write α = α1 and x = x1. Recall that y0 = 1 and so by (2.3) for
i = 0, we get

α2 = α− 1.

Equation (2.5) becomes

dαx− α− 1

x
= dx+

1

x
− 1

which gives

α1 = α =
dx2 − x
dx2 − 1

and α2 = α− 1 =
1− x
dx2 − 1

. (2.6)

Plugging (2.6) into (2.4) and taking into account x2 = 1
xd , we get

(dx− 1)(x− 1)(dh+1x2h+2 − 1) = 0.
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If x = 1 then α2 = α− 1 = 0 by (2.6). And so, y = α(1, . . . , 1) which is an eigenvector
of the eigenvalue 1. Since λ 6= 1, x 6= 1. If x = 1

d then x2 = 1
xd = 1. By the symmetry of x1

and x2, this also corresponds to λ = 1 which is not the case.
Thus, x satisfies

dh+1x2h+2 − 1 = 0.

This equation has 2h non-real solutions and 2 real solutions ± 1√
d
. For each non-real

solution x1, observe that x2 := 1
dx1

is also a non-real solution. Note that x1 6= x2 and by
setting λ and y as in (2.2) and (2.3) with α1 and α2 as in (2.6), one can check that y is
indeed an eigenvector corresponding to λ. Thus, these 2h non-real solutions correspond
to exactly h eigenvalues λ 6= 1 of Rn. Since Rn has exactly h+ 1 eigenvalues, these are
all.

2.2 Pseudo anti-symmetric eigenvectors

In this section, we describe the pseudo anti-symmetric eigenvectors. We show that the
pseudo anti-symmetric eigenvectors of Qh are given by the formula (1.5) and correspond
to λ and x satisfying (1.1) and (1.3) as in Theorem 1.1.

Consider a pseudo anti-symmetric eigenvector f with node v and indices i, j as
described in Lemma 2.1 (see Figure 1). Let k = h− `(v)− 1 ∈ [0, h− 1]. As in Figure 1
and Figure 3 below, let y = (y0, y1, . . . , yk) where y0 is the value of f at the i-th child of
v, which is denoted by u, y1 is the value of f at the children of u and so on. With these
notations, we also write f as fy,v,i,j . Observe that y is an eigenvector of the following
matrix Sk:

• Sk(0, 1) =
d
d+1 ,

• Sk(l, l − 1) = 1
d+1 , Sk(l, l + 1) = d

d+1 for all 1 ≤ l ≤ k − 1,

• Sk(k, k − 1) = 1
d+1 , Sk(k, k) =

d
d+1 .

Conversely, for any eigenvector y of Sk, for any node v at depth h− k − 1 and for any
choice of i, j ∈ [1, d] with i 6= j, we can lift it to a pseudo anti-symmetric eigenvector
fy,v,i,j .

0

0

0

0

00

0

00

0

0

00

0

00

0

−y0

−y1

−y2−y2

−y1

−y2−y2

y0

y1

y2y2

y1

y2y2

Figure 3: Pseudo anti-symmetric eigenvectors
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Lemma 2.4. For each k ∈ [0, h− 1], Sk has k + 1 eigenvectors. For each eigenvector y
of Sk and for each v with `(v) = h− k − 1, there are d− 1 linearly independent pseudo
anti-symmetric eigenvectors of Qh of the form fy,v,i,j .

Proof. Since Sk differs from Rk only at the (0, 0) entry, it also satisfies the equation
π(x)Sk(x, y) = π(y)Sk(y, x) where π = [1, d, d2, . . . , dk]. Thus, like Rk, the matrix DSkD−1

is symmetric where D is the diagonal matrix with D(x, x) = π(x)1/2. By symmetry,
DSkD

−1 has k + 1 eigenvalues and so does Sk.
For each eigenvector y of Sk, we create d− 1 linearly independent vectors fy,v,i,i+1

for 1 ≤ i ≤ d − 1. It is clear that any fy,v,i,j can be written as a linear combination of
these vectors. This completes the proof.

We now describe the eigenvectors of Sk.

Lemma 2.5. Each of the k + 1 eigenvalues λ of Sk is of the form

λ =
d

d+ 1

(
x+

1

dx

)
where x 6= ± 1√

d
is a solution of the equation

dk+2x2k+4 − dk+2x2k+3 + dx− 1 = 0.

This equation has 2k+2 solutions that differ from 1√
d
. If x is a solution, so is 1

dx . There is

a 2-to-1 correspondence between x and λ. An eigenvector y = (y0, y1, . . . , yk) of Sk with
respect to λ is given by

yi =
dxi+2

dx2 − 1
− 1

(dx2 − 1)dixi
for every 0 ≤ i ≤ k.

Proof. Let λ be an eigenvalue of Sk and y = (y0, y1, . . . , yk) be an eigenvector correspond-
ing to λ. We have

(S1) d
d+1y1 = λy0,

(S2) 1
d+1yi−1 +

d
d+1yi+1 = λyi for all 1 ≤ i ≤ k − 1,

(S3) 1
d+1yk−1 +

d
d+1yk = λyk.

As before, we let x1, x2 be the solutions to the equation

1

d+ 1
− λx+

d

d+ 1
x2 = 0.

By exactly the same argument as in the proof of Lemma 2.3, we derive by setting y0 = 1

that
yi = α1x

i
1 − α2x

i
2

where

α1 =
dx2

dx2 − 1
and α2 =

1

dx2 − 1

and x1 and x2 satisfy
dk+2x2k+4 − dk+2x2k+3 + dx− 1 = 0 (2.7)

Note that, x = ± 1√
d

are solutions of (2.7). The remaining 2k + 2 solutions split into

pairs (x, 1
dx ) of distinct components. For each of these pairs, let x1 := x and x2 := 1

dx . We

have x1 6= x2 and by setting λ and y as in (2.2) and (2.3) with α1 = dx2

dx2−1 and α2 = 1
dx2−1 ,

one can check that y is indeed an eigenvector corresponding to λ. Thus, these 2k + 2

solutions correspond to exactly k + 1 eigenvalues λ of Sk. Since Sk has exactly k + 1

eigenvalues, these are all of them.
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2.3 Proof of Theorem 1.1

The following lemma shows that we can retrieve all eigenvectors of Qh from com-
pletely symmetric and pseudo anti-symmetric eigenvectors. Let ASk be the eigenbasis
of Sk as described in Lemma 2.5 and B be a collection of h+ 1 independent completely
symmetric eigenvectors of Qh as in Lemma 2.3. Let

A := {fy,v,i,i+1, v ∈ V (Th−1), y ∈ ASh−`(v)−1
, i ∈ [d− 1]}.

Lemma 2.6. The collection A ∪ B is an eigenbasis for Qh.

Assuming Lemma 2.6, we now put everything together to complete the proof of
Theorem 1.1.

Proof of Theorem 1.1. The first part of the theorem follows from Lemmas 2.3 and 2.5.
As seen in Lemma 2.3, the set B in Lemma 2.6 consists of eigenvectors as in (1.4) and
the all-1 vector. By Lemmas 2.4 and 2.5, the set A consists of eigenvectors as in (1.5).
That gives the second part. Finally, the third part follows from Lemma 2.6.

Before proving Lemma 2.6, we make the following simple observation. For a rooted-
tree T that is not necessarily regular, recall that a vector f : T → R is said to be
completely symmetric if f(u) = f(v) for all pairs of vertices u, v at the same level. A
vector f is said to be energy-preserving if for all levels l,∑

v∈T :`(v)=l

f(v) = 0.

Observation 2.7. For any rooted-tree T and any vector f : T → R, if f is both energy-
preserving and completely symmetric then it is the zero vector.

Proof of Lemma 2.6. First of all, we check that their number is equal to n. By Lemmas
2.2 and 2.4, the total number of vectors is

h+ 1 +

h−1∑
k=0

(k + 1)(d− 1)dh−k−1

where dh−k−1 is the number of nodes v of depth h− k − 1. By algebraic manipulation,
this number is exactly dh+1−1

d−1 = n.
We now prove that the vectors considered are linearly independent. Assume that

there exist coefficients cy,v,i and cg such that∑
cy,v,ify,v,i,i+1 +

∑
g∈B

cgg = 0

where the first sum runs over all v ∈ V (Th−1), y ∈ ASh−`(v)−1
and i ∈ [d− 1]. We need to

show that cy,v,i and cg are all 0.
Since pseudo anti-symmetric vectors are energy-preserving on Th, the sum∑

g∈B
cgg = −

∑
cy,v,ify,v,i,i+1

is both completely symmetric and energy-preserving. Thus, by Observation 2.7,∑
cy,v,ify,v,i,i+1 =

∑
g∈B

cgg = 0. (2.8)

By the independence of vectors in B, we conclude that cg = 0 for all g ∈ B.
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To complete the proof of the lemma, we now prove by induction on the vertices of
v ∈ V (Th−1) and i ∈ [d− 1] that cy,v,i = 0 for all y ∈ ASh−`(v)−1

. For this induction, we use
the natural ordering of pairs (v, i) as follows.

{(v, i) < (v′, i′)} if and only if {`(v) < `(v′)} or {`(v) = `(v′) and i < i′}.

For the base case, which is v := ρ and i := 1, from (2.8), we have

Fρ,1 :=
∑

y∈ASh−1

cy,ρ,1fy,ρ,1,2 = −
∑

cy,u,jfy,u,j,j+1

where the second sum runs over all u ∈ V (Th−1) and j ∈ [d− 1] with (ρ, 1) < (u, j) and
all y ∈ ASh−`(v)−1

. When restricting on the subtree T ρ1 , Fρ,1 is a completely symmetric
vector because all of the fy,ρ,1,2 are completely symmetric. Likewise, Fρ,1 is energy-
preserving on T ρ1 , because of the vectors fy,u,j,j+1. By Observation 2.7, Fρ,1 = 0 on T ρ1 .
Since the fy,ρ,1,2 are only supported on T ρ1 ∪ T

ρ
2 and fy,ρ,1,2|T ρ1 = −fy,ρ,1,2|T ρ2 , we have

Fρ,1|T ρ1 = −Fρ,1|T ρ2 . Therefore, Fρ,1 = 0 on T ρ2 and thus on Th. So,∑
y∈ASh−1

cy,ρ,1fy,ρ,1,2 = 0.

By the independence of vectors in ASh−1
, we conclude that cy,ρ,1 = 0 for all y ∈ ASh−1

,
establishing the base case.

For the induction step, assume that for some (v, i), it is proven that cy,w,k = 0 for all
(w, k) < (v, i) and y ∈ ASh−`(w)−1

. We now show that cy,v,i = 0 for all y ∈ ASh−`(v)−1
. By

this assumption, the left-most side in (2.8) reduces to∑
cy,u,jfy,u,j,j+1 = 0 (2.9)

where the sum runs over all (u, j) ≥ (v, i). Our argument now is similar to the base case.
From (2.9), we have

Fv,i :=
∑

y∈ASh−`(v)−1

cy,v,ify,v,i,i+1 = −
∑

y,(v,i)<(u,j)

cy,u,jfy,u,j,j+1.

Similarly to the base case, when restricting on the subtree T vi , Fv,i is both completely
symmetric and energy-preserving on T vj . By Observation 2.7, Fv,i = 0 on T vj . This leads
to Fv,i = 0 on T vi+1 and thus Fv,i = 0 on Th. So,∑

y∈ASh−`(v)−1

cy,v,ify,v,i,i+1 = 0.

By the independence of vectors in ASh−`(v)−1
, we conclude that cy,v,i = 0 for all y ∈

ASh−`(v)−1
, establishing the induction step and thus finishing the proof.

3 Proof of Theorem 1.2

In this section, we prove Theorem 1.2, which gives the spectral gap for the inter-
change process on Th and a lower bound for its mixing time.

3.1 Proof of Theorem 1.2(a)

Consider the interchange process on Th. Let Q′h be the transition matrix of the ace
of spades. In other words, Q′h is the transition matrix of any fixed card on the tree.
By Aldous’ spectral gap conjecture proved in [8, Theorem 1.1], the spectral gap of the
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interchange process on the complete d-ary tree of depth h is the same as the spectral
gap of Q′h. We note that

Q′h =
2n− d− 3

2(n− 1)
In +

d+ 1

2(n− 1)
Qh. (3.1)

And therefore, the spectral gap of Q′h is d+1
2(n−1) times the spectral gap of Qh.

Thus Theorem 1.2 (a) is deduced from the following.

Lemma 3.1. For sufficiently large h, the spectral gap of Qh is equal 1− λ2 where λ2 is
the second largest eigenvalue of Qh. Moreover,

λ2 = 1− (d− 1)2

(d+ 1) · dh+1
+O

(
logd n

n2

)
= 1− (d− 1)2

(d+ 1) · [(d− 1)n+ 1]
+O

(
logd n

n2

)
. (3.2)

To prove Lemma 3.1, we use Theorem 1.1. Let λ be an eigenvalue of Qh and x be a
solution of

dx2 − (d+ 1)λx+ 1 = 0 (3.3)

which we have encountered in (2.1).
If λ2 ≥ 4d

(d+1)2 then this equation has two real solutions both of which have the same
sign as λ.

In Equation (1.2), we have dh+1x2h+2 = 1 which only has nonreal solutions except
x = ± 1√

d
. Combine this observation with Theorem 1.1, each eigenvalue λ2 ≥ 4d

(d+1)2 is

given by Equation (1.1) for some x 6= ± 1√
d

satisfying

dk+1x2k+2 − dk+1x2k+1 + dx− 1 = 0, (3.4)

for k ∈ [1, h]. This is simply Equation (1.3) (with k being shifted for notational conve-
nience).

We show the following

Lemma 3.2. (a) For all k ∈ [1, h], Equation (3.4) has no solutions in
(
−∞,− 1√

d

)
.

There are no eigenvalues of Qh less than −
√

4d
(d+1)2 .

(b) There exists a constant h0 > 0 such that for all k ≥ h0, the largest solution x of
(3.4) satisfies

1− a

dk+1
< x < 1− d− 1

dk+1
where a = d− 1 +

2(d− 1)2(k + 1)

dk+1
. (3.5)

Furthermore, for k = h, the eigenvalue that corresponds to this x satisfies∣∣∣∣λ− (1− (d− 1)2

(d+ 1) · dh+1

)∣∣∣∣ = O

(
logd n

n2

)
. (3.6)

Assuming Lemma 3.2, we conclude that for sufficiently large h, the largest x that
satisfies one of the equations (3.4) for some k in [1, h] satisfies

1− a

dh+1
< x < 1− d− 1

dh+1
where a = d− 1 +

2(d− 1)2(h+ 1)

dh+1
.

Since the right-hand side of (1.1) is increasing in x for x ≥ 1√
d
, the second largest

eigenvalue λ2 of Qh corresponds to such x and so it satisfies (3.6), proving (3.2). By the
first part of Lemma 3.2, there are no eigenvalues of Qh whose absolute value is larger
than λ2. This proves Lemma 3.1.
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Proof of Lemma 3.2. Let f(x) = dk+1x2k+2 − dk+1x2k+1 + dx− 1.
To prove part (a), for all x < − 1√

d
, we have

dk+1x2k+2 > 1 and − dk+1x2k+1 > −dx

and so f has no roots in
(
−∞,− 1√

d

)
. Assume that there were an eigenvalue λ <

−
√

4d
(d+1)2 . In this case, λ2 ≥ 4d

(d+1)2 and so Equation (3.3) has two negative solutions

x1 < x2 with x1x2 = 1
d . We conclude that x1 < − 1√

d
. This is a contradiction because x1

satisfies (3.4) for some k while for all k the function f has no roots less than − 1√
d
.

To prove part (b), for all x ≥ 2k+1
2k+2 , we have

f ′(x) = dk+1x2k ((2k + 2)x− (2k + 1)) + d > 0.

Thus, f is increasing on the interval [1− 1
2k+2 ,∞) which contains [1− a

dk+1 , 1− d−1
dk+1 ] for

sufficiently large k. Thus, to prove (3.5), it suffices to show that

f
(
1− a

dk+1

)
< 0 < f

(
1− d− 1

dk+1

)
(3.7)

for sufficiently large k. Indeed,

f
(
1− a

dk+1

)
= d− 1− a

(
1− a

dk+1

)2k+1

− a

dk

< d− 1− a
(
1− a

dk+1

)2k+1

< d− 1− a
(
1− a(2k + 1)

dk+1

)
.

Using a = d− 1 + 2(d−1)2(k+1)
dk+1 and standard manipulation gives that

f
(
1− a

dk+1

)
< −2(d− 1)2(k + 1)

dk+1
+
a2(2k + 1)

dk+1
≤ 0,

for sufficiently large k. Thus the first inequality of (3.7) holds. For the second inequality,
we have

f

(
1− d− 1

dk+1

)
= d− 1− (d− 1)

(
1− d− 1

dk+1

)2k+1

− d− 1

dk

≥ d− 1− (d− 1)

(
1− 3(d− 1)

dk+1

)
− d− 1

dk
> 0,

establishing (3.7).
We have shown that there exists a solution x = 1− α where d−1

dk+1 ≤ α ≤ a
dk+1 . Let λ

be the eigenvalue corresponding to x as in (2.2). We have

d+ 1

d
λ = 1− α+

1

d(1− α)
∈
(
1− α+

1

d
(1 + α), 1− α+

1

d
(1 + α+ 2α2)

)
.

In other words,

d+ 1

d
λ ∈

(
d+ 1

d
− d− 1

d
α,
d+ 1

d
− d− 1

d
α+

2

d
α2

)
.

Using the bounds d−1
dk+1 ≤ α ≤ a

dk+1 , we obtain

λ−
(
1− (d− 1)2

(d+ 1) · dk+1

)
≤ 2

d+ 1
α2 ≤ 2a2

(d+ 1) · d2k+2
≤ 2

(d+ 1) · d2k+1
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and

λ−
(
1− (d− 1)2

(d+ 1) · dk+1

)
≥ −d− 1

d+ 1
α+

(d− 1)2

(d+ 1) · dk+1
≥ −2(d− 1)3(k + 1)

(d+ 1) · d2k+2
≥ −2(k + 1)

d2k
.

Thus, for k = h, ∣∣∣∣λ− (1− (d− 1)2

(d+ 1) · dh+1

)∣∣∣∣ ≤ 2(h+ 1)

d2h
.

These bounds together with the equation n = dh+1−1
d−1 ∈ (dh, 2dh) give part (b).

3.2 Proof of Theorem 1.2 (b)

For the proof of the lower bound, we use Wilson’s lemma.

Lemma 3.3 (Lemma 5, [25]). Let ε and R be positive numbers and 0 < γ < 2−
√
2. Let

F : X → R be a function on the state space X of a Markov chain (Ct) such that

E[F (Ct+1)|Ct] = (1− γ)F (Ct), E
[
[F (Ct+1)− F (Ct)]2 |Ct

]
≤ R,

and

t ≤
logmaxx∈X F (x) +

1
2 log(γε/(4R))

− log(1− γ)
.

Then the total variation distance from stationarity at time t is at least 1− ε.

Proof of Theorem 1.2 (b). Let 0 < x < 1 be a solution of (1.3) (for k = h) satisfying (3.5)
and λ be the eigenvalue of Qh corresponding to x. In particular,

λ =
d

d+ 1

(
x+

1

dx

)
.

Let f : Th → R be an eigenvector of Qh corresponding to λ. As in the proof of Lemma
2.5, we can choose f as follows.

f(v) =


0 if v /∈ T ρ1 ∪ T

ρ
2 ,

dx`(v)+2 − 1
d`(v)−1x`(v)−2 , if v ∈ T ρ1 ,

−dx`(v)+2 + 1
d`(v)−1x`(v)−2 , if v ∈ T ρ2 .

(3.8)

We now consider the interchange process on the d-ary tree Th. Fix an arbitrary
enumeration of the vertices of Th by 1, 2, . . . , n. Let σ ∈ Sn. We define F (σ) =∑n
v=1 f(v)f(σ(v)). Then, we have that

E[F (σt+1)|σt] =
1

n− 1

∑
e

E[F (σt+1)|σt, e],

where the sum runs over all n− 1 edges e of the tree and the conditioning on the right is
conditioning on the edge e being chosen. So,

E[F (σt+1)|σt] =
1

n− 1

∑
e

n∑
v=1

f(v)E [f(σt+1(v))|σt, e]

=
1

n− 1

n∑
v=1

f(v)
∑
e

E [f(σt+1(v))|σt, e] .

By direct computation, we obtain∑
e

E (f(σt+1(v))|σt, e) =
(
n− d

2
− 3

2
+
λ(d+ 1)

2

)
f(σt(v)).
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So, we have

E[F (σt+1)|σt)] =
n− d

2 −
3
2 + λ(d+1)

2

n− 1
F (σt).

For n sufficiently big, we have that

F (id) =

n∑
v=1

f2(v) ≥ 2dh−1
(
dxh+2 − 1

dh−1xh−2

)2

≥ dn

2
,

where the first inequality arises from keeping only the leaves of T ρ1 ∪ T
ρ
2 and the last

inequality follows from Lemma 3.2 (b).
Finally, we consider what happens if we change a configuration σt by transposing an

edge e, which connects two vertices u and v. We have that

|F (σt+1)− F (σt)| = |(f(u)− f(v))(f(σ(u))− f(σ(v)))|.

For all vertices w, we have by definition of f ,

|f(w)| ≤ d

and by Lemma 3.2 (b), assuming wlog that `(u) = `(v) + 1 =: l + 1,

|f(v)− f(u)| ≤ dxl+2(1− x) + 1

dl−1xl−2

(
1− 1

dx

)
≤ 1

dh−1
+

1

dl−1
=

2

dl−1
.

Thus, |(f(u)− f(v))(f(σ(u))− f(σ(v)))|2 ≤ 16
d2l−4 . The definition of f given by (3.8) gives

that the left-hand side is 0 if neither u nor v belongs to T ρ1 ∪ T
ρ
2 . And so,

Ee

(
(F (σt+1)− F (σt))2 |σt

)
≤ 1

n− 1

h∑
l=0

2dl
16

d2l−4
≤ 64d4

n− 1
,

where 2dl is the number of edges e that connect levels l and l + 1 of T 1
ρ ∪ T 2

ρ .

So we can take R = 64d4

n−1 .

Set λ′ =
n− d2−

3
2+

λ(d+1)
2

n−1 . Using Wilson’s lemma, we have that if

t ≤ t0 :=
log(F (id)) + 1

2 log((1− λ
′)ε/(4R))

− log(λ′)

then the total variation distance is at least 1− ε. By Lemma 3.1,

λ = 1− (d− 1)2

(d+ 1) · dh+1
+O

(
logd n

n2

)
,

which gives

1− λ′ = (d+ 1)(1− λ)
2(n− 1)

=
(d− 1)2

2(n− 1)dh+1
+O

(
d logd n

n3

)
.

We get

t0 =
logn
2 + log ε

2 +O(log d)

(d−1)2
2(n−1)dh+1 +O

(
d logd n
n3

) =

(
log n

2
+

log ε

2
+O(log d)

)(
2n2

d− 1
+O (n logd n)

)

=
n2 (log n+ log ε)

d− 1
+O

(
n2
)
.

This completes the proof.
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