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Operator level hard-to-soft transition for β-ensembles*
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Abstract

The soft and hard edge scaling limits of β-ensembles can be characterized as the
spectra of certain random Sturm-Liouville operators [12, 15]. It has been shown that
by tuning the parameter of the hard edge process one can obtain the soft edge process
as a scaling limit [3, 12, 14]. We prove that this limit can be realized on the level of
the corresponding random operators. More precisely, the random operators can be
coupled in a way so that the scaled versions of the hard edge operators converge to
the soft edge operator a.s. in the norm resolvent sense.
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1 Introduction

The size n Laguerre β-ensemble is a two-parameter family of distributions on Rn+
with density function

pn,β,a(λ1, . . . , λn) =
1

Zn,β,a

∏
j<k

|λj − λk|β
n∏
k=1

λ
β
2 (a+1)−1
k e−

β
2 λk . (1.1)

The parameters satisfy β > 0 and a > −1, and Zn,β,a is an explicitly computable normal-
izing constant. This density corresponds to the Gibbs measure of n positively charged
particles living on the positive half-line with a log-Gamma potential. For β = 1, 2 or 4 and
a ∈ Z≥0, the density (1.1) is also the joint eigenvalue distribution for an n× n Wishart
matrix with real, complex or quaternion ingredients, respectively. These are classical
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Operator level hard-to-soft transition for β-ensembles

random matrix ensembles of the form MM† where M is an n × (n + a) dimensional
matrix with i.i.d. standard real/complex/quaternion gaussian entries. Notice that the
matrix (n+ a)−1MM† is the correlation matrix of n independent individuals whose n+ a

characteristics are i.i.d. standard Gaussians.
When n+ a is of the same order as n, the macroscopic behavior of this ensemble is

described by the famous Marchenko-Pastur limit law. Fix β > 0 and let an > −1, n ≥
1 be a sequence such that limn→∞

n+an
n = γ ∈ [1,∞) exists. Denote by Λn,β,an =

(λ1,n, . . . , λn,n) a size n Laguerre β-ensemble with parameter an, and consider the scaled
empirical spectral measure νn := 1

n

∑n
k=1 δλk,n/n. The Marchenko-Pastur theorem ([9],

[7]) states that the sequence of random probability measures νn, n ≥ 1 converges in
distribution a.s. to a deterministic measure with density given by

σγ(x) =

√
(x− b−)(b+ − x)

2πx
1[b−,b+](x), b± = b±(γ) = (

√
γ ± 1)2. (1.2)

Note that in the case γ = 1, the density becomes
√
x(4−x)
2πx 1[0,4](x).

The microscopic behavior of the Laguerre ensemble can be described by the large
n limit of the point process cn(Λn,β,an − dn) where dn is the centering point and cn is
the appropriate scaling parameter. In order to get a meaningful point process limit, the
scaling parameter cn would need to be chosen so that it is roughly the inverse of the
average spacing between the particles near dn. From now on, we will focus on the lower
edge behavior i.e. the case dn := b−. (See [8] and [15] for the bulk and upper edge
behavior.)

The distribution of the limiting point process depends on the asymptotic behavior
of the sequence an. If an = a > −1 does not depend on n, then Ramírez and Rider [12]
showed that the scaling limit of nΛn,β,a exists, and gave an explicit description of the
limiting point process. This is called the hard edge scaling limit.

Theorem 1.1 (Hard edge limit of the Laguerre ensemble, [12]). Fix β > 0 and a > −1,
and let Λn,β,a be a size n Laguerre β-ensemble with parameter a. Then the sequence
nΛn,β,a converges in distribution to a point process Besselβ,a as n → ∞. The Besselβ,a
process has the same distribution as the a.s. discrete spectrum of the random differential
operator

Gβ,a = − 1

m(x)

d

dx

(
1

s(x)

d

dx
·
)
, (1.3)

m(x) = ma(x) = e
−(a+1)x− 2√

β
Ba(x) , s(x) = sa(x) = e

ax+ 2√
β
Ba(x). (1.4)

Here Ba is a standard Brownian motion, and the operator Gβ,a is defined on a subset of
L2(R+,m) with Dirichlet boundary condition at 0 and Neumann at infinity.

We will come back to the precise definition of Gβ,a in Section 2. Let us just mention
that since the functions s,m are a.s. continuous, this differential operator fits into the
framework of classical Sturm-Liouville operators.

If the sequence an, n ≥ 1 goes to infinity with at least a constant speed then the
Marchenko-Pastur theorem and the expression of the limiting measure (1.2) suggest a
different scaling than the one seen in the hard edge case. This is called the soft edge
scaling scaling limit. The description of the limiting point process follows from the work
of [15].

Theorem 1.2 (Soft edge limit, [15]). Fix β > 0 and suppose that the sequence an, n ≥ 1

satisfies lim infn→∞ an/n > 0. Then there is a point process Airyβ so that the following
limit in distribution holds as n→∞:

((n+ an)n)1/6

(
√
n+ an −

√
n)4/3

(Λn,β,an − (
√
n+ an −

√
n)2)⇒ Airyβ .
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The point process Airyβ has the same distribution as the a.s. discrete spectrum of the
random differential operator

Aβ = − d2

dx2
+ x+

2√
β
B′ (1.5)

defined on a subset of L2(R+) with Dirichlet boundary conditions at 0. Here B′ is the
standard white noise on R+.

The precise definition of the operator Aβ will be discussed in Section 2. Note that a
priori it is not even clear that the operator Aβ is well-defined, due to the irregularity of
the white noise term in the potential.

It is natural to conjecture that the condition lim infn→∞ an/n > 0 in Theorem 1.2
could be relaxed to limn→∞ an =∞, but the tools developed in [15] do not seem to be
sufficient to prove this. (See however [4] for the treatment of the case β = 2, an = c

√
n,

where the appropriate limit is proved using the determinantal structure present at
β = 2.) This conjecture, together with a diagonal argument, would imply the following
point process level transition from the Besselβ,a process to Airyβ:

a−4/3(Besselβ,2a−a2)⇒ Airyβ , as a→∞. (1.6)

See [18] for a similar diagonal argument for the transition between the soft edge and
the bulk limiting processes.

The process level limit (1.6) is called hard to soft edge transition. It can be analyzed
without considering the finite n ensembles, working directly with the limiting point
processes appearing in the statement. This transition was first proved in [3] for β = 2

using again the determinantal structure present in this case. For general β > 0, Ramírez
and Rider [12] proved the scaling limit for the first point of the respective point processes.
This result was extended in [14] to a full process level limit.

In light of Theorems 1.1 and 1.2, the statement of (1.6) can be rewritten using the
operators Gβ,2a and Aβ as

a−4/3(spec(Gβ,2a)− a2)⇒ spec(Aβ),

where spec(Q) denotes the spectrum of the operator Q. It is natural to ask whether it is
possible to prove the corresponding limit on the level of the operators. This is the main
result of our paper. Theorem 1.3 below shows that one can realize the operator level
limit as an a.s. limit with an appropriate coupling between the Brownian motion Ba of
the Bessel operator (1.3) and the white noise B′ of the Airy operator (1.5).

To describe our coupling, we introduce a simple transformation of Gβ,2a. For a > 0

let θa be the ‘stretching’ transformation defined via

(θaf) (x) = f(a2/3x), (1.7)

and define the following transform of the hard-edge operator corresponding to 2a:

Gβ,2a = θ−1a

(
m

1/2
2a Gβ,2am

−1/2
2a

)
θa. (1.8)

As we will see in Section 2, Gβ,2a is a self-adjoint operator with the same spectrum as
Gβ,2a, and the operators A−1β and (Gβ,2a − a2)−1 are Hilbert-Schmidt integral operators
acting on the same space of L2(R+) functions.

Theorem 1.3 (Operator level hard-to-soft transition). Let B′ be white noise on R+ and
let B be a Brownian motion defined as B(x) :=

∫ x
0
B′(y)dy. Set B2a(x) = a−1/3B(a2/3x)

for a > 0. Consider Aβ defined as (1.5) using the white noise B′, and Gβ,2a defined with
the Brownian motion B2a via (1.3) and (1.8) for a > 0. Then a4/3(Gβ,2a − a2)−1 → A−1β
a.s. in Hilbert-Schmidt norm as a→∞.
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We expect that with a more careful application of our methods one could also get
estimates on the speed of convergence in our coupling. See Remark 6.5 in Section 6.

The theorem implies that a−4/3(Gβ,2a − a2)→ Aβ a.s. in norm resolvent sense from
which the process level transition a−4/3(spec(Gβ,2a) − a2) ⇒ spec(Aβ), and therefore
the limit (1.6) follow. The coupling of the operators produces a coupling of the point
processes in a way that almost surely the points in the scaled hard edge processes
converge to the points in the soft edge point process. More precisely, a version of the
Hoffman-Wielandt inequality (see e.g. [1]) shows that if we denote the ordered points in
the scaled hard edge process a−4/3(Besselβ,2a−a2) by λk,2a, k ≥ 0, and the ones in the
soft edge process Airyβ by λk, k ≥ 0, then in the coupling of Theorem 1.3 we have a.s.

lim
a→∞

∞∑
k=0

∣∣∣λ−1k − λ−1k,2a∣∣∣2 = 0 .

Moreover, as the spectrum of the operators are discrete, and each eigenvalue has
multiplicity 1, the a.s. norm resolvent convergence also implies the a.s. convergence of
the respective normalized eigenfunctions in L2.

The structure of the rest of the paper is as follows. In Section 2 we show how one
can describe the appearing differential operators using the generalized Sturm-Liouville
theory, show that A−1β and (Gβ,2a − a2)−1 are Hilbert-Schmidt integral operators, and
describe their kernels in terms of certain diffusions. Section 3 outlines the main steps
of the proof of the main Theorem 1.3. Our proof uses the approximation of the integral
operators by their truncated version. We state the convergences of the truncated
operators towards their full operator as well as the convergence of the truncated hard
edge integral operators to the truncated soft edge integral operator in several lemmas
whose proofs are postponed to later sections. Section 4 estimates the truncation error
of the soft edge integral operator. Section 5 shows that the truncated hard edge
integral operators converge to the truncated soft edge integral operator by proving that
the integral kernels converge uniformly on compacts with probability one. Section 6
describes the asymptotic behavior of the diffusions connected to the operator Gβ,2a and
provides the results needed to estimate the truncation error for the hard edge integral
operators. Finally, the final section gathers the proof of some technical lemmas needed
for the results of Sections 4 and 6.

2 The operators Aβ and Gβ,2a as generalized Sturm-Liouville oper-
ators

This section briefly introduces the background for the differential operators appearing
in this work, and shows how it can be used to describe the random differential operators
Gβ,2a,Gβ,2a,Aβ and their inverses. We use the classical theory discussed in [19] and
Chapter 9 of [17].

2.1 Generalized Sturm-Liouville operators

We consider generalized Sturm-Liouville (S-L) operators of the form

τu(x) =
1

r(x)
(−(p1(x)u′(x)− q0(x)u(x))′ − q0(x)u′(x) + p0(x)u(x)) , (2.1)

where u is a real valued function on [0, L] for some L > 0 or on R+ (which we consider
to be the L =∞ case in the following). We assume that the real functions p0, p1, q0, r are
continuous on [0,∞) and r(x), p1(x) > 0 for x ≥ 0.

The operation τu is well-defined if both u and p1u′ − q0u are absolutely continuous on
[0, L]. From the standard theory of differential equations we have that for any λ ∈ C the
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differential equation τu = λu has a unique differentiable solution on [0, L] with initial
conditions u(0) = c0, u

′(0) = c1. We note that if f1, f2 are both solutions of τf = λf then
integration by parts shows that the Wronskian p1(f1f

′
2 − f ′1f2) is constant on R+.

We consider differential operators satisfying the following three assumptions:

(A1) The solution ud of the equation τud = 0 with Dirichlet initial condition ud(0) = 0,
u′d(0) = 1 is not in L2(R+, r), i.e.

∫∞
0
u2d(x)r(x)dx =∞.

(A2) There is a unique solution u∞ of the equation τu∞ = 0, with initial condition
u∞(0) = 1 that is in L2(R+, r).

(A3) With ud, u∞ defined from (A1), (A2), we have
∫∞
0

∫ x
0
u∞(x)2ud(y)2r(x)r(y) dydx <

∞.

Under these assumptions, the operator τ can be made self-adjoint on an appropriate
subset of L2([0, L], r) or L2(R+, r). We introduce

DL =
{
u ∈ L2([0, L], r) : τu ∈ L2([0, L], r), u, p1u

′ − q0u ∈ AC([0, L])
}
,

and we drop the subscript L for L =∞. Here AC([0, L]) is the set of absolutely continuous
real functions on [0, L].

The continuity of the functions p0, p1, q0 and r implies that the operator τ is regular
at 0 and at any finite L and therefore is limit circle at those points. The condition (A1)
implies that the operator τ is limit point at +∞ thanks to the Weyl’s alternative theorem.
Conditions (A2) and (A3) ensure that the inverse and the resolvent are Hilbert Schmidt
operators.

The following propositions summarize the basic properties of generalized Sturm-
Liouville differential operators satisfying conditions (A1)-(A3).

Proposition 2.1 (Self-adjoint version of τ ). Assume that τ is of the form (2.1) and that it
satisfies the condition (A1-A3), and let L ∈ (0,∞]. Then there is a self-adjoint version of
the operator on [0, L] with Dirichlet boundary conditions on the domain

DL,0 = DL ∩ {u : u(0) = 0, u(L) = 0},

where the end condition u(L) = 0 is dropped in the case L = ∞. We denote this
self-adjoint operator by τL.

Proposition 2.2 (Inverse as an integral operator). Consider the operator τL from Propo-
sition 2.1. If L is finite then assume that ud(L) 6= 0 (i.e. that 0 is not an eigen-
value of τL). Then the inverse τ−1L is an integral operator of the form τ−1L f(x) =∫ L
0
K(L)(x, y)f(y)r(y)dy on L2([0, L], r) with

K(L)(x, y) =
1

p1(0)
(uL(x)ud(y)1(x ≥ y) + ud(x)uL(y)1(x < y)) . (2.2)

Here ud is defined in (A1). If L =∞ then uL is u∞ from (A2), and in the case L <∞ the
function uL is defined as the solution of τuL = 0 with uL(0) = 1, uL(L) = 0. The inverse
operator τ−1L is a Hilbert-Schmidt operator in L2([0, L], r), and it has a bounded pure
point spectrum.

Proposition 2.3 (Resolvent as an integral operator). Consider τL from Proposition 2.1,
and assume that a given λ ∈ R is not an eigenvalue of τL. Then the resolvent (τL − λ)−1

is a Hilbert-Schmidt integral operator of the same form as K(L) from (2.2), where now
ud, uL are the appropriate solutions of τu = λu with the respective boundary conditions.
For L = ∞ the function uL = u∞ is the unique solution of τu∞ = λu∞ with u∞(0) = 1

and u∞ ∈ L2(R+, r).
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The proofs of these propositions follow from the theory of Sturm-Liouville operators.
Again, we refer to the monograph [19]. Note that the classical theory (when q0 = 0) is
treated in a self-contained way in Chapter 9 of [17] (see in particular Theorems 9.6 and
9.7).

2.2 Bessel and Airy operators as generalized S-L operators

The operators Gβ,a, Gβ,2a, and Aβ can be represented as a generalized Sturm-Liouville
operators for which Assumptions (A1-A3) are satisfied, and hence the appropriate
resolvents are a.s. Hilbert-Schmidt integral operators. We summarize the relevant
results in the propositions below.

Proposition 2.4 (Gβ,2a as a Sturm-Liouville operator). The operator Gβ,2a is a Sturm-
Liouville operator of the form (2.1) with r = m2a, p1 = s−12a , p0 = q0 = 0. The operator
satisfies the conditions (A1-A3) with probability one if a > 1/2.

If φ solves the equation Gβ,2aφ = λφ with deterministic initial conditions φ(0) = c0,
φ′(0) = c1 then (φ, φ′) is the unique strong solution of the stochastic differential equation
system

dφ(x) = φ′(x)dx, dφ′(x) = 2√
β
φ′(x)dB2a(x) +

(
(2a+ 2

β )φ′(x)− λe−xφ(x)
)
dx, (2.3)

with the corresponding initial conditions.

Proof. The fact that Gβ,2a is a Sturm-Liouville operator is contained in the statement of
Theorem 1.1, the statement about the solution of the eigenvalue equation can be checked
with Itô’s formula (see [12]). As explained in [13], the Neumann boundary condition for
Gβ,2a at ∞ for a > 0 can be dropped. The SDE (2.3) satisfies the usual conditions for
existence and uniqueness, so (φ, φ′) is a well-defined process for all times.

We only need to check that the conditions (A1-A3) are satisfied for a > 1/2. This can
be done directly using the a.s. sublinear growth of the Brownian motion by noting that
ud(x) =

∫ x
0
s2a(y)dy and u∞(x) = 1.

Proposition 2.5 (Integral kernel for (Gβ,2a − a2)−1). For a given a > 1/2, let φ(2a)d be the
unique strong solution of (2.3) with λ = a2 and initial conditions φ(0) = 0, φ′(0) = 1. Let

Ea be the event that a2 is not an eigenvalue of Gβ,2a. Denote by φ(2a)∞ the unique solution

of Gβ,aφ
(2a)
∞ = a2φ

(2a)
∞ with φ(2a)∞ (0) = 1 and φ(2a)∞ ∈ L2(R+,m2a), this exists on Ea. Then

on the event Ea the operator a4/3(Gβ,2a − a2)−1 is a Hilbert-Schmidt integral operator in
L2(R+) with integral kernel

KG,2a(x, y) = φ̃∞(x)φ̃d(y)1(x ≥ y) + φ̃d(x)φ̃∞(y)1(x < y),

where

φ̃d(x) = a2/3m
1/2
2a (a−2/3x)φ

(2a)
d (a−2/3x), φ̃∞(x) = m

1/2
2a (a−2/3x)φ(2a)∞ (a−2/3x). (2.4)

On the event Ea the operator a4/3(Gβ,2a − a2)−1 has a bounded pure point spectrum that
is the same as the spectrum of a4/3(Gβ,2a − a2)−1.

Proof. By Proposition 2.3, the function φ
(2a)
∞ is well-defined on Ea, and the operator

(Gβ,2a − a2)−1 is Hilbert-Schmidt on L2(R+,m2a) with integral kernel

KG,2a(x, y) = φ(2a)∞ (x)φ
(2a)
d (y)1(x ≥ y) + φ

(2a)
d (x)φ(2a)∞ (y)1(x < y).

Recalling the definition of Gβ,2a from (1.8) we get that a4/3(Gβ,2a − a2)−1 is a Hilbert-
Schmidt integral operator on L2(R+) with kernel

KG,2a(x, y) = a2/3m
1/2
2a (a−2/3x)KG,2a(a−2/3x, a−2/3y)m

1/2
2a (a−2/3y),
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from which the proposition follows.

Note that for any fixed a > 1/2, the event Ea has a probability 1, see Remark 7.5.
Later, in Corollary 6.3 in Section 6 we show that in our coupling if a is large enough
then a2 is not an eigenvalue for Gβ,2a.

Proposition 2.6 (The operator Aβ as a generalized S-L operator). The operator Aβ is a
generalized Sturm-Liouville operator of the form (2.1) with r(x) = p1(x) = 1, q0(x) =
2√
β
B(x), p0(x) = x. The operator satisfies the conditions (A1-A3) with probability one.

If ψ solves the equation Aβψ = 0 with deterministic initial conditions ψ(0) = c0,
ψ′(0) = c1, (c0, c1) 6= (0, 0), then (ψ,ψ′) is the strong solution of the SDE system

dψ(x) = ψ′(x)dx, dψ′(x) = ψ(x)
(

2√
β
dB + xdx

)
, (2.5)

which is well defined for all times, and satisfies

ψ′(x)

ψ(x)
√
x
→ 1 a.s. as x→∞. (2.6)

A.s. 0 is not an eigenvalue of Aβ, and the operator A−1β is a Hilbert-Schmidt integral
operator with kernel

KA(x, y) = ψ∞(x)ψd(y)1(x ≥ y) + ψd(x)ψ∞(y)1(x < y). (2.7)

Here ψd is the solution of Aβψ = 0 with initial condition ψd(0) = 0, ψ′d(0) = 1, and
ψ∞ ∈ L2(R+) is the unique function satisfying Aβψ∞ = 0, ψ∞(0) = 1 (see Figure 1).

Proof. The fact that the soft-edge operator Airyβ can be represented as a generalized
Sturm-Liouville operator of the form (2.1) with the listed coefficients was shown in [2]
(see also [10]). The SDE representation of the solutions of Aβψ = 0 with a deterministic
initial condition is shown in [15]. Since the SDE (2.5) satisfies the usual conditions
of existence and uniqueness for SDEs, the solution is well defined for all times. The
asymptotics (2.6) was stated without proof in [15], we include a proof of this statement
in Proposition 4.1 in Section 7.1 below for completeness.

To check that the conditions (A1)-(A3) are satisfied we first observe that if ψd is the
solution of Aβψ = 0 with Dirichlet initial condition then by (2.6) for any fixed ε > 0 we
have

e(2/3−ε)x
3/2

≤ ψd(x) ≤ e(2/3+ε)x
3/2

for x large enough, (2.8)

hence ψd is not in L2(R+). This means that a.s. there can be at most one L2(R+) solution
of Aβψ = 0 with initial condition ψ(0) = 1. We will construct such a function using ψd.

Denote by z0 the largest zero of ψd on R+, and let z0 = 0 if such a zero does not
exists. Motivated by the Wronskian identity we introduce the function

ψ∞(x) = ψd(x)

∫ ∞
x

ψd(y)−2dy (2.9)

which is well defined for x > z0. One can check that ψ∞ satisfies Aβψ∞ = 0 and the
Wronskian identity

ψ′∞(x)ψd(x)− ψ∞(x)ψ′d(x) = −1 (2.10)

for x > z0. Then, the function ψ∞ can be uniquely extended to R+ as a solution of
Aβψ = 0. This function satisfies (2.10) on R+, hence it will satisfy ψ∞(0) = 1.
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Using (2.9) we see that for x > z0 we have

ψd(x)ψ∞(x) =

∫ ∞
x

ψd(x)2

ψd(y)2
dy =

∫ ∞
x

exp

(
−2

∫ y

x

ψ′d(z)

ψd(z)
dz

)
dy,

and from (2.6) we get the bounds

√
y

∫ y

0

ψd(x)2ψd(y)−2dx ≤ C, √
y

∫ ∞
y

ψd(x)−2ψd(y)2dx ≤ C, (2.11)

for some random C <∞. Together with the bound (2.8) this is now sufficient to show
that ψ∞ is in L2(R+), and that∫ ∞

0

∫ x

0

ψ∞(x)2ψd(y)2dy dx <∞.

By Propositions 2.2 and 2.6 it follows immediately that A−1β is almost surely a Hilbert-
Schmidt integral operator with kernel given in (2.7).

Figure 1: Representation of the log-derivatives of ψd and ψ∞.

Remark 2.7. Using the identity (2.9) and the limit (2.6) one can show that ψ′∞(x)/ψ∞(x)→
−
√
x a.s. as x → ∞, and that ψ∞(x) ≤ e−(2/3−ε)x

3/2

for x large enough. This behavior
was also noted in [15]. See Figure 1 for an illustration for the behavior of ψd, ψ∞.

We record here the Wronskian identities for the appropriate operators:

ψd(x)ψ′∞(x)− ψ′d(x)ψ∞(x) = −1, φd(x)φ′∞(x)− φ′d(x)φ∞(x) = −s2a(x). (2.12)

where we dropped the a-dependence in φ
(2a)
d , φ

(2a)
∞ to alleviate the notation. From the

second equation of (2.12) one can obtain the following analogue of the identity (2.9) for
the hard edge diffusions:

φ∞(x) = φd(x)

∫ ∞
x

φd(y)−2s2a(y)dy, (2.13)

if x is larger than the largest zero of φd.
Note that the functions ψd, φd are diffusions with respect to the natural filtrations

of the Brownian motions B,B2a. This is not the case for the functions ψ∞ and φ∞, as
the starting values of these processes depend on the σ-field generated by the whole
Brownian motion B(t), t ≥ 0. In particular, those functions are not Markovian.
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3 Proof of Theorem 1.3

Proof of Theorem 1.3. In order to prove the theorem, we first need to show that in our
coupling with probability one a2 is not an eigenvalue of the operator Gβ,2a if a is large
enough. This will be the content of Corollary 6.3 in Section 6: we will show that there is
an a.s. finite random variable Cev such that the operator Gβ,2a − a2 is invertible for all
a > Cev. In particular, this means that on the event {a > Cev} the operator (Gβ,2a − a2)−1

is a well-defined integral operator with kernel given in Proposition 2.5.
By the results of Section 2, to prove Theorem 1.3 we need to show that we have

lim
a→∞

∫ ∞
0

∫ ∞
0

|KA(x, y)−KG,2a(x, y)|2 dx dy = 0 a.s. (3.1)

We do this by approximating KA and KG,2a with the resolvent kernels of the appropriate

differential operators restricted to [0, L], with L > 0. We denote these operators by K(L)
A

and K(L)
G,2a. More specifically, set

K
(L)
A (x, y) = ψL(x)ψd(y)1(y ≤ x ≤ L) + ψd(x)ψL(y)1(x < y ≤ L), (3.2)

where ψL which solves Aβψ = 0 with boundary conditions ψL(0) = 1, ψL(L) = 0. The
function ψL is well-defined if ψd(L) 6= 0.

Moreover, set

K
(L)
G,2a(x, y) = φ̃L(x)φ̃d(y)1(y ≤ x ≤ L) + φ̃d(x)φ̃L(y)1(x < y ≤ L) (3.3)

where
φ̃L(x) = m

1/2
2a (a−2/3x)φa−2/3L(a−2/3x),

and φa−2/3L solves the equation Gβ,2aφ = a2φ with φa−2/3L(0) = 1, φa−2/3L(a−2/3L) = 0.
The function φ̃L is well-defined if φd(a−2/3L) 6= 0. (Note that φ and φ̃ depend on a as
well, which we do not denote.)

By the triangle inequality we have

‖KA −KG,2a‖2 ≤ ‖KA −K(L)
A ‖2 + ‖K(L)

A −K(L)
G,2a‖2 + ‖KG,2a −K(L)

G,2a‖2.

We will show that all three terms on the right will vanish in the limit if we let a → ∞
and then L→∞ along a particular sequence, this is the content of the Lemmas 3.1, 3.2
and 3.3 below. From these three lemmas, we deduce the convergence (3.1), and hence
Theorem 1.3 follows.

More precisely, we will prove the following three lemmas.

Lemma 3.1 (Truncation of the Airy operator). ‖KA −K(L)
A ‖22 → 0 a.s. as L→∞.

Lemma 3.2 (Convergence of the truncated operators). For any fixed L > 0 we have

‖K(L)
A −K(L)

G,2a‖
2
2 → 0 a.s. as a→∞ .

Lemma 3.3 (Truncation of the Bessel operator). With probability 1, we have,

lim
L→∞

lim sup
a→∞

‖KG,2a −K(L)
G,2a‖

2
2 = 0 .

We prove Lemma 3.1 in Section 4 using the the asymptotics (2.8). The proof of
Lemma 3.2 is given in Section 5, we will show that for a fixed L <∞ the kernel K(L)

G,2a

converges uniformly to K(L)
A on [0, L]2 as a→∞. Finally, the proof of Lemma 3.3 will be

given in Section 6, and it will rely on a careful analysis of the asymptotic behavior of
φ
(2a)
d .
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Figure 2: Schematic illustration of the asymptotic behavior of the diffusion X

4 Truncation of the Airy operator

We analyze the solutions of the SDE (2.5) via the Riccati transform ψ′(t)
ψ(t) . Suppose

that ψ,ψ′ is the strong solution of the SDE (2.5) with deterministic initial conditions

ψ(0) = c0, ψ′(0) = c1, (c0, c1) 6= (0, 0). Set X(t) = ψ′(t)
ψ(t) , by Itô’s formula X satisfies the

SDE

dX(t) = (t−X(t)2)dt+ 2√
β
dB(t), (4.1)

with initial condition X(0) = c1/c0. The initial condition is∞ if c0 = 0, c1 6= 0. Note that
the diffusion blows up to −∞ at the zeros of ψ, and it restarts at ∞ instantaneously
whenever this happens.

The drift in (4.1) vanishes on the parabola x2 = t, it is positive for |x| <
√
t, and

negative for |x| >
√
t. This suggests that the asymptotic behavior of X(t) should be

√
t

(since the branch x = −
√
t is unstable), as stated in (2.6). The proposition below proves

this statement by providing quantitative bounds on |X(t) −
√
t|. See Figure 2 for an

illustration of the asymptotic behavior of X. Note that less precise asymptotic bounds
on X were also proved in [6] for the study of the small β limit.

Proposition 4.1. Let ψ,ψ′ be the strong solution of (2.5) with deterministic initial

conditions ψ(0) = c0, ψ′(0) = c1, (c0, c1) 6= (0, 0). Let X(t) = ψ′(t)
ψ(t) . Then there is an

a.s. finite random time T such that

|X(t)−
√
t| ≤ t−1/4 ln t, for all t ≥ T . (4.2)

Our upper bound in (4.2) is not optimal. In fact by evaluating the error terms in the
proof given below it can be shown that t−1/4 ln t can be replaced with t−1/4

√
ln t g(t) for

any positive function g(t) satisfying limt→∞ g(t) =∞.
The proof of Proposition 4.1 relies on the following two technical lemmas, whose

proofs are postponed to Section 7.1.

Lemma 4.2. Let X be a strong solution of the SDE (4.1). For a given s ≥ 10 set

σs = inf
{
t ≥ s : |X(t)−

√
t| ≤ 1

2 t
−1/4 ln t

}
. (4.3)

Then σs is a.s. finite.

Lemma 4.3. For a given t0 > 0, x0 ∈ R consider the solution X of the SDE (4.1) on
[t0,∞) with initial condition X(t0) = x0, and denote by Pt0,x0

its distribution. Then

lim
t0→∞

inf
|x0−

√
t0|≤ 1

2 t
−1/4
0 ln t0

Pt0,x0

(
|X(t)−

√
t| ≤ t−1/4 ln t, for all t ≥ t0

)
= 1. (4.4)
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Lemma 4.2 shows that for any solution X of the SDE (4.1) and any s ≥ 10 the process
X(t)−

√
t will get close enough to 0 after time s. Lemma 4.3 shows that if X(t)−

√
t is

close to 0 for a given large t = t0 then with a high probability it will stay close to 0 for all
t ≥ t0.

Proof of Proposition 4.1. Let f(t) = t−1/4 ln t. By Lemma 4.2 for any fixed s ≥ 10 there is
an a.s. finite stopping time σs with σs ≥ s so that |X(σs)−

√
σs| ≤ 1

2f(σs) with probability
one. Lemma 4.3 shows that if the diffusion is close to

√
t then with a high probability it

will stay close forever.
More precisely, for a given ε > 0 one can choose s ≥ 10 so that

inf
t0≥s

|x0−
√
t0|≤ 1

2 f(t0)

Pt0,x0

(
|X(t)−

√
t| ≤ f(t), for all t ≥ t0

)
≥ 1− ε.

The strong Markov property and Lemma 4.2 now imply that the inequality (4.2) holds
with T = σs with probability at least 1− ε. This shows that the random time

T0 = inf
{
s ≥ 10 : |X(t)−

√
t| ≤ f(t) for all t ≥ s

}
is finite with probability at least 1− ε, hence it is a.s. finite. Therefore (4.2) holds with
probability one with T = T0.

We can now prove Lemma 3.1.

Proof of Lemma 3.1. By Proposition 2.6 with probability one the operator A−1β is a
Hilbert-Schmidt integral operator with kernel KA. From (2.6) and the estimate (2.8)
it follows that ψd has a largest zero (if it has one), hence if L is larger than that, the
linearity of the equation Aβψ = 0 implies that

ψL(y) = ψ∞(y)− ψ∞(L)

ψd(L)
ψd(y). (4.5)

Hence the truncated operator K(L)
A is well-defined in this case. From the definition of

K
(L)
A we get

‖KA −K(L)
A ‖

2
2 =

∫∫
[0,L]2

∣∣∣KA(x, y)−K(L)
A (x, y)

∣∣∣2 dx dy +

∫∫
R2

+\[0,L]2
|KA(x, y)|2 dx dy.

(4.6)

By Proposition 2.6, with probability one we have ‖KA‖22 < ∞. This implies that the
term

∫∫
R2

+\[0,L]2
|KA(x, y)|2 dx dy converges to 0 a.s. as L→∞. In fact, by the arguments

described in the proof of Proposition 2.6 it follows that
∫∫
R2

+\[0,L]2
|KA(x, y)|2 dx dy can

be bounded by CL−1/2 with a random constant C.
We now estimate the first term on the right hand side of (4.6). By symmetry we have∫∫

[0,L]2

∣∣∣KA(x, y)−K(L)
A (x, y)

∣∣∣2 dx dy = 2

∫ L

0

∫ y

0

∣∣∣KA(x, y)−K(L)
A (x, y)

∣∣∣2 dx dy.
From (4.5), for L large enough, and 0 ≤ x ≤ y ≤ L, we get

KA(x, y)−K(L)
A (x, y) = (ψ∞(y)− ψL(y))ψd(x) = ψd(x)ψd(y)

∫ ∞
L

ψd(z)−2dz,
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and∫ L

0

∫ y

0

∣∣∣KA(x, y)−K(L)
A (x, y)

∣∣∣2 dx dy =
1

2

(∫ L

0

ψd(x)2

ψd(L)2
dx

)2(∫ ∞
L

ψd(L)2

ψd(z)2
dz

)2

. (4.7)

From the bounds of (2.11) we get that the expression in (4.7) is bounded by a random
constant times L−2, and thus it converges to zero a.s. as L → ∞. This concludes the
proof of Lemma 3.1.

5 Convergence of the truncated operators

Recall the definition of φ̃L, ψL from Section 3. Lemma 3.2 will follow from the
following statement:

Lemma 5.1. For any fixed L > 0 we have φ̃d → ψd and φ̃L → ψL uniformly on [0, L] with
probability one as a→∞.

Proof of Lemma 3.2. From (3.2), (3.3), and Lemma 5.1 it follows that if L > 0 is fixed
then K(L)

G,2a(x, y)→ K
(L)
A (x, y) uniformly on [0, L]2 with probability one. From this Lemma

3.2 follows.

The proof of Lemma 5.1 relies on the following proposition:

Proposition 5.2. Let B′ be standard white noise on R+, and B the corresponding
Brownian motion. Define Gβ,2a using B2a(x) = a−1/3B(a2/3x), and Aβ with B′ as in
Theorem 1.3. Let η0, η1 be fixed real numbers. Suppose that the processes ua, a ≥ 1

satisfy the following conditions:

(a) Gβ,2aua = a2ua,

(b) ua(0), u′a(0) are deterministic, depend continuously on a, and satisfy

(a2/3ua(0), u′a(0)− aua(0))→ (η0, η1)

as a→∞.

Let ûa(x) = a2/3e−a
1/3xua(a−2/3x). Then for any L > 0 we have (ûa, û

′
a) → (ψ,ψ′)

a.s. uniformly on [0, L] where ψ,ψ′ is the unique solution of Aβψ = 0 with initial conditions
ψ(0) = η0, ψ′(0) = η1.

Proof. To ease notation, we drop the dependence on a in ua, ûa. By Proposition 2.4 the
process (u(t), u′(t)) satisfies the SDE

du(x) = u′(x)dx, du′(x) = 2√
β
u′(x)dB2a(x) +

(
(2a+ 2

β )u′(x)− a2e−xu(x)
)
dx. (5.1)

The initial conditions for û are

û(0) = a2/3u(0), û′(0) = u′(0)− au(0),

hence by the conditions of the proposition we see that (û(0), û′(0))→ (η0, η1). Note that

û′(x) = −a1/3û(x) + e−a
1/3xu′(a−2/3x), by Itô’s formula and (5.1) we have that

dû′ = 2√
β

(a−1/3û′ + û)dB(x) +
(
a2/3(1− e−a

−2/3x)û+ 2
βa
−1/3û+ 2

βa
−2/3û′

)
dx.

This means that û, û′ satisfies

dû(x) = û′(x)dx, (5.2)

dû′(x) = û(x)( 2√
β
dB(x) + xdx) + F1(ε, x, û(x), û′(x))dx+ F2(ε, x, û(x), û′(x))dB,
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where ε = a−1/3 and

F1(ε, x, p, q) = (ε−2(1− e−ε
2x)− x)p+ 2

β εp+ 2
β ε

2q, F2(ε, x, p, q) = 2√
β
εq. (5.3)

With a bit of abuse of notation we will use ûε, û′ε to denote the dependence on ε ∈ (0, 1].
The functions F1, F2 can be continuously extended to ε = 0 by setting Fi(0, x, p, q) = 0.

Define (û0, û
′
0) to be the solution of (5.2) with ε = 0 and initial conditions (η0, η1). This is

exactly the solution (ψ,ψ′) of Aβψ = 0 and ψ(0) = η0, ψ′(0) = η1.
Note that for x ∈ [0, L], ε ∈ [0, 1] the functions F1, F2 are globally Lipschitz in p and q,

and (ûε, û
′
ε), ε ∈ [0, 1] gives a stochastic flow where the deterministic initial conditions

are continuous for ε ∈ [0, 1]. Standard theory of stochastic flows (see e.g. Theorem 37 in
Chapter 7 of [11]) shows that there is a unique one-parameter family of strong solutions
for the SDE (5.2) for ε ∈ [0, 1] which is a.s. uniformly continuous in ε for x ∈ [0, L].
But this implies that (ûε, û

′
ε) → (û0, û

′
0) a.s. uniformly on [0, L] as ε → 0, proving the

statement of the lemma.

Proof of Lemma 5.1. Consider ua(x) = φd(x). These functions satisfy the conditions of

Proposition 5.2 with η0 = 0, η1 = 1. Thus û(x) = a2/3e−a
1/3xφd(a−2/3x) converges to ψd

a.s. uniformly on [0, L] as a→∞. Then the same is true for

φ̃d(x) = a2/3m
1/2
2a (a−2/3x)φd(a−2/3x) = û(x)e

− a−2/3

2 x− a−1/3
√
β

B(x)
.

To show the convergence of φ̃L we first consider φ∗, the solution of Gβ,2aφ∗ = a2φ∗ with
initial conditions φ∗(0) = a−2/3, φ′∗(0) = a1/3. Then va(x) = φ∗(x) satisfies the conditions

of Proposition 5.2 with η0 = 1, η1 = 0. This means that v̂(x) = a2/3e−a
1/3xφ∗(a

−2/3x)

converges uniformly to ψ∗(x) where Aβψ∗ = 0 and ψ∗(0) = 1, ψ′∗(0) = 0 (i.e. the solution
with Neumann initial conditions).

By linearity ψL(x) = ψ∗(x) − ψ∗(L)
ψd(L)

ψd(x). Note that ψd(L) 6= 0 with probability one
for a fixed L, so ψL is a.s. well-defined. This also implies that for a fixed L the random
variable φ̃d(L) is not zero if a is larger than a random constant, and in this case φ̃L is
also well-defined.

The function ψL satisfies AβψL = 0 with ψL(0) = 1, ψL(L) = 0. By our previous

arguments we have v̂(x)− v̂(L)
û(L) û(x)→ ψL(x) a.s. uniformly for x ∈ [0, L], as a→∞. We

have

v̂(x)− v̂(L)

û(L)
û(x) = a2/3e−a

1/3xφ∗(a
−2/3x)− a2/3e−a

1/3Lφ∗(a
−2/3L)

a2/3e−a1/3Lφd(a−2/3L)
a2/3e−a

1/3xφd(a−2/3x)

= a2/3e−a
1/3x

(
φ∗(a

−2/3x)− φ∗(a
−2/3L)

φd(a−2/3L)
φd(a−2/3x)

)
,

and we can check (by plugging in x = 0 and x = L) that

v̂(x)− v̂(L)

û(L)
û(x) = e−a

1/3xφa−2/3L(a−2/3x) = φ̃L(x)e
a−2/3

2 x+ a−1/3
√
β

B(x)
.

But this now implies that φ̃L → ψL uniformly on [0, L] with probability one, completing
the proof.

6 Truncation of the Bessel operator

In order to control ‖KG,2a−K(L)
G,2a‖22 and prove Lemma 3.3, we need to understand the

asymptotic behavior of φd(t) = φ
(2a)
d (t) uniformly in a. As before, we turn to the Riccati
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Figure 3: Schematic representation of the behavior of the diffusion t 7→ (p(t)/a)− 1

transform p = p(2a)(t) =
φ′d(t)
φd(t)

. Itô’s formula together with (2.3) implies that p(t) satisfies
the diffusion

dp(t) =
2√
β
p(t)dB2a(t) +

(
(2a+ 2

β )p(t)− p(t)2 − a2e−t
)
dt (6.1)

with initial condition p(0) =∞. The diffusion could reach −∞ at a finite time, in which
case it restarts at +∞ instantaneously.

Our next proposition describes the behavior of p in the region [a−2/3L,∞) uniformly
in a. In words the asymptotic behavior of p can be explained as follows: on a microscopic

a−2/3 time scale the scaled version of p (that is a−2/3(p(a−2/3t) − a)) will mimic ψ′d(t)
ψd(t)

by Proposition 5.2, and this behavior can be extended up to a small macroscopic time
of order a2/3. For large macroscopic times the diffusion p(t)/a will behave like a time-
stationary diffusion supported on R+, which yields logarithmic bounds on ln p(t)− ln a.

For the rest of this section we set t0 := 1/8. Recall that for a > 0 we have B2a(t) =

a−1/3B(a2/3t).

Proposition 6.1 (Behavior of the Bessel diffusion). Let d1, d2 > 0. For a given L > 0 and
a1 ≥ 1, define CL,a1 to be the event where the following inequalities hold for all a ≥ a1:

p(2a)(t) ≥ a(1 + d1
√
t), for all t ∈ [a−2/3L, t0], (6.2)

exp(−a−1/6 ln t) ≤ p(2a)(t)/a ≤ exp(d2 + a−1/6 ln t), for all t ≥ t0, (6.3)

2√
β
|B2a(t)−B2a(s)| ≤ a1/2(t− s) + a−1/6 ln(a2/3s), for all t ≥ s ≥ a−2/3L. (6.4)

Then we can choose deterministic constants d1, d2 > 0 so that

lim
L→∞

lim
a1→∞

P
(
CL,a1

)
= 1 . (6.5)

See Figure 3 for an schematic illustration of the behavior of the Bessel diffusion.
The proof of Proposition 6.1 is postponed to Section 7.2. Using this proposition we can
control the products φ̃d(x) φ̃∞(x) and φ̃d(y)−2φ̃d(x)2 when y ≥ x ≥ L. This will be key to

estimate ‖KG,2a −K(L)
G,2a‖22.

In the rest of this section, we assume L ≥ 10 and set cL = (10L)3/2 ∨ 4(1− e−t0)−2.
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Proposition 6.2. Define

I(s, t) := −2

∫ t

s

(p(z)− a)dz +
2√
β

(B2a(t)−B2a(s)) . (6.6)

There are absolute constants c, c′ so that for all a1 ≥ cL, the following inequalities hold
on the event CL,a1 (as defined in Proposition 6.1): for all a ≥ a1,

I(s, t) ≤

{
−c a
√
s(t− s) + c′ t ≥ s, t0 ≥ s ≥ a−2/3L,

−c a(t− s) + 5a−1/6 ln s+ c′ t ≥ s ≥ t0.
(6.7)

Proof. We first prove the case when t ≥ s ≥ t0 in (6.7). From this point on we will work
on the event CL,a1 with a1 ≥ cL, allowing us to assume the inequalities (6.2)–(6.4). Let us
define

q(t) := q(2a)(t) := ln p(2a)(t)− ln a.

On the event CL,a1 , and for t ≥ t0, q(t) is well defined as p(t) > 0. By Itô’s formula the
process q satisfies the following differential equation:

dq(t) = 2√
β
dB2a(t) + a(2− eq(t) − e−t−q(t))dt,

with the initial condition q(t0) = ln(p(t0)/a) > 0. Note that the drift of the diffusion q will
be close to a(2− eq) for large t. The corresponding diffusion

dq̃ = 2√
β
dB2a(t) + a(2− eq̃(t))dt,

converges to a stationary distribution supported on R (which can be computed explicitly).
This suggests that q behaves like the stationary solution of q̃, and hence we cannot expect
to get a uniform constant bound on a(eq(t) − 1) = p(t) − a in (6.6). Because of this we
instead look for a bound on the integral term in (6.6).

We start with the following identity: for all t ≥ s ≥ t0, we have

a

∫ t

s

(eq(z) − 1)dz = a(t− s) + 2√
β

(B2a(t)−B2a(s))− (q(t)− q(s))− a
∫ t

s

e−q(z)−zdz .

(6.8)

Using the lower bound from (6.3) and the fact that −a−1/6 ln t ≥ −t+ t0 for all t ≥ t0, we
get

a

∫ t

s

(eq(z) − 1)dz ≥ a(1− e−t0)(t− s) + 2√
β

(B2a(t)−B2a(s))− (q(t)− q(s)). (6.9)

and thus

I(s, t) ≤ −2a(1− e−t0)(t− s)− 2√
β

(B2a(t)−B2a(s)) + 2q(t)− 2q(s).

Using the inequality ln t ≤ ln s + t−10 (t − s) for t ≥ s ≥ t0, the bounds (6.3), (6.4), and
by our choice of cL, we get that there exist positive constants c1, c′1 such that for all
t ≥ s ≥ t0, we have

I(s, t) ≤ −c1 a (t− s) + 5a−1/6 ln s+ c′1 .

This completes the proof of (6.7) in the case t ≥ s ≥ t0.
Let us consider now the case a−2/3L ≤ s < t0. From (6.2) we have for all a−2/3L ≤

s ≤ t ≤ t0, ∫ t

s

(p(z)− a)dz ≥ 2

3
a d1(t3/2 − s3/2) ≥ 2

3
a d1
√
s(t− s) .
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Using the lower bound from (6.4) we deduce that for all a−2/3L ≤ s ≤ t ≤ t0,

I(s, t) ≤ −4

3
a d1
√
s(t− s) + a1/2(t− s) + a−1/6 ln(a2/3s) .

As a−2/3L ≤ s ≤ t0 and a ≥ a1 ≥ cL, we get that there exists a constant cI such that:

I(s, t) ≤ −d1 a
√
s(t− s) + cI .

For t ≥ t0 ≥ s ≥ a−2/3L, note that I(s, t) = I(s, t0) + I(t0, t). Therefore, we get

I(s, t) ≤ −d1 a
√
s(t0 − s) + cI − c1 a (t− t0) + 5a−1/6 ln t0 + c′1 ,

≤ −c2 a
√
s(t− s) + c′I ,

where c2 = min{d1, c1t−1/20 }. We choose c = min{c1, c2} and c′ = max{c′1, cI , c′I} to
conclude the proof of (6.7).

As a consequence of Proposition 6.1, we can also show that a2 is not an eigenvalue of
Gβ,2a if a is large enough.

Corollary 6.3. Let a1 ≥ cL. On the event CL,a1 defined in Proposition 6.1, a2 is not an
eigenvalue of Gβ,2a for all a ≥ a1. As a consequence, there exists an a.s. finite random
variable Cev > 0 such that a2 is not an eigenvalue of Gβ,2a on the event {a ≥ Cev}.

Proof. The value a2 is not an eigenvalue of Gβ,2a exactly if the function φ
(2a)
d is not in

L2(R+,m2a). On CL,a1 and for a ≥ a1, using the identity (6.8) and the bound (6.9) in the
proof of Proposition 6.2, we get

a

∫ t

t0

eq(z)dz ≥ a(2− e−t0)(t− t0) + 2√
β

(B2a(t)−B2a(t0))− q(t) + q(t0).

Recall that aeq(t) = p(t) =
φ′d(t)
φd(t)

. Using the above lower bound on the integral of aeq(t),
and the bounds (6.3) and (6.4), we get

φd(t)2m2a(t) = φd(t0)2 exp
(

2

∫ t

t0

p(z)dz
)

exp(−(2a+ 1)t− 2√
β
B2a(t))

≥ c(t0) exp
(
2a(1− e−t0)t− t− a1/2t− 2a−1/6 ln t

)
,

where c(t0) is an a.s. finite random constant. Choosing a ≥ a1 ≥ cL ≥ (1− e−t0)−2, we
get that

∫∞
0
φd(t)2m2a(t)dt is infinite, proving the statement.

Now set

Cev = 1 + inf
a1≥cL,L≥10

a1 · 1CL,a1 .

If a ≥ Cev then a2 is not an eigenvalue of Gβ,2a. By the limit (6.5), the random variable
Cev is a.s. finite, which completes the proof.

Proposition 6.4. Recall the definition of the event CL,a1 from Proposition 6.1. On this
event a2 is not an eigenvalue of Gβ,2a (or Gβ,2a) if a ≥ a1 ≥ cL by Corollary 6.3, hence
φ̃∞ is well-defined. There exist deterministic constants c1, c > 0 such that for all L ≥ 10

and a1 ≥ cL, the following inequalities hold on CL,a1 : for all a ≥ a1,

φ̃d(x)φ̃∞(x) ≤

{
c x−1/2 L ≤ x < a2/3t0,

c a−1/3e−a
−2/3x/2 x ≥ a2/3t0,

(6.10)
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and

φ̃d(y)−2φ̃d(x)2 ≤

{
exp(−c1

√
x(y − x) + c) y ≥ x, a2/3t0 ≥ x ≥ L

exp(−c1 a1/3 (y − x) + 5 a−1/6 lnx+ c) y ≥ x ≥ a2/3t0 .
(6.11)

Moreover, under the same conditions, we also get the following inequality for all y ≥ x ≥
L:

φ̃d(y)−2φ̃d(x)2 ≤ exp
(
−c1
√
L(y − x) + 5a−1/6 lnx+ c

)
. (6.12)

Proof. Recall the definition of φ̃d, φ̃∞ from (2.4). On CL,a1 , the diffusion p(t) does not

explode on [a−2/3L,∞), which also implies the largest zero of φ(2a)d is smaller than a−2/3L.
By the Wronskian identity (2.13), for all x ≥ L we have

φ̃∞(x)φ̃d(x) = a2/3s(a−2/3x)m2a(a−2/3x)

∫ ∞
a−2/3x

φd(a−2/3x)2φd(y)−2
s(y)

s(a−2/3x)
dy

= e−a
−2/3x

∫ ∞
x

exp
(
I(a−2/3x, a−2/3y)

)
dy , (6.13)

where

I(s, t) := −2

∫ t

s

(p(z)− a)dz +
2√
β

(B2a(t)−B2a(s)) .

For the product φ̃d(y)−2φ̃d(x)2 for y ≥ x ≥ L, we have

φ̃d(y)−2φ̃d(x)2 = exp
(
a−2/3(y − x) + I(a−2/3x, a−2/3y)

)
.

For a1 ≥ cL, (6.11) follows from (6.7) directly. Integrating the exponential of (6.6) and
using the upper bounds (6.7), we get (6.10) and the statement of the proposition. The
inequality (6.12) follows by comparing the upper bounds in (6.11).

We now turn to the proof of Lemma 3.3. We will use the following identity, that
follows from the linearity of the equation Gβ,2aφ = a2φ:

φ̃∞(x)− φ̃L(x) = m
1/2
2a (a−2/3x)

φ∞(a−2/3L)

φd(a−2/3L)
φd(a−2/3x) =

φ̃∞(L)

φ̃d(L)
φ̃d(x). (6.14)

By Propositions 6.1 and 6.2, we have that φ̃d(L) 6= 0 and φ̃∞ is well-defined for all a ≥ a1
on the event CL,a1 .

Proof of Lemma 3.3. For L ≥ 10 define the event

C(1)L =
{
ψd(K)−2

∫ K

0

ψd(x)2dx ≤ 2K−1/2, for all K ≥ L
}
∩ {ψd(t) > 0, ∀t ≥ L} .

The family of events C(1)L , L ≥ 10 is non-decreasing in L and limL→∞ P (C(1)L ) = 1, by
Proposition 4.1. Define the events

C(2)L,a1
= CL,a1 ∩ C

(1)
L ∩

{
φ̃
(2a)
d (L)−2

∫ L

0

φ̃
(2a)
d (x)2dx ≤ 3L−1/2, ∀a ≥ a1

}
.

The family C(2)L,a1
is non-decreasing in a1 for fixed L and the events ∪a1C

(2)
L,a1

are non-

decreasing in L. By the uniform convergence of (φ̃d, φ̃
′
d)→ (ψ,ψ′) on [0, L], we have

lim
L→∞

lim
a1→∞

P (C(2)L,a1
) = 1.
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We now prove inequalities on the event C(2)L,a1
for all a1 ≥ cL. In the following, c′ is a

constant that may change from line to line. We start with the following identity:

‖KG,2a−K(L)
G,2a‖

2
2 =

∫∫
[0,L]2

∣∣∣KG,2a(x, y)−K(L)
G,2a(x, y)

∣∣∣2 dx dy+

∫∫
R2

+\[0,L]2
|KG,2a(x, y)|2 dx dy.

On [0, L]2 we have∫∫
[0,L]2

∣∣∣KG,2a(x, y)−K(L)
G,2a(x, y)

∣∣∣2 dx dy = 2

∫ L

0

∫ y

0

φ̃d(x)2(φ̃∞(y)− φ̃L(y))2dxdy ,

=

(
φ̃d(L)−2

∫ L

0

φ̃d(x)2dx

)2

φ̃∞(L)2φ̃d(L)2 ,

≤ (3L−1/2)2(cL−1/2)2 ,

using identity (6.14) for the second line and the bound (6.10) for x = L for the third line.
Thus this term is bounded by c′L−2 uniformly in a.

We further split the region R2
+ \ [0, L]2 into the union of R1 = [L,∞)× [0, L] ∪ [0, L]×

[L,∞) and R2 = [L,∞)2. On R1 we have:∫∫
R1

|KG,2a(x, y)|2 dx dy =
(

2φ̃d(L)−2
∫ L

0

φ̃d(x)2dx
)
φ̃d(L)2

∫ ∞
L

φ̃∞(y)2dy .

The first term 2 φ̃d(L)−2
∫ L
0
φ̃d(x)2dx is bounded from above by 6L−1/2. For the second

term, we split the integral, and apply Proposition 6.4 to get the following upper bound:

φ̃d(L)2
∫ ∞
L

φ̃∞(y)2dy

=

∫ a2/3t0

L

φ̃∞(y)2φ̃d(y)2φ̃d(y)−2φ̃d(L)2dy +

∫ ∞
a2/3t0

φ̃∞(y)2φ̃d(y)2φ̃d(y)−2φ̃d(L)2dy

≤
∫ a2/3t0

L

c2y−1e−c1
√
L(y−L)+cdy +

∫ ∞
a2/3t0

c2a−2/3e−a
−2/3ye−c1

√
L(y−L)+cdy

≤ c′(L−3/2 + L−1/2a−2/3).

At last, on R2 we have

∫∫
R2

|KG,2a(x, y)|2 dxdy=2

∫ a2/3t0

L

∫ y

L

φ̃d(x)2φ̃∞(y)2dxdy+2

∫ ∞
a2/3t0

∫ y

L

φ̃d(x)2φ̃∞(y)2dxdy.

We use (6.10) and (6.11) to bound the first integral,

∫ a2/3t0

L

∫ y

L

φ̃d(x)2φ̃∞(y)2dxdy =

∫ a2/3t0

L

φ̃d(y)2φ̃∞(y)2
∫ y

L

φ̃d(y)−2φ̃d(x)2dxdy

≤
∫ a2/3t0

L

c2y−1
∫ y

L

e−c1
√
x(y−x)+cdxdy

≤
∫ a2/3t0

L

c′y−3/2dy

≤ c′L−1/2 .
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For the second integral, we use (6.10) and (6.12),∫ ∞
a2/3t0

∫ y

L

φ̃∞(y)2φ̃d(x)2dxdy =

∫ ∞
a2/3t0

φ̃∞(y)2φ̃d(y)2
∫ y

L

φ̃d(y)−2φ̃d(x)2dxdy

≤
∫ ∞
a2/3t0

c2a−2/3e−a
−2/3y

∫ y

L

e−c1
√
L(y−x)+5a−1/6 ln y+cdxdy

≤
∫ ∞
a2/3t0

c′L−1/2a−2/3e−a
−2/3y+5a−1/6 ln ydy

≤ c′L−1/2 .

Recall that the family of events C(2)L,a1
is non-decreasing in a1 for fixed L, and the

events C(2)L := ∪a1C
(2)
L,a1

satisfy C(2)L ↑ Ω as L→∞ with P (Ω) = 1. On the event Ω we have

lim
L→∞

lim sup
a→∞

‖KG,2a −K(L)
G,2a‖

2
2 = 0,

which completes the proof.

Remark 6.5. Note that our estimates give an upper bound of the order O(L−1/2) on the

squared Hilbert-Schmidt norm difference of KG,2a and K(L)
G,2a. A bound of the same order

was shown on the truncation error for KA.
By choosing L = La to be dependent on a with La → ∞ at some rate, one could

potentially obtain a bound on the rate of convergence in (3.1). This would require the
extension of the result of Lemma 5.1 to increasing intervals [0, La]. We do not explore
this path in this paper, but we want to present a hand-waving argument to show that our
methods are not expected to give better than logarithmic convergence.

In the proof of Proposition 5.2, we viewed the process (û, û′) as a stochastic flow
depending on two variables ε = a−1/3 and x. It is reasonable to expect that if the
statement of Lemma 5.1 holds on the interval [0, La] then supx≤La |ûε(x)− û0(x)| should
vanish as a → ∞. This quantity should be of the same order as ε supx≤La |v(x)| where
v(x) = ∂εûε(x)|ε=0. One can check that v satisfies the stochastic differential equation,

dv = v′dx, dv′ = v( 2√
β
dB + xdx) + 2

β û0(x)dx+ 2√
β
û′0(x)dB

with initial values v(0) = 0 and v′(0) = 0. If we assume that v′ grows at least as fast as
the contribution of the 2

β û0(x)dx term then we would get that v grows at least as fast as

e
1
2x

3/2

. This would lead to the requirement a−1/3e
1
2L

3/2
a → 0, and La � (ln a)2/3. Hence

the speed of convergence could not be faster than (ln a)−1/3.

7 Bounds on the soft and hard edge diffusions

7.1 Asymptotic properties of the soft edge diffusion ψd

This section contains the proofs of Lemma 4.2 and 4.3, which were used for the
asymptotic analysis of the diffusion X in (4.1). In this section we set f(t) = t−1/4 ln t.

Proof of Lemma 4.2. We will prove that

lim
t0→∞

P
(
|X(t)−

√
t| ≤ 1

2f(t) for some t ∈ [t0, t0 + 1√
t0

ln3(t0)]
)

= 1. (7.1)

This means that with higher and higher probability we will hit the region |X(t)−
√
t| ≤

1
2f(t) within a small time interval, which implies that σs <∞ with probability one.
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Figure 4: Representation of the four different cases for the position of X(t0)

To prove (7.1) we consider X with initial condition X(t0) = x0 with t0 ≥ 10, x0 ∈ R,
and give a bound on the probability in (7.1) in each of the following cases (see Figure 4):

Case I: x0 >
√
t0 + f(t0)/2

Case II: x0 < −
√
t0 − f(t0)

Case III: −
√
t0 + f(t0) < x0 <

√
t0 −

1

2
f(t0)

Case IV: −
√
t0 − f(t0) ≤ x0 ≤ −

√
t0 + f(t0).

In each one of these cases we will compare the diffusion to a time-homogeneous version
of itself. Then in Cases I-III we use the idea that as long as we control the maximal value
of the Brownian motion B, the diffusion will stay close to the deterministic path solving
the ODE x(t)′ = t− x(t)2 which is what we get if we remove the noise from the SDE of
X. In Case IV we will use explicit computations about hitting times of diffusions.

Let g(x) = x+ 1√
x

ln(x). We consider Case I, when x0 >
√
t0+f(t0)/2. We set t1 = g(t0)

and assume that t0 is large enough. Let the time-homogeneous diffusion X+ on [t0, t1] be
given by the strong solution of

dX+(t) = (t1 −X+(t)2)dt+ 2√
β
dB(t), X+(t0) = +∞.

Comparing the drifts of X+ and X we see that on the event {X(t) >
√
t, t ∈ [t0, t1]} we

have X+(t) ≥ X(t) for t ∈ [t0, t1].
The process Z(t) := X+(t)− 2√

β
B̃(t) with B̃(t) = B(t)−B(t0) satisfies the ODE

Z ′(t) = t1 − Z(t)2(1 +
2√
β
B̃(t)

Zt
)2, Z(t0) =∞

for all time t ≥ t0 smaller than the first hitting time of 0 for Z. We set

M := 1
10f(t0) = 1

10 t
−1/4
0 ln t0,

and introduce the event

A = At0 := { sup
t∈[t0,t1]

|B(t)−B(t0)| ≤
√
β
2 M}.
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Note that

P (A) = P

(
sup
s∈[0,1]

|B(s)| ≤
√
β

20

√
ln t0

)
which shows that P (At0)→ 1 as t0 →∞.

On the event A, if Z(s) =
√
t0 for an s ∈ [t0, t1] then this would imply

X(s) ≤
√
t0 +M ≤

√
s+ f(s)/2.

On Ã = A ∩ {Z(t) >
√
t0, t ∈ [t0, t1]}, Z is bounded from above by the deterministic

solution of
F ′(t) = t1 − F (t)2(1− 2M/

√
t0), F (t0) =∞,

which is given by

F (t) =
√
t1/D coth(

√
t1D(t− t0)), D = 1− 2M/

√
t0.

Using Taylor-expansion, we get that for t0 large enough we have F (t1) ≤
√
t0 +2M which

implies that on Ã we must have X(t1) ≤
√
t0 + 3M ≤

√
t1 + 1

2f(t1). This shows that

A ⊂ {|X(t)−
√
t| ≤ 1

2f(t) for some t ∈ [t0, t1]},

which implies

lim
t0→∞

inf
x0>
√
t0+

1
2 f(t0)

Px0,t0

(
|X(t)−

√
t| ≤ 1

2f(t) for some t ∈ [t0, t0 + 1√
t0

ln3(t0)]
)

= 1.

Next we consider the case x0 < −
√
t0− f(t0) (this is Case II). Similar arguments used

as in Case I show that for t0 large enough X explodes to −∞ before time t1 = g(t0) on
the event A. Since X restarts at +∞ at the explosion, we are back in Case I, and by the
arguments presented there we get that |X(t)−

√
t| ≤ 1

2f(t) must hold before time g(t1)

with high probability. Since g(t1) ≤ t0 + ln3 t0/
√
t0 for t0 large, we get

lim
t0→∞

inf
x0<−

√
t0− 1

2 f(t0)
Px0,t0

(
|X(t)−

√
t| ≤ 1

2f(t) for some t ∈ [t0, t0 + 1√
t0

ln3(t0)]
)

= 1.

Now consider Case III, when x0 ∈ (−
√
t0 + f(t0),

√
t0 − f(t0)/2). We show that X

reaches
√
t0 − f(t0)/2 before time t1 with probability going to 1. For this we can just

assume that x0 = −
√
t0 + f(t0), since the other cases stochastically dominate this one by

a simple coupling. Let us examine again Z = X − 2√
β
B̃. The process Z(t) satisfies the

ODE
Z ′(t) = t− (Z(t) + 2√

β
B̃(t))2, Z(t0) = −

√
t0 + f(t0).

On the eventA, the process Z is increasing when −
√
t+M ≤ Z(t) ≤

√
t−M , in particular

Z ′(t0) > 0. Before Z hits
√
t0, we can bound Z from below by G(t) where

G′(t) = (
√
t0 − 3

2M)2 −G2(t), G(t0) = −
√
t0 + f(t0).

Solving the above initial value problem, we get G(t) = (
√
t0 − 3

2M) tanh((
√
t0 − 3

2M)(t−
t0) + c) where c < 0 is chosen such that G(t0) = −

√
t0 + f(t0). Here c ∼ − 3

8 ln t0 if t0
is large. Using Taylor-expansion again, we get G(t1) ≥

√
t0 − 2M which implies that

X(t) ≥
√
t− f(t)/2 somewhere in [t0, t1].

For the last case IV when x0 ∈ [−
√
t0 − f(t0),−

√
t0 + f(t0)], denote by τ the exit

time of X(t) from the interval [q−, q+] := [−
√
t1 − f(t1),−

√
t1 + f(t1)]. We use the

time-homogeneous diffusion X̃(t) satisfying the SDE

dX̃(t) = (t0 − X̃(t)2)dt+ 2√
β
dB(t), X̃(t0) = x0.
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Let us denote by τ̃ the first exit time for X̃ after time t0 from (q−, q+). By the Cameron-
Martin-Girsanov formula, the Radon-Nikodym derivative of X with respect to X̃ on the
time interval [t0, t1] can be expressed as eG(X̃) where

G(X̃) =
1

( 2√
β

)2

(∫ t1

t0

(X̃(t1)− X̃(t))dt− (t1 − t0)3

6
−
∫ t1

t0

t (t0 − X̃(t)2)dt
)
.

On the event {X̃(t) ∈ [q−, q+], t ∈ [t0, t1]} one can bound G(X̃) by a constant. This means
that P (τ > t1) can be bounded by a constant times P (τ̃ > t1).

We can explicitly compute E[τ̃ ] in terms of the scale function and speed measure of
X̃. The scale function sc and speed measure sp for X̃(t) are given by

sc(x) =

∫ x

−∞
exp(−2t0y +

2

3
y3)dy, sp(dx) =

2

sc′(x)
dx.

From this we can express the first moment of τ̃ as

E[τ̃ − t0] =

∫ x0

q−

(sc(y)− sc(q−))(sc(q+)− sc(x0))

sc(q+)− sc(q−)
sp(dy)

+

∫ q+

x0

(sc(x0)− sc(q−))(sc(q+)− sc(y))

sc(q+)− sc(q−)
sp(dy).

(See for example Theorem VII.3.6 [16].) By analyzing the above integrals as t0 →∞, one
can bound E[τ̃ − t0] by c ln ln t0√

t0
with an absolute constant c for all t0 large enough and all

x0 ∈ [−
√
t0 − f(t0),−

√
t0 + f(t0)]. (We refer to Lemma 5.7. of [5] for additional details

for this argument.) By Markov’s inequality, we get

Px0,t0 [τ > t1] = E[exp(G(X̃))1{τ̃>t1}] ≤ c
′ ln ln t0
(t1 − t0)

√
t0

= c′
ln ln t0
ln t0

,

with an absolute constant c′. Therefore X exits the region (q−, q+) before time t1 with
probability tending to 1 as t0 →∞. Once X(t) exits this region, we get to Case II or III,
and repeating the arguments there we can show that

lim
t0→∞

inf
x0:|x0+

√
t0|≤f(t0)

Px0,t0

(
|X(t)−

√
t| ≤ 1

2f(t) for some t ∈ [t0, t0 + 1√
t0

ln3(t0)]
)

= 1.

This completes the proof of (7.1) and hence the statement of the lemma.

Proof of Lemma 4.3. Introduce Y (t) := X(t) −
√
t, then Y (t) satisfies the stochastic

differential equation

dY (t) = (−Y (t)2 − 2
√
tY (t)− 1

2
√
t
)dt+ 2√

β
dB(t),

with initial condition y0 = x0 −
√
t0.

With the same driven noise dB, we define two families of diffusions Y1(t) = Y y0,t01 (t),
Y2(t) = Y y0,t02 (t) on [t0,∞) with initial condition y0 as follows:

dY1(t) = −2
√
tY1(t)dt+ 2√

β
dB(t), Y1(t0) = y0,

dY2(t) = (−2
√
tY2(t)− 2f(t)2)dt+ 2√

β
dB(t), Y2(t0) = y0.

By comparing the drift terms in Y, Y1, Y2 we see that if for a given t0 we start Y1, Y2 from
y0 = Y (t0) at time t0 then the coupling Y2(t) ≤ Y (t) ≤ Y1(t) holds for all t ≥ t0 on the
event

Dt0,y0 := {−f(t) ≤ Y2(t), Y1(t) ≤ f(t) for all t ≥ t0}. (7.2)
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Consequently, this shows that

Dt0,y0 ⊂ {|Y (t)| ≤ f(t),∀t ≥ t0}, (7.3)

and thus it is enough to prove

lim
t0→∞

inf
|y0|≤ 1

2 f(t0)
P (Dt0,y0) = 1. (7.4)

Using the integrating factor trick, both Y1 and Y2 can be solved explicitly:

Y1(t) = exp(− 4
3 (t3/2 − t3/20 ))y0 + 2√

β
e−

4
3 t

3/2

∫ t

t0

e
4
3 s

3/2

dBs,

Y2(t) = exp(− 4
3 (t3/2 − t3/20 ))y0 − 2 e−

4
3 t

3/2

∫ t

t0

f2(s)e
4
3 s

3/2

ds+ 2√
β
e−

4
3 t

3/2

∫ t

t0

e
4
3 s

3/2

dBs.

Let ξ(t) =
∫ t
1
e

8
3 s

3/2

ds. There exists a Brownian motion W such that we have the following
distributional identity: (∫ t

1

e
4
3 s

3/2

dBs, t ≥ 1

)
d
= (W (ξ(t)), t ≥ 1).

By the Law of Iterated Logarithm, there exist finite random constant C such that

|W (u)| ≤ C
√
u ln lnu, for all u ≥ 20.

Note that ξ(t) ≤ 1
2e

8
3 t

3/2

t−1/2 for all t ≥ 1. We may assume t0 ≥ max(10, ξ−1(20)), then
for t ≥ t0 we get

Y1(t) ≤ 1
2e
− 4

3 (t
3/2−t3/20 )f(t0) + 2√

β
C e−

4
3 t

3/2

(
√
ξ(t) ln ln ξ(t) +

√
ξ(t0) ln ln ξ(t0))

≤ e− 4
3 (t

3/2−t3/20 )( 1
2f(t0) + 2√

β
Ct
−1/4
0

√
ln t0) + 2√

β
Ct−1/4

√
ln t.

Integration by parts yields the bound∫ t

t0

f(s)2e
4
3 s

3/2

ds ≤ 1√
t
f(t)2e

4
3 t

3/2

.

Therefore, we obtain that

Y2(t) ≥ −e− 4
3 (t

3/2−t3/20 )( 1
2f(t0) + 2√

β
Ct
−1/4
0

√
ln t0)− 2t−1/2f(t)2 − 2√

β
Ct−1/4

√
ln t .

For a large enough deterministic c0, we have −f(t) ≤ Y2(t) ≤ Y1(t) ≤ f(t) for all

t ≥ t0 ≥ c0 on the event {C <
√
β

20

√
ln t0}. Hence if t0 ≥ c0 then

inf
|y0|≤ 1

2 f(t0)
P (Dy0,t0) ≥ P (C <

√
β

20

√
ln t0)

which completes the proof of (7.4).

7.2 Bounds for the hard edge diffusion

We start this section with a lemma controlling the fluctuations of Brownian motion.
Although the bounds in the lemma are not optimal they are sufficient for our purposes.
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Lemma 7.1. Let B be a standard Brownian motion. Then there is a random finite
positive C so that a.s. we have the following inequality:

|B(s+ h)−B(s)| ≤ C
√
h ln(2 + s

h + | lnh|), for all h > 0, s > 0. (7.5)

This implies in particular the following simple bounds:

|B(s+ h)−B(s)| ≤ C1(h+ ln s), for all h > 0, s ≥ 10, (7.6)

with a random constant C1.

Proof. First set h = 2n, s = m2n, for n ∈ Z and m ∈ N. We have

P (max
x≤h
|B(s)−B(s+ x)| ≥ 4 · 2n/2

√
ln(2 + |n|+m)) ≤ 2P (|B(1)| ≥ 4

√
ln(2 + |n|+m))

≤ 2e−8 ln(2+|n|+m) =
2

(2 + |n|+m)8
,

which is summable for n ∈ Z,m ∈ N. Hence by the Borel-Cantelli Lemma, there is a
random C̃ so that

max
x≤h
|B(s)−B(s+ x)| ≤ C̃

√
h
√

ln(2 + | lnh|+ s
h ) (7.7)

for all s = m2n, h = 2n. For general s > 0, h > 0, there exist n ∈ Z,m ∈ N such that
2n < h ≤ 2n+1 and m2n < s ≤ (m+ 1)2n. Using (7.7) and the triangle inequality, we get

|B(s+ h)−B(s)| ≤ 8C̃
√
h ln(2 + | lnh|+ s

h ),

which proves the first part of the lemma with C = 8C̃.
For s ≥ 10 we have√

h ln(2 + s
h + | lnh|) ≤

√
h ln(2 + 1

h + | lnh|) + h ln(1 + s).

For h ≥ ln s, we have

ln(2 + 1
h + | lnh|) < h, ln(1 + s) < ln(2s) ≤ 2h,

which implies
√
h ln(2 + s

h + | lnh|) ≤ 2h in this case.
Now assume h < ln s. We have h ln(2 + 2

h + lnh) ≤ 2 for h ∈ [0, 1], which yields
h ln(2 + 1

h + | lnh|) ≤ 2 ln(s) ln ln(s) for h < ln s, s ≥ 10. We also have h ln(1 + s) ≤
(3/2)(ln s)2 under the same conditions, which yields

√
h ln(2 + s

h + | lnh|) ≤ 2 ln s. The
bound (7.6) now follows from (7.5).

The next lemma gives estimates on the diffusion p(2a)(t) at time t = a−2/3L using the
convergence result of Proposition 5.2.

Lemma 7.2. For all positive L and a1, let A(1)
L,a1

be the event that

a
(
1 + 4

5a
−1/3
√
L
)
≤ p(a−2/3L) ≤ a

(
1 + 6

5a
−1/3
√
L
)
, for all a ≥ a1.

Then limL→∞ lima1→∞ P (A(1)
L,a1

) = 1.

Proof. The uniform convergence of Proposition 5.2 implies that almost surely,

p(a−2/3L)a−2/3 − a1/3 → X(L) , as a→∞ . (7.8)
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Indeed

(a2/3φ(a−2/3t)e−a
1/3t, φ′(a−2/3t)e−a

1/3t − aφ(a−2/3t)e−a
1/3t)→ (ψ(t), ψ′(t)) ,

uniformly on [0, L] and p(t) = φ′(t)/φ(t) and X(t) = ψ′(t)/ψ(t).
Fix L large and define the event:

AL := { 9
10

√
t ≤ X(t) ≤ 11

10

√
t, ∀t ≥ L}.

Note that the family AL is non-decreasing in L. From Proposition 4.1 it follows that
limL→∞ P (AL) = 1. For all L and a1, define

AL,a1 = AL ∩ {a(1 + 4
5a
−1/3
√
L) ≤ p(a−2/3L) ≤ a(1 + 6

5a
−1/3
√
L), ∀a ≥ a1}.

By (7.8) and the condition 9
10

√
L ≤ X(L) ≤ 11

10

√
L on AL, we have AL,a1 ↑ AL as a1 →∞

which concludes the proof.

Let us introduce q = q(2a) = ln p(2a)−ln a. By Lemma 7.2, the diffusion q is well-defined
at time a−2/3L on the event A(1)

L,a1
. By Itô’s formula, for t ≥ a−2/3L we have

dq(t) = 2√
β
dB2a(t) + a(2− eq(t) − e−t−q(t))dt . (7.9)

The diffusion q blows-up when p reaches 0, so q may not be well-defined on the whole
interval [a−2/3L,+∞).

The next proposition controls the growth of q from small times starting at a−2/3L
until a positive deterministic time. In this time-interval, q is small and therefore p is
close to a(1 + q). Analyzing the drift of the q diffusion for small t and q, we see that one
can compare the behavior of q with the diffusion X defined in (4.1). This allows us to
bound q with constant multiples of the square root function with large probability.

Proposition 7.3. Fix t0 := 1/8. For all positive L and a1 with a
−2/3
1 L ≤ t0, we define

A(2)
L,a1

to be the event that

2
5

√
t ≤ q(2a)(t) ≤ 7

5

√
t, ∀t ∈ [a−2/3L, t0] for all a ≥ a1. (7.10)

Then limL→∞ lima1→∞ P
(
A(2)
L,a1

)
= 1.

Note that the inequality (7.10) implies

p(2a)(t) ≥ a(1 + 2
5

√
t), ∀t ∈ [a−2/3L, t0] for all a ≥ a1.

Proof. If a1 > (8L)3/2 then on the event A(1)
L,a1

of Lemma 7.2, we have

3
5

√
L ≤ a1/3q(a−2/3L) ≤ 6

5

√
L, for all a ≥ a1.

For 0 ≤ q ≤ 1/2, t ≤ t0 we have the following inequalities:

−q2 + t ≥ 2− eq − e−t−q = 2− eq − e−q + e−q(1− e−t) ≥ −2q2 + 1
2 t .

Let q1 = q
(2a)
1 and q2 = q

(2a)
2 be the diffusions on [a−2/3L, t0] so that

dq1(t) = 2√
β
dB2a(t) + a( 1

2 t− 2q1(t)2)dt, dq2(t) = 2√
β
dB2a(t) + a(t− q2(t)2)dt ,

with q1(a−2/3L) = q2(a−2/3L) = q(a−2/3L). Then the coupling {q1(t) ≤ q(t) ≤ q2(t)} holds
on the event {0 ≤ q1(t) ≤ q2(t) ≤ 1/2,∀t ∈ [a−2/3L, t0]}.
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Recall that B2a(t) = a−1/3B(a2/3t). Setting y1(t) = 2 a1/3q1(a−2/3t) and y2(t) =

a1/3q2(a−2/3t), we get

dy1(t) = 4√
β
dB(t) + (t− y1(t)2)dt, dy2(t) = 2√

β
dB(t) + (t− y2(t)2)dt,

with 6
5

√
L ≤ y1(L) ≤ 12

5

√
L and 3

5

√
L ≤ y2(L) ≤ 6

5

√
L. Thanks to Proposition 4.1, we

know that the event{
∀t ≥ L, y1(t) ∈ [ 45

√
t, 135
√
t], y2(t) ∈ [ 12

√
t, 75
√
t]
}

(7.11)

has probability going to 1 when L→∞. On the event (7.11) we have

0 ≤ 2
5

√
t ≤ q1(t) ≤ q(t) ≤ q2(t) ≤ 7

5

√
t ≤ 1

2 , ∀t ∈ [a−2/3L, t0],

implying that p(t) ≥ a(1 + 2
5

√
t) on [a−2/3L, t0].

Next we estimate the growth of q(t) in the time interval t ∈ [t0,∞). As we will see,
q will have a different behavior for large times: it oscillates near the value ln 2 with
possibly making large excursions away from this value. We will prove bounds on those
fluctuations using a comparison with a non-exploding, stationary version of the diffusion
q.

Proposition 7.4. Recall the definition of A(2)
L,a1

from Proposition 7.3. Define

A(3)
L,a1

= A(2)
L,a1
∩ {−a−1/6 ln t ≤ q(2a)(t) ≤ c+ a−1/6 ln t, ∀t ≥ t0,∀a ≥ a1} .

Then, there exists a constant c > 0 such that limL→∞ lima1→∞ P
(
A(3)
L,a1

)
= 1.

Proof. For each a, we bound q(t) using two stationary diffusions q1(t) = q
(2a)
1 (t) and

q2(t) = q
(2a)
2 (t), and we show that the growth of q1, q2 is at most logarithmic with a large

probability. Let q1 and q2 be the following diffusions:

dq1(t) = 2√
β
dB2a(t) + a(c1 − eq1(t))dt, dq2(t) = 2√

β
dB2a(t) + a(c2 − eq2(t))dt,

with c1 = 2 − e−t0 , c2 = 2, and q1(t0) = q2(t0) = q(t0). Comparing the drift terms of
q, q1, q2 we see that the event {q1(t) ≥ −t+ t0,∀t ≥ t0} implies the event {q1(t) ≤ q(t) ≤
q2(t),∀t ≥ t0}.

Notice that the SDEs for qi for i = 1, 2 can be solved. We get that for t ≥ t0, i = 1, 2,

exp(−qi(t)) = exp(−qi(t0)) exp
(
a ci(t0 − t) + 2√

β
(B2a(t0)−B2a(t))

)
+ a

∫ t

t0

exp
(
a ci(s− t) + 2√

β
(B2a(s)−B2a(t))

)
ds.

Recall that B2a(t) = a−1/3B(a2/3t). Applying the bound (7.6) of Lemma 7.1 on the event

{C1 < a
1/6
1 } for the Brownian motion B, we have the following inequality for x ≥ a−2/3L,

L ≥ 10 and for all a ≥ a1:

2√
β
|B2a(x+ h)−B2a(x)| ≤ C1a

−1/3(a2/3h+ ln(a2/3x)) ≤ a1/2h+ a−1/6 ln(a2/3x). (7.12)

Note that this is exactly inequality (6.4) of Proposition 6.1.
Moreover, on A(2)

L,a1
, for a ≥ a1, we have exp(q(t0)) ≥ exp(2

√
t0/5) > c1. We get that

there is an absolute constant c3 > 0 so that for all a ≥ a1 ≥ c3 we have

e−q1(t) ≤ exp
(
− q(t0) + (ac1 − a1/2)(t0 − t) + a−1/6 ln(a2/3t0)

)
+ exp

(
a−1/6 ln(a2/3t)

)
(c1 − a−1/2)−1

(
1− exp

(
(ac1 − a1/2)(t0 − t)

))
≤ ea

−1/6 ln(a2/3t)
(

(c1 − a−1/2)−1 + e(ac1−a
1/2)(t0−t)(e−q(t0) − (c1 − a−1/2)−1)

)
≤ ta

−1/6

.
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We conclude that for all a ≥ a1 ≥ c3 we have

q1(t) ≥ −a−1/6 ln t ≥ −t+ t0, ∀t ≥ t0,

which also implies that the coupling q2(t) ≥ q(t) ≥ q1(t) holds on {C1 < a
1/6
1 } ∩ A

(2)
L,a1

.

For the upper bound, first note that exp(q(t0)) < e1/2 < c2 = 2 on A(2)
L,a1

. Then there is
an absolute constant c4 > 0, so that for all a ≥ a1 ≥ c4 and t ≥ t0, we have

e−q2(t) ≥ e−a
−1/6 ln(a2/3t)

(
(c2 + a−1/2)−1 + e(ac2+a

1/2)(t0−t)(e−q(t0) − (c2 + a−1/2)−1)
)

≥ e−a
−1/6 ln a2/3−q(t0)t−a

−1/6

.

Therefore, we deduce

−a−1/6 ln t ≤ q(t) ≤ a−1/6 ln t+ 1, ∀t ≥ t0

on the event {C1 < a
1/6
1 } ∩ A

(2)
L,a1

for all a ≥ a1 ≥ c5 with a fixed c5 > 0, which completes
the proof of the proposition.

Now we are ready to complete the proof of Proposition 6.1.

Proof of Proposition 6.1. The statement follows from Propositions 7.3 and 7.4, and the
inequality (7.12).

Remark 7.5. A more careful analysis of the diffusion φ(2a)d (using ideas described in the
proofs of Lemma 4.4 and Lemma 7.3) can provide a logarithmic bound on the diffusion q
for a fixed a > 0. More precisely, it can be shown that for a fixed a > 1/2 with probability

one the diffusion q satisfies |q(t)| ≤ 2(32)2

β a ln t for all large t. In particular, this result

implies that φd := φ
(2a)
d is a.s. not in L2(R+,m2a) for a > 1/2 thanks to the identities

(6.8) and

φd(t)2m2a(t) = φd(t0)2 exp(2 a

∫ t

t0

eq(s)ds) exp(−(2a+ 1)t− 2√
β
B2a(t)).
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