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Abstract

We give a simple proof of a central limit theorem for linear statistics of the circular
β-ensembles which is valid at almost microscopic scales for functions of class C3. Us-
ing a coupling introduced by Valkò and Viràg [48], we deduce a central limit theorem
for the Sineβ processes. We also discuss connections between our result and the
theory of Gaussian Multiplicative Chaos. Based on the results of [37], we show that
the exponential of the logarithm of the real (and imaginary) part of the characteristic
polynomial of the circular β-ensembles, regularized at a small mesoscopic scale and
renormalized, converges to GMC measures in the subcritical regime. This establishes
that the leading order behavior for the extreme values of the logarithm of the char-
acteristic polynomial is consistent with the predictions coming from log-correlated
Gaussian field theory.
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1 Introduction and results

1.1 circular β-ensembles

The circular β-ensemble or CβEN for N ∈ N is a point process 0 < θ1 < · · · < θN < 2π

with joint density

dPβN =
Γ(1 + β

2 )n

Γ(1 + nβ2 )

∏
1≤j<k≤N

|eiθj − eiθj |β
∏

1≤k≤N

dθk
2π

, (1.1)

where Γ denotes the Gamma function. When β = 2, this ensemble corresponds to the
eigenvalues of a random matrix sampled according to the Haar measure on the unitary
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CLT for CβE and applications

group U(N). For general β > 0, these ensembles were introduced by Dyson [18] as a toy
model for scattering matrices or evolution operators coming from quantum mechanics.
They also correspond to the Gibbs measures for N charged particles confined on the
circle at temperature β−1 and interacting via the two-dimensional Coulomb law. For this
reason, β-ensembles are also called log-gases. It is well known that (1.1) can also be
realized by the eigenvalues of certain CMV random matrices [31], so we will refer to
the random points (θj)

N
j=1 as eigenvalues. We refer to Forrester [19, Chapter 2] for an

in-depth introduction to circular β-ensembles.
We define the empirical measure by µN =

∑N
j=1 δθj (in contrast to the usual con-

vention, µN is not normalized to a probability measure) and its centered version by
µ̃N = µN −N dθ

2π . In the following, a linear statistic is a random variable of the form∫
fdµ̃N =

∑
j≤N

f(θj)−Nf̂0 (1.2)

where f is a continuous function on T = R/2π and f̂k for k ∈ Z denote the Fourier
coefficients of f , see (1.6). By mesoscopic linear statistic, we refer to the case where
the test function in (1.2) depends on the dimension N in such a way that f(θ) = w(Lθ)

for w ∈ Cc(R) and a sequence L = L(N) → +∞ with L(N)/N → 0 as N → ∞. In this
regime, it is usual to consider test functions with compact support so that the random
variable (1.2) depends on a vanishing fraction of the eigenvalues.

1.2 Central limit Theorems

The main goal of this article is to study fluctuations of linear statistics of the CβEN
for large N at small mesoscopic scales. Circular ensembles are technically easier to
analyse than β-ensembles on R, so this is also an opportunity to give a comprehensive
presentation of the method of loop equation introduced in [29]. Then, we discuss
applications of our result to characteristic polynomials in section 1.4 and obtain a central
limit theorem for the Sineβ processes in section 1.5.

Theorem 1.1. Let w ∈ C3+α
c (R) for a α > 0. Let L(N) > 0 be a sequence such that

L(N)→ +∞ in such a way that N−1L(N)(logN)3 → 0 as N →∞ and let wL(·) = w(·L).
Then, we have for any β > 0,

lim
N→∞

E
β
N

[
exp

(∫
wLdµ̃N

)]
= exp

(
β−1‖w‖2H1/2(R)

)
. (1.3)

The probabilistic interpretation of Theorem 1.1 is that as N →∞,∫
w(Lθ)µ̃N (dθ)→ N

(
0, 2

β ‖w‖
2
H1/2(R)

)
in law as well as in the sense of Laplace transform.1 The variance of the limiting Gaussian
law is given in terms of the Sobolev norm:

‖w‖2H1/2(R) = 2

∫ +∞

0

ξ|ŵ(ξ)|2dξ, (1.4)

where ŵ is the Fourier transform of the test function w, which is given by ŵ(ξ) =∫
R

w(x)e−ixξ
dx

2π
for ξ ∈ R.

1The function t 7→ E
β
N

[
exp

(
t
∫
wLdµ̃N

)]
is called the Laplace transform or moment generating function of

the (bounded) random variable
∫
wLdµ̃N . Applying Theorem 1.1 to twL, this Laplace transform converges

(locally uniformly for t ∈ R) to exp(t2σ2/2) = E[etX ] where X ∼ N (0, σ2), a centered Gaussian random
variable with variance σ2 = 2

β
‖w‖2

H1/2(R)
. This implies a central limit theorem, as well as the convergence of

all moments of
∫
wLdµ̃N to those of X; see e.g. [34].
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CLT for CβE and applications

The proof of Theorem 1.1 is given in section 2. Let us point out that we can actually
obtain a precise control of the error in the asymptotics (1.3) and that a straightforward
modification of our arguments yields another proof of the CLT for global linear statistics.

Theorem 1.2. Let w ∈ C3+α(T) for a α > 0 be a test function possibly depending on
N ∈ N such that ‖w′‖L1(R) is uniformly bounded. There exists Nβ ∈ N and a Cβ,w > 0

(which is given e.g. by (2.12)) such that for all N ≥ Nβ ,∣∣∣∣logEβN

[
exp

(∫
wdµ̃N

)]
− β−1σ2(w)

∣∣∣∣ ≤ Cβ,w (logN)2

N
, (1.5)

where for any f : T→ R which is sufficiently smooth:

σ(f)2 = 2

+∞∑
k=1

k|f̂k|2, f̂k =

∫
T

f(x)e−ixk
dx

2π
. (1.6)

This CLT for linear statistics of the CβEN was first obtained by Johansson [28] for
general β > 0 using a clever change of variables. When β = 2, he also discovered a
connection between (1.5) and the Strong Szegő Theorem, see [44, Chapter 6]. In fact,
for β = 2, because of the rich structure of the circular unitary ensemble (CUE), there
exist many other different proofs of the CLT when β = 2, we refer e.g. to the survey [15].
Coming back to general β > 0, a CLT for trigonometric polynomials was obtained by
Jiang–Matsumoto [27] using Jack functions. Then, Webb [53] generalized this result
using Stein’s method and obtained a rate of convergence. Our proof provides precise
asymptotics for the Laplace transform of a linear statistic and it relies on the method
of loop equation which originates in the work of Johansson [29] on the fluctuations of
β-ensembles on R. Let us also point out that Johansson’s method has been refined in
[6, 45, 3] and it has been applied to two-dimensional Coulomb gases in [2].

Remark 1.3. Let us comment on the optimality in Theorem 1.2. It is known that when
β = 2, for any fixed test function w : T→ R such that σ2(w) < +∞, we have as N → +∞

E
β
N

[
exp

(∫
wdµ̃N

)]
→ exp

(
2
βσ

2(w)
)
.

This follows from the Strong Szegő Theorem, e.g. [44, Chapter 6]. We conjecture
that this CLT holds under the optimal regularity condition σ2(w) < +∞ if and only if
the parameter β ≤ 2. When β = 4, using the precise variance estimates from Jiang–
Matsumoto [27], we give an example of a bounded function f : T→ R with mean 0 such

that σ2(f) < +∞, but the variance Eβ=4
N

[(∑N
j=1f(θj)

)2]
diverges as N → +∞. Consider

the following sparse sequence:

κk =

{
|k|−1/2/n if |k| = bexp(expn)c for some n ∈ N
0 else

, k ∈ Z,

We define the function f : T → R by f(θ) =
∑
k∈Z κkeikθ. Observe that this function

f ∈ L∞(T) and
1

2
σ2(f) =

∑
k∈N

kκ2
k =

∑
n∈N

1

n2
< +∞.

Let Xk =
∑N
j=1 e

ikθj for k ∈ Z and E = E
β=4
N . By rotation invariance, for any k, ` ∈ Z

such that k 6= `,

E
[
XkX−`

]
= 0.

EJP 26 (2021), paper 7.
Page 3/33

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP559
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


CLT for CβE and applications

This implies that

E

[(∑N
j=1f(θj)

)2
]

= 2
∑
k∈N

κ2
kE|Xk|2.

By [27][Proposition 2 (iii)], there exists c > 0 such that E|XN |2 ≥ cN logN if N ≥ 12.
This implies that along the subsequence Nn = bexp(expn)c, we have

E
[(∑Nn

j=1f(θj)
)2]
≥ 2c

n2
log(Nn)

so that

lim
n→+∞

E
[(∑Nn

j=1f(θj)
)2]

= +∞.

Hence, as claimed, the variance of the linear statistic
∑N
j=1f(θj) does not have a finite

limit as N → +∞. �

For mesoscopic linear statistics, to our knowledge, Theorem 1.1 only appeared for
β = 2 in a paper of Soshnikov [46]. Soshnikov’s method is very different from ours: it
relies on the method of moments and it does not yield the convergence of the Laplace
transform of a linear statistics as in Theorem 1.1. For β-ensembles on R, the mesoscopic
CLT was first obtained in [10, 35] when β = 2. The idea of combining loop equation
with rigidity estimates to prove a mesoscopic CLT for Gaussian ensembles on R valid
for general β > 0 originates from the work of Bourgade et al. [9, Section 5]. This
CLT has been generalized to other potentials by Bekerman and Lodhia [3] using a
method of moments based on higher order loop equations. This means that they obtain
the asymptotics of EβN

[(∫
wLdµ̃N

)n]
with L(N) = Nδ and 0 < δ < 1 by an induction

procedure on n ≥ 1 which relies the loop equation and eigenvalues rigidity. Note
that the rigidity estimates from [8] which are used in [9, 3] are weaker than that of
Section 1.3 and would not allow to control directly the Laplace transform of a linear
statistic down to arbitrary mesoscopic scales. We need such control for the applications
to the characteristic polynomial of the circular β-ensembles and Gaussian multiplicative
chaos discussed in Section 1.4.

We manage to obtain (optimal) rigidity estimates by studying moderate deviations for
the maximum of the eigenvalue counting function in Section 4. In the next section, we
present consequences for concentration of general eigenvalues statistics and eigenvalues
rigidity which we believe are of general interest.

1.3 Concentration and eigenvalues’ rigidity

For any function w ∈ C(T), we define a new biased probability measure:

dPβN,w =
e
∫
wdµN

E
β
N

[
e
∫
wdµN

]dPβN . (1.7)

Proposition 1.4. Let w ∈ C1(T) and suppose that ‖w′‖L1(T) ≤ η/
√

2 where η is allowed
to depend on N ∈ N. There exists Nβ ∈ N such that for all fixed n ∈ N, all N ≥ Nβ and
any R > 0 (possibly depending on N ∈ N as well), it holds

P
β
N,w

[
sup

f∈Fn,R

∣∣∣∣ ∫
Tn
f(x1, . . . , xn)µ̃N (dx1) · · · µ̃N (dxn)

∣∣∣∣ ≥ R(β−1η logN)n

]
≤
√
η logNN1−η2/β ,

where Fn,R =

{
f ∈ Cn(Tn) :

∫
Tn

∣∣∣∣ d

dx1
· · · d

dxn
f(x1, . . . , xn)

∣∣∣∣ dx1 · · · dxn ≤ R
}

.
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The proof of Proposition 1.4 will be given in section 4. Moreover, we immediately
deduce from Lemma 4.2 below, the following moderate deviation estimates: for any
N ≥ Nβ and any R > 0 (possibly depending on N ), we have

P
β
N

[∣∣θk − 2πk
N

∣∣ ≤ 2πR

N
; k = 1, . . . , N

]
≥ 1− 3Ne−

βR2

logN . (1.8)

This provides a precise control of how equally spaced are the eigenvalues of the CβEN
– this property is usually called eigenvalue rigidity. In the next section, we explain how
to recover optimal rigidity estimates in the sense that we find the leading order of the
maximal fluctuations of θk with the correct constant – see Corollary 1.10. These optimal
estimates are obtained through a connection between the characteristic polynomial and
the theory of Gaussian multiplicative chaos that we recall below.

1.4 Subcritical Gaussian multiplicative chaos

Let us discuss applications of Theorem 1.1 within GMC theory. Let D = {z ∈ C : |z| <
1} and define for any N ∈ N,

PN (z) =
∏N
j=1(1− ze−iθj ), z ∈ D.

Up to a phase, PN corresponds to the characteristic polynomial of the CβEN . Our goal
is to investigate the asymptotic behavior of PN (z) for |z| = 1 as a random function. First,
let us observe that for any 0 < r < 1 and ϑ ∈ T,

log |PN (reiϑ)| = −
∑N
j=1φr(θj − ϑ), φr(θ) = log |1− reiθ|−1. (1.9)

Hence, log |PN (reiϑ)| is a linear statistic and it follows from Theorem 1.2 that

log |PN (z)| →
√

2

β
G(z)

in the sense of finite dimensional distribution as N →∞, where G is a centered Gaussian
process defined on D with covariance structure:

E [G(z)G(z′)] =
1

2
log |1− zz′|−1

, z, z′ ∈ D. (1.10)

Indeed according to formula (1.6), one has

E [G(z)G(z′)] = 2

+∞∑
k=1

kf̂z,kf̂z′,k

where freiϑ = φr(· − ϑ) and the RHS can be explicitly computed using the Fourier series
φr(θ) =

∑∞
k=1 r

kCs(kθ) which converges absolutely for r < 1; see (3.4) below. We can
define the boundary values of the Gaussian process G as a random generalized function
on T. Then, according to formula (1.10), this random field which is still denoted by
G, is a log-correlated Gaussian process. Actually, this process has the same law as√
π/2 times the restriction of the two-dimensional Gaussian free field on T, see [17,

Proposition 1.4], so we call it the GFF on T. Moreover, one can show that the function
ϑ ∈ T 7→ log |PN (eiϑ)| converges in law to the random generalized function G in the
Sobolev space H−δ(T) for any δ > 0, see [25].

Log-correlated fields form a class of stochastic processes which describe the fluctua-
tions of key observables in many different models related to two-dimensional random
geometry, turbulence, finance, etc. One of the key universal features of log-correlated
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fields is their so-called multi-fractal spectrum which can be encoded by a family of ran-
dom measures called GMC measures. Within GMC theory, these measures correspond to
the exponential of a log-correlated field which is defined by a suitable renormalization
procedure. For instance, using the results of [42] or [4], it is possible to define2

µγG(dϑ) = lim
r→1

eγG(reiϑ)

EeγG(reiϑ)
dϑ. (1.11)

The measure µγG exists for all γ ≥ 0, it is continuous in the parameter γ and it is
non-zero if and only if γ < 2; this is called the subcritical regime.3 The random measure
µγG lives on the set of γ-thick points:

⋂
0≤α<γ

{
θ ∈ T : lim inf

r→1

G(reiθ)

log |1− r2|−1
≥ α

2

}
(1.12)

and this set is known to have fractal dimension (1− γ2/4)+. In particular, if γ∗ = 2 is the
critical value, the fact that the measure µγG is non-zero if and only if γ < γ∗ implies that
in probability:

lim
r→1

maxθ∈T G(reiθ)
1
2 log |1− r2|−1

= γ∗. (1.13)

For a non Gaussian log-correlated field, it is also possible to construct its GMC
measures in the subcritical regime. This has been used to describe asymptotics of
powers of the absolute value of the characteristic polynomials of certain ensembles of
random matrices, see e.g. Webb and co-authors [52, 5] for an application to the circular
unitary ensemble (β = 2), and to a class of Hermitian random matrices, in the so-called
L2-regime. Based on the approach from Berestycki [4], a general construction scheme
which covers the whole subcritical regime was given in [37] and then refined in our
recent work [13]. This method has been applied to (unitary invariant) Hermitian random
matrices [13], as well as to the characteristic polynomial of the Ginibre ensemble [36]. A
similar approach has also been applied to study the Riemann ζ function [43] and cover
times of planar Brownian motion [26]. Using the method from [37] and relying on the
determinantal structure of the circular ensemble when β = 2 to obtain the necessary
asymptotics, Nikula–Saksman–Webb proved in [40, Theorem 1.1] that for any 0 ≤ γ < 2,

|PN (eiϑ)|γ

E
β=2
N [|PN (eiϑ)|γ ]

dϑ→ µγG(dϑ) (1.14)

in distribution as N → +∞. It is a very interesting and challenging problem to gen-
eralize (1.14) to all β > 0. In the following, we provide the first step in this direction
which consists in constructing the GMC measures associated with a small mesoscopic
regularization of |PN |. Namely, by adapting the proof of Theorem 1.1, we are able to
obtain the following result:

Theorem 1.5. Let rN = 1 − (logN)6

N and, by analogy with (1.11), define the random
measure for any γ ∈ R,

µγN (dθ) =
|PN (rNe

iθ)|γ

E
β
N [|PN (rNeiθ)|γ ]

dθ

2π
. (1.15)

For any |γ| <
√

2β (i.e. in the subcritical regime), µγN converges in law as N →∞ to a

GMC measure µγ̆G associated to the GFF on T with parameter γ̆ = γ
√

2
β .

2There exist other equivalent ways to define the GMC measures µγG that we do not discuss them here. We
refer to [41] for a comprehensive survey of GMC theory.

3Because of the factor 1
2

in formula (1.10), with our conventions, the critical value is γ∗ = 2.
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It is known that the random measures µγN also lives on the thick points of the
characteristic polynomial PN , see e.g. [13, section 3] for a more in-depth discussion
discussion By analogy with (1.12), these thick points are the atypical points where |PN |
takes extremely large values. Concretely, for any γ > 0, we say that θ ∈ T is a γ-thick if
the value of log |PN (eiθ)| is at least γEβN

[
(log |PN (eiθ)|)2

]
= γ

β logN +O(1). In section 3.3,
we explain how to deduce from Theorem 1.5 that the mass of the sets of thick points
are given according to the predictions of log-correlated Gaussian fields. Namely, since
the convergence of Theorem 1.5 holds at arbitrary small mesoscopic scales, this leads
to accurate lower-bounds for the Lebesgue measure of γ-thick points. Hence, this new
approach based on GMC theory allows to replace the usual second moment method
which originates from the study of the random energy models (see e.g. [33]). We obtain
the following results.

Proposition 1.6. For any γ > 0, let

T γN =
{
θ ∈ T : |PN (eiθ)| ≥ Nγ/β

}
(1.16)

and |T γN | be the Lebesgue measure of the set T γN . Then for any γ < γ∗ =
√

2β, we have
log |T γN |
logN

→ − γ
2

2β
in probability as N → +∞. Moreover, we have in probability as N →∞,

maxθ∈T log |PN (eiθ)|
logN

→ γ∗
β

=

√
2

β
. (1.17)

The interpretation of Proposition 1.6 is that the multi-fractal spectrum of the sets
of γ-thick points of the CβEN characteristic polynomial is given by the function γ 7→
(1−γ2/2β)+ for γ ≥ 0. This is in accordance with the behavior of Gaussian log-correlated
fields. Proposition 1.6 was first obtained by Arguin–Belius–Bourgade [1, Theorem 1.3]
for the CUE (β = 2). We generalize this result for all β > 0. Then, by [1, Corollary 1.4],
we also obtain the limit of the so-called free energy:

lim
N→+∞

1

logN
log

(∫
T

|PN (eiθ)|γ dθ
2π

)
=


γ2

2β if γ ∈ [0, γ∗]√
2γ2

β − 1 if γ > γ∗
.

This shows an interesting transition at the critical value γ∗ =
√

2β. For log-correlated
fields, the fact that the free energy becomes linear in the super–critical regime (γ > γ∗)

is usually called freezing. In particular, this freezing phenomenon for the CβEN charac-
teristic polynomial was conjectured by Fyodorov–Keating [20]4 and it plays a crucial role
in predicting the precise asymptotic behavior of |PN |.

We can also obtain analogous results for the imaginary part of the logarithm of the
characteristic polynomial of the CβEN . Let

ΨN,r(ϑ) =
∑N
j=1= log(1− rei(ϑ−θj)), r ∈ [0, 1), ϑ ∈ T, (1.18)

where log(·) denotes the principle branch5 of the logarithm so that the function = log(1−z)
is analytic for z ∈ D. We also let

ΨN (ϑ) = lim
r→1

ΨN,r(ϑ) =
∑N
j=1ψ(ϑ− θj), ϑ ∈ T, (1.19)

where ψ(θ) = = log(1− eiθ) = θ−π
2 for all θ ∈ (0, 2π). Hence, ΨN is directly related to the

eigenvalue counting function; see (3.35) below. This connection is a crucial motivation

4See also [21, Appendix B] for general β > 0.
5This is the usual convention used e.g. in [25, 1, 11, 40].
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to study the imaginary part of the logarithm of the characteristic polynomial, especially
its extreme values. It turns out that the GMC measures associated with ΨN and |PN |
have the same law.

Theorem 1.7. Let rN = 1− (logN)4

N and define the random measure for any γ ∈ R,

µ̃γN (dθ) =
eγΨN,rN (θ)

E
β
N

[
eγΨN,rN (θ)

] dθ
2π
. (1.20)

For any |γ| <
√

2β, µ̃γN converges in law as N →∞ to a GMC measure µγ̆G with parameter

γ̆ = γ
√

2
β .

Proposition 1.8. For any γ > 0, let

SγN =

{
θ ∈ T : ΨN (θ) ≥ γ

β
logN

}
.

It holds in probability as N →∞,
log |SγN |
logN

→ − γ
2

2β
for any γ < γ∗ and then

maxT ΨN (θ)

logN
→ γ∗

β
=

√
2

β
. (1.21)

Remark 1.9. Since the function −ψ(θ) = ψ(2π − θ) for all θ ∈ (0, 2π), we see that as ran-

dom field: ΨN (θ)
law
= −ΨN (−θ). By (1.21), this implies for instance that

minT ΨN (θ)

logN
→√

2

β
in probability as N → +∞. �

The law of large numbers (1.17) and (1.21) for the maximums of the real and imagi-
nary parts of the logarithm of the characteristic polynomial of the CβEN have already
been obtained in [11] by a completely different method based on the Szegő’s recur-
rence for orthogonal polynomials on the unit circle. In fact, the complete asymptotic
behavior of the maximum of the field log |PN | when β = 2 was predicted in [20] by
analogy with Gaussian log-correlated fields and part of this conjecture was verified
by Chhaibi–Madaule–Najnudel [11, Theorem 1.2] who showed that maxT log |PN | and
maxT ΨN , once re-centered, are tight random variables. Let us also point out that
extensive numerical studies of the extreme value statistics of the CβEN characteristic
polynomial for large N ∈ N have been done by Fyodorov–Gnutzmann–Keating [21] and
they indicate some interesting relationships between the extreme values of the logarithm
of the characteristic polynomial and large gaps in the spectrum.

Finally, as observed in [1, Theorem 1.5] or [11, Corollary 1.3], the asymptotics (1.21)
imply optimal rigidity estimates for the CβEN eigenvalues.

Corollary 1.10. For any β > 0 and δ > 0,

lim
N→+∞

P
β
N

[
(2− δ)

√
2

β

logN

N
≤ max
k=1,...,N

∣∣θk − 2πk
N

∣∣ ≤ (2 + δ)

√
2

β

logN

N

]
= 1. (1.22)

1.5 CLT for the Sineβ point processes

The Sineβ processes describe the bulk scaling limits of the eigenvalues of β-ensembles.
This family of translation invariant point processes on R was first introduced indepen-
dently by Killip–Stoiciu [32] as the scaling limits of the CβEN and by Valkó–Virág [49]
as that of Gaussian β-ensembles. For general β > 0, universality of the Sineβ processes
in the bulk β-ensembles on R was obtained by Bourgade–Erdős–Yau [8] for a general
class of one-cut regular potential by coupling two different ensembles using the Dyson
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Brownian motion. Our proof of Theorem 1.12 also relies on a coupling from Valkó–Virág
[48] between the Sineβ and CβEN point processes. The Sineβ process is usually defined
through its counting function which satisfies a system of stochastic differential equa-
tions [32, 49]. Recently, Valkó–Virág [51] introduced an alternate characterization as
the eigenvalues of a stochastic differential operator. It turns out that the CβEN also
corresponds to the eigenvalues of an operator of the same kind as the Sineβ and that it
is possible to couple these two operators in such a way that their eigenvalues are close.
This coupling was studied in detail by Valkó–Virág [48] and they obtain the following
result.

Theorem 1.11. Fix β > 0 and recall that 0 < θ1 < · · · < θN < 2π denotes the eigenvalues
of CβEN . Let us extend this configuration periodically by setting θk+`N = θk + 2π` for all
k ∈ [N ] and ` ∈ Z. By [48, Corollary 2], there exists a coupling P of the CβEN with the
Sineβ process (λk)k∈Z such that for any ε > 0, there exists a random integer Nε and we
have for all N ≥ Nε, ∣∣ N

2π θk − λk
∣∣ ≤ 1 + k2

N1/2−ε , ∀|k| ≤ N1/2−ε.

As a consequence of this coupling and Theorem 1.1, we easily obtain the following
result. The details of the proof will be given in section 5.

Theorem 1.12. Let (λk)k∈Z be a configuration of the Sineβ process and let w ∈ C3+α
c (R)

for some α > 0. We have as ν → +∞,∑
k∈Z

w(λkν
−1)− ν

∫
R

wdx → N
(
0, 2

β ‖w‖
2
H1/2(R)

)
.

The convergence holds in distribution and the limiting variance (1.4) is the same as in
Theorem 1.1.

Let us mention that for β = 2, there is another coupling between the CUE and
Sine2 existed prior to [51, 48] which is based on virtual isometries [7]. Moreover, it is
possible to obtain Theorem 1.12 directly by using the determinantal structure of the
Sine2 process, see Kac [30] and Soshnikov [46].

Finally, it should be mentioned that there have recently been several developments in
the study of the Sineβ for general β > 0. Using the SDE representation, large deviation
estimates for the number of eigenvalues in boxes were obtained in [50, 23, 24]. The
rigidity property for Sineβ in the sense of Gosh–Peres was proved by Chhaibi–Najnudel
[12] and Holcomb–Paquette [22] computed the leading order of the maximum eigenvalue
counting function. Finally, Leblé [38] gave recently an alternate proof of Theorem 1.12
for test functions of class C4

c (R) which relies on the DLR equations for the Sineβ process
established by Dereudre–Hardy–Leblé–Maïda [16].

1.6 Organization of the paper

This paper also aims at giving an exposition of some basic concepts in the study of β-
ensembles in a simple setting: loop equations and the connections between characteristic
polynomials and GMC theory. We expect that the arguments presented here can be
applied more generally.

In section 2, we prove our main results Theorems 1.1 and 1.2 by using the method of
loop equation which we review in section 2.1. In section 3, we discuss applications from
the perspective of Gaussian multiplicative chaos. Specifically, in sections 3.1 and 3.2,
we explain how to modify the proof of Theorem 1.1 in order to obtain Theorem 1.5
and Theorem 1.7 respectively. Then, we give the proofs of Propositions 1.6 and 1.8
in section 3.3. In section 4, we obtain rigidity results for the circular β-ensemble by
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studying moderate deviations of the eigenvalues counting function. In particular, we
prove Proposition 1.4 which is a key input in our proof of Theorem 1.1. Finally, in
section 5, we give the short proof of Theorem 1.12.

2 Proof of Theorem 1.1

2.1 Loop equation

The method of loop equation relies on the following formula, see [29, (2.16)], to
compute the Laplace transform of the (centered) linear statistic associated with a
bounded test function w : T→ R. According to (1.7), it holds for any t > 0,

d

dt
logEβN

[
et

∫
wdµ̃N

]
= E

β
N,tw

[∫
wdµ̃N

]
. (2.1)

The idea from [29] is to compute the RHS of (2.1) by an integration by parts using
the explicit density (1.1). Let us record this Lemma for an arbitrary test function g; we
refer to [29, (2.18)] for the analogous formula for β-ensembles on R.

Lemma 2.1 (Loop equation). Let w ∈ C1(T) and PβN,w be as in (1.7). Recall that we let

µN =
∑N
j=1 δθj . For any g ∈ C1(T) and any N ∈ N, we have

E
β
N,w

[
β

2

∫∫
g(x)− g(u)

2 tan(x−u2 )
µN (dx)µN (du) + (1− β

2
)

∫
g′dµN +

∫
gw′dµN

]
= 0.

For our application to Theorem 1.1, it turns out that one lets g = Uw, the Hilbert
transform of w. This choice is motivated by the proof of Lemma 2.3. Namely, using that
µ̃N = µN −N dθ

2π , one can rewrite the loop equation as

−EβN,w
[∫
Ugdµ̃N

]
=

2

β

∫
g(x)w′(x)

dx

2π
+

2

βN
E
β
N,w[W̃N ]

where W̃N is a random variable which is expected to be of order 1. Thus, to relate this
formula with (2.1), we are led to choose g so that w = −Ug. The Hilbert transform U on
L2(T) is a bounded operator defined in such a way that for any k ∈ Z,

U(eikθ) = −i sgn(k)eikθ, (2.2)

where sgn(k) = ± if k ∈ Z± and sgn(0) = 0. This operator is invertible on L2
0(T) with

U−1 = −U . Further properties of the Hilbert transform that we shall use in the proofs
are recorded by the next Proposition.

Proposition 2.2. The Hilbert transform has the following integral representation: for
any f ∈ Cα(T) with α > 0,

Uf(x) = −
∫
T

f(x)− f(t)

tan(x−t2 )

dt

2π
, x ∈ T. (2.3)

Moreover, we have (Ûf)0 = 0 for any f ∈ L2(T). If f is differentiable with f ′ ∈ L2(T),
then (Uf)′ = U(f ′) and ‖(Uf)′‖L2(T) = ‖f ′‖L2(T). In particular, this implies that the

function Uf is absolutely continuous on T and ‖Uf‖∞ ≤
√

2π‖f ′‖L2(T).

These basic properties are easy to verify, so we skip the proof of Proposition 2.2.
Our CLT follows from the following lemma and technical estimates on the random
variable (2.4) that we discuss in sections 2.2 and 2.3.
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Lemma 2.3. Let w ∈ C2(T) be a function which may depend on N ∈ N, let g = Uw and
define for any t > 0,

W̃
(t)

N (w) =
β

2

∫∫
g(x)− g(u)

2 tan(x−u2 )
µ̃N (dx)µ̃N (du) + (1− β

2
)

∫
g′dµ̃N + t

∫
gw′dµ̃N . (2.4)

If δN (w) =
2

βN
sup
t∈[0,1]

∣∣∣∣EβN,tw[W̃(t)

N

]∣∣∣∣ and σ2(w) is given by formula (1.6), then

∣∣∣logEβN

[
e
∫
wdµ̃N

]
− β−1σ2(w)

∣∣∣ ≤ δN .
Proof. The result of Lemma 2.3 is classical, we give a quick proof for completeness. For
t > 0, let

W
(t)
N =

β

2

∫∫
g(x)− g(u)

2 tan(x−u2 )
µN (dx)µN (du) + (1− β

2
)

∫
g′dµN + t

∫
gw′dµN .

Replacing µN (dx) = µ̃N (dx) + dx
2π in this expression, by (2.3) and since (ĝ′)0 = 0, we

obtain

W
(t)
N =

Nβ

2

∫
Ugdµ̃N −

N2β

4

∫
Ug(x)

dx

2π
+ tN

∫
g(x)w′(x)

dx

2π
+ W̃

(t)

N ,

where W̃
(t)

N is given by (2.4). Since (Ûg)0 = 0 and by Lemma 2.1, it holds EβN,tw
[

W
(t)
N

]
= 0

for any t > 0, this implies that

− EβN,tw
[∫
Ugdµ̃N

]
=

2t

β

∫
g(x)w′(x)

dx

2π
+

2

βN
E
β
N,tw

[
W̃

(t)

N

]
. (2.5)

Now, by Parseval’s theorem and (2.2), observe that according to formula (1.6), we have∫
T

g(x)w′(x)
dx

2π
=
∑
k∈Z

(−ik)ŵkĝk =
∑
k∈Z

|k||ŵk|2 = σ(w)2. (2.6)

Since Ug = −w by definition of the Hilbert transform, by (2.5)–(2.6), we conclude that∣∣∣∣EβN,tw [∫ wdµ̃N

]
− 2t

β
σ2(w)

∣∣∣∣ ≤ δN . (2.7)

By (2.1), if we integrate the LHS of (2.7) with respect to t ∈ (0, 1], this completes the
proof.

Hence, in order to prove Theorems 1.1 and 1.2, we have to estimate the error term
δN from Lemma 2.3 in the mesoscopic, respectively global, regimes. This will be done
carefully in the next two sections.

2.2 Estimates in the global regime: Proof of Theorem 1.2

In this section, we use our rigidity estimates from Proposition 1.4 to estimate the
error term in Lemma 2.3.

Proposition 2.4. Let w ∈ C3+α(T) for some α > 0 be a function which may depend on
N ∈ N in such a way that ‖w′‖L1(T) ≤ c for some fixed c ≥ 1 and let g = Uw. Let Nβ ∈ N
be as in Proposition 1.4 and let δN (w) be as in Lemma 2.3. There exists a constant
Cβ > 0 which only depends on β > 0 and c > 0 such that all N ≥ Nβ and t ∈ [0, 1],

δN (w) ≤ Cβ
(
R0 logN +R1 +R2N

−5
) logN

N
, (2.8)
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where

R1(w) = ‖g′′‖L1(T) + ‖(gw′)′‖L1(T), R2(w) = ‖g′‖∞ + ‖g‖∞‖w′‖∞ (2.9)

and

R0(w) =

∫∫
T2

∣∣∣∣g(x1)− g(x2)− (g′(x1) + g′(x2)) tan(x1−x2

2 )

4 sin2(x1−x2

2 ) tan(x1−x2

2 )

∣∣∣∣dx1dx2. (2.10)

Proof. Since
∣∣∣ ∫ fdµ̃N

∣∣∣ ≤ 2‖f‖∞N for any f ∈ C(T), by Proposition 1.4 applied with

η ≥ c, we obtain for all N ≥ Nβ ,

E
β
N,tw

[∣∣∣ ∫ g′dµ̃N

∣∣∣]
≤ 2‖g′‖∞NPβN,tw

[∣∣∣ ∫ g′dµ̃N

∣∣∣ ≥ √2
β η‖g

′′‖L1(T) logN

]
+
√

2
β η‖g

′′‖L1(T) logN

≤ 2‖g′‖∞
√
η logNN2−η2/2β +

√
2
β η‖g

′′‖L1(T) logN

Similarly, we have

E
β
N,w

[∣∣∣ ∫ gw′dµ̃N

∣∣∣] ≤ 2‖g‖∞‖w′‖∞
√
η logNN2−η2/2β +

√
2
β η‖(gw

′)′‖L1(T) logN

and

E
β
N,w

[∣∣∣ ∫∫ g(x)− g(u)

2 tan(x−u2 )
µ̃N (dx)µ̃N (du)

∣∣∣] ≤ 4‖g′‖∞
√
η logNN3−η2/2β +

2η2

β2
(logN)2R0,

where we used that supx,u∈T

∣∣∣ g(x)−g(u)

2 tan( x−u2 )

∣∣∣ ≤ ‖g′‖∞ in Proposition 1.4 with n = 2 and

R0 =

∫∫
T2

∣∣∣∣ d

dx1

d

dx2

g(x1)− g(x2)

2 tan(x1−x2

2 )

∣∣∣∣dx1dx2.

By an explicit computation, we verify that R0 is given by (2.10). According to (2.4),
using the triangle inequality and collecting all the terms, we obtain that there exists a
universal constant C > 0 such that for all N ≥ Nβ and t ∈ [0, 1],

E
β
N,tw

[
|W̃

(t)

N |
]
≤ C

√
η logNR2(w)N3−η2/2β + 2

β2R0(w)(η logN)2 +
√

2
β ηR1(w) logN.

(2.11)

Taking η = c+ 4
√
β, since δN (w) =

2

βN
sup
t∈[0,1]

∣∣∣∣EβN,tw[W̃
(t)

N ]

∣∣∣∣, we obtain (2.8).

We are now ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. Since we assume that w ∈ C3+α(T), by Proposition 2.2, we have
g ∈ C3(T) and the terms (2.9) satisfy6

R1(w), R2(w) ≤ C(1 + ‖w′‖2∞ + ‖w′′‖∞ + ‖w′′′‖∞)

for some universal constant C > 0. In order to estimate R0, observe that by Taylor’s
theorem, the integrand in (2.10) is uniformly bounded by ‖g′′′‖∞ so that R0(w) ≤
C‖g′′′‖∞. Combining these estimates with Lemma 2.3, we obtain (1.2) with

Cβ,w = Cβ(1 + ‖w′‖2∞ + ‖w′′′‖∞ + ‖Uw′′′‖∞) (2.12)

and Cβ = C
β3/2 (1 + 1

β3/2 ) for some universal constant C > 0. This completes the proof.
6This is a straightforward computation using that ‖f‖L1(T) ≤

√
2π‖f‖L2(T) ≤ 2π‖f‖∞.
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2.3 Estimates in the mesoscopic regime: Proof of Theorem 1.1

In comparison to the argument given in the previous section, to obtain a CLT at
small mesoscopic scales, we need more precise estimates for the error δN (wL), see (2.8),
especially for R0.

In this section, we fix w ∈ C3+α
c (R) for a α > 0. Without loss of generality, we assume

that supp(w) ⊆ [−π2 ,
π
2 ]. For any L ≥ 1, we let wL(·) = w(·L). We may treat wL has a

2π–periodic function in C3+α(T) and set gL = UwL where U is the Hilbert transform (2.3).
In particular, gL ∈ C3(T) by Proposition 2.2.

For any f ∈ Cα(R) for a α > 0 with supp(f) ⊆ [−π2 ,
π
2 ], we define

ULf(x) = −
∫ πL

−πL

f(x)− f(t)

tan
(
x−t
2L

) dt

2πL
, x ∈ R. (2.13)

Let us also recall that ‖f‖Cα = sup
x,y∈R
x 6=y

|f(x)− f(y)|
|x− y|α

for f ∈ Cα(R) and α ∈ [0, 1]. The

following proposition explain how the operator UL comes into play and it provides useful
estimates for our proof.

Proposition 2.5. With the above convention, for any k = 0, 1, 2, 3 and for all x ∈ [−π, π],

g
(k)
L (x) = LkUL(w(k))(xL), (2.14)

where g(k)
L , w(k) denotes the derivatives of the functions gL ∈ C3(T) and w ∈ C3+α(R)

respectively. Moreover, we have

‖g(k)
L ‖L1(T) ≤ rk,wLk−1 log(πL) (2.15)

where rk,w = 2‖w(k)‖L1(R) + 2πc‖w(k)‖∞ + 2πcα‖w(k)‖Cα for k = 0, 1, 2, 3 and universal
constants c, cα > 0.

Proof. First of all, observe that by a change of variable, for any x ∈ [−π, π],

gL(x) = UwL(x) = −
∫ πL

−πL

w(xL)− w(t)

tan
(
xL−t

2L

) dt

2πL

= ULw(xL).

This establishes formula (2.14) for k = 0 – the other cases follow in a similar way by
observing that according to Proposition 2.2, the function gL ∈ C3(T) and g(k)

L = U(w
(k)
L )

for k = 1, 2, 3. In order to obtain the estimate (2.15), we use that for any 0 < α ≤ 1,
there exist universal constants c, cα > 0 such that for any function f ∈ Cα(R) with
supp(f) ⊆ [−π2 ,

π
2 ],

|ULf(x)| ≤


‖f‖L1(R)

|x|
if x ∈ [−πL, πL] \ [−π, π]

cα‖f‖Cα + c‖f‖∞ if x ∈ [−π, π]

. (2.16)

In order to obtain the first estimate, observe that if x ∈ [−πL, πL] \ [−π, π], ULf(x) =∫ π
2

−π2

f(t)

2πL tan(x−t2L )
dt and then

|ULf(x)| ≤
∫ π

2

−π2

|f(t)|
π|x− t|

dt ≤
‖f‖L1(R)

|x|
.
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The second estimate in (2.16) follows from the fact if x ∈ [−π, π], we can decompose

ULf(x) = −
∫ π

−π

f(x)− f(t)

2πL tan(x−t2L )
dt+ f(x)

∫ πL

π

(
1

tan( t−x2L )
− 1

tan( t+x2L )

)
dt

2πL
.

On the one hand, an explicit computation7 gives for x ∈ [−π2 ,
π
2 ],∫ πL

π

(
1

tan( t−x2L )
− 1

tan( t+x2L )

)
dt

2πL
= log

∣∣∣∣ sin(x+π
2L )

sin(x−π2L )

∣∣∣∣
= log

∣∣∣∣x+ π

x− π

∣∣∣∣+O(L−2)

with a uniform error. On the other hand,∣∣∣∣∫ π

−π

f(x)− f(t)

2πL tan(x−t2L )
dt

∣∣∣∣ ≤ cα‖f‖Cα where cα = sup
|x|≤π

∫ π

−π

dt

|x− t|1−α
,

which shows that for any x ∈ [−π, π],

|ULf(x)| ≤ cα‖f‖Cα + c‖f‖∞.

Now, using formula (2.14) and the estimate (2.16), we obtain

‖g(k)
L ‖L1(T) = Lk

∫ π

−π

∣∣∣UL(w(k))(xL)
∣∣∣ dx = Lk−1

∫ πL

−πL

∣∣∣UL(w(k))(x)
∣∣∣ dx

which gives the bound (2.15) by splitting the last integral in two parts.

In order to identify the asymptotic variance in Theorem 1.1, we also need the following
easy consequence of Proposition 2.2.

Corollary 2.6. According to the notations (1.4) and (1.6), we have as L→∞,

σ2(wL)→ ‖w‖2H1/2(R).

Proof. By (2.13), it is immediate to verify that for any x ∈ R, ULf(x)→ Hf(x) as L→∞
where H denotes the Hilbert transform on R. Now, by formula (2.6) and Proposition 2.2,

σ2(wL) =

∫ π

−π
gL(x)w′L(x)

dx

2π
=

∫ πL

−πL
ULw(x)w′(x)

dx

2π
.

Since w′ ∈ L1(R) and by (2.16) the functions ULw are uniformly bounded in L and x ∈ R,
we conclude by the dominated convergence theorem that as L→∞,

σ2(wL) =

∫ π
2

−π2
ULw(x)w′(x)

dx

2π
→ 1

2π

∫
R

Hw(x)w′(x)dx. (2.17)

It is well known that if w ∈ C1
c (R), then the RHS of (2.17) equals to ‖w‖2

H1/2(R)
which is

also given by (1.4).

Like in section 2.2, our proof of Theorem 1.1 relies on Lemma 2.3, Proposition 2.4
and the following proposition which gives precise control for the term R0 in (2.8).

7Recall that d
dt

log | sin t| = 1
tan t

for t ∈ T, t 6= 0 and supp(f) ⊆ [−π
2
, π
2
].
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Proposition 2.7. Let w be any function such that g = Uw ∈ C3(T) and let R0(w) be
given by (2.10). We have for any 0 < ε ≤ 1,

R0(w) ≤ π3

4

(
ε−2‖g‖L1(T) + ε−1‖g′‖L1(T) +

ε

3

(
‖Mεg

′′′‖L1(T) + ‖g′‖∞
))

, (2.18)

where we denote Mεf(x) =sup
|ζ−x|≤ε

|f(ζ)| for any f ∈ C(T).

Proof. This is just a computation. Let us define

R3(g) =

∫∫
T2

1|x1−x2|≥ε

∣∣∣∣ g(x1)− g(x2)

4 sin2(x1−x2

2 ) tan(x1−x2

2 )

∣∣∣∣dx1dx2,

R4(g) =

∫∫
T2

1|x1−x2|≥ε

∣∣∣∣g′(x1) + g′(x2)

4 sin2(x1−x2

2 )

∣∣∣∣dx1dx2,

and

R5(g) =

∫∫
T2

1|x1−x2|≤ε

∣∣∣∣g(x1)− g(x2)− (g′(x1) + g′(x2) tan(x1−x2

2 )

4 sin2(x1−x2

2 ) tan(x1−x2

2 )

∣∣∣∣dx1dx2.

By (2.10) and the triangle inequality, R0 ≤ R3 +R4 +R5, so it suffices to estimates each
integral above individually. Since | sinϑ| ≥ 2

π |ϑ| for all |ϑ| ≤ π
2 , we have

R3(g) ≤ π3

4

∫∫
T2

1|x1−x2|≥ε

∣∣∣∣g(x1)− g(x2)

(x1 − x2)3

∣∣∣∣dx1dx2

≤ π3

2

∫
T

|g(x1)|
(∫

T

1|x1−x2|≥ε
dx2

|x2 − x1|3

)
dx1

≤ π3

4ε2
‖g‖L1(T).

(2.19)

Similarly, we have

R4(g) ≤ π2

2ε
‖g′‖L1(T). (2.20)

In order to estimate R5, since we assume that g ∈ C3(T), by Taylor theorem, this implies
that for any x1, x2 ∈ T with |x1 − x2| ≤ ε, we have

∣∣g(x1)− g(x2)− (g′(x1) + g′(x2) tan(x1−x2

2 )
∣∣ ≤ |x1 − x2|3

6

(
sup

|ζ−x1|≤ε
|g′′′(ζ)|+ ‖g′‖∞

)
.

Since g ∈ C3(T), the function Mεg
′′′ is also a continuous function on T and the previous

bound shows that

R5(g) ≤ π3

24

∫∫
T2

1|x1−x2|≤ε (Mεg
′′′(x1) + ‖g′‖∞) dx1dx2

≤ π3ε

12

(
‖Mεg

′′′‖L1(T) + ‖g′‖∞
)
. (2.21)

Collecting the estimates (2.19)–(2.21), since R0 ≤ R3 +R4 +R5, we obtain (2.18).

We are now ready to give the proof of our main result.

Proof of Theorem 1.1. Let the sequence L = L(N) be as in the statement of the Theorem.
Recall that we assume that w ∈ C3+α

c (R) for α > 0 with supp(w) ⊆ [−π2 ,
π
2 ]. Since
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‖w′L‖L1(T) is fixed for any N ∈ N, by Lemma 2.3 and Proposition 2.4, we have for all
N ≥ Nβ ,∣∣∣∣ logEβN

[
e
∫
wLdµ̃N

]
− σ2(wL)

β

∣∣∣∣ ≤ Cβ (R0 logN +R1 +R2N
−5
) logN

N
, (2.22)

where R0, R1 and R2 are as in (2.10) and (2.9). Then by Corollary 2.6, in order to obtain
Theorem 1.1, it suffices to show that the RHS of (2.22) converges to 0 as N → +∞.

Estimate for R0 By Proposition 2.7 with ε = 1/L, since ‖g′L‖∞ ≤ ‖w′′L‖∞, we have

R0(wL) ≤ π3

4

(
L2‖gL‖L1(T) + L‖g′L‖L1(T) +

1

3L

(
‖Mεg

′′′
L ‖L1(T) + ‖w′′L‖∞

))
.

Observe that by (2.14) and a change of variable:

Mε(g
′′′
L )(x) = sup

|ζ−x|≤ε
|g′′′L (ζ)| = L3 sup

|ζ−x|≤L−1

|UL(w(3))(Lζ)|

= L3M1(UL(w(3)))(xL),

so that

‖Mεg
′′′
L ‖L1(T) = L2

∫ πL

−πL
M1(UL(w(3)))(x)dx.

Thus, since ‖w′′L‖∞ = L2‖w′′‖∞, using the estimate (2.15), this shows that

R0(wL) ≤ π3

4
log(πL) (r0,w + r1,w + ‖w′′‖∞)L+

L

3

∫ πL

−πL
sup
|ζ−x|≤1

|UL(w(3))(ζ)|dx.

Using the estimate (2.16), the previous integral isO(logL). Therefore, there is a constant
Cw > 0 so that

R0(wL) ≤ Cw log(πL)L. (2.23)

Estimate for R1 By Proposition 2.2, it is easy to check that if w ∈ C2(T) and g = Uw,
by the Cauchy-Schwarz inequality,

‖(gw′)′‖L1(T) ≤ ‖w′g′‖L1(T) + ‖gw′′‖L1(T)

≤ ‖w′‖2L2(T) + ‖w‖L2(T)‖w′′‖L2(T).

Thus, we obtain

R1(wL) ≤
√

2π‖g′′L‖L1(T) + ‖w′L‖2L2(T) + ‖wL‖L2(T)‖w′′L‖L2(T). (2.24)

Since ‖w(k)
L ‖L2(T) = Lk−1/2‖w(k)‖L2(R) for k = 0, 1, 2, by (2.15), this shows that

R1(wL) ≤
(√

2πr2,w log(πL) + ‖w′‖2L2(R) + ‖w‖L2(T)‖w′′‖L2(T)

)
L.

Estimate for R2 Similarly, by Proposition 2.2, we check that if w ∈ C2(T) and g = Uw,

R2(w) = 3‖g′‖∞ + ‖g‖∞‖w′‖∞ ≤ 3‖w′′‖∞ + ‖w′‖2∞.

Since we assume that L ≤ N , this shows that for some universal constant C > 0,

R2(wL) ≤ C‖w′′‖∞N2. (2.25)
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Conclusion Collecting the estimates (2.23)–(2.25), using the inequality (2.22), we
conclude that

∣∣∣∣ logEβN

[
e
∫
wLdµ̃N

]
− σ2(wL)

β

∣∣∣∣ ≤ Cβ (Cw(logN)2L+ C‖w′′‖∞N−3
) logN

N
. (2.26)

Hence, in the regime where N−1L(N)(logN)3 → 0 as N → +∞, the RHS of (2.26)
converges to 0. Moreover, since σ2(wL)→ ‖w‖2

H1/2(R)
by Corollary 2.6, this completes

the proof.

3 GMC applications

3.1 Proof of Theorem 1.5

Recall that we let φr(ϑ) = log |1− reiϑ|−1 for any 0 ≤ r < 1 and that for any ϑ ∈ T,

log |PN (rNe
iϑ)| = −

∑N
j=1φrN (θj − ϑ) (3.1)

is a smooth linear statistic for a test function which depends on N ∈ N. The proof of
Theorem 1.5 relies directly on [37, Theorem 1.7]. Recall that G denotes the GFF on T
and let Pr(θ) = 1 + 2

∑+∞
k=1 r

kCs(kθ) be the Poisson kernel for T. G is a Gaussian log-
correlated field on T whose covariance is given by (1.10) and we have for any 0 ≤ r < 1

and all ϑ ∈ T,

G(reiϑ) =

∫
T

Pr(θ − ϑ)G(eiθ)
dθ

2π
.

Let µγN be as in (1.15). In order to apply [37, Theorem 1.7], we need to establish the
following asymptotics: for any β > 0 and any n ∈ N,

logEβN

[
exp

(∑n
`=1γ`

∫
φr`(θ−ϑ`)µN (dθ)

)]
=

1

β

n∑
`,k=1

γ`γkE
[
G(rke

iϑk)G(r`e
iϑ`)
]
+ o(1)
N→+∞

,

(3.2)
uniformly for all ϑ ∈ Tn, 0 < r1, . . . , rn ≤ rN and γ in compact subsets of Rn. Then, this
implies that for any |γ| <

√
2β and any function f ∈ L1(T):

∫
f(θ)µγN (dθ)→

∫
f(θ)µγ̆G(dθ)

in distribution as N → +∞. From this result, one can infer that for any |γ| <
√

2β, the
random measure µγN converges in law with respect to the topology of weak convergence

to the GMC measure µγ̆G, see e.g. [4, Sect. 6].

In order to obtain the mod–Gaussian asymptotics (3.2) and prove Theorem 1.5, let us
observe that the test functions φr`(· −ϑ`) behave for 0 < r` < rN like smooth mesoscopic
linear statistics and we can therefore adapt our proof of Theorem 1.2. Indeed, letting
w :=

∑n
`=1γ`φr`(· − ϑ`) with

φr =
∑
k≥1

rk

k
Cs(k·), (3.3)
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then according to formula (1.6), we have

σ2 (w) = 2

n∑
`,`′=1

γ`γ`′Re

{
+∞∑
k=1

k(φ̂r`)k(φ̂r`′ )ke
ik(ϑ`′−ϑ`)

}

=
1

2

n∑
`,`′=1

γ`γ`′Re

{ ∞∑
k=1

rk` r
k
`′

k
eik(ϑ`′−ϑ`)

}

=
1

2

n∑
`,`′=1

log |1− r`r`′ei(ϑ`′−ϑ`)|−1

=

n∑
`,`′=1

E
[
G(rke

iϑk)G(r`e
iϑ`)
]
, (3.4)

where we used (1.10) for the last step. In the remainder of this section, we will use the
method of loop equation – in particular Lemma 2.3 and Proposition 2.4 – to obtain the
asymptotics (3.2). First, according to (2.2), we have that the Hilbert transforms of the
functions (3.3) are given by

ψr = Uφr =
∑
k≥1

rk

k
sin(k·), g = Uw =

∑n
`=1γ`ψr`(· − ϑ`). (3.5)

Then, in order to control the error terms in Proposition 2.4, we need the following
Lemmas. The proofs of Lemma 3.1 and Lemma 3.2 follow from routine computations.
For completeness, the details are provided in the appendix B.

Lemma 3.1. There exists a universal constant C > 1 such that the following estimates
hold for any 0 ≤ r < 1,

‖ψr‖∞, ‖ψ′r‖L1(T) ≤ C, (3.6)

‖φr‖∞, ‖φ′r‖L1(T) ≤ −2 log(1− r) + C, (3.7)

‖ψ′r‖∞, ‖φ′r‖∞ ≤
1

1− r
, (3.8)

and also

‖φ′′r‖L1(T), ‖ψ′′r ‖L1(T) ≤
C

1− r
. (3.9)

Lemma 3.2. Let R0 be given by (2.10). There exists a universal constant C > 0 such
that for all 0 ≤ r < 1,

R0(ψr), R0(φr) ≤ C
(log(1− r))2

(1− r) log log(1− r)−1
. (3.10)

We are now ready to give our Proof of Theorem 1.5. We fix n ∈ N, for any γ ∈ Rn,
ϑ ∈ Tn, and 0 < r1, . . . , rn ≤ rN , the function (3.3) satisfies w ∈ C∞(T) and by (3.7),
we have ‖w′‖L1(T) ≤ η = ‖γ‖(3 logN + C) with ‖γ‖ =

∑n
`=1 |γ`|. Hence, using the

estimate (2.11), we obtain that there exists a constant Cβ,γ which depends only on ‖γ‖
and β > 0 such that for all N ≥ Nβ and all t ∈ [0, 1],

E
β
N,tw

[
|W̃N |

]
≤ Cβ,γ(logN)2

(
R2(w)N3−η2/2β +R0(w)(logN)2 +R1(w)

)
, (3.11)

where R0, R1, R2 are given by (2.9)–(2.10) with g = Uw =
∑n
`=1γ`ψr`(·−ϑ`). In particular,

we have ‖g‖∞ ≤ C‖γ‖ by (3.6), and using the estimate (3.8), we see that there exists a
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constant Cγ which only depends on ‖γ‖ and n ∈ N such that

R2(w) = ‖g′‖∞ + ‖g‖∞‖w′‖∞
≤ ‖γ‖ max

`=1,...,n
‖ψ′r`‖∞ + C‖γ‖2 max

`=1,...,n
‖φ′r`‖∞

≤ Cγ

1− rN
.

Similarly, ‖w′‖∞ ≤ ‖γ‖(1− rN )−1 by (3.8) and, with a possibly different constant Cγ , we
deduce from (3.6) and (3.9) that

R1(w) = ‖g′′‖L1(T) + ‖(gw′)′‖L1(T)

≤ ‖γ‖
∑n
`=1

(
‖ψ′′r`‖L1(T) + ‖g‖∞‖φ′′r`‖L1(T) + ‖w′‖∞‖ψ′r`‖L1(T)

)
≤ Cγ

1− rN
.

Since η = ‖γ‖(3 logN+C), this shows that the first term on the RHS of (3.11) is negligible
compared to the third term and we obtain for all N ≥ Nβ ,

δN (w) =
2

βN
sup
t∈[0,1]

E
β
N,tw

[
|W̃N |

]
≤ 2Cβ,γ

βN
(logN)2

(
R0(w)(logN)2 +

2Cγ

1− rN

)
. (3.12)

By (2.10), since R0(w) ≤ ‖γ‖ max
`=1,...,n

R0(φr`), we deduce from Lemma 3.2 that

R0(w) ≤ C‖γ‖ (log(1− rN ))2

(1− rN ) log log(1− rN )−1
.

By (3.12) with rN = 1− (logN)6

N , this implies that

δN (w) ≤ 2Cβ,γ
β

(
C‖γ‖

log log (N/(logN)6)
+

2Cγ

(logN)4

)
.

According to Lemma 2.3 since (φ̂r)0 = 0 for any r ∈ [0, 1], this proves that uniformly for
all ϑ ∈ Tn, 0 < r1, . . . , rn ≤ rN and γ ∈ Rn, we have for all N ≥ Nβ ,∣∣∣logEβN

[
e
∫
wdµN

]
− β−1σ2(w)

∣∣∣ ≤ 2Cβ,γ
β

(
C‖γ‖

log log (N/(logN)6)
+

2Cγ

(logN)4

)
. (3.13)

Since w =
∑n
`=1γ`φr`(· − ϑ`) and the RHS of (3.13) converges to 0 as N → +∞, by for-

mula (3.4), we obtain the asymptotics (3.2). Whence, we deduce from [37, Theorem 1.7]
that for any |γ| <

√
2β, the random measure µγN converges in law with respect to the

topology of weak convergence to the GMC measure µγ̆G.

3.2 Proof of Theorem 1.7

The proof of Theorem 1.7 is almost identical to that of Theorem 1.5 in the previous
section, so we just go through the argument quickly. According to (1.18) and (3.5), we
have for any 0 ≤ r < 1 and all ϑ ∈ T,

ΨN,r(ϑ) =
∑N
j=1ψr(ϑ− θj).

We claim that for any β > 0 and any n ∈ N,

logEβN [exp (
∑n
`=1γ`ΨN,r`(ϑ`))] =

1

β

n∑
`,k=1

γ`γkE
[
G(rke

iϑk)G(r`e
iϑ`)
]

+ o(1)
N→+∞

, (3.14)
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uniformly for all ϑ ∈ Tn, 0 < r1, . . . , rn ≤ rN and γ in compact subsets of Rn. Hence,
by applying [37, Theorem 1.7], we obtain for any |γ| <

√
2β the random measure µ̃γN

given by (1.20) converges in law with respect to the topology of weak convergence to
the GMC measure µγ̆G associated with the GFF on T. The proof of the asymptotics (3.14)
is analogous to that of (3.2). Namely, we have

∑n
`=1γ`ΨN,r`(ϑ`) =

∫
gdµN where the

function g ∈ C∞(T) is given by (3.5). By (3.6), we have ‖g′‖L1(T) ≤ C‖γ‖, so that by
directly applying Lemma 2.3 and Proposition 2.4, we obtain for all N ≥ Nβ ,∣∣∣logEβN

[
e
∫
gdµN

]
− β−1σ2(g)

∣∣∣ ≤ δN (g) ≤ Cβ
(
R0(g) logN +R1(g) +R2(g)N−5

) logN

N
.

(3.15)
Going through the estimates of section 3.1, since the Hilbert transform of g is given by
Ug = −w, we have

R1(g), R2(g) ≤ Cγ
log(1− rN )−1

1− rN
and R0(g) ≤ C‖γ‖ (log(1− rN ))2

(1− rN ) log log(1− rN )−1
.

These estimates show that with rN = 1− (logN)4

N ,

δN (g) ≤ Cβ
(

C‖γ‖
log log(1− rN )−1

+
2Cγ

(logN)2

)
,

so that the LHS of (3.15) converges to 0 as N → +∞. By definition of the Hilbert
transform, σ2(g) = σ2(w) is given by (3.4). Hence, since

∑n
`=1γ`ΨN,r`(ϑ`) =

∫
gdµN , we

obtain the asymptotics (3.14) and this completes the proof of Theorem 1.7.

3.3 Thick points: Proofs of Proposition 1.6 and Proposition 1.8

The goal of this section is to deduce from Theorem 1.5 some important estimates for
thick points of the characteristic polynomial of the CβEN . Recall that for any γ > 0, the
set of γ-thick points of the characteristic polynomial is

T γN =
{
θ ∈ T : |PN (eiθ)| ≥ Nγ/β

}
.

The connection between Theorem 1.5 and Proposition 1.6 comes from the fact that
the random measure µγN is essentially supported on T γN for large N ∈ N, see e.g. [13,
section 3]. In the following, we rely on this heuristic to obtain a lower-bound for the
Lebesgue measure |T γN | when γ is less than the critical value γ∗ =

√
2β. By a result of

Su [47, Theorem 1.2] (see Lemma 3.4), we obtain the complementary upper-bound to
prove Proposition 1.6. Since the proof of Proposition 1.8 is almost identical to that of
Proposition 1.6, we skip it and only comment on the main differences.

We let for any N ∈ N, 0 < r < 1 and θ ∈ T,

ΥN,r(θ) = log |PN (reiθ)| (3.16)

and ΥN (θ) = lim
r→1

ΥN,r(θ) = log |PN (eiθ)|. Recall that rN = 1 − (logN)6

N . Observe that it

follows immediately from the asymptotics (3.2) and formula (1.10) that there exists a
constant Rβ > 1 such that for all |γ| ≤ 2γ∗ and θ ∈ T,

R−1
β (1− rN )−γ

2/2β ≤ EβN
[
eγΥN,rN (θ)

]
≤ Rβ(1− rN )−γ

2/2β . (3.17)

The following result follows essentially from [13, Proposition 3.8]. Since our context
is slightly different, we provide the main steps of the proof for completeness.
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Lemma 3.3. Let εN = (logN)6

N and rN = 1− εN . Fix γ > 0 and define

T̃ γN =

{
θ ∈ T : ΥN,rN (θ) ≥ γ

β
logN

}
.

For any δ > 0 such that γ + δ < γ∗, we have for any C > 0 as N → +∞,

P
β
N

[
|T̃ γN | ≤ CN

−(γ+δ)2/2β
]
→ 0.

Proof. Let us fix small ε, δ > 0. Observe that by definition of the random measure
µγN , (1.15), by using the estimate (3.17), we obtain

µγ+δ
N

(
T̃ γN \ T̃

γ+2δ
N

)
≤ Rβε(γ+δ)2/2β

N N (γ+δ)(γ+2δ)/β |T̃ γN | = Rβ(logN)cN (γ+2δ)2/2β−δ2/2β |T̃ γN |,

where c = c(γ, δ, β) > 0. This shows that if N is sufficiently large,

P
β
N

[
|T̃ γN | ≤ CN

−(γ+2δ)2/2β
]
≤ PβN

[
µγ+δ
N

(
T̃ γN \ T̃

γ+2δ
N

)
≤ CRβ(logN)cN−δ

2/2β
]

≤ PβN
[
µγ+δ
N (T) ≤ 3ε

]
+ PβN

[
µγ+δ
N

(
T \ T̃ γN

)
≥ ε
]

+ PβN

[
µγ+δ
N

(
T̃ γ+2δ
N

)
≥ ε
]
.

Moreover, by [13, Lemma 3.2], we also have the estimates:

E
β
N

[
µγ+δ
N

(
T̃ γ+2δ
N

)]
,EβN

[
µγ+δ
N

(
T \ T̃ γN

)]
≤ Rβεδ

2/2β
N .

Since, by Theorem 1.5, the random variable µγ+δ
N (T) converges in law to µγ̃+δ

G (T), this
implies that

lim sup
N→+∞

P
β
N

[
|T̃ γN | ≤ N

−(γ+2δ)2/2β
]
≤ PβN

[
µγ̃+δ

G (T) ≤ 3ε
]
.

Since this estimate holds for arbitrary small ε > 0 and the random variable µγ̃+δ
G (T) > 0

almost surely8 for any γ < γ∗ − δ, this completes the proof (we may also replace 2δ by δ
since δ > 0 is arbitrary small.)

Lemma 3.4 (Upper-bounds). For any γ > 0 and any small δ > 0, we have

P
β
N

[
|T γN | ≥ CN

−γ2/2β+δ
]
→ 0. (3.18)

Moreover, we have for any small δ > 0,

lim
N→+∞

P
β
N

[
max
θ∈T

log |PN (eiθ)| ≤ (1 + δ)
√

2
β logN

]
= 1. (3.19)

Proof. These estimates follow by standard arguments using the so–called first moment
method and the explicit formula for γ–moments of |PN |. By [47, Theorem 1.2] case (1)
that for any γ > −1 and ϑ ∈ T,

E
β
N

[
|PN (eiϑ)|γ

]
=

N−1∏
k=0

Γ(1 + βk
2 )Γ(1 + γ + βk

2 )

Γ(1 + βk+γ
2 )2

.

By using e.g. the asymptotics of [14, Theorem 5.1], this formula implies that there exists
a constant Cβ > 0 such that for all γ ∈ [0, γ∗],

E
β
N

[
|PN (eiϑ)|γ

]
≤ CβNγ2/2β . (3.20)

8This fact follows e.g. from the construction of the random measure µγG in [4] – see also [13, Proposition
2.1] for further details.
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Observe that by definition of the set T γN and Markov’s inequality, this estimate implies
that for any γ ∈ [0, γ∗],

E
β
N [|T γN |] =

∫
T

P
β
N

[
|PN (eiθ)| ≥ Nγ/β

]
dθ

≤ N−γ
2/β

∫
T

E
β
N

[
|PN (eiϑ)|γ

]
dθ

≤ 2πCβN
−γ2/2β .

By Markov’s inequality, this immediately implies (3.18). In order to prove the second
claim, we use that by [11, Lemma 4.3], since PN is a polynomial of degree N , we have
the deterministic bound: maxT |PN | ≤ 14 maxk=1,...2N |PN (ei2πk/2N )|. This implies that
for any δ > 0, we have if N is sufficiently large,

P
β
N

[
max
θ∈T

log |PN (eiθ)| ≥ (1 + δ)
√

2
β logN

]
≤ PβN

[
max

k=1,...2N
|PN (ei2πk/2N )| ≥ N

√
2
β (1+δ/2)

]
.

(3.21)
By a union bound, Markov’s inequality and using the estimate (3.20) with γ = γ∗ =

√
2β,

we obtain if N is sufficiently large,

P
β
N

[
max
θ∈T

log |PN (eiθ)| ≥ (1 + δ)
√

2
β logN

]
≤ N−γ∗

√
2
β (1+δ/2)

∑
k=1,...2N

E
β
N

[
|PN (eiϑ)|γ∗

]
≤ N−2(1+δ/2) · 2CβN2 = 2CβN

−δ.

This yields (3.19).

Recall that for 0 < r < 1, Pr(·) = 1 + 2
∑+∞
k=1 r

kCs(k·) = 1−r2
1+r2−2rCs(·) denotes the

Poisson kernel. Since the function ΥN = log |PN | is harmonic in D, according to (3.16),
we have for any 0 < r < 1 and x ∈ T,

ΥN,r(x) =

∫
T

ΥN (θ)Pr(θ − x)
dθ

2π
. (3.22)

Using that ΥN,r is the convolution of ΥN with a smooth probability density function, we
can deduce from Lemma 3.3 and Lemma 3.4 a lower-bound for the Lebesgue measure of
the set γ–thick points of |PN | = eΥN .

Proposition 3.5 (Lower-bounds). Fix γ, β > 0 and let T γN =
{
θ ∈ T : |PN (eiθ)| ≥ Nγ/β

}
.

For any small 0 < δ < γ such that γ + δ < γ∗, we have as N → +∞,

P
β
N

[
|T γN | ≤ N

−(γ+δ)2/2β
]
→ 0. (3.23)

In particular, we have for any small δ > 0,

lim
N→+∞

P
β
N

[
max
θ∈T

log |PN (eiθ)| ≥ (1− δ)
√

2
β logN

]
= 1. (3.24)

Proof. Let us fix 0 < δ < γ such that γ + δ < γ∗ and define the event

AN = {max
T

ΥN ≤ (γ∗ + δ
2 ) logN}.

By Lemma 3.4, we have PβN [AN ] → 1 as N → +∞. Let us choose L > 0 which only
depends on the parameters δ, β > 0 such that∫

|θ|≥L(1−r)
Pr(θ)

dθ

2π
≤ δ

2γ∗ + δ
. (3.25)
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By (3.22), since Pr is a smooth probability density function, conditionally on AN , we
have for any 0 < r < 1 and x ∈ T,

ΥN,r(x) =

∫
T\T γN

ΥN (θ)Pr(θ − x)
dθ

2π
+

∫
T γN

ΥN (θ)Pr(θ − x)
dθ

2π

≤ γ

β
logN +

∫
|θ−x|≥L(1−r)

ΥN (θ)Pr(θ − x)
dθ

2π
+

∫
T γN∩|θ−x|≤L(1−r)

ΥN (θ)Pr(θ − x)
dθ

2π

≤
(
γ

β
+
δ

2

)
logN + (γ∗ + δ

2 )

(∫
T γN∩|θ−x|≤L(1−r)

Pr(θ − x)
dθ

2π

)
logN

where we used that maxT ΥN ≤ (γ∗ + δ
2 ) logN conditionally on AN and (3.25) at the last

step. Since Pr(θ) ≤ 2
1−r for all θ ∈ T, this implies that

ΥN,rN (x) ≤
(
γ

β
+
δ

2

)
logN +

cβ logN

εN

∣∣θ ∈ T γN : |θ − x| ≤ LεN
∣∣ (3.26)

for a constant cβ > 0 depending only on β or γ∗. Choosing L possibly larger, let us

assume that M = π
LεN
∈ N and for k = 1, . . . ,M , we choose xk ∈ [ 2π(k−1)

M , 2πk
M ] such that

ΥN,rN (xk) = max
θ∈[

2π(k−1)
M , 2πkM ]

ΥN,rN (θ).

Then we obviously have

|T̃ γ+δ
N | ≤ 2π

M

∑
k=1,...,M

1{xk∈T̃ γ+δN }. (3.27)

Moreover, if xk ∈ T̃ γ+δ
N , then using the estimate (3.26),∣∣θ ∈ T γN : |θ − xk| ≤ LεN

∣∣ ≥ εNδ

2cβ
=

δ

4cβL

2π

M
.

By (3.27), this implies that conditionally on AN :

|T̃ γ+δ
N | ≤ 4cβLδ

−1
∑

k=1,...,M

1{xk∈T̃ γ+δN }
∣∣θ ∈ T γN : |θ − xk| ≤ LεN

∣∣. (3.28)

Then observe that since xk ∈ [ 2π(k−1)
M , 2πk

M ] and the intervals [ 2π(k−1)
M , 2πk

M ] are disjoints
(expect for the endpoints), we have∑

k=1,...,M

∣∣θ ∈ T γN : |θ − xk| ≤ LεN
∣∣ ≤ 2|T γN |. (3.29)

Using the bounds (3.28) and (3.29), we obtain that conditionally on AN ,

|T̃ γ+δ
N | ≤ 8cβLδ

−1|T γN |.

This shows that

P
β
N

[
|T γN | ≤ N

−(γ+2δ)2/2β
]
≤ PβN

[
|T̃ γ+δ
N | ≤ 8cβLδ

−1N−(γ+2δ)2/2β
]

+ PβN [AcN ]. (3.30)

By Lemma 3.3, the first term on the RHS of (3.30) converges to 0 and, by Lemma 3.4,
we also have PβN [AcN ]→ 0 as N → +∞. This completes the proof of (3.23) (since δ > 0 is
arbitrary small, we may replace 2δ by δ in the end). In particular, this shows that the sets
T γN are non-empty for all 0 ≤ γ < γ∗ =

√
2β since they have positive Lebesgue measure.

This implies the lower-bound (3.24).
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It is now straightforward to complete our proof of Proposition 1.6.

Proof of Proposition 1.6. As (3.18) and (3.23) hold for arbitrary small δ > 0, this shows

that any γ ∈ [0, γ∗),
log |T γN |
logN

→ − γ
2

2β
in probability as N → +∞. Then, combining the

estimates (3.19) and (3.19), we obtain the claim (1.17) for the maximum of log |PN |.

Remark 3.6. The proof of Proposition 1.8 follows from similar arguments. In particular,
by Theorem 1.7, we obtain the counterpart of Lemma 3.3 for the thick points of the field
ΨN,rN , (1.18). Since we have for any 0 ≤ r < 1 and x ∈ T,

ΨN,r(x) =

∫
T

ΨN (θ)Pr(θ − x)
dθ

2π
,

by going through the proof of Proposition 3.5, we obtain that for any small 0 < δ < γ

such that γ + δ < γ∗,

lim
N→+∞

P
β
N

[
|SγN | ≤ N

−(γ+δ)2/2β
]
→ 0.

The complementary upper-bound for |SγN | is obtained by the first moment method as in
Lemma 3.4 using the asymptotics from [47, Theorem 1.2] case (2): for any |γ| < 2 and
θ ∈ T,

E
β
N

[
eγΨN (θ)

]
=

N−1∏
k=0

Γ(1 + kβ
2 )2

Γ(1 + kβ+iγ
2 )Γ(1 + kβ−iγ

2 )
. (3.31)

To obtain these asymptotics, one must take s = −iγ/2 in [47, Theorem 1.2] and observe
that according to formula (1.19), we have for all ϑ ∈ T \ {θk}Nk=1,

ΨN (ϑ) = = log
(∏n

j=1(1− ei(ϑ−θj))
)
. (3.32)

To obtain (3.32), it suffices to observe e.g. that ΨN = UΥN where ΥN = Re logPN and U
is the Hilbert transform. Note that to prove the upper-bound for maxT ΨN , one cannot
use the estimate (3.21) as in Lemma 3.4. Instead, since ψ(θ) = θ−π

2 for all θ ∈ (0, 2π), by
formula (1.19), we have the deterministic bound:

ΨN (ϑ) ≤ ΨN ( 2π(k−1)
N ) + π, ϑ ∈ [ 2π(k−1)

N , 2πk
N ], (3.33)

for k = 1, . . . , N . So we can just replace the estimate (3.21) by

P
β
N

[
max
θ∈T

ΨN (θ) ≥ (1 + δ)
√

2
β logN

]
≤ PβN

[
max

k=1,...N
ΨN ( 2π(k−1)

N ) ≥ (1 + δ)
√

2
β logN − π

]
and use a union bound in order to deduce the upper-bound for maxT ΨN . �

3.4 Optimal rigidity: Proof of Corollary 1.10.

This is a direct consequence of Proposition 1.8, we give the details for completeness.
Let us define the (centered) eigenvalue counting function

hN (θ) =
∑
j≤N

1θj∈[0,θ] −
Nθ

2π
. (3.34)

Since ψ(θ) = θ−π
2 for all θ ∈ (0, 2π), by formula (1.19), the function ΨN is piecewise

linear on T \ {θk}Nk=1 and it jumps by −π at the points {θk}Nk=1. Then, since hN (0) = 0,
we have for all ϑ ∈ T \ {θk}Nk=1,

hN (θ) =
ΨN (0)−ΨN (ϑ)

π
. (3.35)
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From formula (3.31), we can deduce that there is a constant Cβ so that for any
δ ∈ [0, 1],

E
β
N

[
eδΨN (0)

]
≤ CβNδ2/2β ;

see (A.2) in the appendix A. This estimate implies a Gaussian tail-bound: for any δ ∈ [0, 1],

P
β
N

[
ΨN (0) ≥ δ

β logN
]
≤ N−δ

2/βE
β
N

[
eδΨN (0)

]
≤ CβN−δ

2/2β . (3.36)

Then, we deduce from Proposition 1.8 and Remark 1.9 that it holds in probability as
N → +∞,

maxT |ΨN (θ)|
logN

→
√

2

β
. (3.37)

By formula (3.35), combining (3.37) and the estimate (3.36), we obtain as N → +∞,

maxT |hN (θ)|
logN

→ 1

π

√
2

β
.

Finally since max
T
|hN (θ)| ≤ max

k=1,...,N
|hN (θk)|+ 1 where θ1, . . . , θN are the CβEN eigenval-

ues, this implies that for any β > 0 and δ > 0,

lim
N→+∞

P
β
N

[
1− δ
π

√
2

β
logN ≤ max

k=1,...,N
|hN (θk)| ≤ 1 + δ

π

√
2

β

logN

N

]
= 1. (3.38)

By (3.34), we have hN (θk) = N
2π

(
2πk
N − θk

)
for k = 1, . . . , N , so this completes the proof.

4 Moderate deviations for the eigenvalue counting function

Recall that we denote by hN the (centered) eigenvalue counting function (3.34). Note
that almost surely, hN is a càdlàg function on T such that ‖hN‖∞ ≤ N and h′N = µ̃N in
the sense that for any function f ∈ C1(T), we have∫

f ′(θ)hN (θ)dθ = −
∫
fdµ̃N . (4.1)

In this section, by using the connection between the eigenvalue counting function and
the logarithm of the characteristic polynomial, see formula (3.35) above, we investigate
the probability that hN takes extreme values.

Proposition 4.1. Let w ∈ C1(T) such that ‖w′‖L1(T) ≤ η (where η may depend on
N ∈ N). There exists Nβ ∈ N such that for all N ≥ Nβ ,

P
β
N,w

[
max
T
|hN | ≥

√
2
β η logN

]
≤
√
η logNN1−η2/2β . (4.2)

For the proof of Proposition 4.1, we need the following Lemma which is an easy
consequence of a result from Su [47]. For completeness, the proof of Lemma 4.2 is given
in the Appendix A.

Lemma 4.2. There exists Nβ ∈ N, such that for all N ≥ Nβ and any t > 0 (possibly
depending on N ),

P
β
N

[
max
T
|hN | ≥ t

]
≤ 3Ne−

βt2

logN .

Let us observe that since hN (θk) = N
2π

(
2πk
N − θk

)
for k = 1, . . . , N , Lemma 4.2 imme-

diately implies the rigidity estimate (1.8). We now turn to the proof of Proposition 4.1.
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Proof of Proposition 4.1. Observe that by (4.1), we have∣∣∣∣∫ wµ̃N

∣∣∣∣ ≤ ‖w′‖L1(T) max
T
|hN |.

By Lemma 4.2, this implies that if N ≥ Nβ , then for any t > 0,

P
β
N

[ ∣∣∣∣∫ wµ̃N

∣∣∣∣ ≥ t] ≤ 3Ne
− βt2

η2 logN .

Using this Gaussian tail–bound, we can estimate the Laplace transform of the linear
statistics

∫
wdµ̃N , we obtain

E
β
N

[
e
∫
wdµ̃N

]
= 1 +

∫ +∞

0

P
β
N

[ ∫
wµ̃N ≥ t

]
etdt

≤ 1 + 3N

∫ +∞

0

e
t− βt2

η2 logN dt.

By completing the square, we obtain

E
β
N

[
e
∫
wdµ̃N

]
≤ 1 + 3Ne

η2 logN
4β

∫ +∞

1

e
− β

η2 logN
(t− η

2 logN
2β )2

dt

So if N is sufficiently large (depending on η > 0 and β > 0), this shows that

E
β
N

[
e
∫
wdµ̃N

]
≤ 1 + 3ηN1+η2/4β

√
π logN/β. (4.3)

On the other hand, by Jensen’s inequality and the fact that µ̃N is centered, we have

E
β
N

[
e
∫
wdµ̃N

]
≥ eE

β
N [

∫
wdµ̃N ] = 1.

Therefore, by Cauchy-Schwarz inequality, we have for any t > 0,

P
β
N,w

[
max
T
|hN | ≥ t

]
≤ EβN

[
1maxT |hN |≥te

∫
wdµ̃N

]
≤
√
P
β
N

[
max
T
|hN | ≥ t

]
E
β
N

[
e2

∫
wdµ̃N

]
≤ C(η2 logN/β)1/4N1+η2/2β e−

βt2

2 logN .

For the last step, we used Lemma 4.2 and the estimate (4.3) replacing w by 2w (this only
changes η by 2η). From our last estimate, we obtain (4.2) by taking t =

√
2
β η logN .

Finally it remains to give a proof of Proposition 1.4.

Proof of Proposition 1.4. Fix n ∈ N and R > 0. Like (4.1), since h′N = µ̃N , we have for
any f ∈ Cn(Tn),∫

Tn
f(x1, . . . , xn)µ̃N (dx1) · · · µ̃N (dxn)

= (−1)n
∫
Tn

d

dx1
· · · d

dxn
f(x1, . . . , xn)hN (x1) · · ·hN (dxn)dx1 · · · dxn.

This implies that for any f ∈ Fn,R,∣∣∣∣∫
Tn
f(x1, . . . , xn)µ̃N (dx1) · · · µ̃N (dxn)

∣∣∣∣ ≤ R(max
T
|hN |

)n
,
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so that for any ε > 0,

P
β
N,w

[
sup

f∈Fn,R

∣∣∣∣ ∫
Tn
f(x1, . . . , xn)µ̃N (dx1) · · · µ̃N (dxn)

∣∣∣∣ ≥ R(
√

2
β η logN)n

]
≤ PβN,w

[
max
T
|hN | ≥

√
2
β η logN

]
.

Hence, the claim follows directly from from Proposition 4.1.

5 Proof of Theorem 1.12

Throughout this section, we use the notation from Theorem 1.11. Let w ∈ C3+α
c (R),

0 < ε < 1/4 and ν > 4. Without loss of generality, we assume that supp(w) ⊆ [− 1
2 ,

1
2 ] – if

not we can consider instead the test function wR = w(·R) and observe that ‖w‖H1/2(R) =

‖wR‖H1/2(R). We also define N(ν) = bexp(ν1/4)c and L(ν) = N(ν)
2πν . We will need the

following simple consequence of eigenvalue rigidity.

Lemma 5.1. There exists a random integer Nε ∈ N such that for all N ≥ Nε,∑
k∈Z

w(θkL) =
∑
|k|≤ν

w(θkL), and
∑
k∈Z

w(λkν
−1) =

∑
|k|≤ν

w(λkν
−1).

Proof. Using the estimate (1.8) combined with the Borel–Cantelli Lemma and Theo-
rem 1.11, we see that there exists a random integer Nε such that it holds for all N ≥ Nε,{∣∣Nθk

2π − k
∣∣ ≤ (logN)1+ε ∀k ∈ Z∣∣Nθk

2π − λk
∣∣ ≤ N−ε ∀|k| ≤ N1/4−ε . (5.1)

In particular, if N(ν) ≥ Nε, we also have

min
{
θνL(ν), ν−1λν

}
≥ 1− ν−1(logN(ν))1+ε ≥ 1− ν−

3−ε
4 ≥ 1/2.

Similarly, we can show that max
{
θ−νL(ν), ν−1λ−ν

}
≤ −1/2. Since we assume that

supp(w) ⊆ [− 1
2 ,

1
2 ], this implies that w(θkL(ν)) = w(ν−1λk) = 0 for all |k| ≥ ν. This

completes the proof.

Remark 5.2. It follows from the estimate (5.1) that for any ε > 0,

lim
M→+∞

P

[
max
|k|≤M

|λk − k| ≤ (logM)1+ε

]
= 1.

We are now ready to prove our CLT for the Sineβ process.

Proof of Theorem 1.12. Let Nε be as in Lemma 5.1. Since w ∈ C1
c (R), we have for all

N ≥ Nε, ∣∣∣∣∑
k∈Z

w(λkν
−1)−

∑
k∈[N ]

w(θkL)

∣∣∣∣ ≤ ∑
|k|<ν

∣∣w(λkν
−1)− w(θkL)

∣∣
≤ 2ν max

|k|<ν

∣∣Nθk
2π ν

−1 − λkν−1
∣∣ ‖w′‖L∞(R).

Since ν ≤
(

logN(ν)
)4

, using the notation (1.2), this implies that for all N(ν) ≥ Nε,∣∣∣∣∑
k∈Z

w(λkν
−1)−

∫
wLdµ̃N +N

∫ π

−π
wL(x)

dx

2π

∣∣∣∣ ≤ 2‖w′‖L∞(R) max
|k|≤(logN)4

∣∣ N
2π θk − λk

∣∣.
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By (5.1), the RHS of the above inequality converges to 0 almost surely as N → +∞. More-

over since we have N

∫ π

−π
wL(x)

dx

2π
= ν

∫
R

w(x)dx and

∫
wLdµ̃N → N

(
0, 2

β ‖w‖
2
H1/2(R)

)
weakly as N → +∞, by Slutsky’s Lemma, we conclude that∑

k∈Z

w(λkν
−1)− ν

∫
R

wdx→ N
(
0, 2

β ‖w‖
2
H1/2(R)

)
,

as ν → +∞ in distribution.

Appendices

A Proof of Lemma 4.2

We make use of the explicit formula (3.31). By (1.19), we see that almost surely:
|ΨN (θ)| ≤ πN for all θ ∈ T. So both sides of formula (3.31) are analytic in the strip{
γ ∈ C : |=γ| ≤ 2

}
. This implies that for any γ ∈ R and θ ∈ T,

E
β
N

[
eγΨN (θ)

]
=

N−1∏
k=0

∣∣∣∣∣ Γ(1 + kβ
2 )

Γ(1 + kβ+iγ
2 )

∣∣∣∣∣
2

=

N−1∏
k=0

+∞∏
`=1

(
1 +

(
γ

kβ + 2`

)2
)

(A.1)

where we used properties of the Gamma function and the infinite product is convergent,
see https://dlmf.nist.gov/5.8. Moreover, observe that

log

(
N−1∏
k=0

+∞∏
`=1

(
1 +

(
γ

kβ + 2`

)2
))
≤
N−1∑
k=0

+∞∑
`=1

(
γ

kβ + 2`

)2

,

and using that
∑+∞
`=1

1
(α+2`)2 ≤

1
2α for any α > 0, we obtain

log

(
N−1∏
k=0

+∞∏
`=1

(
1 +

(
γ

kβ + 2`

)2
))
≤ γ2

2β

N−1∑
k=1

1

k
+
γ2π2

24

≤ γ2

2β
(logN + 1) +

γ2π2

24
.

This estimate implies that there exists a universal constant cβ > 0 such that for any
γ ∈ R and θ ∈ T,

E
β
N

[
eγΨN (θ)

]
≤ ecβγ

2

Nγ2/2β . (A.2)

By (3.35), we have

max
T
|hN | ≤

1

π
max
T
|ΨN |+

1

π
|ΨN (0)|,

so that for any t ≥ 1,

P
β
N

[
max
T
|hN | ≥ t

]
≤ PβN

[
max
T
|ΨN | ≥ π(t+1)

2

]
+ PβN

[
|ΨN (0)| ≥ π(t−1)

2

]
.

Then, using the estimate (3.33), by a union bound we obtain

P
β
N

[
max
T
|hN | ≥ t

]
≤

∑
k=0,...,N

P
β
N

[
|ΨN ( 2πk

N )| ≥ π(t−1)
2

]
.
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Using the estimate (A.2) and Markov’s inequality, this implies that for any t ≥ 1,

P
β
N

[
max
T
|hN | ≥ t

]
≤ 2e−

γπ(t−1)
2

∑
k=0,...,N

E
β
N

[
eγΨN ( 2πk

N )
]

≤ 2ecβγ
2

(N + 1)Nγ2/2βe−
γπ(t−1)

2 .

If we optimize and choose γ = βπ(t−1)
2 logN+βcβ

, we obtain

P
β
N

[
max
T

hN ≥ t
]
≤ 2(N + 1)e

− βπ
2

4
(t−1)2

2 logN+βcβ .

Hence, we conclude that there exists Nβ ∈ N, such that for all N ≥ Nβ and any t > 0

(possibly depending on N ),

P
β
N

[
max
T
|hN | ≥ t

]
≤ 3Ne−

βt2

logN .

B Proofs of Lemma 3.1 and Lemma 3.2

Recall that for 0 ≤ r < 1, the functions φr and ψr are given by (3.3) and (3.5)
respectively. We also define for θ ∈ (0, 2π),

φ(θ) = log |1− eiθ| and ψ(θ) = = log(1− eiθ) =
π − θ

2
. (B.1)

Proof of Lemma 3.1.
Estimates (3.6) First, by the maximum principle, ‖ψr‖∞ ≤ ‖ψ‖∞ = π. Then, an explicit

computation gives ψ′r(θ) = − rCsθ−r2
(1−r)2+2r(1−Csθ) , so that∫

T

|ψ′r(θ)|dθ ≤ 2(1− r)
∫ π

0

1

(1− r)2 + 2r(1− Csθ)
dθ +

∫ π

0

2r(1− Csθ)
(1− r)2 + 2r(1− Csθ)

dθ.

The second integral is obviously bounded by π and we can estimate the first by∫ π

0

1

(1− r)2 + 2r(1− Csθ)
dθ ≤ ε

(1− r)2
+ π

∫ π

ε

dθ

θ2
≤ ε

(1− r)2
+
π

ε
, (B.2)

where we used that 1− Csθ ≥ θ2

2π for all θ ∈ [−π, π]. Choosing ε =
√
π(1− r), we obtain∫

T

|ψ′r(θ)|dθ ≤ 4
√
π + π,

which proves the claim.

Estimates (3.7) We clearly have ‖φr‖∞ = φr(0) = log |1− r|−1. Moreover, an explicit
computation gives φ′r(θ) = − r sin θ

(1−r)2+2r(1−Csθ) , so that by a change of variables:∫
T

|φ′r(θ)|dθ = 2r

∫ π

0

sin θ

(1− r)2 + 2r(1− Csθ)
dθ

=

∫ 2r

0

du

(1− r)2 + u
= 2 log

(√
1 + r2

1− r

)
.

Estimates (3.8) Since ψ′r =
∑
k≥1 r

kCs(k·) and φ′r = −
∑
k≥1 r

k sin(k·), we have

‖ψ′r‖∞, ‖φ′r‖∞ ≤
1

1− r
.
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Estimates (3.9) If z = reiθ, then we verify that φ′′r (θ) = −Re z

(1− z)2
and ψ′′r (θ) =

−= z

(1− z)2
. This shows that for any θ ∈ T, |φ′′r (θ)|, |ψ′′r (θ)| ≤ |1 − z|−2 and by (B.2), we

obtain ∫
T

|ψ′′r (θ)|dθ,
∫
T

|φ′′r (θ)|dθ ≤ 2

∫ π

0

dθ

(1− r)2 + 2r(1− Csθ)
≤ 4
√
π

1− r
.

This completes the proof.

Proof of Lemma 3.2. Going through the proof of Proposition 2.7, we have for any 0 <

ε ≤ 1,

R0(φr) ≤ R3(φr) +
π2

2

(
ε−1‖ψ′r‖L1(T) +

ε

3

(
‖Mεψ

′′′
r ‖L1(T) + ‖ψ′r‖∞

))
, (B.3)

where R3 is given by (2.19) and Mεψ
′′′
r (x) =sup

|ζ−x|≤ε
|ψ′′′r (ζ)|. If z = reiθ, then we verify that

ψ′′′r (θ) = Re
z(1 + z)

(1− z)3
. So, if ε ≤ 1

2 , we easily verify that

Mεψ
′′′
r (θ) ≤


2

(1−r3) if θ ∈ [−2ε, 2ε]
2r

|1−rei(θ−ε)|3 if θ ∈ [2ε, π/2] ∪ [3π/2, 2(π − ε)]
8 if θ ∈ [π/2, 3π/2]

.

Since |1− rei(θ−ε)| ≥
√
r/π(θ − ε) if θ ∈ [2ε, π/2], this implies that if 1/

√
π ≤ r < 1, then∫

T

Mεψ
′′′
r (θ)dθ ≤ 4ε

(1− r)3
+ 4π2

∫ π/2

2ε

dθ

(θ − ε)3
+ 8π

=
4ε

(1− r)3
+

2π2

ε2
+ π.

By (B.3) combined with the estimates (3.6) and (3.8), this implies that there exists a
universal constant C > 0 such that

R0(φr) ≤ R3(φr) + C

(
ε−1 +

ε2

(1− r)3
+

ε

1− r

)
. (B.4)

We also need an estimate for R3. For k ≥ 0, let εk = ε(log ε−1)k. By (2.19), We have

R3(φr) ≤
π3

4

Kε∑
k=0

∫∫
T2

1εk≤|x1−x2|≤εk+1

∣∣∣∣ψr(x1)− ψr(x2)

(x1 − x2)3

∣∣∣∣dx1dx2, (B.5)

where Kε = inf{k ≥ 0 : ε(log ε−1)k ≥ π}. A similar argument as above shows that if
Mδψ

′
r(x) = sup

|ζ−x|≤δ
|ψ′r(ζ)|, then for any 0 < δ ≤ 1

2 ,

∫
T

Mδψ
′
r(x)dx ≤ 8δ

1− r
+ 2π log δ−1.

By Taylor’s Theorem, since the function ψr is smooth, this implies that for any k ≥ 0,∫∫
T2

1εk≤|x1−x2|≤εk+1

∣∣∣∣ψr(x1)− ψr(x2)

(x1 − x2)3

∣∣∣∣dx1dx2

≤
∫
T

Mεk+1
ψ′r(x1)

(∫
T

1|x1−x2|≥εk
dx2

|x1 − x2|2

)
dx1

≤ 16
εk+1ε

−1
k

1− r
+ 4πε−1

k log ε−1
k+1

≤ 16 log ε−1

(
1

1− r
+

1

ε

)
.
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We easily check that Kε + 1 ≤ 3 log ε−1

log log ε−1 , so by (B.5), there exists a constant C > 0 such
that

R3(φr) ≤ C
(log ε−1)2

log log ε−1

(
1

1− r
+

1

ε

)
. (B.6)

Combining the estimates (B.4), (B.6) and taking ε = 1− r, we obtain

R0(φr) ≤ C
(log(1− r)−1)2

(1− r) log log(1− r)−1
.

By exactly the same argument, we obtain a similar bound for R0(ψr) which completes
the proof.
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