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Gene expression deconvolution is a powerful tool for exploring the mi-
croenvironment of complex tissues comprised of multiple cell groups using
transcriptomic data. Characterizing cell activities for a particular condition
has been regarded as a primary mission against diseases. For example, cancer
immunology aims to clarify the role of the immune system in the progression
and development of cancer through analyzing the immune cell components of
tumors. To that end, many deconvolution methods have been proposed for in-
ferring cell subpopulations within tissues. Nevertheless, two problems limit
the practicality of current approaches. First, most approaches use external
purified data to preselect cell type-specific genes that contribute to decon-
volution. However, some types of cells cannot be found in purified profiles,
and the genes specifically over- or under-expressed in them cannot be iden-
tified. This is particularly a problem in cancer studies. Hence, a preselection
strategy that is independent from deconvolution is inappropriate. The second
problem is that existing approaches do not recover the expression profiles
of unknown cells present in bulk tissues when the reference set of purified
cell-specific profiles is incomplete which results in biased estimation of un-
known cell proportions. Furthermore, it causes the shift-invariant property
of deconvolution to fail which then affects the estimation performance. To
address these two problems, we propose a novel semireference-based de-
convolution approach, BayICE which employs hierarchical Bayesian mod-
eling with stochastic search variable selection. We develop a comprehensive
Markov chain Monte Carlo procedure through Gibbs sampling to estimate
proportions, expression profiles and signature genes for a set of known ref-
erence cell types as well as an unknown cell type. Simulation and validation
studies illustrate that BayICE outperforms existing semireference-based de-
convolution approaches in estimating cell proportions. We further show that
BayICE is applicable to single-cell RNA-seq data. Subsequently, we demon-
strate an application of BayICE in the RNA sequencing of patients with nons-
mall cell lung cancer. The model is implemented in the R package “BayICE,”
and the algorithm is available for download.

1. Introduction. Exploring the cellular components of heterogeneous tissues from their
gene expression profiles is an essential work for revealing molecular mechanisms across dif-
ferent cell types. For instance, increasing evidence suggests that levels of tumor-infiltrating
immune cells are associated with tumor progression, response to therapy and patient survival
(Dieu-Nosjean et al. (2014); Fridman et al. (2012, 2017)). Thus, powerful technologies for
single-cell isolation, such as laser microdissection and flow cytometry, have been employed
to quantify the numbers of malignant and normal cells in tissue (Hu et al. (2016)). However,
these physical approaches to isolating cells of interest at the gene expression level are costly
and time consuming, resulting in drastically reduced biological-content yields. In contrast to
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single-cell technologies, RNA-seq and microarrays yield bulk gene expression from hundreds
of thousands of cells. In heterogeneous tissues, where more than one cell type is present, the
expression profile from bulk RNA-seq or microarrays is from cell mixtures; thus, to correctly
interpret these data, gene expression deconvolution approaches are required to recover cell
type-specific expression and the distinct cellular proportions within complex tissues.

In the study of gene expression deconvolution, numerous computational and statistical ap-
proaches have been proposed to characterize cell subpopulations within tissues (Anghel et al.
(2015); Becht et al. (2016); Gong et al. (2011); Li et al. (2016); Newman et al. (2015, 2019);
Ogundijo and Wang (2017); Racle et al. (2017); Wang et al. (2019); Xie, Zhou and Xu (2018);
Zhong et al. (2013)). Expression data from a heterogeneous tissue can be modeled as a linear
combination of the distinct expression profiles of the cells present in that tissue, weighted
by the corresponding cell fractions. These approaches can be grouped into one of three
categories depending on whether they use a prior database of cell type-specific expression
profiles in the deconvolution procedure: reference-free, reference-based and semireference-
based methods. Reference-free approaches aim to directly perform expression deconvolution
without cell type-specific references, and their most significant feature is that they estimate
the relative cellular proportions and simultaneously disentangle their expression profiles. For
instance, many studies have been leveraged on nonnegative matrix factorization to decom-
pose mixed gene expression matrices into cell fractions and their corresponding expression
profiles (Gaujoux and Seoighe (2012); Prassas et al. (2012)). Although reference-free mod-
els are valuable in the exploration of an uncharacterized cell population, such as tumor sub-
clones (Xie, Zhou and Xu (2018)), relating the cellular components they identify to specific
cell types of interest is difficult. Hence, the results of reference-free approaches are unable to
clarify the association between a particular cell type and disease progression.

By contrast, reference-based methods incorporate external expression profiles of pure cell
samples for deconvolution. For example, the analytical tool CIBERSORT successfully bor-
rows cell type-specific information to predict the immune cell components in blood tissues
and tumors through ν-support vector regression (ν-SVR) (Charoentong et al. (2017); New-
man et al. (2015)). Due to increasing availability of single-cell RNA-seq data, MuSiC and
CIBERSORTx are two of the most recent reference-based methods that use a single cell-
derived signature matrix (Newman et al. (2019); Wang et al. (2019)). A fundamental assump-
tion about reference-based models is that all types of cells present in the target tissues are in-
cluded in the reference set, and the cellular proportions should sum up to one. Unfortunately,
the pure expression profile of malignant cells, a key component in tumors, is a great challenge
even for single-cell sequencing because of the high genetic heterogeneity of tumors. Hence,
reference-based models can only derive the relative cell proportions concerning the reference
set rather than the exact proportions concerning the microenvironment. Therefore, the rela-
tive cell proportions are not comparable across samples. To overcome this problem, TIMER
adopts a series of deconvolution procedures to adjust the relative cell proportions with tumor
purity which is the content of malignant cells in a tumor (Li et al. (2016)).

The abovementioned limitation forms the main incentive for developing semireference-
based deconvolution approaches. In 2017, Racle et al. proposed a framework for estimating
the proportion of immune and cancer cells (EPIC) for RNA-seq data (Racle et al. (2017)).
EPIC applies least-squares regression with a nonnegativity constraint to the deconvolution
problem and requires that the sum of all cell proportions in each tissue must be less than or
equal to one. When the sum is not equal to one, one minus the sum of the estimated cell
proportions represents the fraction of uncharacterized cells in a tissue that is not accounted
for by the reference set; this number is interpreted as the malignant cell proportion in a bulk
tumor.

Although semireference-based models demonstrate the advantages of incorporating cell-
specific information and, simultaneously, extracting the uncharacterized cell types present in
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tissues, two problems behind these models should be addressed to complete the framework of
gene expression deconvolution. First, signature gene selection is critical to the performance
of gene expression deconvolution. In some studies the incorporation of a preselected signa-
ture gene set has successfully improved the accuracy of immune cell deconvolution (Chen
et al. (2017, 2018); Newman et al. (2015); Racle et al. (2017)). However, the gene activities
of a particular cell type usually vary across different tissue microenvironments. Hence, the
use of a preselected gene set might cause the loss of data-dependent information and lead
to less deconvolution power. The second problem concerns the natural characteristics of de-
convolution. In a reasonable strategy for deconvolution, shifts in the mean level of reference
samples and tumor samples should not change the estimation of cell proportions. We refer
to this as the shift-invariant property for deconvolution. However, the constrained model im-
plemented for EPIC does not maintain the shift-invariant property in deconvolution, and the
estimation of cellular components is unstable because the sequencing depth changes across
experiments. More specifically, the uncharacterized cell fractions estimated using the con-
strained least-squares approach are biased toward zero which will be demonstrated in our
results.

Therefore, to address the aforementioned problems, we propose a new model based on a
hierarchical Bayesian framework for intracellular component exploration. It is called BayICE
and is a semireference-based approach. Under the Gaussian assumption, we first considered
stochastic search variable selection (SSVS) for novel signature gene selection (George and
McCulloch (1993)). The SSVS approach has been widely used in transcriptome analyses
to select significant genes. For example, Ishwaran and Rao introduced a rescaled Bayesian
model for selecting differentially expressed genes through multigroup microarray data (Ish-
waran and Rao (2005a)). To the best of our knowledge, BayICE is the first attempt to incorpo-
rate the mechanism of feature selection for inferring the cellular components of bulk tissues
when the reference set is incomplete. Although some reference-based methods can directly
apply all genes to deconvolution by a weighting scheme (Wang et al. (2019)) or a matrix
factorization technique (Sun, Sun and Yang (2019)) without signature gene preselection, the
existing semireference-based methods still require preselecting a signature gene set. More-
over, we claim that the BayICE model possesses the shift-invariant property of deconvolution
which yields unbiased estimates of cellular proportions. The model with the shift-invariant
property further guarantees that it can recover the expression profiles of uncharacterized cells
using posterior mean inference. For the purpose of inference, we applied Gibbs sampling and
the Metropolis–Hastings as the sampling procedure in the estimation. In brief, BayICE per-
forms cellular component estimation, uncharacterized cell expression profile estimation and
a novel strategy for signature gene selection.

The remainder of this paper is organized as follows. Section 2 introduces the deconvo-
lution in gene expression and states the shift-invariant property. Section 3 introduces the
statistical modeling of BayICE for gene expression deconvolution and proposes a Markov
chain Monte Carlo (MCMC) algorithm for simulating the posterior distributions of parame-
ters. To assess the model’s performance, Section 4 presents simulation studies that investigate
gene expression deconvolution, gene selection and model robustness compared to two exist-
ing methods. Section 5 presents applications to three real datasets, including one single-cell
RNA sequencing dataset, where underlying true cell proportions are known and performance
can be benchmarked. Section 6 describes application of BayICE to 199 nonsmall cell lung
cancer RNA-seq samples and exploration of the cell components present in the microenvi-
ronments of lung tumors. Finally, Section 7 provides final discussion and conclusions.

2. Deconvolution. The deconvolution in gene expression can be formalized as an op-
timization problem in which the parameter of interest is the cellular proportion W =
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(w1, . . . ,wK)′, and the estimates of W are obtained by

(2.1) Ŵ = argmin
W

D
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where yg is the gene expression of gene g, Bgk is the expression of the kth cell type in
gene g and D is the distance metric. In general, D is the Euclidean distance. As mentioned
above, the reference-free deconvolution approaches assume the cell type-specific expression
(Bgk) is unobserved, and the reference-based methods, by contrast, require Bgk as input for
the optimization problem. Additionally, the semireference-based approaches allow that one
of the cell types is absent in the reference. We now define the shift-invariant property to
characterize different deconvolution models.

DEFINITION 1 (Shift-invariant property). Let Y be the mixed expression from bulk tissue
and B be the cell type-specific expression matrix. If the cellular proportion estimate of a
deconvolution method M is invariant when the expression distribution shifts with a constant
(location parameter), then M has the shift-invariant property. That is, M satisfies

argmin
W

D(Y,BW) = argmin
W

D
(
Y + c, (B + c)W

)

for any constant c, where D is the distance metric used by M .

The shift-invariant property in Definition 1 is essential for evaluating the deconvolution
methods, especially in the genomic study. Since the protocol of a gene expression experi-
ment is typically designed for each study, the mean read depth varies across experiments.
More specifically, the different experimental protocols cause the location parameters of ex-
pression distributions to change. If the location parameter affects the estimation of the same
composition, then it is not reasonable to compare results across studies. However, the shift-
invariant property guarantees that a deconvolution method with this property can estimate
the proportions precisely when the location parameter is changed, and, thus, the between-
study comparison is valid. In the Supplementary Material (Tai, Tseng and Hsieh (2021)), we
have shown that the reference-free and reference-based deconvolution approaches follow the
shift-invariant property. By contrast, EPIC adopted the inequality-constrained optimization
method to derive cell proportions lacks the shift-invariant property, and, hence, the following
simulation result reveals that the estimates of EPIC are biased. Moreover, the shift-invariant
property reveals that the estimation bias increases as the baseline expression level increases.
In the Supplementary Material (Tai, Tseng and Hsieh (2021)), we provided a toy example to
demonstrate how the correlation between the real proportion and estimated proportion varies
as the baseline expression level increases if the method does not have the shift-invariant prop-
erty.

To address the issue of shift-invariant property for the semireference-based deconvolution
approaches, we proposed a Bayesian deconvolution model which is more robust to the change
in the location parameter. The Bayesian hierarchy architecture facilitates the construction of
equality-constrained objective function for the semireference-based deconvolution problem
via likelihood approach. The proof details in the Supplementary Material (Tai, Tseng and
Hsieh (2021)), and the model construction will be detailed in the next section.

3. BayICE deconvolution model. In this section, we present the proposed hierarchi-
cal Bayesian deconvolution model for intracellular component exploration with novel signa-
ture gene selection. Figure 1 provides a graphical representation of the BayICE hierarchical
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FIG. 1. Bayesian hierarchical model of BayICE. The square symbols represent observed data from the reference
set and bulk tissues. The white circles indicate priors, and the grey circles are hyperparameters.

model. We first describe the input data and establish the statistical modeling for reference
samples and tumor samples. Subsequently, a stochastic search method, the Bayesian false
discovery rate and an inflation factor are introduced for signature gene selection. Finally,
we adopt the Gibbs sampling approach and the Metropolis–Hastings approach to develop a
comprehensive sampling procedure.

3.1. Input data and normalization. BayICE is a statistical framework designed for gene
expression deconvolution. We first assume that the gene expression data are available from
two sets of samples, namely, heterogeneous tissues with a given clinical condition and a ref-
erence set consisting of several groups of samples with pure cell types. Although BayICE
is a quantitative model-based approach, microarray and RNA-seq expression data are both
legal inputs for BayICE. For the microarray data we implement a locally weighted scatter-
plot smoothing algorithm (Yang et al. (2002)) for normalization. For the read count RNA-seq
data, we recommend two different strategies for normalization. The first is to use new gene
expression units, called transcripts per million (TPMs), which were proposed by Wagner, Kin
and Lynch in 2012. The main feature of TPM normalization is to make the sum of all TPMs
equal across samples which facilitates fair comparisons between samples. For public data,
TPM normalization approach is not always available because the information of sequenc-
ing depth or gene length required for TPM could be missing. Thus, we adopt subsampling
normalization as the second strategy. Subsampling normalization applies a binomial sampler
to resample the read count, and it aims to maintain internal associations between genes and
can simultaneously adjust external variance between samples. The details of how we im-
plement the two normalization approaches are provided in the Supplementary Material (Tai,
Tseng and Hsieh (2021)). After normalization by the first strategy or the second strategy,
we consider a log transformation by log(count + 1). The log transformation of count data
has been widely applied in RNA-seq studies. Furthermore, the batch-specific variation arises
from aligning different datasets for deconvolution. In our analysis of the real application,
the quantile normalization was implemented to remove platform-based bias from RNA-seq
data. Additionally, one systematic review has tested 14 popular batch correction algorithms
designed for single RNA-seq data, and they concluded that every batch-effect removal algo-
rithm has its advantages and limitations with no superior method (Tran et al. (2020)). Those
batch correction algorithms are available options for the preprocess of data before deconvo-
lution.

3.2. Statistical modeling. The problem of gene expression deconvolution can be formu-
lated as a system of linear equations that describes the expression of a given gene in a bulk
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tissue as the weighted sum of the expression values from multiple cell types present in the
tissue. To maximize the deconvolution power, BayICE incorporates a reference set compris-
ing cell-specific expression profiles into the inference of cellular components in bulk tissues.
In this study the reference set contains various types of immune cells, such as T cells, B
cells, natural killer cells, monocytes, neutrophils and normal tissue cells. In addition to these
nonmalignant cells, malignant cells are a major cellular component of tissues in cancer de-
convolution studies. Unfortunately, the high genetic heterogeneity of malignant cells hinders
the possibility of constructing a predefined cancerous cell expression profile that can be ap-
plied to every bulk sample. To address this problem, BayICE takes the advantages of the
flexibility of hierarchical Bayesian inference to extract malignant cell profiles directly from
bulk tissues. Moreover, BayICE infers cellular proportions with respect to the reference cell
types and unknown cell types of each tissue by integrating with a Bayesian signature gene
selection approach.

We first introduce the statistical model for the reference set consisting of N purified sam-
ples with K cell types. We denote an observation in this set as ygi which is the normalized
value for gene-g (g = 1, . . . ,G) in the ith purified sample (i = 1, . . . ,N ). The N purified
samples belong to K nonmalignant cell types that exist in the bulk tissues. We introduce a bi-
nary vector variable xi. = (xi1, . . . , xiK) to represent the cell type for the ith purified sample.
More specifically, if the ith purified sample belongs to cell type k, then xik = 1 and xit = 0
for all t �= k. BayICE assumes that ygi follows the Gaussian distribution with a mean level
μgi and a gene-specific variance denoted by σ 2

y,g . For the purpose of signature gene identifi-
cation, we consider the mean structure μgi to comprise a gene-specific baseline (αg) and cell
type-specific effects (βgk). Thus, the modeling of reference data can be written as

(3.1)

(
ygi |αg, {βgk}, {xik}, σ 2

y,g

) ∼ N
(
μgi, σ

2
y,g

)

where μgi = αg +
K∑

k=1

xikβgk.

To search for signature genes that exhibit a differential effect among cell types, we define
a baseline cell type against which changes in expression levels are measured. We set βg1 to
be 0 for all gene-g.

The cell type-specific effects (βg1, . . . , βgK) in (3.1) are shared in constructing the mean
structure of gene expression in bulk tissues. It has been observed in the literature that gene
expression of a certain cell type changed when it went through cell sorting (Richardson,
Lannigan and Macara (2015); van den Brink et al. (2017)). To accommodate the effect of the
changes induced by cell separation, we adopt the joint modeling of βg1, . . . , βgK for pure cell
samples and bulk samples.

For the model of the bulk tissue, it is a linear combination of K nonmalignant cell-specific
expression profiles and malignant cell gene expression. The expression of gene-g from the
j th bulk tissue (j = 1, . . . ,M) is denoted by zgj . The mean of zgj , called υgj , can be mod-
eled as the weighted sum of nonmalignant cell-specific effects {βgk} and one malignant cell-
specific effect βg0 through a linear regression, given by

(3.2)

(
zgj |αg, {βgk}, {wjk}, σ 2

z,g

) ∼ N
(
υgj , σ

2
z,g

)
,

υgj = αg +
K∑

k=1

wjkβgk + wj0βg0.

The weights, wjk , are the proportions of expression attributable to normal cell type k

in the j th tumor, and the weight, wj0, represents tumor purity which is the percentage of
malignant cells in a tumor tissue. Notably, BayICE can be used to explore not only tumors
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but also other noncancerous tissues. For noncancerous tissues, wj0 can refer to the proportion
of one unknown cell type that is uncharacterized by the reference set. In our model a natural
constraint for these cell proportions is that the sum of weights across cell types should be
one (i.e.,

∑K
k=1 wjk + wj0 = 1 for each j ). Furthermore, to characterize the gene expression

pattern in malignant cells, we introduce a tumor-specific parameter βg0 to represent the effect
size of gene-g in cancer. In a real application, multiple unknown cell types or cancerous cell
types might be present in a bulk tissue. In this case, BayICE treats these uncharacterized cell
types as a whole, and wj0 represents the proportion of unknown class in a bulk tissue.

3.3. Novel gene selection using the SSVS approach. Identifying signature genes that are
expressed in a particular cell type is essential to the success of expression deconvolution.
Although a preselected signature gene set could be easily applied to data analysis, the ap-
plication of external signature genes could lose data-dependent information for deconvolu-
tion. Thus, we incorporate the stochastic search variable selection (SSVS) approach into our
Bayesian deconvolution model for integrating expression deconvolution with novel signature
gene selection. The SSVS approach, introduced by George and McCulloch (1993), specifies
a spike-and-slab mixture prior which uses data to extract the potential features of the true
model by inferring posterior probability. The spike component, which concentrates its mass
at values close to zero, shrinks small effects to zero, whereas the slab component spreads its
mass over a wide range of possible values for the effect size.

The proposed prior structure of BayICE on effect size exhibits a bimodal distribution on
the variance of the coefficients that result in a spike-and-slab type prior on the effects them-
selves (Ishwaran, Kogalur and Rao (2010); Ishwaran and Rao (2005a, 2005b)). For each
effect size βgk , the prior structure is given by

(3.3)

(
βgk|ψ2

gk,πk

) ∼ N
(
0,ψ2

gktgk

)
,

(tgk|πk) ∼ πkI1(tgk) + (1 − πk)Ic(tgk),

(
ψ2

gk|a0, b0
) ∼ Inv	(a0, b0),

(
πk|c0, d0

) ∼ Beta(c0, d0),

where Ic(tgk) is a mass function that is 1 at tgk = c and 0 everywhere else. We set the value
c as a small positive number in this study, such as c = 10−5, and, thus, the random variable
tgk is 1 with probability πk and close to zero with probability 1 − πk . When the gth gene
is differentially expressed between the kth cell type and the other types, βgk is more likely
generated from the slab component and tgk equals one. By contrast, tgk = c indicates that the
gth gene is irrelevant to cell types, and its effect size is from the spike component. The hyper-
variance ψ2

gk is sampled from an inverse gamma with two given hyperparameters, a0 and b0.
Following Ishwaran and Rao (2005a, 2005b), a0 and b0 are set as 5 and 50, respectively. The
proportion of genes differentially expressed in cell type k is controlled by πk , and we assume
that πk follows a beta distribution with c0 = 0.1 and d0 = 0.1 which is a noninformative prior
for the binomial model.

To borrow variance information across samples, we modify the variance structure of effect
size βgk in (3.3) by considering the gene-specific variance σ 2

z,g of mixture samples in (3.2),
and the modified prior structure for βgk is given by

(3.4)

(
βgk|ψ2

gk, tgk, σ
2
z,g

) ∼ N
(
0,ψ2

gktgkσ
2
z,g

)
,

(tgk|πk) ∼ πkI1(tgk) + (1 − πk)Ic(tgk),

(
ψ2

gk|a0, b0
) ∼ Inv	(a0, b0),

(
πk|c0, d0

) ∼ Beta(c0, d0).
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The role of the gene-specific variance σ 2
z,g that appears in (3.4) can be intuitively inter-

preted as the baseline in the feature selection procedure. The modified prior structure consid-
ers the trade-off between the value of effect size and gene-specific variance to facilitate the
establishment of feature selection.

3.4. Bayesian false discovery rate. In frequentist approaches to the test multiplicity prob-
lem, controlling the false discovery rate (FDR) has been widely applied to more adequately
control genome-wide false positives. Whittemore in 2007 introduced a Bayesian FDR asso-
ciated analogously with the frequentist FDR (Whittemore (2007)) as follows:

(3.5) ∅k(r) =
∑G

g=1 Pgk(H0|Y,Z)Dgk(r)∑G
g=1 Dgk(r)

,

where Pgk(H0|Y,Z) is the posterior probability that gene-g is not associated with cell type
k (H0) given observation (Y,Z) and Dgk(r) is the rejection rule defined by I (Pgk(H0|
Y,Z) < r). The tuning parameter r can be adjusted to control the Bayesian FDR at a certain
α level. In the following simulations and applications the Bayesian FDR is used to address
the multiplicity problem.

3.5. Inflation factor. In a Bayesian framework the influence of priors on posterior always
vanishes as the sample size increases. This phenomenon limits Bayesian variable selection
because the mechanism of such selection requires an effective prior setting. To overcome
this disadvantage, Ishwaran and Rao (2005a, 2005b) proposed a rescaling approach to enable
estimation invariant to the sample size by setting the prior as a function of the sample size.
They applied data rescaling to the gene selection framework for multigroup microarray data.
Furthermore, to achieve invariance to sample size, Ishwaran and Rao performed a sample
size-related transformation of gene expression through multiplication by the global inflation
factor

√
(total sample size)/(estimate of total variance).

Multiplication by this global inflation factor has been shown to ensure that the prior has
a nonvanishing effect. Hence, following the concept of data transformation, we rescale the
observations in our reference set and bulk tissue set as follows:

(3.6) y∗
gi =

√√√√N + M

Ŝ2
g

ygi and z∗
gj =

√√√√N + M

Ŝ2
g

zgj ,

where Ŝ2
g = 1

N−K

∑
i

∑
k(ygixik − ygk)

2 is an unbiased estimator of σ 2
g calculated from the

reference set. Although we assume that the variance σ 2
g of reference data {ygi} is shared with

tissue data {zgj }, the calculation of an unbiased estimator using both {ygi} and {zgj } data
is a difficult task because of the convolution structure in {zgj }. Note that the multiplier in
(3.6) is a gene-specific inflation factor rather than the abovementioned global inflation factor
since the inflation factor is composed of the total sample size and a gene-related variance.
Therefore, the use of gene-specific factors can simultaneously achieve sample size invariance
and gene-scale consistency.

After rescaling, the corresponding distributions for the transformed data {y∗
gi} and {z∗

gj }
are modified as follows:

(3.7)

(
y∗
gi |αg, {βgk}, {xik}, η2

g

) ∼ N
(
μgi, (N + M)η2

g

)
,

(
z∗
gj |αg, {βgk}, {wjk}, τ 2

g

) ∼ N
(
υgj , (N + M)τ 2

g

)
.



STATISTICAL DECOMPOSITION OF CELLS 399

The new variances of the transformed data are adjusted as sample size-related parameters,
and this adjustment can be interpreted as a penalization shrinkage effect of the posterior mean.
After the adjustment with inflation factors, the variances of y∗

gi and z∗
gj are asymptotically

equal to N + M . For the purpose of variable selection, we introduce two further parameters
η2

g and τ 2
g for variances in (3.7) to keep the flexibility of modeling.

3.6. MCMC sampling procedure. Next, based on the transformed data {y∗
gi} and {z∗

gj },
we complete the structure of the hierarchical Bayesian model in BayICE and then estab-
lish a sampling procedure to achieve signature gene selection and cell component inference.
Following the abovementioned specification, the BayICE model is given by

(
y∗
gi |αg, {βgk}, {xik}, η2

g

) ∼ N
(
μgi, (N + M)η2

g

)
, i = 1, . . . ,N,g = 1, . . . ,G,

μgi = αg +
K∑

k=1

xikβgk,

(
z∗
gj |αg, {βgk}, {wjk}, τ 2

g

) ∼ N
(
υgj , (N + M)τ 2

g

)
, j = 1, . . . ,M,g = 1, . . . ,G,

υgj = αg +
K∑

k=1

wjkβgk + wj0βg0,

wj = (wj1, . . . ,wjK,wj0) ∼ Dirichlet(δ, . . . , δ), j = 1, . . . ,M,

(
αg, η

2
g, τ

2
g

) ∼ f
(
η2

g, τ
2
g

) ∝ 1

η2
g

× 1

τ 2
g

,

(
βgk|ψ2

gk, tgk, τ
2
g

) ∼ N
(
0,ψ2

gktgkτ
2
g

)
, g = 1, . . . ,G, k = 1, . . . ,K,

(tgk|πk) ∼ πkI1(tgk) + (1 − πk)Ic(tgk),

(
ψ2

gk|a0, b0
) ∼ Inv	(a0, b0),

(
πk|c0, d0

) ∼ Beta(c0, d0),

(3.8)

where hyperparameters are specified as a0 = 5, b0 = 50, c0 = 1, d0 = 1 and δ = 1 in this
study.

Subsequently, based on the hierarchical prior setting, we apply Gibbs sampling and the
Metropolis–Hastings approach to simulate the posterior value from

(
α,β,T ,π,W ,η,τ 2,ψ |Y ∗,Z∗,X

)
,

where α = {αg}, β = {βgk}, T = {tgk}, π = {πk}, W = {wj }, η = {η2
g}, τ 2 = {τ 2

g }, ψ =
{ψ2

gk}, Y ∗ = {y∗
gi}, Z∗ = {z∗

gj } and X = {xik}. The Gibbs sampler in BayICE works are shown
in the Supplementary Material (Tai, Tseng and Hsieh (2021)). After a number of iterations,
we specify the burn-in period and the thinning interval to obtain the posterior distribution of
the parameters and then perform an analysis using the posterior mean or posterior median.
In BayICE the default length of burn-in is 0.6 times the number of iterations, and the thin-
ning interval has a length of three iterations. The convergence property is discussed in the
Supplementary Material (Tai, Tseng and Hsieh (2021)).

4. Simulation study. This section presents simulation results based on synthetic datasets
to benchmark the performance of BayICE. We consider two types of data: array-based data,
which is generated by a normal simulator, and sequencing-based data which can be produced
by a multinomial simulator or negative binomial simulator. We mainly use the multinomial
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simulator to demonstrate the estimation of cellular proportions, detection of signature genes
and the ability to recover the expression profile of unknown or malignant cells. Furthermore,
we apply three different simulators to demonstrate the robustness of BayICE, and the re-
sults of the robustness study are shown in the Supplementary Material (Tai, Tseng and Hsieh
(2021)).

4.1. Multinomial simulator settings. We first perform a sequencing-based simulation us-
ing a multinomial simulator for expression deconvolution. Thus, we consider a scenario in
which five distinct cell subpopulations are present in a tissue, and one cell type is absent
from our reference set. This simulation includes 5000 genes, with 300 genes designed as cell
type-related genes. These 300 genes are divided randomly into five disjoint groups, and the
genes assigned to a particular group are associated with one cell type. For each cell type in
a reference set, we have 20 replicates; hence, the reference set includes 80 samples. In the
reference set an 80 × 4 matrix of binary variables X = {xik} is used to record the cell type
of samples. Furthermore, in the bulk dataset we simulate the expression data of 90 mixed
samples with different cell proportions. The simulation procedure is described as follows.

To account for the fact that the expression level varies across genes, we simulated data
according to a set of real data from purified samples. We collected 19 RNA-seq samples
of normal lung tissues from the Gene Expression Omnibus database with accession number
GSE81089 (Mezheyeuski et al. (2018)) and then took the average gene expression across
19 samples to obtain the baseline asim

g of the gth gene. Among 17,775 genes we randomly
picked 5000 genes for our simulation study. Based on each gene-specific expression level,
we define the cell-specific effect as follows:

bsim
g = (NES)c

sim
g (−NES)1−csim

g asim
g ,

where csim
g is a binary variable, which is 1 for upregulated status and 0 for downregulated

status and NES is the normalized effect size set as one of the numbers {0.1,0.2, . . . ,0.6}. The
number {csim

g } is randomly generated with a probability of 0.5 for 0 and 1. We further sample

a series of values from Uniform(0.9,1.1), called {esim
i }, as sample-specific effects because of

the sample heterogeneity. Finally, we generate cellular proportions {wsim
j1 , . . . ,wsim

jK ,wsim
j0 }.

To explore the effect of unknown cell content on the model performance, we assign a fixed
number to wsim

j0 , and the remaining components {wsim
j1 , . . . ,wsim

jK } are generated from the
Dirichlet distribution with parameters (1,. . . ,1). Because of the sum-to-one constraint on cel-
lular proportions, {wsim

j1 , . . . ,wsim
jK ,wsim

j0 } should be normalized by dividing their sum.
The mean expression structure is determined for both purified and mixed samples accord-

ing to the abovementioned parameter settings. Notably, the use of a multinomial model in
our simulation is to simulate the sequence alignment procedure that maps the reads against
the reference sequence. The number of trials in the multinomial model is related to the to-
tal reads, and we set it as 5 × 106; in other words, the average read depth is designed as
1000. The probability of the multinomial model controls the expression levels across genes,
and, therefore, we use the relative mean expression as the probability value. The complete
sampling procedure details in the Supplementary Material (Tai, Tseng and Hsieh (2021)).

4.2. Assessing the inference of deconvolution. To assess the performance of BayICE de-
convolution, we include two semireference-based approaches for comparison: EPIC and non-
negative least-squares (NNLS). NNLS is a general approach for solving the constrained least-
squares problem where the coefficients are not allowed to become negative. We modify the
NNLS approach by restricting the sum of coefficients to less than one for incomplete refer-
ence data deconvolution. We first examine the cellular proportion estimations obtained using
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FIG. 2. Results of unknown profile estimation and marker gene selection. (A) Scatter plot of gene expression of
the unknown cell type between the truth and estimation. (B) ROC curves to evaluate the gene selection of BayICE
under different normalized effect sizes. The diagonal dashed line represents the ROC curve for a random guess.

EPIC, NNLS and BayICE. Notably, EPIC and NNLS both require an external step to identify
signature genes before deconvolution. In this case we applied the marker genes identified by
BayICE into EPIC and NNLS for a fair comparison.

According to the simulation setting, we generate 90 bulk samples per simulation in which
the unknown cell proportions vary from 0.1 to 0.9. A large unknown cell proportion value
indicates that the corresponding tissue is highly heterogeneous, such as in tumors; by con-
trast, a small proportion simulates the microenvironment of normal tissues in which most
of the cell types can be purified. Additionally, we evaluate the performance of each model
under different normalized effect sizes of marker genes. Moreover, BayICE can recover the
underlying expression profile of the unknown cell type using the posterior mean. Because
EPIC and NNLS cannot infer unknown expression profiles, we directly compare the estima-
tion of uncharacterized cell profiles with the true mean expression. The results are shown in
Figures 2 and 3.

We first evaluate the estimation of gene expression profiles for the unknown cell type and
gene identification from BayICE in Figure 2. Figure 2(A) is a scatter plot between the true
expression of the unknown cell type and the estimated expression. The results reveal the cor-
relation between the real and estimated values to be greater than 0.98 which implies that
BayICE can recover uncharacterized cell expression when one cell type is absent from the
reference set. In Figure 2(B) we adopt the receiver operating characteristic (ROC) curve to
quantify the results of gene identification under different normalized effect sizes which rep-
resent the strength of cell type-specific activity in marker genes. The performance in terms of
area under the curve (AUC) is significantly improved with the increase of the effect size, and,
more specifically, the AUC exceeds 0.94 when the effect is larger than 0.2. Subsequently, we
apply root-mean-square error (RMSE) to quantify the accuracy of cell proportion estimation
from BayICE, EPIC and NNLS. Figure 3(A) illustrates the changes in RMSE of all estimates
with the increase of normalized effect size under the settings of unknown cell proportion =
0.1, 0.5 and 0.9. In Figure 3(B) we fix the normalized effect size at 0.1, 0.3 and 0.6 and
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FIG. 3. Deconvolution results of cell proportion estimation. Root-mean-square error (RMSE) between the true
and estimated cellular proportions under (A) different effect sizes or (B) different proportions of unknown cells.
Ten random sets were generated for each condition, and the RMSE in a set was calculated with five pairs of
numbers. The medians of the 10 random sets were connected as the line in the figure.

then evaluate those approaches across different proportions of unknown cells. As a result, it
is clear that the performance of all approaches decreases when the unknown cell content in-
creases or the effect size decreases. The abovementioned phenomenon reflects that these gene
expression deconvolution approaches are less stable in their inference for tissues with highly
uncharacterized content or weak cell type-specific signal. However, the simulation shows that
the effects of high unknown cell content and low effect size on BayICE estimation are less
severe, and, overall, BayICE outperforms the other methods.

4.3. Evaluating gene detection accuracy. The spike-and-slab prior in our model provides
a natural consequence of gene selection. In contrast, the existing models require an external
tool to select differentially expressed genes before deconvolution, and DESeq and edgeR are
two popular gene selection tools adopted by the deconvolution models. To evaluate the ac-
curacy of gene detection, we compare with DESeq and edgeR. It is worth noting that the
genes specifically expressed in the unknown cell type cannot be identified using DESeq and
edgeR, and, hence, the unknown cell type-related genes are excluded in the evaluation. Ac-
cording to the simulation setting, each gene set is differentially expressed in one cell type.
For simplicity, the effect size of marker genes is fixed at 0.2, and the cell proportions are
randomly decided across samples. In this simulation study we also assume some genes ex-
press inconsistently between purified cells and the same cell type in bulk samples. For each
cell type we randomly select 100 genes from the gene pool to be inconsistent genes and dis-
turbed the expression of these inconsistent genes by multiplying an inconsistency level. The
values of inconsistency level are 0.1, 0.2, 0.3, 0.4 and 0.5, and the mean of the disturbed gene
expression is the original mean in Section 4.1 multiplied by 0.9, 0.8, 0.7, 0.6 or 0.5.

In this partial comparison we evaluate the accuracy of identifying genes related to the four
cell types present in the reference. AUC is used to assess the gene detection under different
levels of inconsistency, and the results are shown in Figure 4. For the low inconsistency
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FIG. 4. AUC for gene identification. Comparison of the AUC performance on gene identification. Measuring
the performances of BayIC, DESeq2 and edgeR at identifying marker genes as measured by the Area Under the
ROC Curve (AUC).

level, the AUCs among three methods are close, and it implies that BayICE is comparable to
the other approaches designed explicitly for gene selection. In the case of the considerable
inconsistency in gene expression, the AUC of BayICE outperforms DESeqs2 and edgeR,
and it shows that BayICE succeeds in borrowing information from mixed bulk samples for
gene detection. Consequently, this partial comparison reveals that BayICE can efficiently
recover the findings of the two-step approaches when cell activity causes the difference in
gene expression between pure cells and tumors.

5. Validation in real data with true proportions.

5.1. Validation in sorted cell subsets. In Section 5.1 we consider two microarray mixture
experiments for validation. They can be downloaded from the Gene Expression Omnibus
database using the accession numbers GSE19830 and GSE11058 (Abbas et al. (2009); Shen-
Orr et al. (2010)). The samples from GSE19830 were mixed with rat brain, liver and lung
tissue derived from the same animal in different proportions. The samples in GSE11058 were
mixed with four immune cell lines, Jurkat, IM-9, Raji and THP-1 at various proportions. To
validate the performance in the case of the incomplete reference set, we masked one cell
type from the reference set and treated the excluded type as the unknown cell component in
tissues. Although EPIC is designed for RNA-seq data, the core concept of EPIC modeling is
constrained least-squares optimization, and it can be widely applied to various types of data.
Hence, we also performed comparisons with EPIC and NNLS on the abovementioned two
real datasets.

Several microarray studies have confirmed that deconvolution on raw-scale data rather than
on log-scale data can accurately reflect the underlying cellular components. The raw scale of
the data was adopted in this validation study. The signature gene selection for the methods we
compared in the microarray followed Hunt et al. (Hunt et al. (2018)), using a t-test between
one cell type and all other cell types for each gene, and we selected the top 200 differentially
expressed genes associated with each cell type.

Figures 5 and 6 compare the true and estimated cell proportions using different methods
under the two evaluated datasets. For example, the scatter plot on the first row of Figure 5
represents the deconvolution results when the expression profile of Jurkat cells was unknown
to all the methods. According to the characteristics of the semireference-based approach, the
proportions of Jurkat cells in mixed samples can be recovered through estimating unknown
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FIG. 5. Validation by GSE11058. Scatter plots comparing estimated cell proportions between the true and esti-
mated proportions from the results of GSE11058. Each column represents a particular method of deconvolution.
The row name indicates the cell type that was masked from the reference set and referred to as the unknown cell
type. Each of the 12 mixed sample results in four estimates of weights and thus four points in each plot. The
root-mean-square error and correlation (ρ) between the ground truth and estimation are also provided in the
upper-left corner of each plot.

FIG. 6. Validation by GSE19830. Scatter plots comparing the true and estimated proportions from the results
of GSE19830. Each column represents a particular method of deconvolution. The row name indicates the cell
type that was masked from the reference set and referred to as the unknown cell type. Each of the nine mixed
sample results in three estimates of weights and thus three points in each plot. The root-mean-square error and
correlation (ρ) between the ground truth and estimation are also provided in the upper-left corner of each plot.
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cell proportions. Notably, the constrained models, NNLS and EPIC, tend to assign a very
small proportion to the unknown cell component. This phenomenon was observed in the
Supplementary Material of robustness and can be attributed to the loss of the shift-invariant
property which causes the shrinkage of unknown cell proportion estimates. In Figure 5 the
estimates of BayICE for THP-1 cell type has a slight bias. The estimation bias was caused
by the inconsistency of the gene expression profiles between the purified THP-1 cells and
the THP-1 cells present in the mixture bulk sample. This reason can be supported by the
high quality-estimation accuracy of BayICE when we treated THP-1 as the unknown cell
component in tissues. Specifically, in the BayICE result in Figure 5, pink dots representing
THP-1 have downward bias of predicted proportion (dots below the diagonal line) when
Jurkat, IM-9 or Raji is treated as unknown, but the bias diminishes (pink dots lie on the
diagonal line) when THP-1 is treated unknown.

Furthermore, we used the RMSE and Pearson correlation to assess the performance.
RMSE is a measure of accuracy, and the average RMSE of BayICE is 0.093, significantly
lower than those of NNLS (0.170) and EPIC (0.176). Similarly, the measurement of correla-
tion value is used to monitor the relative order of cellular proportion estimates, and BayICE
also outperformed NNLS and EPIC in terms of the relative size (BayICE = 0.82, NNLS =
0.59, and EPIC = 0.58). Apparently, BayICE possesses the advantage of incomplete data
deconvolution. Furthermore, the difficulty of deconvolution increases when the abundance
of the unknown cell increases. For instance, in Figure 6 the content of liver cells exceeds
50% of the mixed samples on average, and the deconvolution approaches perform relatively
worse when liver cells are excluded from the reference set. The aforementioned observation
is consistent with our simulation results.

5.2. Validation in single-cell RNA sequencing. Single-cell RNA sequencing (scRNA-
seq) is a powerful technology to study the gene expression of individual cells. Many decon-
volution studies have implemented strategies of constructing reference set from single-cell
experiments (Newman et al. (2019); Racle et al. (2017); Wang et al. (2019)). To demonstrate
the applicability of BayICE for scRNA-seq, we adopted the scRNA-seq data of melanoma
from 19 melanoma samples (Tirosh et al. (2016)) which includes T cell, B cell, macrophage,
cancer-associated fibroblast (CAF), endothelial cell, natural killer cell and cancer cell types.
The expression profiles were measured from 4645 malignant, immune and stromal cells. The
number of cells classified to each cell type in each tumor can be found in the Supplementary
Material of the original paper. We randomly selected 13 out of 19 samples as the reference
set and subsequently applied BayICE, EPIC and NNLS to estimate the cell proportions of the
remaining six samples. The cell-specific expression profile of each sample in the reference
set is reconstructed by summing the expression profiles of the same cell type. Similarly, the
bulk gene expression is the sum of expression profiles of all cells in each sample. The true
cell proportion of the bulk sample is proportional to the cell count of each cell type. To sim-
ulate a realistic situation of a cancer study, we masked the cancer cell-specific profiles from
the reference and formed an incomplete reference set.

As a result, we obtained the estimated cell proportions by BayICE, EPIC and NNLS,
and the result is illustrated in Figure 7. Accordingly, Figure 7 shows that the correlations
between the true and estimated cancer cell proportions from BayICE, EPIC and NNLS are
0.949, 0.129 and 0.149, respectively. Similar to the validation study in Section 5.1, EPIC and
NNLS tend to assign a very small proportion to the cancer cell component, as demonstrated
in Figures S7 and S8, and, thus, these methods cannot accurately infer the cellular proportion.
In addition to the cancer cell types, the result also reveals that BayICE can more accurately
estimate the proportions of the other cell types than EPIC and NNLS while all methods have
poor quality for CAF proportion estimation.



406 A.-S. TAI, G. C. TSENG AND W.-P. HSIEH

FIG. 7. Bar plot of the correlation between the truth and estimate in single-cell RNA sequencing.

Plot showing the correlation (ρ) between the true and estimated cell proportions for each
method from single-cell RNA sequencing data of six melanoma samples. The y-axis indicates
the cell types and the x-axis represents the values of the correlation. Abbreviation: Macro,
macrophage; Endo, endothelial cell; CAF, cancer-associated fibroblast; NK, natural killer
cell.

6. Application to nonsmall cell lung cancer. To demonstrate an application of BayICE
to a biological problem, we consider RNA-seq data of lung tissues from patients with non-
small cell lung cancer (NSCLC). Because tumor-infiltrating lymphocytes play a critical role
in cancer treatment, exploring the changes in components of immune cells across tumors is
of interest. Thus, we consider 199 patients with NSCLC obtained from GSE81089 and apply
BayICE to estimate the cellular components of the tumor-infiltrating lymphocytes in each tu-
mor sample (Mezheyeuski et al. (2018)). To construct the reference set, we collect RNA-seq
samples of B cells, T cells, granulocytes and monocytes of blood tissues from GSE51984
(Pabst et al. (2016)). In addition to immune cell types, we include normal lung tissues in
the reference set, and the expression profiles of 19 normal lung tissues from GSE81089 are
used to infer the contents of normal lung cells in tumors. Because the immune cells are also
present in normal lung tissues, we first apply BayICE to normal lung samples to extract the
purified gene expression of lung cells and estimate the immune cell components in normal
samples. Additionally, we randomly divided 19 normal samples into two sets: 10 samples
are used for extracting purified expression of lung cells in Section 6.1, and nine samples are
analyzed along with tumors for validation in Section 6.2. As a result, we used the complete
reference set consisting of immune cell profiles and purified lung cell profiles to recover the
cellular proportions of each NSCLC sample.

6.1. Deconvolution of normal lung tissues. Figure 8 illustrates the estimated cellular pro-
portions of 10 normal lung samples based on the B cells, T cells, granulocytes and monocytes.
The results of normal lung tissue deconvolution reveal that monocytes are more prevalent than
the other immune cells in lung tissues. Monocytes typically circulate through the blood for
1–3 days before migrating into tissues, where they become macrophages or dendritic cells. In
lungs, monocytes migrate from the bloodstream into the pulmonary alveolus and are specif-
ically called alveolar macrophages which play a critical role in homeostasis, host defense,
response to foreign substances and tissue remodeling (Kopf, Schneider and Nobs (2015)).
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FIG. 8. Cell proportion estimation of normal lung tissues. Plot showing estimated proportions of different cell
types from 10 normal lung tissues. The rightmost box represents the estimated unknown component from BayICE,
and we refer to this component as normal lung cells.

In addition to the immune cell types collected in the reference set, BayICE could extract the
component of one uncharacterized cell type present in tissues. In this case the unknown cell
type was presumably dominated by normal lung cells, and we calculated the mean expression
profile of the unknown cell type using the posterior mean. The next step was to integrate
the immune cell profiles with the estimated profile of normal lung cells to construct a new
reference set for tumor sample deconvolution.

6.2. Deconvolution of tumors. In this step we investigated the 199 NSCLC samples and
nine healthy samples according to the new reference set. We applied BayICE to these 208
samples and estimated the fractions of normal lung cells, B cells, T cells, granulocytes and
monocytes as well as malignant cells. Following the mechanism of normal tissue deconvo-
lution, the malignant cell fractions were defined as the unknown cell proportions in tumor
deconvolution. To more effectively understand the change in cellular components during tu-
mor progression, we considered the classification of a malignant tumor (TNM) staging sys-
tem which is a standard for classifying the extent of cancer spread. Figure 9 is a boxplot of
estimated cell proportions under different TNM stages.

Two crucial observations were made from the deconvolution results. First, the estimated
cell proportions were more consistent between healthy samples than between patients with
NSCLC. For example, the interquartile ranges of estimated lung cell proportions in normal
tissues and tumors were 0.047 and 0.137, respectively. A three-fold difference of dispersion
between healthy samples and patients revealed that the homeostatic balance between cells in
the lung is disturbed when tissues are cancerous. The high fluctuation of cellular components
between patients with NSCLC can directly explain the intertumor heterogeneity which leads
to the different attributes of different tumors despite the same diagnoses. Second, our study
showed that the number of immune cells in the tissue microenvironment increases from nor-
mal stage to cancerous stage which is in agreement with past studies (Banat et al. (2015); Li
et al. (2016); Ruffini et al. (2009); Seo et al. (2018)). In particular, Banat et al. (2015) com-
prehensively assessed the number of immune cells in lung cancer by directly counting cells
with cell-specific biomarkers and observed an increased number of immune cells in lung
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FIG. 9. Box plot of cell proportion estimation. Orange boxes refer to the results of the nine normal lung samples,
and other boxes are results from 199 patients with nonsmall cell lung cancer. The tumor samples can be grouped
into six stages, and the sample number included for each stage is indicated in the parentheses. For samples of
the same tumor stage, the estimated proportions of any specific cell type are summarized as one boxplot, and the
boxplots for the same cell type are plotted side-by-side.

cancer tissues compared with healthy donor lungs. In 2018, Seo et al. (2018) applied two
approaches, ESTIMATE and TIMER, to infer the cellular components in NSCLC (Li et al.
(2016); Seo et al. (2018); Yoshihara et al. (2013)). Their results showed a high abundance of
dendritic cells (derived from monocytes) which coincides with our observation of estimated
monocyte proportions.

7. Discussion and conclusion. In this study, we developed a novel deconvolution model,
BayICE, to infer the cellular components of bulk tissues. BayICE is a semireference-based
approach that aims to explore cell populations characterized by an external reference set of
purified samples and simultaneously investigate the content of uncharacterized cells present
in bulk tissues. However, in contrast to constrained models, BayICE takes advantage of a
hierarchical Bayesian framework to not only estimate the unknown cell proportion but also
recover its gene expression profile. Furthermore, we defined the shift-invariant property for
revealing the character of semireference-based deconvolution. We showed that a methodol-
ogy of deconvolution maintaining the shift-invariant property, such as BayICE, can guarantee
a relatively unbiased estimation for the cellular proportion. In the validation study we demon-
strated that the lack of shift-invariant property essentially causes the shrinkage of the estimate
for the unknown cell proportion in EPIC and NNLS.

Other than the above-mentioned merits, there are two major contributions of this study.
First, BayICE integrates gene expression deconvolution and gene selection in the same
model. Most of the current deconvolution approaches require preanalysis of an additional
dataset to identify signature genes for deconvolution, and the external gene selection might
not be consistent to the target dataset. Thus, BayICE incorporates SSVS, a Bayesian variable
selection approach, to implement internal gene selection. Second, BayICE adopts shared pa-
rameters between the pure cells and tumor samples for cell-specific effect. It has been studied
that the cell-to-environment interaction causes some of the genes to be expressed inconsis-
tently after cell sorting. We have shown that the joint modeling of both pure cells and tumors
in BayICE is more resistant to the problem of inconsistent genes.

To evaluate the model’s performance, we first conducted an analysis under several simula-
tion scenarios to investigate cell proportion estimation, gene identification and the robustness
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of the model. For proportion estimation, we compared two other semireference-based ap-
proaches, EPIC and NNLS, with BayICE under different unknown cell contents. The results
revealed that BayICE significantly outperformed the other methods. We further provided a
partial comparison of gene identification with the well-known gene selection approaches,
DESeq and edgeR. We found that BayICE can decompose bulk data extremely well and
identify cell type-related genes. Moreover, a simulation study using three different simulators
revealed that BayICE is more robust with respect to data types. In addition to simulation data,
we further applied two real datasets with underlying true cell proportions and one single-cell
RNA-seq dataset for validation. The validation of incomplete data deconvolution was consis-
tent with our simulation results, in which BayICE exhibited high accuracy in cell proportion
estimation.

Our real data application presented an example using the data of 199 patients with NSCLC.
We first applied BayICE to healthy lung samples to investigate the cellular components un-
der a normal condition and extract the relatively purified expression profile of lung cells. The
deconvolution of normal tissues succeeded in capturing the primary component of immune
cells. Next, we formed a new reference set consisting of the immune cell profiles and esti-
mated normal lung cell profiles to analyze the patients with NSCLC. From the analysis we
observed inter-tumor heterogeneity in NSCLC according to the high variation in cell propor-
tions across tumors. In addition, when comparing immune cell proportions between normal
and NSCLC samples, the increased immune cell content in tumors revealed that the immune
system was highly activated in the cancerous microenvironment. The inference of NSCLC
deconvolution coincides with not only the analytic deconvolution results from other studies
but also the observations from an immunohistochemical experiment.

BayICE has thoroughly addressed technical problems of deconvolution to investigate cel-
lular components, but one issue relating to cell activity remains. In real applications the ac-
tivities of cell-to-cell communication and cell-to-environment interaction cause some of the
genes to be expressed inconsistently between reference and bulk tissue samples. This phe-
nomenon increases the difficulty of selecting marker genes, and an inappropriate gene set
limits the ability to explore tissue environments. Although the joint modeling technique of
BayICE can adjust the biased gene expression induced by cell sorting, integrating the bi-
ological information of cell activity with deconvolution is believed to be more efficient in
estimating cell proportions of bulk tissues. Single-cell RNA-seq has emerged as a power-
ful new set of technologies for characterizing cell interaction, and the primary goal of our
future studies is incorporating single-cell RNA data to modify the prior structure with cell
interaction. This extension will generate new insights into the deconvolution framework.

Moreover, we will also investigate the unknown cell proportions estimated by BayICE.
The proportion of the unknown cell class can be further decomposed if the unknown class is
comprised of multiple cancerous cell types. Instead of estimating immune cell proportions,
the study of tumor clonal evolution focuses on exploring the contents of different tumor cell
types to understand tumor progression. Hence, after BayICE dissects the part belonged to
tumor, we can further decompose tumor cells to evaluate the size of tumor clones.

All of the work in this study was implemented on R, and the R package, BayICE, is pub-
licly available for deconvolution analysis (https://github.com/AshTai/BayICE). The comput-
ing time to perform deconvolution of 199 NSCLC samples is about 45 minutes with 16 CPU
cores, 2.3 GHz and 32 GB RAM.
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SUPPLEMENTARY MATERIAL

Supplementary material (DOI: 10.1214/20-AOAS1376SUPP; .pdf). We provide a com-
prehensive discussion of the shift-invariant property, the procedure of data normalization,
the detail of the Gibbs sampler in BayICE, the two remaining simulators, the convergence
property of BayICE, and the robustness for deconvolution.
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