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OUTPERFORMING THE MARKET PORTFOLIO WITH
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of Hong Kong

Our goal is to resolve a problem proposed by Fernholz and Karatzas
[On optimal arbitrage (2008) Columbia Univ.]: to characterize the minimum
amount of initial capital with which an investor can beat the market portfo-
lio with a certain probability, as a function of the market configuration and
time to maturity. We show that this value function is the smallest nonnegative
viscosity supersolution of a nonlinear PDE. As in Fernholz and Karatzas [On
optimal arbitrage (2008) Columbia Univ.], we do not assume the existence of
an equivalent local martingale measure, but merely the existence of a local
martingale deflator.

1. Introduction. In this paper we consider the quantile hedging problem
when the underlying market does not have an equivalent martingale measure. In-
stead, we assume that there exists a local martingale deflator (a strict local martin-
gale which, when multiplied by the asset prices, yields a positive local martingale).
We characterize the value function as the smallest nonnegative viscosity super-
solution of a fully nonlinear partial differential equation. This resolves the open
problem proposed in the final section of [13]; also see pages 61 and 62 of [38].

Our framework falls under the umbrella of the stochastic portfolio theory
of Fernholz and Karatzas (see, e.g., [17–19]) and the benchmark approach of
Platen [35]. In this framework, the linear partial differential equation that the su-
perhedging price satisfies does not have a unique solution; see, for example, [14,
15, 18] and [39]. Similar phenomena occur when the asset prices have bubbles: an
equivalent local martingale measure exists, but the asset prices under this measure
are strict local martingales; see, for example, [6, 8, 10, 24, 26] and [27]. A related
series of papers [1, 4, 11, 25, 32, 33] and [40], addressed the issue of bubbles in the
context of stochastic volatility models. In particular, Bayraktar, Kardaras and Xing
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[4] gave necessary and sufficient conditions for linear partial differential equations
appearing in the context of stochastic volatility models to have a unique solution.

In contrast, we show that the quantile hedging problem, which is equivalent to
an optimal control problem, is the smallest nonnegative viscosity supersolution to
a fully nonlinear PDE. As in the linear case, these PDEs may not have a unique
solution, and, therefore, an alternative characterization for the value function needs
to be provided. Recently, the authors of [5, 16] and [29] also considered stochastic
control problems in this framework. The first reference solves the classical util-
ity maximization problem; the second one solves the optimal stopping problem;
whereas the third one determines the optimal arbitrage under model uncertainty,
which is equivalent to solving a zero-sum stochastic game.

The structure of the paper is simple: in Section 2, we formulate the problem.
In this section we also discuss the implications of assuming the existence of a lo-
cal martingale deflator. In Section 3, we generalize the results of [20] on quantile
hedging, in particular the Neyman–Pearson lemma. We also prove other proper-
ties of the value function such as convexity. Section 4 is where we give the PDE
characterization of the value function.

2. The model. We consider a financial market with a bond which is always
equal to 1, and d stocks X = (X1, . . . ,Xd) which satisfy

dXi(t) = Xi(t)

(
bi(X(t)) dt +

d∑
k=1

sik(X(t)) dWk(t)

)
,

(2.1)
i = 1, . . . , d,X(0) = x = (x1, . . . , xd),

where W(·) := (W1(·), . . . ,Wd(·)) is a d-dimensional Brownian motion.
Following the set up in [14], Section 8, we make the following assumption.

ASSUMPTION 2.1. Let bi : (0,∞)d → R and sik : (0,∞)d → R be continu-
ous functions. Set b(·) = (b1(·), . . . , bd(·))′ and s(·) = (sij (·))1≤i,j≤d , which we
assume to be invertible for all x ∈ (0,∞)d . We also assume that (2.1) has a weak
solution that is unique in distribution for every initial value. Let (�, F ,P) denote
the probability space specified by a weak solution. Another assumption we will
impose is that

d∑
i=1

∫ T

0

(|bi(X(t))| + aii(X(t)) + θ2
i (X(t))

)
dt < ∞, P-a.s,(2.2)

where θ(·) := s−1(·)b(·), aij (·) :=∑d
k=1 sik(·)sjk(·).

We will denote by F = {Ft }t≥0 the right-continuous version of the natural filtra-
tion generated by X(·), and by G the P-augmentation of the filtration F. Thanks to
Assumption 2.1, the Brownian motion W(·) of (2.1) is adapted to G (see, e.g., [14],
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Section 2), every local martingale of F has the martingale representation prop-
erty; that is, it can be represented as a stochastic integral, with respect to W(·), of
some G-progressively measurable integrand (see, e.g., the discussion on page 1185
in [14]), the solution of (2.1) takes values in the positive orthant and the exponen-
tial local martingale

Z(t) := exp
{
−
∫ t

0
θ(X(s))′ dW(s) − 1

2

∫ t

0
|θ(X(s))|2 ds

}
,

(2.3)
0 ≤ t < ∞,

the so-called deflator is well defined. We do not exclude the possibility that Z(·)
is a strict local martingale.

Let H be the set of G-progressively measurable processes π : [0, T )×� → R
d ,

which satisfies∫ T

0

(|π(t)′μ(X(t))| + π(t)′α(X(t))π(t)
)
dt < ∞, P-a.s.,

in which μ = (μ1, . . . ,μd) and σ = (σij )1≤i,j≤d with μi(x) = bi(x)xi , σik(x) =
sik(x)xi and α(x) = σ(x)σ (x)′.

At time t , an investor invests πi(t) proportion of his wealth in the ith stock.
The proportion 1 − ∑d

i=1 πi(t) gets invested in the bond. For each π ∈ H and
initial wealth y ≥ 0 the associated wealth process will be denoted by Yy,π (·). This
process solves

dY y,π (t) = Yy,π (t)

d∑
i=1

πi(t)
dXi(t)

Xi(t)
, Y y,π (0) = y.

It can be easily seen that Z(·)Y y,π (·) is a positive local martingale for any
π ∈ H. Let g : (0,∞)d → (0,∞) be a measurable function satisfying

E[Z(T )g(X(T ))] < ∞(2.4)

and define

V (T , x,1) := inf{y > 0 :∃π(·) ∈ H s.t. Yy,π (T ) ≥ g(X(T ))}.
Thanks to Assumption 2.1, we have that V (T , x,1) = E[Z(T )g(X(T ))]; see, for
example, [18], Section 10. Note that if g has linear growth, then (2.4) is satisfied
since the process ZX is a positive supermartingale.

2.1. A digression: What does the existence of a local martingale deflator en-
tail? Although we do not assume the existence of equivalent local martingale
measures, we assume the existence of a local martingale deflator. This is equiva-
lent to the No Unbounded Profit with Bounded Risk (NUPBR) condition; see [29],
Theorem 4.12. NUPBR is defined as follows: a sequence (πn) of admissible port-
folios is said to generate a UPBR if limm→∞ supn P[Y 1,πn

(T ) > m] > 0. If no
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such sequence exists, then we say that NUPBR holds; see [29], Proposition 4.2. In
fact, the so-called No Free Lunch with Vanishing Risk (NFLVR) is equivalent to
NUPBR plus the classical no-arbitrage assumption. Thus, in our setting (since we
assumed the existence of local martingale deflators) although arbitrages exist they
remain on the level of “cheap thrills,” which was coined by [34]. (Note that the re-
sults of Karatzas and Kardaras [29] also imply that one does not need NFLVR for
the portfolio optimization problem of an individual to be well defined. One merely
needs the NUPBR condition to hold.) The failure of no-arbitrage means that the
money market is not an optimal investment and is dominated by other investments.
It follows that a short position in the money market and long position in the dom-
inating assets leads one to arbitrage. However, one cannot scale the arbitrage and
make an arbitrary profit because of the admissibility constraint, which requires the
wealth to be positive. This is what is contained in NUPBR, which holds in our
setting. Also, see [31], where these issues are further discussed.

3. On quantile hedging. In this section, we develop new probabilistic tools to
extend results of Föllmer and Leukert [20] on quantile hedging to settings where
equivalent martingale measures need not exist. This is not only mathematically
intriguing, but also economically important because it admits arbitrage in the mar-
ket, which opens the door to the notion of optimal arbitrage, recently introduced
in Fernholz and Karatzas [14]. The tools in this section facilitate the discussion of
quantile hedging under the context of optimal arbitrage, leading us to generalize
the results of [14] on this sort of probability-one outperformance.

We will try to determine

V (T , x,p) = inf
{
y > 0|∃π ∈ H s.t. P{Yy,π (T ) ≥ g(X(T ))} ≥ p

}
(3.1)

for p ∈ [0,1]. Note that the set on which we take infimum in (3.1) is nonempty.
Indeed, under condition (2.4), there exists π ∈ H such that Yy,π (T ) = g(X(T ))

a.s., where y := E[Z(T )g(X(T ))]; see, for example, [18], Section 10. It follows
that for any p ∈ [0,1],

P{Yy,π (T ) ≥ g(X(T ))} = 1 ≥ p.

Also observe that

Ṽ (T , x,p) := V (T , x,p)

g(x)

= inf
{
r > 0|∃π ∈ H s.t. P

{
Y rg(x),π (T ) ≥ g(X(T ))

}≥ p
}
.

When g(x) = ∑d
i=1 xi , observe that Ṽ (T , x,1) is equal to equation (6.1) of [14],

the smallest relative amount to beat the market capitalization
∑d

i=1 Xi(T ).

REMARK 3.1. Clearly,

0 = V (T , x,0) ≤ V (T , x,p) ↗ V (T , x,1) ≤ g(x) as p → 1.(3.2)
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By analogy with [20], we shall present a probabilistic characterization of
V (T , x,p). First, we will generalize the Neyman–Pearson lemma (see, e.g., [21],
Theorem A.28) in the next result.

LEMMA 3.1. Suppose that Assumption 2.1 holds, and g satisfies (2.4). Let
A ∈ FT satisfy

P(A) ≥ p.(3.3)

Then

V (T , x,p) ≤ E[Z(T )g(X(T ))1A].(3.4)

Furthermore, if A ∈ FT satisfies (3.3) with equality and

ess sup
A

{Z(T )g(X(T ))} ≤ ess inf
Ac

{Z(T )g(X(T ))},(3.5)

then A satisfies (3.4) with equality.

PROOF. Under Assumption 2.1, since g(X(T ))1A ∈ FT satisfies condi-
tion (2.4), it is replicable with initial capital y := E[Z(T )g(X(T ))1A]; see, for
example, Section 10.1 of [18]. That is, there exists π ∈ H such that Yy,π (T ) =
g(X(T ))1A a.s. Now if P(A) ≥ p, we have P{Yy,π (T ) ≥ g(X(T ))} = P{1A ≥
1} ≥ p. Then it follows from (3.1) that V (T , x,p) ≤ y = E[Z(T )g(X(T ))1A].

Now, take an arbitrary pair (y0, π0) of initial capital and admissible portfolio
that replicates g(X(T )) with probability greater than or equal to p; that is,

P{B} ≥ p where B � {Yy0,π0(T ) ≥ g(X(T ))}.
Let A ∈ FT satisfy p = P(A) ≤ P(B) and (3.5). To prove equality in (3.4), it is
enough to show that

y0 ≥ E[Z(T )g(X(T ))1A],
which can be shown as follows:

y0 ≥ E[Z(T )Y y0,π0(T )] = E[Z(T )Y y0,π0(T )1B] + E[Z(T )Y y0,π0(T )1Bc ]
≥ E[Z(T )g(X(T ))1B] = E[Z(T )g(X(T ))1A∩B ] + E[Z(T )g(X(T ))1Ac∩B]
≥ E[Z(T )g(X(T ))1A∩B] + P(Ac ∩ B) ess inf

Ac∩B
{Z(T )g(X(T ))}

≥ E[Z(T )g(X(T ))1A∩B] + P(A ∩ Bc) ess sup
A∩Bc

{Z(T )g(X(T ))}
≥ E[Z(T )g(X(T ))1A∩B] + E[Z(T )g(X(T ))1A∩Bc ]
= E[Z(T )g(X(T ))1A],
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where in the fourth inequality we use the following two observations: First, P(Ac ∩
B) = P(A ∪ B) − P(A) ≥ P(A ∪ B) − P(B) = P(Bc ∩ A). Second,

ess inf
Ac∩B

{Z(T )g(X(T ))} ≥ ess inf
Ac

{Z(T )g(X(T ))}
≥ ess sup

A

{Z(T )g(X(T ))}
≥ ess sup

A∩Bc
{Z(T )g(X(T ))},

in which the second inequality follows from (3.5). �

Let F(·) be the cumulative distribution function of Z(T )g(X(T )), and, for any
a ∈ R+, define

Aa := {ω :Z(T )g(X(T )) < a}, ∂Aa := {ω :Z(T )g(X(T )) = a},
and let Āa denote Aa ∪ ∂Aa ; that is,

Āa = {ω :Z(T )g(X(T )) ≤ a}.(3.6)

Taking A = Āa in Lemma 3.1, we see that (3.5) is satisfied. It follows that

V (T , x,F (a)) = E[Z(T )g(X(T ))1Āa
].(3.7)

On the other hand, taking A = Aa , we see that (3.5) is again satisfied. We therefore
obtain

V (T , x,F (a−)) = E[Z(T )g(X(T ))1Aa ].(3.8)

The last two equalities imply the following relationship:

V (T , x,F (a)) = V (T , x,F (a−)) + aP{∂Aa}
(3.9)

= V (T , x,F (a−)) + a
(
F(a) − F(a−)

)
.

Next, we will determine V (T , x,p) for p ∈ (F (a−),F (a)) when F(a−) < F(a).

PROPOSITION 3.1. Suppose Assumption 2.1 holds. Fix an (x,p) ∈ (0,∞)d ×
[0,1].

(i) There exists A ∈ FT satisfying (3.3) with equality and (3.5). As a result,
(3.4) holds with equality.

(ii) If F−1(p) := {s ∈ R+ :F(s) = p} = ∅, then letting a := inf{s ∈ R+ :
F(s) > p} we have

V (T , x,p) = V (T , x,F (a−)) + a
(
p − F(a−)

)
(3.10)

= V (T , x,F (a)) − a
(
F(a) − p

)
.
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PROOF. (i) If there exists a ∈ R such that either F(a) = p or F(a−) = p,
then we can take A = Aa or A = Āa , thanks to (3.7) and (3.8). In the rest of the
proof we will assume that F−1(p) = ∅.

Let W̃ be a Brownian motion with respect to F, and define Bb = {ω : W̃ (T )√
T

<

b}. Let us define f (·) by f (b) = P{∂Aa ∩ Bb}. The function f satisfies
limb→−∞ f (b) = 0 and limb→∞ f (b) = P(∂Aa). Moreover, the function f (·)
is continuous and nondecreasing. Right continuity can be shown as follows: for
ε > 0,

0 ≤ f (b + ε) − f (b) = P(∂Aa ∩ Bb+ε) − P(∂Aa ∩ Bb) ≤ P(Bb+ε ∩ Bc
b).

The right continuity follows from observing that the last expression goes to zero
as ε → 0. One can show left continuity of f (·) in a similar fashion.

Since 0 < p−P(Aa) < P(∂Aa), thanks to the above properties of f , there exists
b∗ ∈ R satisfying f (b∗) = p − P(Aa).

Define A := Aa ∪(∂Aa ∩Bb∗). Observe that P(A) = P(Aa)+P(∂Aa ∩Bb∗) = p

and that A satisfies (3.5).
(ii) This follows immediately from (1):

V (T , x,p) = E[Z(T )g(X(T ))1A]
= E[Z(T )g(X(T ))1Aa ] + E[Z(T )g(X(T ))1∂Aa∩Bb∗ ]
= V (T , x,F (a−)) + aP(∂Aa ∩ Bb∗)

= V (t, x,F (a−)) + a
(
p − F(a−)

)
. �

REMARK 3.2. Note that when Z is a martingale, using the Neyman–Pearson
lemma, it was shown in [20] that

V (T , x,p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ] = E[Z(T )g(X(T ))ϕ∗],(3.11)

where

M = {ϕ :� → [0,1]|FT measurable,E[ϕ] ≥ p}.(3.12)

The randomized test function ϕ∗ is not necessarily an indicator function. Using
Lemma 3.1 and the fine structure of the filtration FT , we provide in Proposition 3.1
another optimizer of (3.11) which is an indicator function.

PROPOSITION 3.2. Suppose Assumption 2.1 holds. Then, the map p �→
V (T , x,p) is convex and continuous on the closed interval [0,1]. Hence,
V (T , x,p) ≤ pV (T , x,1) ≤ pg(x) for all p ∈ [0,1].

PROOF. By Proposition 3.1, for any p ∈ [0,1] there exists A ∈ FT such that

V (T , x,p) = E[Z(T )g(X(T ))1A] ≤ E[Z(T )g(X(T ))] < ∞.
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Then thanks to a theorem by Ostroski (see [9], page 12), to show the convexity it
suffices to demonstrate the midpoint convexity

V (T , x,p1) + V (T , x,p2)

2
(3.13)

≥ V

(
T ,x,

p1 + p2

2

)
for all 0 ≤ p1 < p2 ≤ 1.

Denote p̃ � p1+p2
2 . It follows from Proposition 3.1 that there exist A1 ⊂ Ã ⊂ A2

with P(A1) = p1 < P(Ã) = p̃ < P(A2) = p2 satisfying (3.5),

V (T , x,pi) = E[Z(T )g(X(T ))1Ai
], i = 1,2,

and

V (T , x, p̃) = E[Z(T )g(X(T ))1Ã].
By (3.5),

ess inf{Z(T )g(X(T ))1A2∩Ãc} ≥ ess inf{Z(T )g(X(T ))1Ãc}
≥ ess sup{Z(T )g(X(T ))1Ã}
≥ ess sup{Z(T )g(X(T ))1Ã∩Ac

1
},

which implies that

E[Z(T )g(X(T ))1A2∩Ãc ] ≥ E[Z(T )g(X(T ))1Ã∩Ac
1
].

As a result,

E[Z(T )g(X(T ))1A2] − E[Z(T )g(X(T ))1Ã]
≥ E[Z(T )g(X(T ))1Ã] − E[Z(T )g(X(T ))1A1],

which is equivalent to (3.13).
Now thanks to convexity, we immediately have that p �→ V (T , x,p) is contin-

uous on [0,1). It remains to show that it is continuous from the left at p = 1; but
this is indeed true because

lim
a→∞V (T , x,F (a)) = lim

a→∞ E
[
Z(T )g(X(T ))1{Z(T )g(X(T ))≤a}

]
= E[Z(T )g(X(T ))] = V (T , x,1),

where the second equality is due to the dominated convergence theorem. �

EXAMPLE 3.1. Consider a market with a single stock, whose dynamics follow
a three-dimensional Bessel process, that is,

dX(t) = 1

X(t)
dt + dW(t), X0 = x > 0,
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and let g(x) = x. In this case Z(t) = x/X(t), which is the classical example for a
strict local martingale; see [28]. On the other hand, Z(t)X(t) = x is a martingale.
Thanks to Proposition 3.1 there exists a set A ∈ FT with P(A) = p such that

V (T , x,p) = E[Z(T )X(T )1A] = px.

In [20], the following result was proved when Z is a martingale. Here, we gen-
eralize this result to the case where Z is only a local martingale.

PROPOSITION 3.3. Under Assumption 2.1

V (T , x,p) = inf
ϕ∈M

E[Z(T )g(X(T ))ϕ],(3.14)

where M is defined in (3.12).

PROOF. Thanks to Proposition 3.1 there exists a set A ∈ FT satisfying P(A) =
p and (3.5) such that V (T , x,p) = E[Z(T )g(X(T ))1A]. Since 1A ∈ M, clearly

V (T , x,p) ≥ inf
ϕ∈M

E[Z(T )g(X(T ))ϕ].
For the other direction, it is enough to show that for any ϕ ∈ M, we have

E[Z(T )g(X(T ))1A] ≤ E[Z(T )g(X(T ))ϕ].
Indeed, since the left-hand side is actually V (T , x,p), we can get the desired result
by taking infimum on both sides over ϕ ∈ M.

Letting M = ess supA{Z(T )g(X(T ))}, we observe that

E[Z(T )g(X(T ))ϕ] − E[Z(T )g(X(T ))1A]
= E[Z(T )g(X(T ))ϕ1A] + E[Z(T )g(X(T ))ϕ1Ac ] − E[Z(T )g(X(T ))1A]
= E[Z(T )g(X(T ))ϕ1Ac ] − E[Z(T )g(X(T ))1A(1 − ϕ)]
≥ ess inf

Ac
{Z(T )g(X(T ))}E[ϕ1Ac ] − ME[1A(1 − ϕ)]

≥ ME[ϕ1Ac ] − ME[1A(1 − ϕ)] [by (3.5)]

= ME[ϕ] − ME[1A] ≥ 0. �

3.1. A digression: Representation of V as a stochastic control problem. For
p ∈ [0,1], we introduce an additional controlled state variable

P p
α (s) = p +

∫ s

0
α(r)′ dW(r), s ∈ [0, T ],(3.15)

where α(·) is a G-progressively measurable R
d -valued process satisfying the inte-

grability condition
∫ T

0 |α(s)|2 ds < ∞ a.s. such that P
p
α takes values in [0,1]. We

will denote the class of such processes by A. Note that A is nonempty, as the con-
stant control α(·) ≡ (0, . . . ,0) ∈ R

d obviously lies in A. The next result obtains an
alternative representation for V in terms of P

p
α .
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PROPOSITION 3.4. Under Assumption 2.1,

V (T , x,p) = inf
α∈A

E[Z(T )g(X(T ))P p
α (T )] < ∞.(3.16)

PROOF. The finiteness follows from (2.4). Define

M̃ := {ϕ :� → [0,1]|FT measurable,E[ϕ] = p}.
Thanks to Proposition 3.1, there exists a set A ∈ FT satisfying P(A) = p and (3.5)
such that

V (T , x,p) = E[Z(T )g(X(T ))1A] ≥ inf
ϕ∈M̃

E[Z(T )g(X(T ))ϕ].

Since the opposite inequality follows immediately from Proposition 3.3, we con-
clude that

V (T , x,p) = inf
ϕ∈M̃

E[Z(T )g(X(T ))ϕ].

Therefore, it is enough to show that M̃ satisfies M̃ = {P p
α (T )|α ∈ A}. The in-

clusion M̃ ⊃ {P p
α (T )|α ∈ A} is clear. To show the other inclusion we will use the

Martingale representation theorem: for any ϕ ∈ M̃ there exists a G-progressively
measurable R

d -valued process ψ(·) satisfying
∫ T

0 |ψ(s)|2 ds < ∞ a.s. such that

E[ϕ|Ft ] = p +
∫ t

0
ψ(s)′ dW(s), t ∈ [0, T ].

Note that since ϕ takes values in [0,1], so does E[ϕ|Ft ] for all t ∈ [0, T ]. Then we
see that E[ϕ|Ft ] satisfies (3.15) with α(·) = ψ(·) ∈ A. �

4. The PDE characterization.

4.1. Notation. We denote by Xt,x(·) the solution of (2.1) starting from x at
time t and by Zt,x,z(·) the solution of

dZ(s) = −Z(s)θ(Xt,x(s))′ dW(s), Z(t) = z.(4.1)

Define the process Qt,x,q(·) by

Qt,x,q(·) := 1

Zt,x,(1/q)(·) , q ∈ (0,∞).(4.2)

Then we see from (4.1) that Q(·) satisfies

dQ(s)

Q(s)
= |θ(Xt,x(s))|2 ds + θ(Xt,x(s))′ dW(s), Qt,x,q(t) = q.(4.3)

We then introduce the value function

U(t, x,p) := inf
ϕ∈M

E[Zt,x,1(T )g(Xt,x(T ))ϕ],
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where M is defined in (3.12). Note that the original value function V can be writ-
ten in terms of U as V (T , x,p) = U(0, x,p).

We also consider the Legendre transform of U with respect to the p variable.
To make the discussion clear, however, let us first extend the domain of the map
p �→ U(t, x,p) from [0,1] to the entire real line R by setting

U(t, x,p) = 0 for p < 0,(4.4)

U(t, x,p) = ∞ for p > 1.(4.5)

Then the Legendre transform of U with respect to p is well defined:

w(t, x, q) := sup
p∈R

{pq − U(t, x,p)}
(4.6)

=
⎧⎨⎩∞, if q < 0;

sup
p∈[0,1]

{pq − U(t, x,p)}, if q ≥ 0.

From Proposition 3.2, we already know that p �→ U(t, x,p) is convex and continu-
ous on [0,1]. Since U(t, x,0) = 0, we see from (4.4) and (4.5) that p �→ U(t, x,p)

is continuous on (−∞,1] and lower semicontinuous on R. Moreover, considering
that p �→ U(t, x,p) is increasing on [0,1], we conclude that p �→ U(t, x,p) is
also convex on R. Now thanks to [42], Section 6.18, the convexity and the lower
semicontinuity of p �→ U(t, x,p) on R imply that the double transform of U is
indeed equal to U itself. That is, for any (t, x,p) ∈ [0, T ] × (0,∞)d × R,

U(t, x,p) = sup
q∈R

{pq − w(t, x, q)} = sup
q≥0

{pq − w(t, x, q)},

where the second equality is a consequence of (4.6).
In this section, we also consider the function

w̃(t, x, q) := E
[
Zt,x,1(T )

(
Qt,x,q(T ) − g(Xt,x(T ))

)+]
(4.7)

= E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)+]

for any (t, x, q) ∈ [0, T ]× (0,∞)d × (0,∞). We will show that w = w̃ and derive
various properties of w̃.

REMARK 4.1. From the definition of w̃ in (4.7), w̃ is the upper hedging price
for the contingent claim (Qt,x,q(T ) − g(Xt,x(T )))+, and potentially solves the
linear PDE

∂t w̃ + 1
2 Tr(σσ ′D2

xw̃) + 1
2 |θ |2q2D2

qw̃ + q Tr(σθDxqw̃) = 0.(4.8)

This is not, however, a traditional Black–Scholes-type equation because it is de-
generate on the entire space (x, q) ∈ (0,∞)d × (0,∞). Consider the following
function v which takes values in the space of (d + 1) × d matrices:

v(·) :=
[
s(·)d×d

θ(·)′1×d

]
.
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Degeneracy can be seen by observing that v(x)v(x)′ is only positive semi-definite
for all x ∈ (0,∞)d . Or, one may observe degeneracy by noting that there are d + 1
risky assets, X1, . . . ,Xd and Q, with only d independent sources of uncertainty,
W1, . . . ,Wd . As a result, the existence of classical solutions to (4.8) cannot be
guaranteed by standard results for parabolic equations. Indeed, under the setting
of Example 3.1, we have

w̃(t, x, q) = E
[(

q − Zt,x,1(T )Xt,x(T )
)+]= (q − x)+,

which is not smooth.

4.2. Elliptic regularization. In this subsection, we will approximate w̃ by a
sequence of smooth functions w̃ε , constructed by elliptic regularization. We will
then derive some properties of w̃ε and investigate the relation between w̃ and w̃ε .
Finally, we will show that w̃ = w, which validates the construction of w̃ε .

To perform elliptic regularization under our setting, we need to first introduce a
product probability space. Recall that we have been working on a probability space
(�,F,P), given by a weak solution to the SDE (2.1). Now consider the sample
space �B := C([0, T ];R) and the canonical process B(·). Let F

B be the filtration
generated by B and P

B be the Wiener measure on (�B,F
B). We then introduce

the product probability space (�̄, F̄, P̄), with �̄ := � × �B , F̄ := F × F
B and

P̄ := P × P
B . For any ω̄ ∈ �̄, we write ω̄ = (ω,ωB), where ω ∈ � and ωB ∈ �B .

Also, we denote by Ē the expectation taken under (�̄, F̄, P̄).
For any ε > 0, introduce the process Q

t,x,q
ε (·) which satisfies the following

dynamics:

dQε(s)

Qε(s)
= |θ(Xt,x(s))|2 ds + θ(Xt,x(s))′ dW(s) + ε dB(s),

(4.9)
Qt,x,q

ε = q ∈ (0,∞).

Then under the probability space (�̄, F̄, P̄), we have d +1 risky assets, the d stocks
X1, . . . ,Xd and Qε . Define

s̄ :=

⎡⎢⎢⎢⎢⎣
s11 · · · s1d 0
...

. . .
...

...

sd1 · · · sdd 0

θ1 · · · θd ε

⎤⎥⎥⎥⎥⎦ , b̄ :=

⎡⎢⎢⎢⎢⎣
b1
...

bd

|θ |2

⎤⎥⎥⎥⎥⎦
and

ā := s̄ s̄′ =

⎡⎢⎢⎢⎢⎣
a11 · · · a1d |
...

. . .
... sθ

ad1 · · · add |
− θ ′s′ − |θ |2 + ε2

⎤⎥⎥⎥⎥⎦ .
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Since we assume that the matrix s has full rank (Assumption 2.1), s̄ has full rank
by definition. It follows that ā is positive definite. Now we can define the corre-
sponding market price of risk under (�̄, F̄, P̄) as θ̄ := s̄−1b̄, and the corresponding
deflator Z̄(·) under (�̄, F̄, P̄) as the solution of

dZ̄(s) = −Z̄(s)θ̄(Xt,x(s))′ dW̄ (s), Z̄t,x,z(t) = z,(4.10)

where W̄ := (W1, . . . ,Wd,B) is a (d +1)-dimensional Brownian motion. Observe
that

θ̄ =
⎡⎢⎣ s−1 Od×1

−1

ε
θ ′s−1 1

ε

⎤⎥⎦[ b

|θ |2
]

=
[
θ

0

]
.

This implies that (4.10) coincides with (4.1). Thus, we conclude that Z̄(·) = Z(·).
Finally, let us introduce the function

w̃ε(t, x, q) := Ē
[
Z̄t,x,1(T )

(
Qt,x,q

ε (T ) − g(Xt,x(T ))
)+]

for any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞). By (4.9) and (4.3), we see that the
processes Qε(·) and Q(·) have the following relation:

Qt,x,q
ε (s) = Qt,x,q(s) exp

{−1
2ε2(s − t) + ε

(
B(s) − B(t)

)}
,

(4.11)
s ∈ [t, T ].

It then follows from (4.11), the fact that Z̄(·) = Z(·) and the definition of w̃ε that

w̃ε(t, x, q) = Ē
[(

q exp
{−1

2ε2(T − t) + ε
(
B(T ) − B(t)

)}
(4.12)

− Zt,x,1(T )g(Xt,x(T ))
)+]

.

ASSUMPTION 4.1. The functions θi and sij are locally Lipschitz, for all i, j ∈
{1, . . . , d}.

LEMMA 4.1. Under Assumption 4.1, we have that w̃ε ∈ C 1,2,2((0, T ) × (0,

∞)d × (0,∞)) and satisfies the PDE

∂t w̃ε + 1
2 Tr(σσ ′D2

xw̃ε) + 1
2(|θ |2 + ε2)q2D2

qw̃ε + q Tr(σθDxqw̃ε) = 0,(4.13)

(t, x, q) ∈ (0, T ) × (0,∞)d × (0,∞), with the boundary condition

w̃ε(T , x, q) = (
q − g(x)

)+
.(4.14)

PROOF. Since ā is positive definite and continuous, it must satisfy the follow-
ing ellipticity condition: for every compact set K ⊂ (0,∞)d , there exists a positive
constant CK such that

d+1∑
i=1

d+1∑
j=1

āij (x)ξiξj ≥ CK |ξ |2(4.15)
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for all ξ ∈ R
d+1 and x ∈ K ; see, for example, [23], Lemma 3. Under Assump-

tion 4.1 and (4.15), the smoothness of w̃ε and the PDE (4.13) follow immediately
from [39], Theorem 4.2. Finally, note that w̃ε satisfies the boundary condition by
definition. �

PROPOSITION 4.1. For any (t, x) ∈ [0, T ] × (0,∞)d , the map q �→ w̃ε(t,

x, q) is strictly convex on (0,∞). More precisely, the map q �→ Dqw̃ε(t, x, q) is
strictly increasing on (0,∞) with

lim
q↓0

Dqw̃ε(t, x, q) = 0 and lim
q→∞Dqw̃ε(t, x, q) = 1.

PROOF. We will first compute Dqw̃ε(t, x, q), and then show that it is strictly
increasing in q from 0 to 1. Let Lε(t, T ) := exp(−1

2ε2(T − t) + ε(B(T ) − B(t)))

and Ãa := {ω̄ :Zt,x,1(T )g(Xt,x(T )) ≤ aLε(t, T )} for a ≥ 0. Fix an arbitrary
q > 0. For any δ > 0, define

Eδ := {ω̄ :qLε(t, T ) < Zt,x,1(T )g(Xt,x(T )) ≤ (q + δ)Lε(t, T )}.
Note that by construction, Ãq and Eδ are disjoint, and Ãq+δ = Ãq ∪Eδ . It follows
that

1

δ
[w̃ε(t, x, q + δ) − w̃ε(t, x, q)]

= 1

δ

{
Ē
[(

(q + δ)Lε(t, T ) − Zt,x,1(T )g(Xt,x(T ))
)
1Ãq+δ

]
− Ē

[(
qLε(t, T ) − Zt,x,1(T )g(Xt,x(T ))

)
1Ãq

]}
= 1

δ

{
Ē
[(

(q + δ)Lε(t, T ) − Zt,x,1(T )g(Xt,x(T ))
)
1Ãq

]
+ Ē

[(
(q + δ)Lε(t, T ) − Zt,x,1(T )g(Xt,x(T ))

)
1Eδ

]
− Ē

[(
qLε(t, T ) − Zt,x,1(T )g(Xt,x(T ))

)
1Ãq

]}
= Ē[Lε(t, T )1Ãq

] + 1

δ
Ē
[(

(q + δ)Lε(t, T ) − Zt,x,1(T )g(Xt,x(T ))
)
1Eδ

]
.

By the definition of Eδ ,

0 ≤ 1

δ
Ē
[(

(q + δ)Lε(t, T ) − Zt,x,1(T )g(Xt,x(T ))
)
1Eδ

]
≤ 1

δ
Ē[δLε(t, T )1Eδ ]

= Ē[Lε(t, T )1Eδ ] → 0 as δ ↓ 0,
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where we use the dominated convergence theorem. We therefore conclude that

Dqw̃ε(t, x, q) = lim
δ↓0

1

δ
[w̃ε(t, x, q + δ) − w̃ε(t, x, q)] = Ē[Lε(t, T )1Ãq

].

Thanks to the dominated convergence theorem again, we have

lim
q↓0

Ē[Lε(t, T )1Ãq
] = 0 and lim

q→∞ Ē[Lε(t, T )1Ãq
] = Ē[Lε(t, T )] = 1.

It remains to prove that Dqw̃ε(t, x, q) = Ē[Lε(t, T )1Ãq
] is strictly increasing

in q . Note that it is enough to show that the event Eδ has positive probability
for all δ > 0. Under the integrability condition (2.2), the deflator Z(·) is strictly
positive with probability 1; see, for example, [2], Section 6. It follows from our
assumptions on g [see (2.4) and the line before it] that

0 < Zt,x,1(T )g(Xt,x(T )) < ∞, P-a.s.

This implies that

−∞ < logZt,x,1(T )g(Xt,x(T )) < ∞, P̄-a.s.(4.16)

Now, from (4.16) and the definitions Eδ and Lε , we see that P̄(Eδ) equals to the
probability of the event{

ω̄ :
ε

2
(T − t) + 1

ε
log

Zt,x,1(T )g(Xt,x(T ))

q + δ

≤ B(T ) − B(t) <
ε

2
(T − t) + 1

ε
log

Zt,x,1(T )g(Xt,x(T ))

q

}
.

Thanks to Fubini’s theorem, this probability is strictly positive. �

We investigate the relation between w̃ and w̃ε in the following result.

LEMMA 4.2. The functions w̃ and w̃ε satisfy the following relations:

(i) For any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞),

w̃(t, x, q) = lim
ε↓0

w̃ε(t, x, q).

(ii) For any compact subset E ⊂ (0,∞), w̃ε converges to w̃ uniformly on
[0, T ] × (0,∞)d × E. Moreover, for any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞),

w̃(t, x, q) = lim
(ε,t ′,x′,q ′)→(0,t,x,q)

w̃ε(t
′, x′, q ′).(4.17)
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PROOF. (i) By (4.11), we observe that

Ē

[
sup

ε∈(0,1]
Zt,x,1(T )Qt,x,q

ε (T )
]

= Ē

[
sup

ε∈(0,1]
q exp

{
−1

2
ε2(T − t) + ε

(
B(T ) − B(t)

)}]
≤ qĒ

[
sup

ε∈(0,1]
exp

{
ε
(
B(T ) − B(t)

)}]
≤ qĒ

[
sup

ε∈(0,1]
exp

{
ε
(
B(T ) − B(t)

)}
1{B(T )−B(t)≥0}

]
(4.18)

+ qĒ

[
sup

ε∈(0,1]
exp

{
ε
(
B(T ) − B(t)

)}
1{B(T )−B(t)<0}

]
≤ qĒ[exp{B(T ) − B(t)}] + q

= q

(
exp

{
1

2
(T − t)

}
+ 1

)
< ∞.

Then it follows from the dominated convergence theorem that

lim
ε↓0

w̃ε(t, x, q) = lim
ε↓0

Ē

[(
q exp

{
−1

2
ε2(T − t) + ε

(
B(T ) − B(t)

)}

− Zt,x,1(T )g(Xt,x(T ))

)+]
= Ē

[(
q − Zt,x,1(T )g(Xt,x(T ))

)+]
= E

[(
q − Zt,x,1(T )g(Xt,x(T ))

)+]
= w̃(t, x, q),

where the third equality is due to the fact that Zt,x,1(T )g(Xt,x(T )) depends only
on w ∈ �.

(ii) From (4.7), (4.12) and the observation that |(a − b)+ − (c − b)+| ≤ |a − c|
for any a, b, c ∈ R,

|w̃ε(t, x, q) − w̃(t, x, q)|
≤ qĒ

∣∣∣∣exp
{
−1

2
ε2(T − t) + ε

(
B(T ) − B(t)

)}− 1
∣∣∣∣

≤ qĒ

[
exp

{
ε2

2
(T − t) + ε|B(T ) − B(t)|

}
− 1

]
(4.19)

= q
[(

1 + �
(
ε
√

T − t
)− �

(−ε
√

T − t
))

eε2(T −t) − 1
]

≤ q
[(

1 + �
(
ε
√

T
)− �

(−ε
√

T
))

eε2T − 1
]
,
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where �(·) is the cumulative distribution function of the standard normal distri-
bution. Note that the second line of (4.19) follows from the inequality |ev − 1| ≤
e|v|−1 for v ∈ R; this inequality holds because if v < 0, |ev −1| = 1−ev = (e−v −
1)ev ≤ e−v − 1 = e|v| − 1 and if v ≥ 0, |ev − 1| = ev − 1 = e|v| − 1. We can then
conclude from (4.19) that w̃ε converges to w̃ uniformly on [0, T ] × (0,∞)d × E,
for any compact subset E of (0,∞). Now, by Lemma 4.1 w̃ε is continuous on
(0, T ) × (0,∞)d × (0,∞). Then as a result of uniform convergence, w̃ must be
continuous on the same domain. Noting that

|w̃ε(t
′, x′, q ′) − w̃(t, x, q)| ≤ |w̃ε(t

′, x′, q ′) − w̃(t ′, x′, q ′)|
+ |w̃(t ′, x′, q ′) − w̃(t, x, q)|,

we see that (4.17) follows from the continuity of w̃ and the uniform convergence
of w̃ε to w̃ on [0, T ] × (0,∞)d × E for any compact subset E of (0,∞). �

Thanks to the stability of viscosity solutions, we have the following result im-
mediately.

PROPOSITION 4.2. Under Assumption 4.1, we have that w̃ is a continuous
viscosity solution to

∂t w̃ + 1
2 Tr(σσ ′D2

xw̃) + 1
2 |θ |2q2D2

qw̃ + q Tr(σθDxqw̃) = 0(4.20)

for (t, x, q) ∈ (0, T ) × (0,∞)d × (0,∞), with the boundary condition

w̃(T , x, q) = (
q − g(x)

)+
.(4.21)

PROOF. By Lemmas 4.1 and 4.2(ii), the viscosity solution property follows
as a direct application of [41], Proposition 2.3, and the boundary condition holds
trivially from the definition of w̃. �

Now we want to relate to w̃ to w. Given (t, x) ∈ [0, T ] × (0,∞)d , recall the
notation in Section 3: for any a ≥ 0, Āa := {ω :Zt,x,1(T )g(Xt,x(T )) ≤ a}; also,
F(·) again denotes the cumulative distribution function of Zt,x,1(T )g(Xt,x(T )).
We first present another representation for w̃ as follows.

LEMMA 4.3. For any (t, x, q) ∈ [0, T ] × (0,∞)d × (0,∞), we have

max
a≥0

E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1Āa

]= w̃(t, x, q).

PROOF. Let us first take a < q . Since Āa ⊂ Āq and q − Zt,x,1(T ) ×
g(Xt,x(T )) ≥ 0 on Āq ,

E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1Āa

] ≤ E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1Āq

]
= w̃(t, x, q).
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Now consider a > q . Set F := {ω :q < Zt,x,1(T )g(Xt,x(T )) ≤ a}. Observing
that Āq and F are disjoint, and Āa = Āq ∪ F , we have

E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1Āa

]
= E

[(
q − Zt,x,1(T )g(Xt,x(T ))

)
1Āq

]+ E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1F

]
≤ E

[(
q − Zt,x,1(T )g(Xt,x(T ))

)
1Āq

]= w̃(t, x, q),

where the inequality is due to the fact that q −Zt,x,1(T )g(Xt,x(T )) < 0 on F . �

Next, we will argue that w and w̃ are equal.

PROPOSITION 4.3. w(t, x, q) = w̃(t, x, q), for all (t, x, q) ∈ [0, T ] × (0,

∞)d × (0,∞).

PROOF. Given p ∈ [0,1], there exists a ≥ 0 such that F(a−) ≤ p ≤ F(a). We
can take two nonnegative numbers λ1 and λ2 with λ1 + λ2 = 1 such that

p = λ1F(a) + λ2F(a−).(4.22)

Observe that p − F(a−) = λ1(F (a) − F(a−)). Plugging this into the first line of
(3.10), we get

U(t, x,p) = U(t, x,F (a−)) + λ1a
(
F(a) − F(a−)

)
.(4.23)

Also note from (3.10) that

a
(
F(a) − F(a−)

)= U(t, x,F (a)) − U(t, x,F (a−)).

Plugging this back into (4.23), we obtain

U(t, x,p) = λ1U(t, x,F (a)) + λ2U(t, x,F (a−)).(4.24)

It then follows from (4.22) and (4.24) that

pq − U(t, x,p)

= λ1[F(a)q − U(t, x,F (a))] + λ2[F(a−)q − U(t, x,F (a−))](4.25)

≤ max{F(a)q − U(t, x,F (a)),F (a−)q − U(t, x,F (a−))}.
Choose a sequence an ∈ [a/2, a) such that an → a from the left as n → ∞. Thanks
to Proposition 3.2, p �→ U(t, x,p) is continuous on [0,1]. We can therefore select
a subsequence of an (without relabelling) such that, for any n ∈ N,

F(a−) − F(an) <
1

n
and U(t, x,F (an)) − U(t, x,F (a−)) <

1

n
.

It follows that, for any n ∈ N,

F(a−)q − U(t, x,F (a−)) < F(an)q − U(t, x,F (an)) + 1 + q

n
,
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which yields

F(a−)q − U(t, x,F (a−))

≤ lim sup
n→∞

{
F(an)q − U(t, x,F (an)) + 1 + q

n

}
(4.26)

≤ sup
n∈N

F(an)q − U(t, x,F (an)).

Combining (4.25) and (4.26), we obtain

pq − U(t, x,p) ≤ sup
δ∈[a/2,a]

F(δ)q − U(t, x,F (δ)) ≤ sup
δ≥0

F(δ)q − U(t, x,F (δ)).

This implies

w(t, x, q) = sup
p∈[0,1]

{pq − U(t, x,p)} ≤ sup
a≥0

{F(a)q − U(t, x,F (a))}.

Since F(a) ∈ [0,1] for all a ≥ 0, the opposite inequality is trivial. We therefore
conclude

w(t, x, q) = sup
p∈[0,1]

{pq − U(t, x,p)} = sup
a≥0

{F(a)q − U(t, x,F (a))}.(4.27)

Now, thanks to (3.7), we have

F(a)q − U(t, x,F (a)) = F(a)q − E[Zt,x,1(T )g(Xt,x(T ))1Āa
]

(4.28)
= E

[(
q − Zt,x,1(T )g(Xt,x(T ))

)
1Āa

]
.

It follows from (4.27), (4.28) and Lemma 4.3 that

w(t, x, q) = max
a≥0

E
[(

q − Zt,x,1(T )g(Xt,x(T ))
)
1Āa

]= w̃(t, x, q). �

REMARK 4.2. Since w = w̃, we immediately have the following result from
Proposition 4.2: w is a continuous viscosity solution to (4.20) on (0, T ) × (0,

∞)d × (0,∞) with the boundary condition (4.21).

4.3. Viscosity supersolution property of U . Let us extend the domain of the
map q �→ w̃ε(t, x, q) from (0,∞) to the entire real line R by setting w̃ε(t, x,0) =
0 and w̃ε(t, x, q) = ∞ for q < 0. In this subsection, we consider the Legendre
transform of w̃ε with respect to the q variable

Uε(t, x,p) := sup
q∈R

{pq − w̃ε(t, x, q)} = sup
q≥0

{pq − w̃ε(t, x, q)}.

We will first show that Uε is a classical solution to a nonlinear PDE. Then we will
relate Uε to U and derive the viscosity supersolution property of U .
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PROPOSITION 4.4. Under Assumption 4.1, we have that Uε ∈ C 1,2,2((0, T ) ×
(0,∞)d × (0,1)) and satisfy the equation

0 = ∂tUε + 1

2
Tr[σσ ′DxxUε]

+ inf
a∈Rd

(
(DxpUε)

′σa + 1

2
|a|2DppUε − θ ′aDpUε

)
(4.29)

+ inf
b∈Rd

(
1

2
|b|2DppUε − εDpUε1′b

)
,

where 1 := (1, . . . ,1)′ ∈ R
d , with the boundary condition

Uε(T , x,p) = pg(x).(4.30)

Moreover, Uε(t, x,p) is strictly convex in the p variable for p ∈ (0,1), with

lim
p↓0

DpUε(t, x,p) = 0 and lim
p↑1

DpUε(t, x,p) = ∞.(4.31)

PROOF. Since from Proposition 4.1 the function q �→ Dqw̃ε(t, x, q) is strictly
increasing on (0,∞) with

lim
q↓0

Dqw̃ε(t, x, q) = 0 and lim
q→∞Dqw̃ε(t, x, q) = 1,

its inverse function p �→ H(t, x,p) is well defined on (0,1). Moreover, consider-
ing that w̃ε(t, x, q) is smooth on (0, T )× (0,∞)d × (0,∞), Uε(t, x,p) is smooth
on (0, T ) × (0,∞)d × (0,1) and can be expressed as

Uε(t, x,p) = sup
q≥0

{pq − w̃ε(t, x, q)}
(4.32)

= pH(t, x,p) − w̃ε(t, x,H(t, x,p));
see, for example, [37]. By direct calculations, we have

DpUε(t, x,p) = H(t, x,p),

DppUε(t, x,p) = DpH(t, x,p) = 1

Dqqw̃ε(t, x,H(t, x,p))
,

DxUε(t, x,p) = −Dxw̃ε(t, x,H(t, x,p)),

DxxUε(t, x,p) = −Dxxw̃ε(t, x,H(t, x,p))(4.33)

+ 1

DppUε(t, x,p)
(DpxUε)(DpxUε)

′,

DpxUε(t, x,p) = −Dqxw̃ε(t, x,H(t, x,p))DppUε(t, x,p),

∂tUε(t, x,p) = −∂t w̃ε(t, x,H(t, x,p)).
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In particular, we see that Uε(t, x,p) is strictly convex in p for p ∈ (0,1) and
satisfies (4.31). Now by setting q := H(t, x,p), we deduce from (4.13) that

0 = −∂t w̃ε − 1

2
Tr[σσ ′Dxxw̃ε]

− 1

2
(|θ |2 + ε2)q2Dqqw̃ε − q Tr[σθDxqw̃ε]

= ∂tUε + 1

2
Tr[σσ ′DxxUε] − 1

2DppUε

Tr[σσ ′(DpxUε)(DpxUε)
′]

− 1

2
(|θ |2 + ε2)

(DpUε)
2

DppUε

+ DpUε

DppUε

Tr[σθDpxUε]

= ∂tUε + 1

2
Tr[σσ ′DxxUε]

(4.34)

+
(
(DxpUε)

′σa∗ + 1

2
|a∗|2DppUε − θ ′a∗DpUε

)
+
(

1

2
|b∗|2DppUε − εDpUε1′b∗

)
= ∂tUε + 1

2
Tr[σσ ′DxxUε]

+ inf
a∈Rd

(
(DxpUε)

′σa + 1

2
|a|2DppUε − θ ′aDpUε

)

+ inf
b∈Rd

(
1

2
|b|2DppUε − εDpUε1′b

)
,

where the minimizers a∗ and b∗ are defined by

a∗(t, x,p) := DpUε(t, x,p)

DppUε(t, x,p)
θ(x) − 1

DppU(t, x,p)
σ ′(x)DpxUε(t, x,p),

b∗(t, x,p) := ε
DpUε(t, x,p)

DppUε(t, x,p)
1.

Finally, observe that for any p ∈ (0,1), the maximum of pq − (q − g(x))+ is
attained at q = g(x). Therefore, by (4.14)

Uε(T , x,p) = sup
q≥0

{pq − w̃ε(T , x,p)} = sup
q≥0

{
pq − (

q − g(x)
)+}

= pg(x). �

Now we intend to use the stability of viscosity solutions to derive the superso-
lution property of U . We first have the following observation.
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LEMMA 4.4. For any (t, x,p) ∈ [0, T ] × (0,∞)d × R, we have

lim inf
(ε,̃t,x̃,p̃)→(0,t,x,p)

Uε(̃t, x̃, p̃) = U(t, x,p).

PROOF. As a consequence of Lemma 4.2(ii), w̃ε(t, x, q) is continuous at
(ε, t, x, q) ∈ [0,∞) × [0, T ] × (0,∞)d × (0,∞). This implies that Uε(t, x,p) =
supq≥0{pq − w̃ε(t, x, q)} is lower semicontinuous at (ε, t, x,p) ∈ [0,∞) ×
[0, T ] × (0,∞)d × R. It follows that

lim inf
(ε,̃t,x̃,p̃)→(0,t,x,p)

Uε(̃t, x̃, p̃) = sup
q≥0

{pq − w̃(t, x, q)} = sup
q≥0

{pq − w(t, x, q)}

= U(t, x,p),

where the second equality follows from Proposition 4.3. �

Before we state the supersolution property for U , let us first introduce some
notation. For any (x,β, γ,λ) ∈ (0,∞)d × R × R × R

d , define

G(x,β, γ,λ) := inf
a∈Rd

(
λ′σ(x)a + 1

2
|a|2γ − βθ(x)′a

)
.

We also consider the lower semicontinuous envelope of G

G∗(x,β, γ,λ) := lim inf
(x̃,β̃,γ̃ ,̃λ)→(x,β,γ,λ)

G(x̃, β̃, γ̃ , λ̃).

Observe that, by definition,

G∗(x,β, γ,λ) =
{

G(x,β, γ,λ), if γ > 0;
−∞, if γ ≤ 0.

(4.35)

PROPOSITION 4.5. Under Assumption 4.1, U is a lower semicontinuous vis-
cosity supersolution to the equation

0 ≥ ∂tU + 1
2 Tr[σσ ′DxxU ] + G∗(x,DpU,DppU,DxpU)(4.36)

for (t, x,p) ∈ (0, T ) × (0,∞)d × (0,1), with the boundary condition

U(T , x,p) = pg(x).(4.37)

PROOF. Note that the lower semicontinuity of U is a consequence of Lem-
ma 4.4, and the boundary condition (4.37) comes from the fact that w = w̃ and the
definition of w̃ as the following calculation demonstrates:

U(T , x,p) = sup
q≥0

{pq − w(T ,x,p)} = sup
q≥0

{pq − w̃(T , x,p)}

= sup
q≥0

{
pq − (

q − g(x)
)+}= pg(x).
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Let us now turn to the PDE characterization inside the domain of U . Set x̄ :=
(t, x,p). Let ϕ be a smooth function such that U − ϕ attains a local minimum at
x̄0 = (t0, x0,p0) ∈ (0, T )× (0,∞)d × (0,1) and U(x̄0) = ϕ(x̄0). Note from (4.35)
that as Dppϕ(x̄0) ≤ 0, we must have G∗(x0,Dpϕ,Dppϕ,Dxpϕ) = −∞. Thus, the
viscosity supersolution property (4.36) is trivially satisfied. We therefore assume
in the following that Dppϕ(x̄0) > 0.

Let Fε(x̄, ∂tUε(x̄),DpUε(x̄),DppUε(x̄),DxpUε(x̄),DxxUε(x̄)) denote the
right-hand side of (4.29). Observe from the calculation in (4.34) that as γ > 0,

Fε(x̄, α,β, γ,λ,A) = α + 1

2
Tr[σ(x)σ (x)′A] − 1

2γ
Tr[σ(x)σ (x)′λλ′]

− β2

2γ

(|θ(x)|2 + ε2)+ β

γ
Tr[σ(x)θ(x)λ].

This shows that Fε is continuous at every (ε, x̄, α,β, γ,λ,A) as long as γ > 0. It
follows that for any z = (x̄, α,β, γ,λ,A) with γ > 0, we have

F∗(z) := lim inf
(ε,z′)→(0,z)

Fε(z
′) = F0(z)

= α + 1

2
Tr[σ(x)σ (x)′A](4.38)

+ inf
a∈Rd

(
λ′σ(x)a + 1

2
|a|2γ − θ(x)′aβ

)
.

Since we have U(x̄) = lim inf(ε,x̄′)→(0,x̄) Uε(x̄
′) from Lemma 4.4, we may use the

same argument in [41], Proposition 2.3, and obtain that

F∗(x̄0, ∂tϕ(x̄0),Dpϕ(x̄0),Dppϕ(x̄0),Dxpϕ(x̄0),Dxxϕ(x̄0)) ≤ 0.

Considering that Dppϕ(x̄0) > 0, we see from (4.38) and (4.35) that this is the
desired supersolution property. �

A few remarks are in order:

REMARK 4.3. Results similar to Proposition 4.5 were proved by [7], with
stronger assumptions [such as the existence of an equivalent martingale measure
and the existence of a unique strong solution to (2.1)], using the stochastic target
formulation. Here, we first observe that the Legendre transform of U is equal to
w̃ and that w̃ can be approximated by w̃ε , which is a classical solution to a linear
PDE and is strictly convex in q; then, we apply the Legendre duality argument, as
carried out in [30], to show that Uε , the Legendre transform of w̃ε , is a classical
solution to a nonlinear PDE. Finally, the stability of viscosity solutions leads to the
viscosity supersolution property of U .
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REMARK 4.4. Instead of relying on the Legendre duality we could directly
apply the dynamic programming principle of [22] for weak solutions to the for-
mulation in Section 3.1. The problem with this approach is that it requires some
growth conditions on the coefficients of (2.1), which would rule out the possibility
of arbitrage, the thing we are interested in and want to keep in the scope of our
discussion.

REMARK 4.5. Under our assumptions, the solution of (4.36) may not be
unique as pointed out below:

(i) Let us consider the PDE satisfied by the superhedging price U(t, x,1),

0 = vt + 1
2 Tr(σσ ′D2

xv) on (0, T ) × (0,∞)d,(4.39)

v(T −, x) = g(x) on (0,∞)d .(4.40)

Unless additional boundary conditions are specified, this PDE may have multi-
ple solutions. The role of additional boundary conditions in identifying (t, x) →
U(t, x,1) as the unique solution of the above Cauchy problem is discussed in Sec-
tion 4 of [4]. Also see [36] for a similar discussion on boundary conditions for
degenerate parabolic problems on bounded domains.

Even when additional boundary conditions are specified, the growth of σ might
lead to the loss of uniqueness; see, for example, [6] and Theorem 4.8 of [4] which
give necessary and sufficient conditions on the uniqueness of Cauchy problems in
one and two-dimensional settings in terms of the growth rate of its coefficients. We
also note that [14] develops necessary and sufficient conditions for uniqueness, in
terms of the attainability of the boundary of the positive orthant by an auxiliary
diffusion (or, more generally, an auxiliary Itô) process.

(ii) Let �U(t, x,1) be the difference of two solutions of (4.39)–(4.40). Then
both U(t, x,p) and U(t, x,p) + �U(t, x,1) are solutions of (4.36) (along with
its boundary conditions). As a result, whenever (4.39) and (4.40) have multiple
solutions, so does the PDE (4.36) for the value function U .

4.4. Characterizing the value function U . We intend to characterize Uε as
the smallest solution among a particular class of functions, as specified below
in Proposition 4.6. Then, considering that lim inf(ε,̃t,x̃,p̃)→(0,t,x,p) Uε(̃t, x̃, p̃) =
U(t, x,p) from Lemma 4.4, this gives a characterization for U . In determining
U numerically, one could use Uε as a proxy for U for small enough ε. Addition-
ally, we will characterize U as the smallest nonnegative supersolution of (4.36) in
Proposition 4.7.

PROPOSITION 4.6. Suppose that Assumption 4.1 holds. Let u : [0, T ] ×
(0,∞)d × [0,1] �→ [0,∞) be of class C 1,2,2((0, T ) × (0,∞)d × (0,1)) such that
u(t, x,0) = 0, and u(t, x,p) is strictly convex in p for p ∈ (0,1) with

lim
p↓0

Dpu(t, x,p) = 0 and lim
p↑1

Dpu(t, x,p) = ∞.(4.41)
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If u satisfies the partial differential inequality

0 ≥ ∂tu + 1

2
Tr[σσ ′Dxxu] + inf

a∈Rd

(
(Dxpu)′σa + 1

2
|a|2Dppu − θ ′aDpu

)
(4.42)

+ inf
b∈Rd

(
1

2
|b|2Dppu − εDpu1′b

)
,

where 1 := (1, . . . ,1)′ ∈ R
d , with the boundary condition

u(T , x,p) = pg(x),(4.43)

then u ≥ Uε .

PROOF. Let us extend the domain of the map p �→ u(t, x,p) from [0,1] to the
entire real line R by setting u(t, x,p) = 0 for p < 0 and u(t, x,p) = ∞ for p > 1.
Then we can define the Legendre transform of u with respect to the p variable

wu(t, x, q) := sup
p∈R

{pq − u(t, x,p)}
(4.44)

= sup
p∈[0,1]

{pq − u(t, x,p)} ≥ 0 for q ≥ 0,

where the positivity comes from the condition u(t, x,0) = 0. First, observe that
since u is nonnegative, we must have

wu(t, x, q) ≤ sup
p∈[0,1]

pq = q for any q ≥ 0.(4.45)

Next, we derive the boundary condition of wu from (4.43) as

wu(T , x, q) = sup
p∈[0,1]

{pq − u(T , x,p)} = sup
p∈[0,1]

{pq − pg(x)}
(4.46)

= (
q − g(x)

)+
.

Now, since u(t, x,p) is strictly convex in p for p ∈ (0,1) and satisfies (4.41), we
can express wu as

wu(t, x, q) = J (t, x, q)q − u(t, x, J (t, x, q)) for q ∈ (0,∞),

where q �→ J (·, q) is the inverse function of p �→ Dpu(·,p). We can therefore
compute the derivatives of wu(t, x, q) in terms of those of u(t, x, J (t, x, q)), as
carried out in (4.33). We can then perform the same calculation in (4.34) (but going
backward), and deduce from (4.42) that for any (t, x, q) ∈ (0, T ) × (0,∞)d ×
(0,∞),

0 ≤ ∂tw
u + 1

2 Tr[σσ ′Dxxw
u] + 1

2(|θ |2 + ε2)q2Dqqwu

(4.47)
+ q Tr[σθDxqw

u].
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Define the process Y(s) := Zt,x,1(s)Q
t,x,q
ε (s) for s ∈ [t, T ]. Observing that

Y(s) = q exp
{−1

2ε2(s − t) + ε
(
B(s) − B(t)

)}
,

we conclude that Y(·) is a martingale with Ē[Y(s)] = q and Var(Y (s)) =
q2(eε2(s−t) − 1) for all s ∈ [t, T ], and satisfies the following SDE:

dY (s) = εY (s) dB(s) for s ∈ [t, T ] and Y(t) = q.

Thanks to the Burkholder–Davis–Gundy inequality, there exists a constant C > 0
such that

Ē

[
max

t≤s≤T
|Y(s)|2

]
≤ CĒ

[∫ T

t
ε2Y 2(s) ds

]
(4.48)

= Cε2
∫ T

t
q2(eε2(s−t) − 1

)+ q2 ds < ∞.

For each n ∈ N, define the stopping time

τn := inf{s ≥ t : |Xt,x(s)| > n or |Qt,x,q
ε (s)| > n}.

By applying the product rule to the process Zt,x,1(·)wu(·,Xt,x(·),Qt,x,q
ε (·)) and

using (4.47), we get

wu(t, x, q)

≤ Ē
[
Zt,x,1(T ∧ τn)w

u(T ∧ τn,X
t,x(T ∧ τn),Q

t,x,q
ε (T ∧ τn)

)]
(4.49)

for n ∈ N.

Now, observe from (4.45) that Zt,x,1(s)wu(s,Xt,x(s),Q
t,x,q
ε (s)) ≤ Y(s) for any

s ∈ [t, T ]. Then from (4.48), we may apply the dominated convergence theorem to
(4.49) and obtain

wu(t, x, q) ≤ Ē[Zt,x,1(T )wu(T ,Xt,x(T ),Qt,x,q
ε (T ))]

= Ē
[
Zt,x,1(T )

(
Qt,x,q

ε (T ) − g(Xt,x(T ))
)+]= w̃ε(t, x, q),

where the first equality is due to (4.46). It follows that

u(t, x,p) = sup
q≥0

{pq − wu(t, x, q)} ≥ sup
q≥0

{pq − w̃ε(t, x, q)}

= Uε(t, x,p). �

PROPOSITION 4.7. Suppose Assumption 4.1 holds. Let u : [0, T ]× (0,∞)d ×
[0,1] �→ [0,∞) be such that u(t, x,0) = 0, u(t, x,p) is convex in p, and the Leg-
endre transform of u with respect to the p variable, as defined in the proof of
Proposition 4.6, is continuous on [0, T ] × (0,∞)d × (0,∞). If u is a lower semi-
continuous viscosity supersolution to (4.36) on (0, T ) × (0,∞)d × (0,1) with the
boundary condition (4.37), then u ≥ U .
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PROOF. Let us denote by wu the Legendre transform of u with respect to p.
By the same argument in the proof of Proposition 4.6, we can show that (4.44),
(4.45) and (4.46) are true. Moreover, as demonstrated in [7], Section 4, by using
the supersolution property of u we may show that wu is an upper semicontinuous
viscosity subsolution on (0, T ) × (0,∞)d × (0,∞) to the equation

∂tw
u + 1

2 Tr(σσ ′D2
xw

u) + 1
2 |θ |2q2D2

qw
u + q Tr(σθDxqwu) = 0.(4.50)

Let ρ(t, x, q) be a nonnegative C∞ function supported in {(t, x, q) : t ∈
[0,1], |(x, q)| ≤ 1} with unit mass. Without loss of generality, set wu(t, x, q) = 0
for (t, x, q) ∈ R

d+2 ∩ ([0, T ]× (0,∞)d × (0,∞))c. Then for any (t, x, q) ∈ R
d+2,

define

wu
δ (t, x, q) := ρδ ∗wu where ρδ(t, x, q) := 1

δd+2 ρ

(
t

δ2 ,
x

δ
,
q

δ

)
.

By definition, wu
δ is C∞. Moreover, it can be shown that wu

δ is a subsolution to
(4.50) on (0, T ) × (0,∞)d × (0,∞); see, for example, (3.23) and (3.24) in [12],
Section 3.3.2, and [3], Lemma 2.7. Set x̄ = (t, x, q). By (4.45), we see from the
definition of wu

δ that

wu
δ (x̄) =

∫
Rd+2

ρδ(y)wu(x̄ − y)dy ≤ (q + δ)

∫
Rd+2

ρδ(y) dy = q + δ.(4.51)

Also, the continuity of wu implies that wu
δ → wu for every (t, x, q) ∈ [0, T ] ×

(0,∞)d × (0,∞). Considering that wu
δ is a classical subsolution to (4.50), we

have

wu
δ (t, x, q)

≤ E
[
Zt,x,1(T ∧ τn)w

u
δ

(
T ∧ τn,X

t,x(T ∧ τn),Q
t,x,q(T ∧ τn)

)]
(4.52)

for n ∈ N,

where τn := inf{s ≥ t : |Xt,x(s)| > n or |Qt,x,q(s)| > n}. For each fixed n ∈ N,
thanks to (4.51), we may apply the dominated convergence theorem as we take the
limit δ → 0 in (4.52). We thus get

wu(t, x, q)
(4.53)

≤ E
[
Zt,x,1(T ∧ τn)w

u(T ∧ τn,X
t,x(T ∧ τn),Q

t,x,q(T ∧ τn)
)]

.

Now by applying the reverse of Fatou’s lemma (see, e.g., [43], page 53) to (4.53),
we have

wu(t, x, q) ≤ E

[
Zt,x,1(T ) lim sup

n→∞
wu(T ∧ τn,X

t,x(T ∧ τn),Q
t,x,q(T ∧ τn)

)]
≤ E[Zt,x,1(T )wu(T ,Xt,x(T ),Qt,x,q(T ))]
≤ E

[
Zt,x,1(T )

(
Qt,x,q(T ) − g(Xt,x(T ))

)+]
= w(t, x, q),
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where the second inequality follows from the upper semicontinuity of wu, and the
third inequality is due to (4.46). Finally, we conclude that

u(t, x,p) = sup
q≥0

{pq − wu(t, x, q)} ≥ sup
q≥0

{pq − w(t, x, q)} = U(t, x,p),

where the first equality is guaranteed by the convexity and the lower semicontinu-
ity of u. �

One should note that Uε and U satisfy the assumptions stated in Propositions
4.6 and 4.7, respectively. Therefore, one can indeed see these results as PDE char-
acterizations of the functions Uε and U .

In this paper, under the context where equivalent martingale measures need not
exist, we discuss the quantile hedging problem and focus on the PDE characteri-
zation for the minimum amount of initial capital required for quantile hedging. An
interesting problem following this is the construction of the corresponding quantile
hedging portfolio. We leave this problem open for future research.

Acknowledgments. We would like to thank Johannes Ruf for his feedback.
We also would like to express our gratitude to the anonymous Associate Editor
and referees whose comments helped us improve our paper significantly.

REFERENCES

[1] ANDERSEN, L. B. G. and PITERBARG, V. V. (2007). Moment explosions in stochastic volatil-
ity models. Finance Stoch. 11 29–50. MR2284011

[2] BACK, K. (2010). Martingale pricing. Annual Review of Financial Economics 2 235–250.
[3] BARLES, G. and JAKOBSEN, E. R. (2002). On the convergence rate of approximation schemes

for Hamilton–Jacobi–Bellman equations. M2AN Math. Model. Numer. Anal. 36 33–54.
MR1916291

[4] BAYRAKTAR, E., KARDARAS, C. and XING, H. (2010). Valuation equations for stochastic
volatility models. Univ. Michigan and London School of Economics. Available at http:
//arxiv.org/abs/1004.3299.

[5] BAYRAKTAR, E., KARDARAS, C. and XING, H. (2012). Strict local martingale deflators and
American call-type options. Finance Stoch. To appear. Available at http://arxiv.org/pdf/
0908.1082.

[6] BAYRAKTAR, E. and XING, H. (2010). On the uniqueness of classical solutions of Cauchy
problems. Proc. Amer. Math. Soc. 138 2061–2064. MR2596042

[7] BOUCHARD, B., ELIE, R. and TOUZI, N. (2009). Stochastic target problems with controlled
loss. SIAM J. Control Optim. 48 3123–3150. MR2599913

[8] COX, A. M. G. and HOBSON, D. G. (2005). Local martingales, bubbles and option prices.
Finance Stoch. 9 477–492. MR2213778

[9] DONOGHUE, W. (1969). Distributions and Fourier Transforms. Academic Press, New York.
[10] EKSTRÖM, E. and TYSK, J. (2009). Bubbles, convexity and the Black–Scholes equation. Ann.

Appl. Probab. 19 1369–1384. MR2538074
[11] EKSTRÖM, E. and TYSK, J. (2010). The Black–Scholes equation in stochastic volatility mod-

els. J. Math. Anal. Appl. 368 498–507. MR2643818
[12] FAHIM, A., TOUZI, N. and WARIN, X. (2011). A probabilistic numerical scheme for fully

nonlinear pdes. Ann. Appl. Probab. 21 1322–1364.

http://www.ams.org/mathscinet-getitem?mr=2284011
http://www.ams.org/mathscinet-getitem?mr=1916291
http://arxiv.org/abs/1004.3299
http://arxiv.org/pdf/0908.1082
http://www.ams.org/mathscinet-getitem?mr=2596042
http://www.ams.org/mathscinet-getitem?mr=2599913
http://www.ams.org/mathscinet-getitem?mr=2213778
http://www.ams.org/mathscinet-getitem?mr=2538074
http://www.ams.org/mathscinet-getitem?mr=2643818
http://arxiv.org/abs/1004.3299
http://arxiv.org/pdf/0908.1082


OUTPERFORMING THE MARKET PORTFOLIO WITH A GIVEN PROBABILITY 1493

[13] FERNHOLZ, D. and KARATZAS, I. (2008). On optimal arbitrage. Technical report, Columbia
Univ. Available at http://www.math.columbia.edu/~ik/preprints.html. (A more concise
version appeared in The Annals of Applied Probability.)

[14] FERNHOLZ, D. and KARATZAS, I. (2010). On optimal arbitrage. Ann. Appl. Probab. 20 1179–
1204. MR2676936

[15] FERNHOLZ, D. and KARATZAS, I. (2010). Probabilistic aspects of arbitrage. In Contemporary
Quantitative Finance 1–17. Springer, Berlin. MR2732837

[16] FERNHOLZ, D. and KARATZAS, I. (2011). Optimal arbitrage under model uncertainty. Ann.
Appl. Probab. 21 2191–2225.

[17] FERNHOLZ, E. R. (2002). Stochastic Portfolio Theory. Applications of Mathematics (New
York) 48. Springer, New York. MR1894767

[18] FERNHOLZ, E. R. and KARATZAS, I. (2009). Stochastic Portfolio Theory: A Survey. Handb.
Numer. Anal. 15 89–168. Available at http://www.math.columbia.edu/~ik/preprints.html.

[19] FERNHOLZ, R., KARATZAS, I. and KARDARAS, C. (2005). Diversity and relative arbitrage in
equity markets. Finance Stoch. 9 1–27. MR2210925

[20] FÖLLMER, H. and LEUKERT, P. (1999). Quantile hedging. Finance Stoch. 3 251–273.
MR1842286

[21] FÖLLMER, H. and SCHIED, A. (2004). Stochastic Finance: An Introduction in Discrete Time,
extended ed. de Gruyter Studies in Mathematics 27. de Gruyter, Berlin. MR2169807

[22] HAUSSMANN, U. G. and LEPELTIER, J. P. (1990). On the existence of optimal controls. SIAM
J. Control Optim. 28 851–902. MR1051628

[23] HEATH, D. and SCHWEIZER, M. (2000). Martingales versus PDEs in finance: An equivalence
result with examples. J. Appl. Probab. 37 947–957. MR1808860

[24] HESTON, S. L., LOEWENSTEIN, M. and WILLARD, G. A. (2007). Options and bubbles. Re-
view of Financial Studies 20 359–390.

[25] HOBSON, D. (2010). Comparison results for stochastic volatility models via coupling. Finance
Stoch. 14 129–152. MR2563207

[26] JARROW, R. A., PROTTER, P. and SHIMBO, K. (2007). Asset price bubbles in com-
plete markets. In Advances in Mathematical Finance 97–121. Birkhäuser, Boston, MA.
MR2359365

[27] JARROW, R. A., PROTTER, P. and SHIMBO, K. (2010). Asset price bubbles in incomplete
markets. Math. Finance 20 145–185. MR2650245

[28] JOHNSON, G. and HELMS, L. L. (1963). Class D supermartingales. Bull. Amer. Math. Soc.
(N.S.) 69 59–62. MR0142148

[29] KARATZAS, I. and KARDARAS, C. (2007). The numéraire portfolio in semimartingale finan-
cial models. Finance Stoch. 11 447–493. MR2335830

[30] KARATZAS, I., LEHOCZKY, J. P. and SHREVE, S. E. (1987). Optimal portfolio and consump-
tion decisions for a “small investor” on a finite horizon. SIAM J. Control Optim. 25 1557–
1586. MR0912456

[31] KARDARAS, C. (2012). Market viability via absence of arbitrages of the first kind. Finance
Stoch. To appear. Available at http://arxiv.org/pdf/0904.1798.

[32] LEWIS, A. L. (2000). Option Valuation Under Stochastic Volatility: With Mathematica Code.
Finance Press, Newport Beach, CA. MR1742310

[33] LIONS, P. L. and MUSIELA, M. (2007). Correlations and bounds for stochastic volatility mod-
els. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 1–16. MR2286556

[34] LOEWENSTEIN, M. and WILLARD, G. A. (2000). Local martingales, arbitrage, and viability.
Free snacks and cheap thrills. Econom. Theory 16 135–161. MR1774056

[35] PLATEN, E. and HEATH, D. (2006). A Benchmark Approach to Quantitative Finance. Springer,
Berlin. MR2267213

[36] POZIO, M. A., PUNZO, F. and TESEI, A. (2008). Criteria for well-posedness of degenerate
elliptic and parabolic problems. J. Math. Pures Appl. (9) 90 353–386. MR2454711

http://www.math.columbia.edu/~ik/preprints.html
http://www.ams.org/mathscinet-getitem?mr=2676936
http://www.ams.org/mathscinet-getitem?mr=2732837
http://www.ams.org/mathscinet-getitem?mr=1894767
http://www.math.columbia.edu/~ik/preprints.html
http://www.ams.org/mathscinet-getitem?mr=2210925
http://www.ams.org/mathscinet-getitem?mr=1842286
http://www.ams.org/mathscinet-getitem?mr=2169807
http://www.ams.org/mathscinet-getitem?mr=1051628
http://www.ams.org/mathscinet-getitem?mr=1808860
http://www.ams.org/mathscinet-getitem?mr=2563207
http://www.ams.org/mathscinet-getitem?mr=2359365
http://www.ams.org/mathscinet-getitem?mr=2650245
http://www.ams.org/mathscinet-getitem?mr=0142148
http://www.ams.org/mathscinet-getitem?mr=2335830
http://www.ams.org/mathscinet-getitem?mr=0912456
http://arxiv.org/pdf/0904.1798
http://www.ams.org/mathscinet-getitem?mr=1742310
http://www.ams.org/mathscinet-getitem?mr=2286556
http://www.ams.org/mathscinet-getitem?mr=1774056
http://www.ams.org/mathscinet-getitem?mr=2267213
http://www.ams.org/mathscinet-getitem?mr=2454711


1494 E. BAYRAKTAR, Y.-J. HUANG AND Q. SONG

[37] ROCKAFELLAR, R. T. (1997). Convex Analysis. Princeton Univ. Press, Princeton, NJ. Reprint
of the 1970 original, Princeton Paperbacks. MR1451876

[38] RUF, J. (2011). Optimal trading strategies under arbitrage. Technical report, Columbia
Univ. Ph.D. dissertation. Available at http://academiccommons.columbia.edu/catalog/ac:
131477.

[39] RUF, J. (2012). Hedging under arbitrage. Math. Finance. To appear. Available at http://arxiv.
org/abs/1003.4797.

[40] SIN, C. A. (1998). Complications with stochastic volatility models. Adv. in Appl. Probab. 30
256–268. MR1618849

[41] TOUZI, N. (2004). Stochastic Control Problems, Viscosity Solutions and Application to Fi-
nance. Scuola Normale Superiore, Pisa. MR2100161

[42] VAN TIEL, J. (1984). Convex Analysis: An Introductory Text. Wiley, New York. MR0743904
[43] WILLIAMS, D. (1991). Probability with Martingales. Cambridge Univ. Press, Cambridge.

MR1155402

E. BAYRAKTAR

Y.-J. HUANG

DEPARTMENT OF MATHEMATICS

UNIVERSITY OF MICHIGAN

ANN ARBOR, MICHIGAN 48109
USA
E-MAIL: erhan@umich.edu

jayhuang@umich.edu

Q. SONG

DEPARTMENT OF MATHEMATICS

CITY UNIVERSITY OF HONG KONG

CHINA

E-MAIL: song.qingshuo@cityu.edu.hk

http://www.ams.org/mathscinet-getitem?mr=1451876
http://academiccommons.columbia.edu/catalog/ac:131477
http://arxiv.org/abs/1003.4797
http://www.ams.org/mathscinet-getitem?mr=1618849
http://www.ams.org/mathscinet-getitem?mr=2100161
http://www.ams.org/mathscinet-getitem?mr=0743904
http://www.ams.org/mathscinet-getitem?mr=1155402
mailto:erhan@umich.edu
mailto:jayhuang@umich.edu
mailto:song.qingshuo@cityu.edu.hk
http://academiccommons.columbia.edu/catalog/ac:131477
http://arxiv.org/abs/1003.4797

	Introduction
	The model
	A digression: What does the existence of a local martingale deflator entail

	On quantile hedging
	A digression: Representation of V as a stochastic control problem

	The PDE characterization
	Notation
	Elliptic regularization
	Viscosity supersolution property of U
	Characterizing the value function U

	Acknowledgments
	References
	Author's Addresses

